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ABSTRACT 
 
District heating requires thermal energy temperatures ranging from 40°C to 120°C. Typically, the thermal energy 
input for these systems has been largely met through fossil energy; however, the temperature range is low enough that 
it presents an opportunity for low-carbon technologies, such as solar thermal and electrified thermal generators like 
heat pumps (HPs), to decarbonize district heat generation. In this paper, an HP model is applied to estimate the per-
formance and economics of a real-world, low-carbon district heating substation. This system comprises a flat plate 
solar collector field paired with a mechanical vapor compression HP and hot water thermal storage, augmented by 
gas-fired boilers. Plant data from a district heating substation in Denmark, provided by Aalborg CSP, are used to tune 
the model and to estimate the system’s benefits in terms of both standard financial metrics (internal rate of return and 
payback) and environmental metrics, including avoided CO2 emissions. The model is subsequently employed to esti-
mate the technical and economic potential of solar+HP+thermal storage hybrid systems as retrofits for district heating 
systems in eight U.S. markets. 
 

1. INTRODUCTION 
District heating systems have been in use for centuries but arose in their modern form around the late 1800s (Wiltshire, 
2016). District heating systems provide three main advantages over building-level heating systems. First, they can 
leverage economies of scale to more economically produce thermal energy on a per-kilowatt-hour level. Second, dis-
trict heating systems can use a combination of energy sources, such as solar, geothermal, or combined heat and power, 
whereas most building heating systems use one heat source. Third, as countries pursue various decarbonization strat-
egies, district heating systems, as a single large provider of thermal energy, can be a faster route to decarbonization 
than encouraging individual consumers to change their behavior. District heating systems have been divided into four 
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or five “generations,” with each generation achieving successively lower temperatures, down to 40°C1 (Buffa et al., 
2019). Although district heating systems can be more cost-effective, they are not necessarily more energy efficient 
because some thermal energy is lost in the network of piping used to transfer the thermal energy, hence the push 
toward lower district heating network temperatures, which reduce heat losses (Lund et al., 2014). 
 
In addition to these advantages, district heating systems have been considered an important part of decarbonization 
because of their ability to compensate for variable renewable energy sources using thermal energy storage (TES). A 
district heating system employing renewable energy, either for direct generation such as geothermal or indirectly 
through electrically driven heat pumps (HPs), could respond to grid electricity supply (IEA, 2022; Mathiesen et al., 
2015). For example, centralized and electrically driven district heating systems with TES could provide demand re-
sponse at times when variable renewable energy supply is low. Additionally, district heating systems require relatively 
low temperatures (40°C to 120°C), which makes them a good “first mover” for renewable thermal applications. Cur-
rently, 90% of district heating systems globally rely on fossil fuels, making them a prime candidate for decarbonization 
technologies like HPs (David et al., 2017). 
 
1.1 Heat Pump- and Solar-Assisted District Heating 
Electrically driven HPs are heating systems that are very efficient and are commonly used for space heating. HPs act 
as an energy-efficiency measure because they consume less electricity than the thermal energy they produce. This is 
because of their ability to “move” heat and use either atmospheric temperatures or waste heat sources to “upgrade” 
heat to a higher temperature (Moser & Schnitzer, 1985). The ratio by which they convert electricity to usable thermal 
energy is their coefficient of performance (COP), which is inversely related to the temperature lift that the HP must 
increase the working fluid.  
 
To compensate for seasonal low atmospheric air temperatures experienced in some regions while maintaining high 
HP performance, alternative heat sources—such as large or flowing bodies of water or wastewater—that are closer to 
room temperature than ambient air have been used (David et al., 2017). Standard ambient water temperatures can 
range from 1°C to 5°C during winter operation, whereas wastewater can range from 15°C to 20°C, although the latter 
presents a larger capital cost for interconnection and requires colocation with the water treatment facility. Additionally, 
hybrid district heating systems that use HPs plus solar thermal collectors (referred to in this paper as solar flat plate 
collectors, FPCs) and TES have also been implemented (Chen et al., 2021; Geyer et al., 2019) 
 
In European countries and in the United States, from where the prices were taken for this study, district heating de-
ployment is estimated at 3.08 GW, which includes hot water (40°C to 100°C) systems and steam systems (>110°C) 
(Akar et al., 2020; Nielsen & Sørensen, 2016). Solar hot water heaters exceeded 400-GWth capacity in 2017 and 
continue to increase in use for industrial, building, and district heating applications (Correa-Jullian et al., 2020). As 
the global capacity has increased, cost declines in both technologies have led to increased adoption for thermal appli-
cations, with the effect of reducing emissions due to thermal energy; however, U.S.-based adoption has lagged other 
countries as a result of the low price of thermal energy from fossil resources, lack of manufacturers, and no nationally 
directed policy toward carbon reductions (Cox et al., 2022).  
 
1.2 Paper Contributions 
The objective of this paper is to estimate the economic competitiveness of a district heating system using an HP under 
different pricing regimes. To do this, an HP model previously developed at the National Renewable Energy Laboratory 
(NREL) under public funding from the U.S. Department of Energy (Cox et al., 2022) was used to assess the perfor-
mance of a real HP-assisted district heating system. Aalborg CSP is a company in Denmark providing renewable and 
thermal energy engineered systems. In partnership with Aalborg CSP and the Eastern Switzerland University of Ap-
plied Sciences (Institute for Energy Systems), NREL implemented the previously developed HP model using data 
supplied by Aalborg CSP for a real-world district heating substation located in Ørum, Denmark (Aalborg CSP, 2022). 
The plant comprises a flat plate solar collector field paired with a mechanical vapor compression HP and a TES tank, 
augmented by gas boilers that supply combined heat and power. A diagram of the plant is shown in Figure 2 in the 
methodology section of this paper. Weather and operating parameters from the district heating substation were used 
as inputs for the HP model, the performance of which was compared and calibrated to the measured data from the 

 
1Fifth-generation heating systems can be as low as 20°C but are excluded here because they use a distributed rather 
than a centralized approach to building thermal generation. 
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Ørum substation. The results of this model were then applied to U.S. regions to estimate HP competitiveness in various 
price regimes, along with other sensitivities performed. 
 

2. MODELING METHODOLOGY 
A model was constructed to estimate the thermodynamic performance of the HP and to evaluate the economics using 
common profitability metrics. The following sections detail the HP thermodynamic and economic analysis. Finally, 
the case study inputs are presented along with their associated assumptions. 
 
2.1 Thermodynamic Model 
The HP model used for this work has the capability to evaluate HP performance using two methodologies—a Carnot 
efficiency factor (Chen et al., 2021; Oluleye et al., 2017) and a refrigerant-based approach (Kosmadakis et al., 2020; 
Wang et al., 2010)—that have been used and are detailed in previous published studies. These two methodologies 
predict the COP of an HP, which will directly affect HP economics. For this work, the refrigerant of the Ørum sub-
station was known (ammonia, NH3, R717), and a better understanding of the potential refrigerants for HPs in industrial 
applications was desired, hence the refrigerant model was chosen. 
 
Figure 1 shows the basic layout of a two-stage mechanical vapor compression HP. The HP cycle configuration was 
chosen based on the real HP from the Ørum substation, which is described in more detail in Section 2.3. Equations 
(1) to (6) describe the variable nomenclature used in this work. To model the evaporator and condenser, a 5°C tem-
perature difference is assumed between the refrigerant temperatures and the heat source inlet (𝑇!"#$%#&%') and sink 
outlet (𝑇(')$*'+) temperatures, as shown in Equation (1). The heat absorbed in the evaporator, 𝑄̇,, and the heat leaving 
the condenser, 𝑄̇-, are provided in Equation (2). From the high and low temperatures, the compressor pressure can be 
estimated to maintain the appropriate phase for the refrigerant, here chosen as ammonia. The real compressor work 
for each stage can be determined using the compressor isentropic efficiency, 𝜀, and the refrigerant enthalpy, ℎ, at the 
different steps in the compression process, as shown in equations (3) and (4). As shown later, the compressor isentropic 
efficiencies were estimated from plant data. The COP, given in Equation (6), can then be calculated as the ratio be-
tween the HP thermal output, 𝑄̇-, and the combined compressor work (𝑊./ +𝑊.0). Refrigerant flow rates can be 
determined using equations (2) and (5), the latter showing the flow ratio, 𝑟, between the evaporator and the condenser 
from a mass balance around the flash tank. The HP model calculates the 𝐶𝑂𝑃 on an hourly basis from the desired high 
temperature, 𝑇-, and the available low temperature, 𝑇,, whereas the HP capacity and the refrigerant flow rate are 
estimated from the required thermal demand profile, 𝑄̇- (kWh), and the COP. Currently, the HP model does not adjust 
compressor efficiency based on transient effects, but it can accept either a constant or varying compressor efficiency 
(e.g., as a function of pressure ratio or temperature lift). 

 
Figure 1: Two-stage vapor compression HP schematic (left) and T-s and p-h diagrams (right) 

(Figures created by NREL) 
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 𝑇! = 𝑇"#$%&#' + 5°𝐶, 𝑇( = 𝑇)*+%,+-,# − 5°𝐶 (1) 

 𝑄̇! = 𝑚!̇(ℎ. − ℎ/), 𝑄̇( = 𝑚(̇ (ℎ0 − ℎ1) (2) 

 𝑊̇20 = 𝑚̇(
(ℎ3 − ℎ0)

𝜀0
		 , 𝑊̇23 = 𝑚̇!

(ℎ. − ℎ4)
𝜀3

 (3) 

 𝜀0 =
ℎ3$ − ℎ0
ℎ3 − ℎ0

, 𝜀3 =
ℎ.$ − ℎ4
ℎ. − ℎ4

 (4) 

 𝑟 =
ℎ5 − ℎ4
ℎ6 − ℎ3

=
𝑚̇(

𝑚̇!
 (5) 

 
𝐶𝑂𝑃7#+, =

𝑄̇!
𝑊̇20 + 𝑊̇23

 (6) 

 
2.2 Economic Model 
The economic model is based on a cash-flow analysis where the lifetime levelized cost of heat (LCOH) is calculated 
by dividing the lifetime HP costs by the lifetime energy produced. For this, one year of energy production is estimated 
and multiplied by the number of expected years for the HP lifetime (𝑁). The lifetime energy costs are a summation of 
the HP capital costs (𝐶1-2) and the annual costs of the ith year (which include energy, fixed operation-and-maintenance 
(O&M), and variable O&M costs) divided by a discount rate (𝑑). The annual HP costs include fixed O&M estimates 
based on the capacity thermal energy supplied ($/kWth), variable O&M estimates based on the thermal energy supplied 
($kWh), annual electricity costs per unit ($/kWh), and demand charges based on the largest monthly electricity de-
mand of the HP ($/kW). The economic model compares the HP costs to a similarly sized gas boiler with the same 
calculation for lifetime costs and LCOH but using a boiler efficiency (0.8) in lieu of the HP COP. Full details of the 
economic calculation are provided in previous literature on the model validation (Cox et al., 2022). 

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒	𝐶𝑜𝑠𝑡𝑠 = 𝐶8!9 +<
𝐶%!9

(1 + 𝑑)%

:

%;0

 (7) 

  

2.3 Case Study: Ørum District Heating System Description 
The system considered is a substation of Ørum Varmeværk, a district heating plant in Ørum, Denmark, located ap-
proximately 1 mile from the main plant. The substation comprises a solar thermal FPC field, an industrial HP, and a 
TES tank (Aalborg CSP, 2022), as depicted in Figure 2. The HP has a capacity of 2.5 MWth, with an estimated average 
annual energy production of 10,000 MWhth, whereas the FPC field contributes an additional 2,800 MWhth. Emissions 
savings have been estimated at 1,580 metric tons of CO2 per year. The HP is a custom-made model by Sabroe (similar 
to the commercial model Sabroe DualPAC) and features ammonia (R717) as the refrigerant and a two-stage compres-
sion cycle with open flash inter-cooler. Screw (SAB233SR, 410 kW) and reciprocating/piston (HPC112SV, 389 kW) 
compressors are used in the low- and high-pressure sides, respectively. The HP operates in parallel to the solar FPC 
field and can operate both as air-to-water using ambient air as the source or air+water-to-water using both ambient air 
and intermediate water streams from the TES tank to upgrade its heat content. The air+water-to-water mode is pre-
ferred when the solar field is in operation. The substation provides hot water with a supply temperature of approxi-
mately 50°C to 65°C, with an annual average 𝐶𝑂𝑃 of 3.7 for the HP. The hot water stream returning to the substation 
can be sent to either the HP, TES tank, or FPC field. An additional heat exchanger (HXR) is employed to increase the 
solar thermal efficiency. The TES tank is a single-tank thermocline system. 
 
Aalborg CSP provided hourly data summarizing the total thermal energy supplied by the substation. These data were 
broken out into the thermal energy provided by the FPC, HP, and the buffer of the TES, as shown in Figure 3. Although 
data were provided for the full year, one week is shown for legibility. The TES thermal energy supplied can be either 
positive for discharging or negative for charging. 
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Figure 2: Ørum substation (left) and process flow diagram (right). Photo courtesy of Aalborg CSP 

 

Figure 3: One week of total thermal supply, HP, solar, and TES outputs 
 

Table 1: Fixed financial inputs for the HP economics base case 
Parameter Value 
Conversion rate (USD/DKK) 0.16 (Bloomberg, 2022) 
HP specific capital cost $2,000/kWe 
HP specific fixed O&M 2% of specific capital cost 
HP variable O&M $17/MWh 
Price of carbon $35/metric ton 
Discount rate 3% 
Denmark average gas rate (2021) $102/MWh 
U.S. average gas rate (2021) $19/MWh 
Project lifetime 25 years 

 
The NREL HP model performance was compared to the performance reported by Aalborg CSP to estimate the overall 
error of the NREL HP model. The summary of inputs for the ‘base case’ financial model are provided in Table 1. 
Then, the HP model was applied to the nine economic scenarios, including Denmark electricity and gas prices from 
2018–2021, and wholesale electricity prices at eight regional hubs across the United States, with Henry Hub gas prices 
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used as the standard gas price. The electricity prices from Denmark and the United States are meant to represent real-
world cases as best as possible; however, there will be significant uncertainty in variables such as HP capital cost, 
discount rates, gas costs, and carbon emissions costs. To address these, uncertainty sensitivity scenarios were run. The 
average annual electricity prices from each location are provided in Table 2 and the hourly electricity prices are 
graphed for Denmark in Figure 4 and the United States hubs in Figure 5. 
 

Table 2: Electricity and gas prices for HP and boiler inputs (Nord Pool, 2022) 
Case Source Average Annual Electricity Cost 

($/MWh) 
Denmark 2018 Nord Pool: Denmark 2018  52.5 
Denmark 2019 Nord Pool: Denmark 2019 46.0 
Denmark 2020 Nord Pool: Denmark 2020 29.7 
Denmark 2021 Nord Pool: Denmark 2021 104.8 
U.S. Midwest EIA: Indiana Hub RT Peak 51.1 
U.S. Northwest EIA: Mid C Peak 59.6 
U.S. Texas EIA: Nepool 53.2 
U.S. California North EIA: NP15 61.5 
U.S. California South  EIA: SP15 56.1 
U.S. Northeast EIA: PJM 46.1 
U.S. West EIA: Palo Verde 59.3 

 
Four sensitivity cases were run, with two cases designed to understand the HP economics and two cases designed to 
understand the gas economic impacts on the HP economics. The cases adjust the HP capital cost, financing costs, gas 
prices, and carbon prices. The capital cost cases span significant from cost reductions ($1,000/kWe) to high-cost, 
bespoke HP facilities ($3,500/kWe). The financing costs are estimated by using a discount rate representative of a 
well-established low-risk technology (2%) to a higher discount rate representing higher financing costs associated 
with first-of-a-kind projects (15%). The gas sensitivities focus on gas prices ranging from $17/MWh to $150/MWh 
and carbon costs ranging from $0/metric ton to $200/metric ton (Batini et al., 2020; Energy Policies of IEA Countries 
- Denmark 2017 Review, 2017).  

 

Figure 4: Denmark hub wholesale electricity prices (2018–2021) (Nord Pool, 2022). 
 

 

Figure 5: U.S. hub wholesale electricity prices (U.S. Energy Information Administration, 2022). 
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3. RESULTS AND DISCUSSION 
 

3.1 Heat Pump Performance 
Presented first is the comparison between the model-predicted HP performance and the real-world HP data from the 
Ørum substation. The analyzed data include the hot water flow rate and temperatures at the inlet and outlet of the HP 
as well as the power consumption of the compressor. Operating and ambient temperatures were taken from the year 
2021. The former variables are used to calculate the heat rejected by the HP cycle for water heating, whereas the latter 
is used to calculate the COP of the HP. As stated previously, the HP can be operated in two ways: air-to-water and 
air+water-to-water. In the latter, the HP employs both ambient air and intermediate warm water streams from the TES 
as heat sources. The data set is separated according to the HP mode (i.e., heat source employed).  
 
The compressor isentropic efficiency is known to vary, typically between 50% and 80%, depending on compressor 
type, application, refrigerant, and operating conditions (e.g., pressure ratio) (ASHRAE, 2016). Although typical values 
for isentropic efficiency for small-scale, high-temperature HPs have been observed within 50% to 70% (e.g., using 
data from (Arpagaus & Bertsch, 2019) and (Huang et al., 2017)), higher efficiencies can be expected for high-capacity 
commercial equipment. The compressor isentropic efficiency was thus estimated by performing a regression (via local 
optimization) with the air-to-water data as observed at the Ørum plant and was found to be approximately 75% for 
both low- and high-pressure compressors. The main results of the comparison are presented in Figure 6. The graph on 
the left presents the COP prediction versus data (the red dashed line represents perfect prediction), which also indicates 
the range of available data (~2.5 COP to ~4.5 COP). The graph on the right presents the measured and predicted values 
throughout several operating hours in a year (not necessarily consecutive hours because the HP was not in operation 
all year). Overall, a good fit was observed, with a mean absolute error of 0.13 COP (3.9% difference relative to the 
measured COP), and with a standard deviation of 0.09 COP (2.8% deviation with respect to the measured COP). An 
average COP of 3.32 was obtained for the HP operating in air-to-water mode. 
 

 
Figure 6: Comparison of HP model-predicted COP with plant data. 

 
Next, the air+water-to-water mode was used to further validate the HP model performance. The compressor isentropic 
efficiency was fixed at the value obtained in the previous analysis. In this case, the individual effect of air and water 
on the source temperature is unknown because air flow rate is not measured. A weighted average was assumed for the 
source temperature, where the weights represent the effect of each source stream (air and water) in the effective source 
stream temperature. The weights were tuned with a local optimizer and resulted in 10% for water and 90% for air 
(𝑇, = 0.9	𝑇#$* + 0.1	𝑇3#4'*). The comparison of the model prediction with the COP data for the air+water-to-water 
mode presented similarly satisfactory results, with a mean absolute error of 0.13 COP (3.97% relative to the measured 
COP) and a standard deviation of 0.14 COP (3.98% relative to the measured COP). An average COP of 3.48 was 
observed for the air+water-to-water mode, or 3.40 for the combined data set including both air-to-water and air+water-
to-water modes. 
 
3.2 Economic and Environmental Performance: Denmark and U.S. Electricity and Gas Prices 
The economic results can be separated into three main categories: the Ørum substation in Denmark, the Ørum substa-
tion simulated in the United States, and sensitivity analyses. Across all cases, the HP COP performance is the same, 
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and the HP resulted in an annual emissions savings of 360 metric tons. To reduce the uncertainty of the HP perfor-
mance, the solar FPC performance was held constant, though this would, of course, change with local solar irradiance 
and meteorological conditions. 
 
Table 3 shows the results for the Denmark specific cases. For all years examined, the HP demonstrates a strong eco-
nomic performance. There is a significant sensitivity for the overall HP costs based on electricity prices, which makes 
the analysis complicated because Denmark electricity prices have significantly shifted during the last four years, and 
therefore all four years are presented here; however, in all cases, caused by the high cost of gas and the carbon cost, 
an HP-driven district heating solution makes strong financial sense, with a high net present value (NPV), internal rate 
of return (IRR), and attractive payback period (PBP). 
 

Table 3: Denmark-based cases (darkest colors: worst economic case, lightest colors: best economic case) 

Case HP LCOH 
($/MWh) 

Gas LCOH 
($/MWh) NPV ($) IRR (%) PBP (Years) 

Nord Pool: Denmark 2018 74.8 

111.00 

222,000 3.9 21.9 
Nord Pool: Denmark 2019 74.6 226,000 3.9 21.8 
Nord Pool: Denmark 2020 74.0 240,000 3.9 21.7 
Nord Pool: Denmark 2021 76.2 186,000 3.7 22.3 

 
In the U.S. price market, we see a much less competitive HP system (Table 4). Although the average electricity prices 
are similar, it appears that the Ørum substation operated at low electricity prices, and in the United States, for the same 
operating hours, a much higher LCOH was realized. This suggests both that electricity prices are not a problem for 
HP performance because they can be operated daily because prices are cheapest when paired with energy storage and 
that the gas price landscape without a national carbon policy or price continues to be the main barrier to HP adoption 
in the United States. The U.S.-based gas price without a carbon tax creates a negative NPV for all case tests, meaning 
that the IRR and PBP are irrelevant. Based on natural gas prices, the two U.S. regions with the most economic com-
petitiveness outside of California were the U.S. northeast and the Southwest. Future work might want to further ex-
amine the geographic distribution of U.S. gas prices, though some variables affecting industrial gas prices in the United 
States might not be relevant for a district heating utility justifying a national average simplification. 
 

Table 4: U.S.-based cases (darkest colors: worst economic case, lightest colors: best economic case) 

Case HP LCOH 
($/MWh) 

Gas LCOH 
($/MWh) NPV ($) IRR (%) PBP (Years) 

Indiana Hub RT Peak 90.2 

19.0 

-2,477,000 N/A N/A 
Mid C Peak 89.0 -2,445,000 N/A N/A 
NP15 EZ Gen DA LMP Peak 90.4 -2,481,000 N/A N/A 
Nepool MH DA LMP Peak 91.9 -2,519,000 N/A N/A 
PJM WH Real Time Peak 88.0 -2,420,000 N/A N/A 
Palo Verde Peak 88.0 -2,422,000 N/A N/A 
SP15 EZ Gen DA LMP Peak 90.3 -2,477,000 N/A N/A 

 
Finally, the results from the sensitivity studies are shown in Table 5. From the sensitivity cases, the result that has 
the highest NPV is the case with the lowest HP capital cost. The worst case among the sensitivities run is the result 
of low gas prices and no carbon cost. 
 

Table 5: Sensitivity cases (darkest colors: worst economic case, lightest colors: best economic case) 
Case Parameter 

Changed Case Parameter Value NPV ($) IRR (%) PBP (Years) 

Lowest Gas Cost Gas cost 
($/MWh) 

17.05 ($5.00/MMBTU) -1,912,000 N/A N/A 
Highest Gas Cost 136.5 ($40.00 MMBTU) 1,076,000 6.8 14.8 
Lowest Carbon Cost Carbon cost 

($/metric ton) 
0 2,300 3.0 25.0 

Highest Carbon Cost 200 1,258,000 7.4 13.9 
Lowest HP Capital Cost Capital cost 

($/kWe) 
1,000 1,364,000 11.8 9.2 

Highest HP Capital Cost 3,500 -1,492,000 N/A N/A 
Lowest Discount Rate Discount rate 

(%) 
2 526,000 3.9 19.3 

Highest Discount Rate 15 -1,354,000 N/A N/A 
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4. DISCUSSION AND CONCLUSIONS 

To encourage widescale adoption, HPs need to be both environmentally beneficial and economically competitive. The 
Ørum substation is a strong example of the potential for good thermodynamic performance and economic competi-
tiveness of HPs for district heating and can help spur more nascent markets to examine HP adoption in several ways. 
First, the HP performance was predicted within reasonable error (<10%), showing that the NREL-developed HP model 
can reliably predict HP COP. This is especially useful for cold climates, where HP early adopters are skeptical of HP 
performance. The Ørum substation is unique in that it uses both ambient air and TES as heat sources to operate the 
HP at the best efficiencies possible. In the air-to-water mode, the HP showed good COP performance, and by coupling 
TES and solar, the HP was boosted in a cold climate to provide a consistently competitive COP. It can be concluded 
that even cold-climate HPs can be integrated into thermal supply with reliable performance bounds. Second, the HP 
economics were explored for Denmark and U.S. cases as well as for four broad sensitivity scenarios of the combina-
tions of high and low HP costs and high and low gas costs. The United States currently embodies the worst-case 
scenario, with both high HP costs and low gas prices, whereas Denmark embodies the best case of medium to low HP 
costs and high gas costs with a carbon cost. Although the Ørum substation HP was not competitive when using the 
U.S. Energy Information Administration hub electricity prices, the sensitivity analysis shows there are several paths 
forward for promoting HP competitiveness. For companies that are concerned about future gas prices or voluntarily 
impose an internal price of carbon, small increases in fossil fuel prices result in a positive NPV for the HP system. 
Likewise, companies focused on innovation cases where HP capital or financing costs fell also showed positive NPV. 
Although the cases shown in Table 4 demonstrate that the current U.S. markets are not competitive, the sensitivity 
results summarized in Table 5 suggest that there are many paths forward for HP competitiveness in the United States 
or other countries with nascent HP industries.  
 
The work in this paper focuses on predicting HP performance and economics to help build confidence in HPs as a 
viable thermal energy supply option. Future work should also include pilot cases, industry-developed HP models, 
robust refrigerant research, and compressor configuration optimization. Additionally, all the cases here assumed that 
the HP was augmented into an existing district heating system. Novel greenfield developments should also be assessed 
as new manufacturing operations are examined. HPs represent an important energy-efficiency and clean energy op-
portunity. From the results, this paper suggests that HPs might be close to adoption, with multiple paths that govern-
ments and industries can pursue to further HP competitiveness. 
 

NOMENCLATURE 
C cost (US$)  
COP coefficient of performance (–)   
d discount rate (–) 
ε isentropic efficiency (–) 
h specific enthalpy (kJ/kg) 
HXR heat exchanger (–) 
m mass (kg) 
N plant life (yrs) 
Q heat (kJ) 
r ratio of mass flow rates (–) 
T temperature (℃) 
W work (kJ) 
 
Subscript   
e electric, electricity  
H high temperature  
L low temperature  
s isentropic  
th thermal  
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