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ABSTRACT 
 

The turbulent nature of refrigerant discharge flow and complicated flow path in hermetic compressors potentially 

render flow induced noise a source of noise, vibration and harshness (NVH) effects during the operation of hermetic 

compressors. In the presented study on flow induced of hermetic compressors, a fluid-structure interaction 

simulation model was developed, where the interior refrigerant flow field and the structural vibration are coupled 

together. The thermomechanical aspects of compressor operation are resolved in the compressor mechanistic model, 

based on a compressor modelling platform developed in previous studies. The fluid-structure interaction simulation 

describes the two-way coupled interaction between the compressor discharge flow and hermetic shell vibration. The 

interior hermetic shell surface is subjected to turbulent fluid load due to compressor discharge, and the fluid domain 

is bounded by vibrating shell. Simulations were conducted to validate the models developed in the current work, and 

the exterior noise radiation is evaluated based on shell vibration to demonstrate how these modeling tools can help 

compressor manufacturers to gain better understanding of the physical reasons behind NVH effects of compressors. 

 

1. INTRODUCTION 
 

The operation of HVAC compressors inevitably yields to undesired NVH effects. Hermetic compressors are widely 

used in refrigeration and air conditioning applications and mitigating NVH effects is an important factor not only to 

ensure customer satisfaction, but also to meet noise standards depending on the application. 

One of the major sources of noise and vibration is the discharge refrigerant flow and its interactions with the 

structure of the compressor. Specifically, there are two aspects of the discharge refrigerant flow and each result in 

different noise and vibration characteristics: (1) the periodic pulsive fluid volume change at the discharge valve 

location; and (2) the turbulent perturbations caused by the discharge gas jet flow. The volume change of the 

compression chambers during a working cycle acts as a periodic acoustic monopole source which usually 

contributes to the gas pulsation noise, i.e., the narrowband peaks in the noise and vibration spectra (He et al., 2021). 

Moreover, the turbulence in the gas jet, when interacting with the inside shell surface of the discharge cavity, 

contributes to the aerodynamic noise, i.e., broadband features in the noise and vibration spectra. 

The gas-borne noise and vibration of hermetic compressor has been extensively studied based on the four-pole 

method (Soedel, 2007), in which discharge gas pulsation is modelled as acoustics perturbation that propagates in a 

system consisting of acoustic filter components with lumped parameters. The four-pole method is capable of 

resolving narrow band features associated with compressor operation speed. The generation of broadband noise and 

vibration features, however, involves fluid-structure interactions that cannot be described by lumped compressor 

characteristics. In order to predict broadband mechanism numerically, higher order models are necessary. 

Specifically, interior fluid field must be solved in order to evaluate broadband gas-borne noise and vibration. Thus, 

computational fluid dynamics (CFD) is an appropriate technique to tackle the broadband noise mechanisms. CFD 

has not been widely used for noise and vibration analysis of compressors, but it has been a useful tool for the 

analysis of refrigeration compressor performance. Attempts were made to CFD to predict pressure variation in 

compressor cavity and its effect on thermal performance of compressors (Nakano and Kinjo, 2008). The internal 

flow field within hermetic shell was solved to analyze how the choice of refrigerant affects the pressure drop (Birari 
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et al., 2006). Researchers have also used CFD to solve the pressure field in compression chamber with respect to 

compressor operation and the resulting fluid load applied on compressor structures (Wu et al., 2019). 

The studies mentioned above are limited for a specific aspect of compressor. However, a compression process 

consists of different phenomena which interact with each other in a short period of time. The gas pulsation noise and 

vibration are generated through acoustical response of the compressor cavity as well as vibration response of the 

hermetic shell, both of which require modeling of three-dimensional continuous systems. In addition, the 

thermodynamic processes in the working chamber(s), the valve motion, gas pressure pulsations, turbulent gas flows, 

shell vibration and sound radiation are strongly coupled.  

In a study of narrow band gas pulsation noise, multiple simulation models are developed to resolve such a multi-

physical phenomenon (He, 2021). A similar approach can be taken to resolve broadband aerodynamic noise and 

vibration generation of hermetic compressor. 

 

2. COMPRESSOR MECHANISTIC MODEL 
 

In this work, a rotary rolling-piston compressor for air conditioning applications has been used as a case study. The 

typical structure of the compressor is illustrated in Figure 1(a). Rolling piston compressors usually feature either a 

single or dual-cylinder configurations depending on the capacity range as well as if the compressor is a single or 

two-stage. A close-up view of the vane and cylinder assembly is reported Figure 1(b). 

 

 

(a) 

 

(b) 

Figure 1: (a) typical structure of a rolling piston compressor; (b) compression chamber of a rolling piston 

compressor 

 

Compressor mechanistic model is the simulation model that provides the discharge velocity/pressure profile through 

the compressor discharge port. Theoretically, the compressor mechanistic model is based on solving mass and 

energy conservation equations. The core structure includes working chamber volume calculations, evaluation of 

leakage flows, heat transfer within the working chamber, mechanical and frictional losses, suction and discharge 

valves (where applicable) and an overall energy balance to account for additional heat losses through the compressor 

shell. A complete geometric model of rolling piston compressor has been developed and integrated into the existing 

PDSim platform (Bell et al., 2020) (Ziviani et al., 2020). The resulting discharge velocity profile is shown in Figure 

2, which serves as the input boundary condition in the fluid simulations in this study. 
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Figure 2. Discharge velocity of the compressor 

 

3. INTERIOR FLOW AND ACOUSTICS 
 

Aerodynamically induced noise is typically generated by the turbulent flow field inside the hermetic shell, the 

relation between interior flow field and acoustics needs to be clarified. In principle, sound is a class of fluid medium 

perturbation that is governed by wave equation and propagates at the speed of sound. In other words, sound 

generation and propagation, in principle, can be resolved if fluid field is solved. In many applications where 

aerodynamic noise is of interest, the non-linear flow region and linear sound propagation region can be separated, 

such as free jets or fans. In these cases, where non-linear fluid domain and linear acoustic domain can be 

distinctively separated, the acoustics can be solved separately for the sake of computation efficiency. There are two 

approaches for solving acoustics separately: (1) acoustic analogy and (2) linearized equations. Acoustic analogy 

method is based on the analogy between non-linear noise inducing mechanism and simple acoustic sources, which 

was coined by Lighthill (1952). Linearized equation method, specifically linearized Euler/Navier-Stokes equation 

(LEE/LNS) method, is based on the decomposition of fluid variables into a mean variable and a perturbation 

variable, which allows the linearization of fluid equations. It was discovered that acoustic analogy method is more 

suitable for predicting sound radiated from turbulent flow regions to free space and are not capable to predict 

aerodynamic noise within a turbulent flow field which, in the application of this study, is the turbulent refrigerant 

flow inside the compressor cavity. The linearized equation method is capable to resolve flow induced sound with the 

presence of a background flow field. However, it is not usually implemented in interior problems. In typical 

application of LEE/LNS method, the computation domain of LEE/LNS and RANS/LES fluid simulations are 

separated. At the boundary between the two computational domains, LEE/LNS requires an input boundary condition 

based on the fluid simulation results. For hermetic compressors, the interior acoustic domain and fluid domain 

occupy the same region, so the LEE/LNS method is not directly applicable in the interior of hermetic shell. For all 

these reasons, a direct computation of the unsteady interior fluid field is needed to resolve acoustic perturbations. 

The fluid perturbation is solved, and the techniques of fluid-structure interaction (FSI) were used to compute the 

response of the hermetic shell. It should be noted that the resolved perturbations using this method is not necessarily 

acoustic perturbations. In a sense, interior acoustics in this study implies general fluid perturbations, instead of 

exclusive acoustic perturbations. 

 

4. FLUID-STRUCTURE INTERACTIONS 

 

As mentioned in previous sections, noise and vibration are caused by the turbulent unsteady fluid loads applied on 

the interior structure of a hermetic compressor. Commonly, co-simulation of fluid and acoustics is the way to 

resolve the aerodynamic noise, in which either acoustic analogy method or linearized Euler/Navier-Stokes equations 

can be used to solve for the aerodynamic noise based on the fluid field solutions. In these methods, the one-way 

coupling between fluid dynamics and acoustics has been assumed – that is, acoustic perturbation does not affect 

fluid field. This assumption is true in most of applications involving aerodynamic noise, such as fans, vehicles, etc., 

where the far-field acoustic perturbation is much smaller in magnitude than fluid field variations. However, in the 

application of hermetic compressors, there is no acoustic far-field within the shell, and the disparity in magnitude 

between acoustic and fluid dynamics perturbation is not as significant, because the cavity is pressurized. In addition, 

the hermetic shell and interior acoustic field affects each other due to the abrupt discharge process. All these 

characteristics of our application support the use of fluid-structure interaction to resolve the aerodynamically 

induced noise and vibration. Fluid-structure interaction can be used to model phenomena where fluid and 
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deformable shell structure affect each other. Both the unsteady fluid load on the structure and the structural velocity 

transmission to the fluid are taken into account. In our application, the displacements of the shell are assumed to be 

small enough for the geometry of the fluid domain to be considered as fixed during the interaction. Figure 3 shows 

the coupling between different computation domains 

 

 

Figure 3: Couplings of FSI simulation 

 

The acoustics excitation is total stress (pressure + viscous stress) on the interior wall. The value of total stress is 

extracted from CFD simulation. The effect of turbulence is included in the viscous stress, specifically the additional 

stress resulted from turbulence eddy viscosity, which is an intermediate result of turbulence model. The reason to 

use total stress as the excitation is because that is the dipole (loading) type of acoustic excitation. In this study, the 

boundary is impermeable, so that surface monopole does not exist on the domain boundary except for domain inlet. 

The effect of inlet monopole at the domain inlet has been studied by He et al. (2021). After excluding surface 

monopoles, the surface dipole is the most relevant sound source, and according to acoustic analogy theory (Ffowcs-

Williams and Hawkings, 1969), the surface dipoles are induced by total wall stress. 

 

5. RESULTS AND DISCUSSION 
 

5.1 Configurations of CFD-acoustics coupled simulation 
A compact compressor shell and cavity computation domain was used to test simulation procedure. The topology of 

the compressor cavity interior structure was shown in Figure 4. The discharge pulsation profile obtained from 

compressor mechanistic model (Figure. 2) is the variation of refrigerant discharge velocity in one cycle of 

compressor operation (1/60 s) and is applied on the discharge port as inlet boundary condition. Snapshots of 

resulting flow field is shown in Figure 5. 

 

 

 

(a) (b) 

Figure 4: (a): Vicinity of compressor discharge port; (b): Compact CFD simulation domain 

muffler 
discharge valve 

shell 

cavity 
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(a) (b) 
 

Figure 5. (a) Initial condition of flow field; (b) flow field during discharge process 

 

The effect of fluid-structure coupling is investigated based on the simulation using the above-mentioned compact 

computation domain (Figure 4) for the sake of efficiency. There are three different ways to deal with fluid-structure 

coupling: structure velocity on fluid, fluid load on structure and two-way coupling. Specifically, the fluid field exerts 

a fluid loading on structure and thus induces motion of structures. The moving structure, on the other hand, induces 

fluid motions because structure velocity introduces fluid perturbations. If both effects are considered, the coupling 

between fluid and structure is referred as a two-way coupling. For the purpose of computation efficiency, one-way 

coupling is a compromise of the complete two-way coupling, in which either the fluid-to-structure coupling (fluid 

load on structure) or structure-to-fluid coupling (structure velocity on fluid) is considered. Since the excitation is on 

the fluid domain, the one-way coupling simulation conducted in this project assumes that structure velocity on fluid 

would yield zero shell vibration, thus it only considers fluid load on structure when computing shell vibration. 

Results from one-way and two-way couplings are compared based on the fluid velocity magnitude at muffler outlet 

and the side shell vibration displacement magnitude. 

 

Figure 6 shows the comparison of the simulated fluid velocity magnitude and shell vibration displacement 

magnitude. It is found that the fluid-structure coupling mechanism has little influence on fluid side but can 

significantly affect the shell vibration response. When two-way coupling is used, the shell vibration displacement is 

much smaller than the result with only one-way coupling. This result can be explained by the lack of fluid reactance, 

because the shell vibration velocity and fluid velocity are in-phase with each other in most of frequencies. Therefore, 

with two-way coupling, the energy of shell vibration can be absorbed by fluid without delay. The fact that difference 

between one-way and two-way coupling is large in terms of shell response means that the exterior sound radiation is 

heavily affected by coupling too. In order to capture exterior sound radiation accurately, the inclusion of two-way 

coupling in simulation is necessary. 

 

t = 0 ms t = 2.5 ms 
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(a) (b) 

 

 

Figure 6. Comparison between one-way and two-way fluid-structure coupling 

 

Another simulation configuration parameter that needs to be determined in this application is the choice of 

turbulence model. As shown in Figure 18, the flow field is pulsive. The velocity grows from zero to its maximum 

value in 1 millisecond, which requires an abrupt decrease in time step size. The abrupt decrease may induce 

convergence issues in CDF simulations, and the convergence of simulation depends on the choice of turbulence 

model. After trying 7 different turbulence models (k-epsilon, k-omega, SST, Spalart-Allmaras, v2-f, L-VEL, 

algebraic), only k-epsilon, k-omega and Spalart-Allmaras turbulence models yielded converging solution. 

Fluid velocities simulated by using different turbulence models at three locations (two muffler outlets and a cavity 

outlet) are compared and the effect of turbulence models on CFD solution is shown in Figure 7. In general, the 

difference simulation results with or without a turbulence model is significant, but the exact choice of turbulence 

does not have noticeable impact on the solution. As a result, the choice of turbulence model for our application 

should be made mainly based on their robustness and convergence rate. Among the tested turbulence models, k-

epsilon model renders the fastest convergence. Therefore, k-epsilon model is used in the simulation for this 

application. 
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Figure 7. Effect of turbulence model on fluid field solution 

 

5.2 CFD-acoustics coupled simulation for compressor geometry 
Based on the configurations explained in previous sections, CFD-acoustics coupled numerical simulation with fluid-

structure interaction is conducted to study the aerodynamically induced noise and vibration of hermetic compressors. 

Figure 3 shows the general setup of the simulation. The interior geometry of the compressor is simplified, and mesh 

is generated based on a simplified geometry (Figure 8). The turbulent refrigerant gas flow is coupled with shell 

vibration and exterior sound radiation, with input boundary condition generated by compressor model developed in 

PDSim (Figure 2). 
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(a) (b) 

Figure 8. (a) Computation domain; (b) close-up view of discharge port 

 

A snapshot of time domain solution is shown in Figure 9, in which the solution on all three domains (interior fluid, 

shell, exterior fluid) are shown. The result of simulation indicates that the aerodynamically induced noise and 

vibration mainly occur on the upper and lower caps of the shell. In the study of gas pulsation noise, numerical 

solution also revealed that the upper and lower caps are where major round radiation occurs (He et al., 2021).  

 

 

 

 

Figure 9. A snapshot of the solution in cavities, on shell and exterior computation domains 

 

Twelve domain/boundary probes in total are setup, and the frequency domain results are shown in Figure 10. Probes 

are located in interior flow field, on the shell and in the exterior acoustic field to extract time domain responses --- 

interior flow field velocity, shell vibration displacement and exterior sound pressure. The power spectral densities of 

time domain results are computed and shown in Figure 10. The power spectral densities of exterior sound also imply 

that the top/bottom caps are where aerodynamically induced noise radiation occurs. The power spectral density of 
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cavity velocity and shell vibration shows strong linear relation (coherence = 1) across all the frequency up to 50 

kHz, which indicates that the acoustic perturbations do not cause shell resonances, and that the shell vibration 

linearly induce fluid perturbations. Due to the fact that fluid flow is a non-linear phenomenon while shell vibration 

and sound emission are linear phenomenon, strong linear relation between cavity flow field and shell vibration 

means the shell induces little non-linear perturbation in the cavity. 

 

 

 

Figure 10. Probe results 

Probe 1-5 --- exterior sound field; Probe 6-10 --- shell; Probe 11-12 --- interior flow field 

 

6. CONCLUSIONS 
 

A simulation model that couples the thermodynamic and mechanical aspects of the compression process with the 

fluid-structure interaction between compressor shell and cavity, with a focus on noise and vibration induced 

aerodynamically by refrigerant discharge is developed. Coupled numerical analysis is done by feeding the mass flow 

variation obtained from compressor mechanistic model into the two-way coupled FSI simulation, and noise and 

vibration response induced by turbulent discharge gas jet in the compressor cavity is computed. Effects of fluid-
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structure interaction is investigated, and modeling techniques with different levels of fluid-structure interaction was 

evaluated to find the most suitable model coupling method for the compressor aerodynamic noise and vibration 

application. The simulation results of flow field and vibrational response of a hermetic indicate that the 

aerodynamically induced noise and vibration mainly occur on the upper and lower caps of the shell, which provide 

possible guidelines on NVH oriented design optimization of compressors. 

 

NOMENCLATURE 
 

CFD computational fluid dynamics   

FSI fluid-structure interaction  

HVAC heating, ventilation, and air conditioning 

LEE/LNS linearized Euler/Navier-Stokes equation  

PSD power spectral density 

RANS/LES Reynolds averaged Navier-Stokes/large eddy simulation 
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