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ABSTRACT 
 
Additive Manufacturing (AM) of copper and copper alloys has opened new frontiers in heat transfer applications, 
going beyond the capabilities of conventional technologies. Despite the great design freedom offered by AM, when 
dealing with metal powders, a few issues should be considered to exploit the great capabilities of this manufacturing 
technology. In fact, the surface roughness of the components is expected to affect the performance of the devices, 
which can be remarkably different from the ones simulated with software. This paper presents a critical analysis of 
the accuracy of the numerical tools to simulate the fluid flow behaviour inside cooling channels obtained via AM. The 
work shows the major limitations of the standard approaches to accurately predict the pressure drops in straight and 
complex channels. Three different copper channels of growing complexity were built via LPBF (Laser Powder Bed 
Fusion) and then they were experimentally tested at different water flow rates to evaluate the predictive abilities of 
the numerical model. The results revealed that the surface roughness deeply affects the fluid flow behaviour, thus the 
numerical models need to be calibrated to become a reliable design tool. The proposed procedure can be considered 
the first attempt in this direction and allows for a proper integration of the AM with the numerical simulation tools, to 
boost the design capabilities of LPBF technology. 
 

1. INTRODUCTION 
 
Additive Manufacturing is a technology process, which intrinsically demonstrates many advantages and a few 
limitations. It has found wide use in fast prototyping for many years due to its versatility and limited costs per unit. 
More recently, this technology has involved the manufacturability of new components, using metallic materials, for 
example in aerospace and automotive applications. Wrobel et al. (2020) designed and characterized the AM 
aluminium alloy metal to build a heat exchanger for high-altitude aircraft. The compactness and lightness are required 
properties and AM technology is able to satisfy these requirements. The process uses a method of layers, where each 
one is a thin cross-section of the components generated by a computer-aided design (CAD) file. The material is 
stratified in different ways depending on the AM technology. LPBF consists of a metal powder melting with the use 
of a high power laser. AM technology’s remarkable advantage is the possibility of realizing complex channels directly 
inside the component without assembling external cooling pipes. The direct integration of the cooling channels in the 
final component is becoming a key enabling technology in many different applications, among those: aerospace, 
automotive, biomedical, electronic thermal management, robotics, and energy. Arie et al. (2018) carried out an 
experimental investigation about heat exchangers for power plants and observed a 30%-40% improvement as 
compared to conventional wavy fins, louvered fins, and plain fins.  
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However, AM enables the design of novel internal enhanced surfaces using pins or lattice structures inside channels 
to improve the heat transfer coefficient. Brooks and Brigden (2016) investigated the use of AM to produce cooling 
channels with lattice internal structures showing interesting results. Among the different fields, fusion energy is an 
important topic of research in which the cooling components are relevant because the heat fluxes to be handled are an 
order of magnitudes higher as compared to common applications and the geometrical constraints limit the design 
possibilities of the traditional manufacturing technologies. The AM is an attractive solution that is under investigation 
and studied: for example, Seltzman and Wukitch (2020) developed and tested lower hybrid current drive RF launchers 
manufactured via LPBF of copper alloy. 
The Divertor Tokamak Test facility (DTT) is an Italian project aimed at testing the physics and technology of 
alternative power for DEMO and ITER reactors (Ambrosino et al. 2021). In DTT, the neutral beam injector (NBI) is 
an important system that accelerates the deuterium beam and gives it the correct direction inside the tokamak reactor. 
To fulfil these functions NBI is equipped with acceleration grids, which are involved by huge localized heat fluxes. 
To avoid fatigue structural failures of acceleration grids, cooling channels inside grids are useful to keep the 
temperature under critical values. Agostinetti et al. (2016) designed optimized cooling channels for MITICA 
(Megavolt ITER Injector & Concept Advancement) grids, with Nozzle Island Cooling Enhancement (NICE) shape 
(Fig. 1). This optimization, which requires a complicated process chain, considered conventional technologies but it 
can be considered a challenging AM application.  
Although this fast increase in the applicability of the cooling channels, the prediction of fluid flow can become tricky 
and lead to incorrect results. Kirsch and Thole (2018) studied and separated the effect of roughness and wall shape, 
comparing the k-ε turbulence model between LPBF and SLA (Stereolithography). The effect of roughness is a complex 
issue, due to the lack of control of the roughness of the manufactured metal surfaces. The current CFD tools simulate 
the channel as smooth ones and allow to specify the actual roughness but, unfortunately, the roughness of 3D printed 
channels is not known a priori, because the shape is complex and it is not easy to measure internal surfaces. Thus, the 
predictive capabilities of these numerical tools are typically unsatisfactory.  
In this paper, MITICA grids cooling channels are considered to prepare novel suitable channels designed for AM. 
This paper critically studies the reliability of the numerical tools to simulate the fluid flow behaviour inside channels 
obtained via AM, showing the major limitations of the standard approaches to accurately predict the pressure drops in 
straight and complex channels. The turbulent flow of water inside different channels of increasing geometry 
complexity, built via LPBF is experimentally investigated and the collected results are used to calibrate the numerical 
models. The proposed novel procedure to design cooling channels based on metal AM can become a general guideline 
to avoid possible misleading results due to the still unpredictable surface roughness of the channels obtained via AM. 
 

 
Figure 1: Acceleration Grid of MITICA experiment (Agostinetti et al., 2016) with the layout of the cooling system 

and different available sections of cooling channels. 
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2. MATERIALS AND METHODS 
 
Klingaa et al. (2020) reported that the surface roughness of AM samples depends on the orientation of internal surfaces 
with respect to the build direction. In the present study, all the different channel geometries were manufactured keeping 
the same build direction. A vertical build orientation was selected, because, as stated by Klingaa et al. (2020), it leads 
to the lowest and most uniform surface roughness in a straight channel. This study takes part in the framework of the 
fusion energy program and it aims at developing an efficient cooling management system embedded in the DTT 
acceleration grid (Errore. L'origine riferimento non è stata trovata.). Different channel geometries were adopted 
for AM technology to maximize the heat transfer to reject the huge amount of heat generated by particles beams when 
passing through the grid, inspired by Agostinetti et al. (2016). Errore. L'origine riferimento non è stata trovata. 
reports a drawing of the acceleration grid of the MITICA experiment, the zoom of a single channel with the NICE 
design is reported with main quotes. The cross sectional area of NICE for the MITICA channel is a rectangular cross 
section of 4x7 mm. In this study, the reference channel can be considered the trade-off between the maximum 
dimensions available from MITICA design to improve heat transfer area and the minimum fillet radius to minimize 
the pressure drop. Fig. 2 reports a cross section for the reference straight channel design in this study. 
 

 
Figure 2: Cross section of straight reference cooling channel. In black, the MITICA cooling channel design section, 

and in blue the section developed for this study are reported. 
 
2.1 Samples manufacture 
As shown in Fig. 3, the different channels were manufactured including two pressure taps (p1 and p2) which were used 
to join the samples to the differential pressure transducer. As it can be noted from the drawings of the three channels 
(Fig. 3b-c-d), the pressure taps are located 23 mm after the inlet and before the outlet to measure only the frictional 
pressure drops, avoiding the abrupt contraction and expansions pressure drops. The NICE and duned shapes are tuned 
to AM design, thus the NICE geometry is different from MITICA one.  
The reference straight channel (Fig. 3b) was used to identify experimentally the actual absolute surface roughness ε 
and calibrate the developed numerical model. Differently, the other two channel geometries, with increased 
complexity named NICE (Fig. 3c) and duned (Fig. 3d), which are meant to maximize the heat transfer area and the 
heat transfer performance of the cooling management system, were used to evaluate the predictive capabilities of the 
developed numerical tool and to tune the proposed design procedure. The reference straight channel presents a 
hydraulic diameter dh=5.31 mm, while the duned and NICE ones are equal to 5.24 mm and 3.92 mm, respectively. 
Table 1 reports the most important geometrical characteristics of the samples. 
The samples were manufactured in a vertical direction with an EOSINT M280 machine, using pure copper powder 
(Cu 99.95%) with a distribution of D10=8.1 µm, D50=18.7µm, and D90=36.4µm. Machine parameters were set to 
guarantee the highest material density, as reported by Bonesso et al. (2020): layer thickness of 20 µm, hatching 
distance of 0.09 mm, laser power 370 W, and a scan speed of 400 mm/s. The inert gas was nitrogen and the oxygen 
concentration in the chamber was controlled to be always less than 0.5%.  
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Figure 3: Channels shapes. In (a) the external samples layout. In (b), (c), and (d) the internal channel shape of 

reference straight, NICE, and duned channel respectively. 
 
 

Table 1: Main geometrical characteristics of samples. 
 Reference straight channel duned channel NICE channel 

Wetted area (p1-p2) [mm2] 1061 1385 1647 
Fluid flow volume (p1-p2) [mm3] 1409 1814 1612 
Measuring distance (p1-p2) [mm] 54 54 54 

Total sample length [mm] 100 100 100 
Cross sectional area at p1 [mm2] 26.09 26.09 27.45 

Wetted perimeter at p1 [mm] 19.64 19.64 20.63 
Hydraulic diameter [mm] 5.31 5.24 3.92 

 
 
2.2 Experimental setup 
The hydraulic tests were run in an experimental setup located at the Department of Management and Engineering of 
the University of Padua. The test bench comprises a water loop in which the fluid temperature and flow rate can be 
independently set and controlled. The test bench is equipped with a differential pressure transducer with an uncertainty 
(k=2) of ±0.065% of the full scale (FS= 1 bar), while the water temperature was monitored using calibrated T-type 
thermocouples with an accuracy of ±0.05 K. The tests were run by varying the water flow rate from 1 to 14 l/min and 
multiple curves were collected by increasing and decreasing the water flow rate, to successfully verify the repeatability 
of the results.  
 

3. EXPERIMENTAL RESULTS 
In Fig. 4, the experimental results collected for the three different channels are reported. Pressure drop measured 
values are in agreement with a second-order polynomial function with respect to water flow rates. 
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Figure 4: Pressure drop test results plotted with respect to water flow rate. 

 
The flow regime depends on the Reynolds number, which is given by: 
 

𝑅𝑒 = !"#!
$

                                                                                   (1) 
 
The tests were run at a mean water temperature of 28.5°C and the related thermophysical properties are ρ=996.03  
kg m-3 and µ=825.125 µPa s. Thus, in the experimental tests, the Reynolds number varies from 5080 to 55765. These 
values ranged from the transitional flow regime (i.e. typically between Re=2000 and Re=10000) to turbulent flow (i.e. 
Re>10000).  
The friction factor f of the reference straight channel may be computed from the measured values of pressure drop and 
water flow rate with the Darcy equation (2): 

∆𝑝 = 𝑓 %
#!
𝜌 ""

&
                                                                           (2) 

considering the flow length equal to the distance between the two pressure taps, l=54 mm, and computing nominal 
velocity u on the known cross sectional area from Table 1. In Errore. L'origine riferimento non è stata trovata., 
the values of the experimental friction factor as a function of the Reynolds number are reported for the straight channel. 
A detailed error analysis was performed following Kline and McClintock (1953); it was estimated that the uncertainty 
(k=2) on the values of the friction factor was less than ±2.0% for Re>28000, below ±7.3%, for 28000<Re<12000 and 
then it increases being ±13.0% at Re=9800, ±31.4% at Re=6850, and ±68% at Re=5100. 
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Figure 5: Friction factor of reference straight channel, from experimental results and Blasius theoretical model. 

 
The same Fig. 5 also reports the values of the friction factor evaluated with the Blasius (1908) equation for smooth 
channels: 

𝑓 = 0.184	𝑅𝑒'(.&       if   𝑅𝑒 > 20000                                                             (3) 
𝑓 = 0.3164	𝑅𝑒'(.&*   if  10000 < 𝑅𝑒 < 20000                                              (4) 

 
It clearly appears that the experimental friction factors show a completely different behaviour as compared to those 
computed for the equivalent smooth straight one. As described before, this is due to the channel obtained via AM is 
not “smooth” and it presents a non-negligible surface roughness, which deeply affects the fluid flow. The Reynolds 
number varies from 5000 to 50000; in this range for rough channels, the transition between laminar to turbulent implies 
an increase of the friction factor, which then tends to a constant value that depends on the value of the relative 
roughness, as also reported in Moody diagram (1945).  
The main idea of the method proposed here is to use the experimental results collected for the reference straight 
channel to estimate the wall absolute roughness ε and then calibrate the numerical model. As it can be seen from Fig. 
5, for Reynolds greater than 40000, the friction factor becomes almost independent from Reynolds number and it 
tends to a value around 0.059, which is almost three times higher than that calculated with Blasius equations. 
In this work the Colebrook-White model (1939), with equation (5), can be used to evaluate the wall absolute roughness 
ε of the channel: 
 

+
,-
= −2 log 7 .

/.0+	#!
+ &.*+

23	,-
9                                                              (5) 

 
The average computed value of wall absolute roughness is 0.168 mm at Reynolds numbers 40564, 48185, and 55765.  
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4. NUMERICAL MODEL 
 

4.1 Numerical model development and validation 
The application of AM is taking place in many sectors and is having a huge diffusion in the heat transfer field. 
However, when dealing with metal AM, the main properties of the material and surface (e.g. thermal conductivity, 
surface roughness) may largely differ from the expected values. This can lead to undesired results; Fig. 5 reports the 
friction factor, which can be more than 2 times lower as compared to the experimental one.  

 
Figure 6: Pressure drop of reference straight channel: experimental data, data evaluated for the smooth channel with 

Blasius equations (5) and (6), CFD results for smooth and rough channels after calibration. 
 

Ansys Fluent v20.1 software was used to develop the numerical model. The flow was assumed to be three-
dimensional, steady-state and incompressible, with constant thermo-physical properties of the fluids which were 
estimated at the experimental water mean temperature of 28.5°C. Tetrahedral element type was used to better mesh 
complex geometry of different channel shapes. The k-ε turbulence model was adopted to solve Navier-Stokes and 
continuity equations. The k-ε turbulence model is a well-known, reliable turbulence model, which brings the 
simulations solution to convergence. 
A mesh sensitivity analysis was run considering the reference straight channel and a deviation below 1% was chosen 
as a threshold in pressure drop computation. Three meshes were investigated: the first one with 159515 elements, the 
second with 261795 elements, and the third with 383891 elements. The relative deviations between the estimated 
pressure drops were -2.9% and -0.7%, respectively.  
The model was first validated against the data calculated with the Blasius equations (5) and (6); as reported in Errore. 
L'origine riferimento non è stata trovata., the developed model was able to fairly predict the calculated results with 
an average deviation of 4.9%.  
Boundary conditions of the numerical model are set for the highest possible water flow rate: at the inlet mass flow 
rate, ṁ=0.229 kg/s, at the outlet (pressure value is zero), sand grain roughness height value of 0.168 mm that was 
calculated from the experimental results. As described before, the Standard k-ε (SKE) turbulence model with Scalable 
Wall Function (SWF) was selected. 
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As shown in Fig. 6, the calibrated numerical model can accurately predict the experimental data for Re>40000, when 
the friction factor tends to a constant value. For lower Reynolds numbers, the relative deviations slightly increase but 
the results are satisfactory. It is worth highlighting that the rating operating conditions for the cooling management 
system of the electron beam grids set Reynolds numbers greater than 40000. The experimental and numerical analyses 
were extended to lower values of the Reynolds number to understand the feasibility and the accuracy of the proposed 
method. In any case, considering the uncertainty analysis reported before, numerical results show an excellent 
agreement. 
 
4.2 Numerical application 
The proposed method allowed for the calibration of the numerical model for the reference straight channel leading to 
fair results, but this work aims to identify a suitable procedure to accurately estimate the fluid flow and pressure drops 
in AM devices, in which the channels are commonly complex and integrated into the system. Thus, the case study 
proposed here can give huge information about the suitability of the numerical models to be reliable design tools. For 
these reasons, using the same mesh parameters, same turbulence model and boundary conditions (i.e. maximum water 
flow rate at the inlet), and imposing at the wall the experimentally estimated value of surface absolute roughness, the 
values of the pressure drop for the other two samples were numerically estimated. The results revealed that when 
dealing with complex channels, the computed relative deviations were not negligible, being -23.3% and -30.1% for 
duned and NICE channels, respectively. In the entire experimental results, the calibrated model tends to underestimate 
the pressure drops measured for these channels and this can be related to both the different geometrical properties of 
the channels and to a different wall absolute roughness on the non-vertical walls. It can be stated that the calibrated 
model for the reference straight channel is neglecting some physical interactions. 

 

 
Figure 7: CFD, after single calibration of wall roughness for each channel, and experimental results of reference 

straight, duned, and NICE channel. 
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Considering a Non-Equilibrium Wall Function (NEWF) with the SKE turbulence model, some more accurate results 
were obtained. NEWF emphasizes the channel geometrical effect in the turbulent vortices but does not keep the 
roughness effect. The results are better in the duned channel, and different in the NICE one. In the duned channel, for 
Re>30000 the maximum deviation is -8.7% compared with the experimental pressure drop. Instead, in the NICE 
channel, the pressure drop results are accurate just for Re<20000, but not where the turbulent regime increases: the 
“roughness effect” in experimental data is present, while SKE with NEWF is not able to predict it. 
The surface roughness of the samples built via AM depends upon the different orientations that surfaces create with 
the main build direction. This means that the wall roughness is not uniform in all the duned and NICE internal surfaces. 
Since it might not be possible to estimate the absolute surface roughness for all the non-vertical surfaces, a simplified 
procedure can be suggested to improve the predicting capabilities of the numerical model. In the case of NICE and 
duned channels, for the non-vertical surfaces, an average value of the absolute roughness is assigned on basis of the 
calibration of the pressure drop at the maximum Reynolds number. For the vertical surfaces, the previous value of 
0.168 mm for absolute roughness was kept. 
As reported in Fig. 7, following this procedure, the numerical model has an acceptable variability with experimental 
results for all the investigated channels. 
It came out that for the duned channel, using an SWF and SKE, a wall absolute roughness value of 1.25 mm was 
computed for the non-vertical surfaces. For example, the deviation at the maximum water flow rate was 0.14%, while 
considering the entire data set, the average value of the relative deviation was 7.8%.  
Considering the NICE channel, a value of 0.62 mm for the wall absolute roughness was estimated for the non-vertical 
surfaces. Similarly, to what has already been presented for the duned channel, the SKE model with SWF is able to 
accurately predict the experimental pressure drop, showing a relative deviation of -0.23% at the highest water flow 
rate. Considering the entire data set, the average value of the relative deviation was 2.5% and the maximum deviation 
was 9.7%. 
 

5. CONCLUSIONS 
This paper presents the capabilities and limitations of the numerical tools to simulate the fluid behaviour inside 
complex shape cooling channels made via AM. Two wall functions were investigated and the results were compared 
to choose the best prediction of experimental data. 
A novel calibration method was developed to tune a numerical CFD model, starting from the pressure drop 
measurements collected for turbulent flow. From the experimental pressure drops collected for a reference straight 
channel, the values of the absolute surface roughness ε can be estimated using the Colebrook-White model by equation 
(5). This value can be used in the SWF parameters applied to the SKE turbulence model. The CFD results revealed 
that an accurate prediction of the experimental results for the straight channel can be achieved with a relative deviation 
that becomes negligible for Re>30000 and it can be considered more than satisfactory at lower Reynolds numbers.  
When applying the described procedure to the complex channels, which presented wall surfaces that were not vertical 
but inclined as compared to the build direction, the calibrated numerical model tended to underestimate the 
experimental results. The numerical analysis with different wall treatments revealed that the orientation of the surfaces 
deeply affects the wall roughness and, thus, the predicting capabilities of the numerical models. 
Thus, the proposed calibration procedure suggests to evaluate a different average absolute wall roughness for the 
channel non-vertical surfaces, which once set at the SWF of the SKE, led to accurate predictions of the experimental 
pressure drops.  
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