
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

International Refrigeration and Air Conditioning 
Conference School of Mechanical Engineering 

2022 

Performance Prediction and Calibration of a Clean-Room Air Performance Prediction and Calibration of a Clean-Room Air 

Conditioner Using an Embedded Artificial Neural Network Conditioner Using an Embedded Artificial Neural Network 

Myung-Sup Yoon 

Dong-Hyuk Yi 

Myung-Kyo Seo 

Seung-Yup Ryu 

Follow this and additional works at: https://docs.lib.purdue.edu/iracc 

Yoon, Myung-Sup; Yi, Dong-Hyuk; Seo, Myung-Kyo; and Ryu, Seung-Yup, "Performance Prediction and 
Calibration of a Clean-Room Air Conditioner Using an Embedded Artificial Neural Network" (2022). 
International Refrigeration and Air Conditioning Conference. Paper 2276. 
https://docs.lib.purdue.edu/iracc/2276 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at 
https://engineering.purdue.edu/Herrick/Events/orderlit.html 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/iracc
https://docs.lib.purdue.edu/iracc
https://docs.lib.purdue.edu/me
https://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F2276&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html


 

 2106, Page 1 
 

19th International Refrigeration and Air Conditioning Conference at Purdue, July 10 - 14, 2022 

 

 
Performance prediction and calibration of a clean-room air conditioner using an embedded 

artificial neural network 
 

Myung-Sup YOON1*, Dong-Hyuk YI2, Myung-Kyo SEO3, Seung-Yup RYU4 

 
1Energy Technology Center, Korea Testing Laboratory, 

Seoul, Korea (msyun95@ktl.re.kr) 

 
2Energy Technology Center, Korea Testing Laboratory, 

Seoul, Korea (dhyi@ktl.re.kr) 

 
3Engineering Team, Fläkt Korea, 

Seoul, Korea (mkseo@flaktkorea.co.kr) 

 
4System Department, Seungil Electronics, 

Bucheon, Korea (globalsales@si-tec.co.kr) 

 

* Corresponding Author 

 

 

ABSTRACT 
 

This study is about the application of an artificial neural network (ANN) to implement supervised learning for the 

performance prediction of a clean-room air conditioner (CRAC) installed on-site. To measure accurately the cooling 

capacity and efficiency of an HVAC product such as an air conditioner, the temperature and humidity should be fixed 

in a well-defined standard chamber. However, at an actual site where air conditioners are installed, it is unreasonable 

to expect a well-defined testing chamber environment. To resolve this difficulty, various temperature and humidity 

environments were simulated under the laboratory conditions in advance. Moreover, the sensing and performance data 

measured by the sensors inside of the CRAC product were recorded along with the data measured in an air enthalpy-

type standard chamber. After simultaneous acquisition of the CRAC and standard-chamber data in a simulated 

chamber environment, supervised learning by an artificial neural network was carried out and the trained ANN was 

transferred into an embedded chipset. Finally, accuracy analyses of the control-group ANN (using chamber sensors) 

and experimental-group ANN (using product sensors) are compared for selected test conditions. Although the 

experimental-group ANN shows worse prediction performance than the control-group ANN does, it shows better 

results than the product calculation results. The experimental-group ANN of the CRAC might exhibit prediction as 

good as the control-group ANN, if the precision of the product sensors is improved. 

 

1. INTRODUCTION 
 

Usually, air source heat pumps or cooling air conditioners are tested in a well-defined chamber environment where 

the temperature and humidity conditions are precisely controlled in order to measure capacity and efficiency of 

products (ISO 5151, 2017). On the other hand, in the case of a water-to-water heat pump, it is possible to measure the 

capacity and efficiency on-site by installing a flow meter and thermometers in the inlet and outlet pipes. The reason 

these two product groups were studied using a chamber environment test and a field test is that a nozzle chamber 

(according to AMCA: ANSI/AMCA, 2016 and ISO standard: ISO 5151, 2017) is usually required to measure the air 

volume and heat capacity for the air side.  

For example, when using a room air conditioner at home or using air conditioner equipment such as a clean-room air 

conditioner (CRAC) in the field, sometimes we need to know the cooling or heating performance of a product instantly 

and precisely, However, the current technology generally provides information only on the environmental temperature, 

humidity and power consumption, and not on the product’s air volume, cooling capacity, and efficiency of the product. 

This technical limitation is due to the afore-mentioned reason. 
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Recent advances in AI fields such as machine learning and deep learning have opened up the possibility of overcoming 

these difficulties. Srivastav et al. (2007) and De Menezes et al. (2018) applied artificial neural networks (ANNs) in 

the field of water treatment and chemical processes to predict performance. Yamamoto et al. (2017) and Si et al. (2020) 

used ANNs to calibrate low-cost temperature sensors and particle sensors used in meteorological measurements, 

compared to a reference system. Kamar et al. (2013), Datta et al. (2019), Park et al. (2019), and Puttige et al. (2021) 

used ANN modeling to predict the thermal performance of automobile air conditioners and on-site heat pump systems. 

Somehsaraei et al. (2020) applied in flow measurement using multi-hole pressure probes. 

In this study, ANN supervised learning was used to determine the potential of predicting the performance (e.g., cooling 

capacity, efficiency, airflow) of a CRAC product, even at an installation site. An electrically commutated (EC) plug 

fan, along with temperature and humidity sensors that could roughly measure the air volume and enthalpy values, 

were installed inside of the CRAC product to allow it to estimate the performance data independently. At the same 

time, supervised learning was conducted by matching accurate performance data in a standard air-enthalpy type 

chamber in which various environmental conditions of the indoor and outdoor sides were simulated. 

 

2. EXPERIMENTAL APPROACH 
 

A CRAC is mainly used for cooling server rooms or data center equipment. It is a kind of air conditioner that can 

precisely control temperature and keep humidity constant annually within a set range. Performance prediction in 

various environmental conditions is possible after acquiring 2,816 steady state data sets (includes chamber data, 

product data) and doing supervised machine learning. These 2,816 AI training data sets were obtained using the air 

enthalpy-type ISO standard chamber shown in Figure 1. 

 

 
Figure 1: Used air enthalpy-type ISO chamber 

 

2.1 Test Product Specification 
The test product can mainly control the compressor speed (COM), electronic expansion valve openness (EEV), indoor 

fan rpm, and outdoor fan rpm. Table 1 shows the product’s rated specifications. However, in this study, COM and 

EEV values under a part-load operating condition (looser than the rated cooling capacity in Table 1) were used to 

obtain the test data also in unfavorable conditions, including overload (e.g., extremely high and low temperature or 

humidity). That is, COM was set lower (= 10) and EEV set higher (= 40) than the rated operating conditions. Due to 

the problem of the large number of test cases needed and the test time constraints, the COM and EEV values were 

fixed as one combination (10, 40) and only the speed of the indoor fans was adjusted to 11 stages (see, Section 2.4). 

The values of (COM, EEV) = (x, y) match (53x + 1000) rpm and y% openness. 

 

Table 1: Tested CRAC product specification 

 

Compressor type Installation type Rated cooling capacity Rated power input Refrigerant 

Inverter compressor Split floor stand 
9,500 W @ (COM, 

EEV) = (55, 28) 

3,600 W @ (COM, 

EEV) = (55, 28) 
R410a, 7 kg 

 

2.2 Indoor Fan Specifications 
In the case of room wall-mounted and stand-type air conditioners, a cross flow fan and an axial (or swirl fan), 

respectively, were installed in the indoor unit. However, in the case of large capacity commercial air conditioners, like 

a CRAC, an EC plug fan suitable for high static pressure (as shown in Figure 2) is preferable. Furthermore, in this 
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study, to have the product independently calculate the rough air volume and cooling capacity, an indoor fan with a 

pressure tap was required (p in Figure 2). 

 

 
Figure 2: CRAC indoor fan (EC plug fan) 

 

The amount of air volume q passing through the fan can be roughly obtained using Equation (1). Factor k is given for 

individual products by the fan manufacturer. 

 

 𝑞 = 𝑘√∆𝑝 (1) 

 

2.3 Embedded Chipset 
Because a bulky PC cannot be mounted on a CRAC product at the installation site, a small-capacity Raspberry Pi 

chipset was used (Table 2). In Sections 3.1 and 3.2 of this paper, the ANN is trained using a laptop computer. Then, 

this trained neural network was transferred to the Raspberry Pi chipset and used to perform what is explained in 

Section 3.3. This chipset was developed as part of an education project and is based on an embedded Linux operating 

system (Nayyar and Puri, 2015).  

 

Table 2: Specifications of the chipset 

 

Model name CPU RAM Ports GPIO 

Raspberry Pi 3 model B Quad core 1.2 GHz Broadcom 64 bit 1GB 4 USB 2.0 40-pin extended 

 

2.4 Number of Cases for Training Data Acquisition 
Although formal ISO standard (ISO 5151, 2017) test conditions involve several specific conditions (e.g., T1, T2, T3), 

we used the extensive temperature and humidity (or DB and WB temperature) ranges in environmental conditions that 

may exist under actual CRAC operating situations and got realistic training data for the supervised machine learning. 

In this study, the four environmental cooling conditions of each outdoor DB, outdoor humidity, indoor DB, and indoor 

humidity had respectively four test points inside the range (20  40 C), (30  90%), (10  40 C), and (30  90%). 

Therefore, a total of (44 =) 256 cases of environmental test conditions were set. The percent relative humidity was 

implemented experimentally by converting it to a wet bulb (WB) temperature. 

In fact, not only environmental conditions, but also training data under the various conditions according to the set 

values of the CRAC product (e.g., inverter compressor rpm: COM, EEV openness: EEV, indoor fan rpm: IFrpm, 

outdoor fan rpm: OFrpm) are required. However, in this study, to reduce the extensive training data acquisition time, 

the set values of all parts of the CRAC components were fixed and only IFrpm was varied using 11 cases of rpm output 

between 55 and 70%. Because each of 256 environmental conditions has 11 cases of IFrpm variation, a total 2,816 sets 

of training data were ultimately obtained. 

Although AI training data were obtained simultaneously with product data and chamber data (as shown in Figure 3), 

two separate neural networks were constructed and used throughout this study by making them (product data and 

chamber data) independent on the input layer, as shown in Figure 4. This is because, on site, where the actual CRAC 

product was used, expensive and bulky ISO chamber equipment could not be installed at the same time in reality. In 

other words, when predicting the performance of the product, it is difficult to obtain accurate chamber data 

immediately in the field, so it is necessary to obtain data under various environmental conditions in advance using 

simulated laboratory conditions. 
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Figure 3: Training data acquisition in a standard ISO chamber (air-enthalpy type) 

 

There are several preliminary studies about training ANNs of an HVAC product in a standard ISO chamber (Yoon 

and Yoon, 2021; Yoon et al., 2020). In a standard ISO chamber, we were able to simulate the various desired training 

environments (i.e., temperature and humidity) accurately. This simulated environment can be implemented statically 

fixed or dynamically varied depending on the purpose of the study. In this study, we simulated various fixed 

temperature and humidity cases of 256 (= 44). 

 

2.5 Artificial Neural Network (ANN) Model 
Figure 4 shows the ANN of the control group (left) and the experimental group (right). The ANN on the left side can 

guess the accuracy of the ANN model and chamber data independently using the accredited chamber data. On the 

other hand, the ANN on the right is a neural network for using the data of products equipped with low-cost measuring 

sensors. The chamber data set of the left-side ANN input layer includes outdoor DB/WB temperatures (C), indoor 

DB/WB temperatures (C), test product discharge DB/WB temperatures (C), code tester nozzle differential pressure 

(Pa), code tester nozzle inlet temperature (C), measured current (A), and measured power input (W) using the 

chamber shown in Figure 1 (total of 10 input data). The product data set on the right-side ANN input layer includes 

outdoor unit intake air temperature (C), indoor unit return air temperature (C) and humidity (%), indoor unit supply 

air temperature (C) and humidity (%), differential pressure (Pa) (p in Figure 2), simple power meter current (A), 

and power input (W). All these data were collected using the sensors inside the product (total 8 input data). In the 

future, it will be possible to install additional sensors in CRAC products. 

The output layer nodes of the control-group and experimental-group ANNs include the same accurate chamber data 

(chamber measured air volume, cooling capacity, and COP).  

 

 
 

Figure 4: Control-group ANN(left) and experimental-group ANN(right) 

 

The ANN model was calculated using Keras’ sequential structure, and 64 nodes were set up in the middle-hidden 

layer. The Adam optimizer, MSE (mean square error) loss function, and leaky ReLU (rectified linear unit) 

activation functions were used. Among the 2,816 datasets, 80% of the data were used to train each ANN (training 

data set), and 20% of the data were used to verify (validation data set). 
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3. RESULTS AND ANALYSIS 
 

As stated in Section 2.4, a total of 2,816 data (simultaneous chamber data and product data) were obtained for more 

than a month from the equipment shown in Figure 1. According to the air conditioner standard (ISO 5151, 2017), the 

averaged data must be obtained for about 30 minutes after environmental stabilization. However, in this study, the 

amount of data was so large that it is necessary to proceed with data collection immediately after each environmental 

condition and product performance was stabilized. After acquiring data, supervised learning was performed through 

a laptop computer and the results were analyzed. First, ANN model training and prediction were conducted only with 

clean and accurate chamber data obtained with accredited test equipment (control group: left side of Figure 4), and 

then, training and prediction were made with product data obtained through a relatively low-cost product sensor 

(experimental group: right side of Figure 4). After analyzing and confirming the validity of the experimental results, 

the trained ANN model was transferred into a small Raspberry Pi chipset connected to the CRAC product. Last, the 

data measured through the chamber equipment and the data predicted by the newly transferred product ANN were 

compared for several test conditions.  

 

3.1 ANN Model Prediction Using Chamber Data Set Input (Control Group) 
Figure 5 shows the trend of change of the mean square error (MSE) loss value as the epoch (combination of feed 

forward and back propagation) progresses for prediction.  

 

 𝑀𝑆𝐸 𝑙𝑜𝑠𝑠 =
1

𝑁
∑(𝑦𝑖 − 𝑡𝑖)

2

𝑁

𝑖=1

 (2) 

 

Here, yi is the output of the neural network (NN) estimated value, ti is the given data of the output node (target value), 

and N is the number of data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Loss for the training data set (2,252) and validation data set (564) 

 

MSE loss converged up to 20,000 epochs. In the case of training data, the MSE loss value fell to a value of 1.E-4 and 

to a value of 1.E-3 in the case of validation data. Both training and validation data show very low MSE loss because 

the accurate chamber experimental equipment (including accurately calibrated sensors and physically standard 

formula) data were used (left ANN in Figure 4). All of this satisfied ISO standard for the measurement of air 

conditioner performance measurement. The reason why the loss value of training data oscillates greater than the value 

of validation data is that the loss value of training data is so small (log scale of 1.E-4). 

Graphs comparing the ANN prediction value and the actual value measured using the training data set and the 

validation data set, are shown in Figure 6 and 7, respectively. The physical quantity of cooling capacity, air volume, 

and efficiency (COP), which are the most important factors in air conditioning, is shown in the left, middle and right 

parts, respectively. 

All of the graphs in Figures 6 and 7 show high linearity between the prediction and real measured data. This means 

that the ANN model using the chamber data was well trained to predict CRAC performance. In other words, 

performance prediction was adequate with only input data and trained neural networks, even without physical 

calculation formulas for the CRAC cooling capacity and efficiency. 
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Figure 6: Prediction and real measured value for the training data (2,252 points) of the control group 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Prediction and real measured value for the validation data (564 points) of the control group 

 

CVRMSE defined in equation (3) was used to determine the prediction accuracy of each physical quantity. CVRMSE 

is an indicator of performance prediction in the building air conditioning sector (Granderson et al., 2015). The smaller 

the CVRMSE, the more accurate the prediction. In equation (3), y is the mean value of the population yi. 

 

 
𝐶𝑉𝑅𝑀𝑆𝐸 =

√1
𝑁

∑ (𝑦𝑖 − 𝑡𝑖)
2𝑁

𝑖=1

𝑦
× 100 

(3) 

 

Table 3 shows the CVRMSE of the control-group ANN prediction. In the case of the training data, it was less than 

0.6%, and in the case of the validation data, it showed an accuracy of < 1.5%. The CVRMSE for the validation data 

are usually greater than for the training data due to the number of data points (training data: 2,252, validation data: 

564) or due to the problem of overfitting in the trained ANN model.    

 

Table 3: CVRMSE summary table of the control group 

 

Physical quantity 

Data type 

CVRMSE % 

(Capacity) 

CVRMSE % 

(Air volume) 

CVRMSE % 

(COP) 

Training data 0.50 0.04 0.58 

Validation data 1.39 0.05 1.46 

 

 

3.2 ANN Model Prediction Using Product Data Set Input (Experimental Group) 
After acquiring the control-group ANN model, we implemented training of the experimental-group ANN using 

product input data. The MSE loss decreases as the epoch progresses, as in Figure 8. However, comparing this with 

Figure 5, it is clear that the MSE loss does not undergo 1.E-4 and 1.E-3 for the training and validation data, respectively. 

These results are believed to be due to the quality of the product sensing data, and this becomes clear when comparing 

the graphs in Figure 9 and 10 with Figures 6 and 7. 
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Figure 8: Loss for the training data set (2,252) and validation data set (564) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Prediction and real measured value for the training data (2,252 points) of the experimental group 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Prediction and real measured value for the validation data (564 points) of the experimental group 

 

The CVRMSE for the experimental group appears in Table 4. Comparing this with the results in Table 3, larger error 

values appear both in the training and in the validation data cases.  

 

Table 4: CVRMSE summary table of the experimental group 

 

Physical quantity 

Data type 

CVRMSE % 

(Capacity) 

CVRMSE % 

(Air volume) 

CVRMSE % 

(COP) 

Training data 3.43 0.52 3.78 

Validation data 5.07 0.71 4.72 
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3.3 Final Test Using an ANN Transferred to a Chipset 
The ANN weight information (‘h5’ file for neural network weight) trained using each neural network in Figure 4, 

were transferred to a Raspberry Pi chipset (see Figure 11) and then the final predictions were checked. Figure 11 

shows the chipset and CRAC products used in this paper. As shown in Table 5, the results were compared under a 

total of 10 stabilized laboratory conditions. The contents in parentheses in the first column mean outdoor room 

temperature/humidity, indoor room temperature/humidity, and product indoor fan percent output, respectively. Test 

conditions #1 to #6 are the results of the prediction when the values of the input data are within the range of prior 

training data, as explained in Section 2.4. Test conditions #7 to #10 were arbitrarily set as the outrange of the training 

data for some test conditions (bold characters). 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Photographs of the Raspberry Pi chipset, CRAC outdoor unit, and indoor unit  

 

The reference value column (2nd column) of Table 5 is a value precisely measured in the ISO chamber and may be 

viewed as the real target value closest to the true value. The control-group ANN predicted value column (3rd column) 

and experimental-group ANN predicted value column (5th column) are on-chip predicted values using the same ANN 

used in prior training, as shown in Figure 4. The input node is given chamber-sensor and product-sensor values for 

each prediction neural network. The fourth column of the product self-data is a calculation result of the non-neural 

network method provided by the product manufacturer on the product. Control-group ANN predicted values show 

very accurate prediction results except in the test conditions of cases #8 and #10. Test condition #8 has indoor fan 

output of 40%, lower than the training range (55  70%). Test condition #10 also has an outdoor temperature of 15 

C, out of training range (20  40 C). Therefore, control groups in cases #8 and #10 can have errors > 3.5% relative 

error in prediction results on capacity, air volume, and COP. 

In fact, what we expected in this study was to predict accurately the performance of the CRAC product using the 

experimental-group ANN on the chip. However, as can be seen from the last column of Table 5, capacity and COP 

show somewhat lower levels of predictive performance except for the good air volume (AV) predictions. These results 

are in line with the results of Section 3.2. From the CVRMSE (%) values in Table 4, a high CVRMSE is shown in 

capacity and COP (> 3%), except air volume (< 0.71%) for the prior neural network training. For predicting air volume, 

it seems that one independent variable of the differential pressure (p) in Figure 2 plays the most import role, whereas 

six temperature and humidity sensors were most important for the capacity and COP prediction. Therefore, it seems 

that the measurement uncertainty in capacity and efficiency may have increased due to the use of many temperature 

and humidity measurement sensors. The same trend is shown in Table 3 (CVRMSE of 0.05% or less for air volume, 

1.5% or less for capacity and humidity). 

Finally, Figure 12 compares the chamber measurement for electric current (A) and power input (W) with the product 

measurement values. The power meter installed in the CRAC shows good measurement quality of high linearity. 

 

 

 

 

 

 

 

 

 

 

Figure 12: Electric measurement comparisons between chamber and CRAC  
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Table 5: Final test result accuracy (relative error) comparison for arbitrary test conditions 

 

Physical  

quantity 

Test  

condition 

Reference value 

(Chamber meas.)  

Predicted value 

(Control group ANN) 

Product self-data 

(Product calculated) 

Predicted value 

(Exp. group ANN) 

Capa. AV COP Capa. AV COP Capa. AV COP Capa. AV COP 

#1- (35/24C,  

27/19C, 55%) 
4139 32.09 2.544 

4109 32.06 2.544 3848 32.89 2.329 4399 31.76 2.631 

-0.72% -0.09% 0% -7.03% 2.49% -8.45% 6.28% -1.03% 3.42% 

#2- (35/24C,  

27/19C, 60%) 
4320 34.75 2.598 

4340 34.73 2.616 4199 35.58 2.484 4381 34.66 2.557 

0.46% -0.06% 0.69% -2.80% 2.39% -4.39% 1.41% -0.26% -1.58% 

#3- (20/15C,  

27/19C, 55%) 
5477 32.07 4.439 

5471 32.09 4.425 5974 32.99 4.783 4924 32.77 3.838 

-0.11% 0.06% -0.32% 9.07% 2.87% 7.75% -10.1% 2.18% -13.5% 

#4- (20/15C,  

27/19C, 70%) 
5874 40.39 4.342 

5877 40.42 4.332 5830 41.44 4.267 4470 40.88 3.314 

0.05% 0.07% -0.23% -0.75% 2.60% -1.73% -23.9% 1.21% -23.7% 

#5- (35/24C,  

20/15C, 55%) 
3013 31.79 1.830 

2909 31.79 1.821 3889 33.01 2.325 3306 30.61 2.051 

-3.45% 0% -0.49% 29.1% 3.84% 27.0% 9.72% -3.71% 12.1% 

#6- (35/24C,  

20/15C, 70%) 
3257 39.98 1.821 

3178 39.99 1.820 4161 41.62 2.303 3259 39.21 1.881 

-2.42% 0.03% -0.05% 27.8% 4.10% 26.5% 0.06% -1.93% 3.29% 

#7- (35/24C,  

27/19C, 75%) 
4468 43.44 2.437 

4475 43.51 2.435 3959 44.62 2.123 3838 44.31 2.048 

0.15% 0.16% -0.08% -11.4% 2.72% -12.9% -14.1% 2.00% -15.9% 

#8- (35/24C,  

27/19C, 40%) 
3535 22.41 2.304 

3675 23.52 2.407 3788 22.50 2.433 448 25.73 0.384 

3.96% 4.95% 4.47% 7.16% 0.40% 5.59% -87.3% 14.8% -83.3% 

#9- (15/10C,  

20/15C, 55%) 
4622 31.40 3.914 

4601 31.44 3.928 5948 32.66 4.988 4716 31.92 3.799 

-0.45% 0.13% 0.36% 28.7% 4.01% 27.4% 2.03% 1.66% -2.9% 

#10-(15/10C,  

20/15C, 40%) 
4268 22.53 3.880 

4719 23.42 4.321 4963 23.24 4.471 2472 27.60 2.466 

10.5% 3.95% 11.4% 16.3% 3.15% 15.2% -42.1% 22.5% -36.4% 

 

 

4. CONCLUSIONS 

 

In this study, a variety of environmental (temperature, humidity) conditions simulated in an ISO standard chamber, 

and their performance prediction was attempted using ANN supervised learning. The control-group ANN receiving 

the sensor data from the ISO chamber, and the experimental-group ANN receiving the sensor data of the product, 

were set to compare the prediction performances of the capacity, air volume, and the efficiency of the clean-room air 

conditioner. A total of 2,816 data sets were obtained according to 256 diverse indoor and outdoor environments and 

11 product airflow stages. Of these 2,816 data, 80% were used for ANN model training, and 20% were used for model 

validation.  

The control-group ANN using chamber-sensor input data showed better prediction performance than the experimental 

-group ANN using product-sensor input data. However, the experimental-group ANN showed results that are slightly 

better than the product self-calculation results. In future study, if the “precision” of the product’s temperature and 

humidity sensor is further improved, then it should be possible to predict accurately the performance of the product in 

the field even though the “accuracy” of the product sensors is low. This means that biased sensor measurement can be 

calibrated effectively by the ANN models if the sensor precision is assured. 

 

 

NOMENCLATURE 
 

ANN artificial neural network (-) COP coefficient of performance (W/W) 

CRAC clean room air conditioner (-) COM compressor speed indicator (-) 

IFrpm indoor fan rotation speed  (rpm) EEV elec. expansion valve openness (%) 

OFrpm outdoor fan rotation speed (rpm) DB dry bulb temperature (C) 

WB wet bulb temperature (C) N number of data (-) 

MSE mean square error (-) k factor of the fan air volume (-) 
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ReLU rectified linear unit (-) yi ANN predicted output value (-) 

p differential pressure of EC fan (Pa) ti given target value of output  (-) 

q or AV air volume of the fan (m3/min) CVRMSE coefficient of the variation of  

the root mean square error 

(%) 

y mean value of the yi (-) 

 

Subscript   

i index of the individual data (-)  population mean (-) 
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