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1. INTRODUCTION 

1.1. Background and Problem Statement 

Unsignalized crosswalks also known as “semi-controlled” crosswalks, are a common feature in urban street 

networks. Instead of signals, the marked crosswalk is “controlled” by “yield to pedestrian” signs.  

See  

Figure 1(a). As a result, there are frequent situations where pedestrians and motorists have to negotiate the 

right-of-way to determine who should go first. Consequently, a large number of pedestrian-motorist 

interactions (PMIs) occur at such crosswalks, which may cause conflicts. Faulty communication between 

pedestrians and motorists often occur. Drivers do not always yield to the pedestrians, and therefore 

pedestrians often need to stop walking to avoid collision. Failure of a driver to yield to a pedestrian has 

been documented as one of the most common causes of vehicle-pedestrian crashes at semi-controlled 

crosswalks (Schneider et al., 2017; Shaon et al., 2018). To address safety issues, it is essential that we 

understand as much as possible about the behaviors of pedestrians and motorists as they interact in real 

street-crossing situations.  

Consequently, confusion between pedestrians and motorists leads to unnecessary delays for both 

pedestrians and vehicles and increase risks to pedestrian safety. An investigation of pedestrian crossing 

behavior and waiting behavior at such locations can be useful in developing policies and control strategies 

to enhance a pedestrian’s perceived safety and improve the level of service (LOS) at unsignalized 

intersections.  

The model is named zebra-crossing game that is to quantify the probability of confusion and 

probability of conflict between pedestrian and motorist. The quantified probability of conflict can be used 

as a real-time risk warning system for CAV deployment at crosswalks. 

   

(a) (b) (c) 
  

(a) Sign at Semi-Controlled Crosswalk.  (MUTCD, 2009) 

(b) One-way Grant Street, 2017 (Jon D. Fricker) 

(c) One-way North University Street at Second Street, 2017.  (Jon D. Fricker) 
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Figure 1 Semi-Controlled Crosswalk. 

 

1.2. Existing Studies 

1.2.1. Pedestrian-Motorist Interactions 

There is significant literature on pedestrian-motorist interactions (PMIs) at semi-controlled crosswalks. In 

observational experiments, a PMI can be extracted as an event using the judgment of observer(s) (Fricker 

and Zhang, 2019).  

For pedestrian crossing behavior, discrete choice models are often applied to estimate whether a 

pedestrian will accept (Y = 1) or reject (Y = 0) a gap, if a PMI occurs. Generally, older and female 

pedestrians are more likely to wait in the curb area, hesitate before crossing, and maintain a lower speed 

while crossing at mid-block crosswalks (Cloutier et al., 2017; Sucha et al., 2017; Alver and Onelcin, 2018). 

Moreover, researchers (Pawar et al., 2015; Pawar and Patil, 2016) have examined the impact of spatial or 

temporal gaps on pedestrian decision-making at semi-controlled crosswalks. Many of those studies 

conclude that vehicle dynamics (i.e., the distance from crosswalk to interacted vehicle and the vehicle 

approach speed) are variables that significantly influence pedestrian crossing behavior. Furthermore, traffic 

and environmental factors, such as the number of lanes (Zhang et al., 2019), traffic flow rate (Cassidy et 

al., 1995; Hamed, 2001; Chen and Wang, 2015), and crossing surface materials (Cloutier et al., 2017) have 

been proved to affect pedestrian crossing choices.  

Driver compliance behavior (willingness to yield) has also been investigated using discrete choice 

models. Schroeder and Rouphail (2010; 2011) conducted field observations related to driver yielding 

behavior at semi-controlled crosswalks in North Carolina. Descriptive variables, such as pedestrian 

characteristics, vehicle dynamics, and environmental factors, were collected and used in a choice modeling 

framework. Fricker and Zhang (2019) further applied a partial proportional odds model in a driver’s 

willingness to yield study, considering different street operations. A detailed review of literature regarding 

PMIs can be found in Camara et al. (2019 and Amado et al. (2020).  

The PMIs at an unsignalized crosswalk constitute a “zebra crossing” game involving two players 

– pedestrian and motorist. The decision of one player is a response to the decision of the other. 

Consequently, considering only the decision of one player is not sufficient to describe the communication 

between two players.  The remedy is the game theoretic approach that can assign a utility function to each 

combination of actions.  

1.2.2. Game-Theoretic Approach 

Only a few studies focus on the game-theoretic approach to modeling PMIs at semi-controlled crosswalks. 

Elvik (2014) categorized ten classic games in road user behavior studies, but the game between pedestrian 

and motorist was not among them. Bjørnskau (2017) first developed a zebra crossing game with the perfect 

rationality assumption to explore the bicyclist-vehicle interaction at unsignalized crosswalks in Norway. 

Two kinds of Nash Equilibria (Cycle/Yield and Yield/Driver) were found based on ordinal responses. Field 

observations confirmed that Cycle/Yield was the perfect Nash Equilibrium (NE) and was the most frequent 

solution in the real world. However, the Walk/Yield solution (the bicyclist gets off the bicycle, negotiates 

with the driver, and walks over the crosswalk) is not a Nash Equilibrium solution. The Walk/Yield outcome 
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implies that bicyclists may not know whether or not the interacted driver is aggressive. A recent study of 

pedestrians and motorists at unsignalized crosswalks (Fricker and Zhang, 2019) frequently observed the 

Walk/Yield solution. Therefore, some real behaviors of pedestrian and motorist are missing in the NE with 

complete information.  

To capture uncertainties in the decision-making process, evolutionary game theory has been 

adopted, assuming players are not perfectly rational. Chen et al. (2016) integrated evolutionary game theory 

with cumulative prospect theory (CPT) in modeling PMIs at unsignalized crosswalks. The proposed 

evolutionary game framework has the potential to model the phenomenon of behavioral differences among 

pedestrians in a group. However, the evolutionary game framework is incorporated into a microsimulation 

platform that introduces a large number of parameters to be calibrated. Therefore, it is difficult to generalize 

the evolutionary game framework when we consider more sophisticated PMI models (Talebpour et al., 

2015). To address these limitations, modified game-theoretic models such as Quantal Response Equilibrium 

(McKelvey and Palfrey, 1995) have been developed. In Quantal Response Equilibrium (QRE), players are 

assumed to make decisions with the lowest perceived costs that are subject to errors. A recent study (Arbis 

and Dixit, 2019) applied the QRE to model the lane-changing “game” between an on-ramp driver and a 

mainline driver and their results revealed that the QRE can accurately model the expected number and 

variance of driving strategies when the lane-changing game occurs.   

Based on the literature review, the zebra crossing game has not been adequately investigated. There 

is little research that considers the joint behavior of driver and pedestrian at a semi-controlled crosswalk. 

In addition, drivers and pedestrians behave stochastically rather than rationally. Pure Nash Equilibrium with 

complete information may not be adequate to analyze the zebra crossing game. Consequently, the objective 

of this study is to propose a game-theoretic framework to model the joint behaviors of pedestrians and 

motorists at semi-controlled crosswalks. Three research questions are addressed in this study: 

1. How relax the assumptions of perfect rational behavior and complete information in the game 

setting? 

2. How analyze the game between pedestrian and driver with incentives of time savings and 

conflict avoidance? 

3. How reduce the likelihood of conflict between pedestrians and drivers at unsignalized 

crosswalks?  
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2. METHODOLOGY 

2.1. Data Collection 

The data for this study were collected at two semi-controlled crossing locations on the Purdue University 

campus. Video recordings were made in Spring 2017 when Grant Street was a one-way northbound street. 

The street had two 12-ft. wide lanes with a speed limit of 25 mph. We observed 170 PMIs in a 40-minute 

period. See  
Figure 1(b).  Additional video recordings were made in Spring 2017, when University Street was a 

one-way northbound street. The street had two 10-ft wide lanes (plus a 4-foot bicycle lane) with a 

speed limit of 25mph. Video recordings were made at four different 40-minute periods (Zhang and Fricker, 

2021). We observed a total of 1437 pedestrian-motorist interactions. See  

Figure 1(c). 

2.2. Definitions 

A pedestrian-motorist interaction is defined as the behavior of either party when in the area of influence of 

the other (Fricker and Zhang, 2019): 

• A pedestrian enters the curb area and intends to cross.  

• The subject driver is aware of the pedestrian’s intention and then responds to the pedestrian 

(yields or doesn’t yield). 

An interaction does not occur if: 

• A pedestrian arrives at the curb area, but there is no vehicle close enough to the crosswalk to 

affect the pedestrian’s crossing decision. 

• A vehicle approaches the crosswalk, but there are no pedestrians in the curb area. 

There are two types of pedestrian crossing decisions for each interaction: 

• The subject pedestrian crosses immediately (Y = 1).  

• The subject pedestrian waits and yields to the interacting motorist (Y = 0). 

There are two types of driver’s yielding behavior for each interaction: 

• The driver yields by stopping or slowing down (Y = 1). 

• The driver doesn’t yield to the pedestrian (Y = 0). 

Considering each combination of decisions, there are two special cases of interactions: 

• Confusion: The driver yields, and pedestrian does not cross. 
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• Conflict: The driver doesn’t yield, and pedestrian chooses to cross. 

Confusion event involves delay (efficiency issue), and conflict event brings the safety issue. Therefore, 

confusion and conflict events are of special interests at semi-controlled crosswalks, and it is essential to 

model the “zebra-crossing game” to quantify the probability of confusion and probability of conflict for 

operational and safety assessments.  
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3. MODEL FORMULATION 

The Quantal Response Equilibrium (QRE) builds on games with incomplete information. Such a game is 

formulated as:        11 1 1 1
, , , , , 

N N N N

i i i T ii i i i
G N S A T P t t u

= = = =
= ( , ..., )  , 

1. The set of players N = {Pedestrian =1; Driver =2}. 

2. The set of states St as described by explanatory variables in Table 1. 

3. The set of actions for each player: pedestrian A1 = {Cross; Not Cross} and driver A2 = {Yield; 

Not Yield}. 

4. The set of types for each player: T1 = {Aggressive; Cautious} given the state i
S . 

5. A joint probability Distribution: Pt = {Paggressive; Pcautious} over types, P1 = { Paggressive = Pcross; 

Pcautious = 1 – Pcross } and P2 = { Paggressive = 1 – Pyield; Pcautious = Pyield}. 

6. The payoff function of each player: µi :T1 × A. See Section 4.1 and Table 2.  

Table 1 Explanatory Variables 

Variable Description 

Vped 

The approach speed (ft/s) of pedestrians when a pedestrian enters the curb area. Using 

Google Maps, the distance covered by a pedestrian every 34 milliseconds (one video 

frame) is converted into a speed. (mean = 3.34 ft/s; sd  = 2.47 ft/s) 

dveh 

The distance of interacted vehicle to the conflict point when the interaction begins (in 

feet). If an interaction occurs when the subject pedestrian arrives at the curb, we paused the 

video and calculated the distance to vehicle using Google Maps. (mean = 72.02 ft; sd = 

54.14 ft)  dveh stands for the distance buffer of the vehicle. 

dped 

The direct distance of the subject pedestrian to the interacted vehicle when interaction 

begins (in feet). Let the pedestrian distance to the conflict point as dconflict. 

2 2

conflict ved hp ed d d= +   (mean = 76.30 ft; sd = 51.72 ft). dped stands for the pedestrian’s 

distance buffer. 

Vveh 

The approach speed (ft/s) of interacted vehicles when a pedestrian enters the curb area. 

Using Google Maps, the distance covered by a vehicle every 34 milliseconds (one video 

frame) is converted into a speed. (mean = 12.50 ft/s; sd  = 10.29 ft/s) 

Sex 
A binary variable taking the value 1 if the subject pedestrian is a male (44.0%), 0 for 

female pedestrian (56.0%). 
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Group 
The number of pedestrians in the subject pedestrian’s curb area, including the subject 

pedestrian. (mean = 2.30; sd  = 2.02) 

Cross A binary variable taking the value 1 if the pedestrian crosses; 0 otherwise. 

Pcross The interacted driver’s belief that the pedestrian will cross. 

Yield A binary variable taking the value 1 if the driver yields; 0 otherwise 

Pyield The subject pedestrian’s belief that the interacted driver will yield. 

Note: mean = average value; sd = standard deviation 

 

First, the state of nature of an interaction will determine the type of player that is measured by 

probability Pt. Then, the type of player determines the action that the subject player will choose in 

probability.  

• Pyield  and Pcross are the parameters of the joint probability distribution.  

• Pyield represents the pedestrian’s belief that the interacted driver will yield. In other words, Pyield 

represents the pedestrian’s belief that the interacted driver will be cautious. 

• Pcross denotes the driver’s anticipation that the subject pedestrian will cross. In other words, 

Pcross denotes the driver’s anticipation that the subject pedestrian will be aggressive.  

The payoff function of each player is defined as 𝑢𝑖 : 𝑇𝑖×𝐴. Payoff functions are interrelated by 

players’ actions and beliefs (Pyield  and Pcross), and PMIs can be quantified.  

 

3.1. Expectation Utility Functions 

3.1.1. Pedestrian Utility 

Expectation utility functions for actions that the subject pedestrian may choose can be expressed as 

Equation 1a and Equation 2a: 

2

1 2 3Cross yield ped
EU p bv b sex b Group= + +( )   (1a) 

2

1Cross yield ped
EU p a v=   (1b) 

2

4 5 6DoNotCross ped ped
EU b d b d b= + +   (2a) 

2 3DoNotCross ped
EU a a d= +   (2b) 

Equations 1a and 2a become Equations 1b and 2b after eliminating variables that were found to be 

not statistically significant. If a pedestrian chooses to cross, the pedestrian will be motivated by reduced 
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travel time, but will undertake the risk of getting hit by a vehicle.  Pyield represents the pedestrian’s belief 

that the interacted driver will yield.  

1. If the driver chooses to yield, then Pyield = 1, and the expected utility of crossing will be 

equivalent to EUCross = a1𝑣𝑝𝑒𝑑
2 , which denotes the benefits of saving time. 

2. Otherwise, if the driver does not yield, then Pyield = 0, and the expected utility is equivalent to 

EUCross = 0, which represents the cost of a potential conflict. 

3.1.1.  Driver Utility 

Expectation utility functions for the actions that the interacted driver may choose are expressed as Equation 

3a and Equation 4a. 

2

4 5 6Yield veh veh
EU a d a d a= + +   (3a) 

2

4 5 6Yield veh veh
EU a d a d a= + +   (3b) 

2

10 11 12
1

DoNotYield cross veh veh
EU p b v b v b= − + +( )( )   (4a) 

2

7 8
1

DoNotYield cross veh
EU p a v a= − +( )   (4b) 

Equations 3a and 4a become Equations 3b and 4b after eliminating variables that were found to be 

not statistically significant. If a driver chooses not to yield, the driver will be motivated by reducing travel 

time, but will assume the risk of hitting the pedestrian.  

1. Pcross represents the driver’s belief that the pedestrian will cross. If the pedestrian chooses to 

cross, then Pcross = 1, 1 – Pcross = 1 – 1 = 0, and the expected utility of not yielding will (by 

Equation 4b) be equivalent to EUDoNotYield = a8 which represents the cost of a potential conflict 

to the driver.  

2. If the pedestrian does not cross, then Pcross = 0, 1 – Pcross = 1 – 0 = 1, and the expected utility 

(by Equation 4b) is equivalent to EUDoNotYield = a7𝑣𝑣𝑒ℎ
2  + a8, which denotes the benefit of saving 

time.  

3.2. Logit Quantal Response Equilibrium 

A logit quantal response function is a particular class of quantal response function that has been widely 

used in the study of choice behavior. The logit quantal response function assumes that the players’ 

anticipations are accurate on average, but subject to some errors that follow an extreme value distribution 

(McKelvey and Palfrey, 1995). Equation 5 and Equation 6 take advantage of the expected utilities 𝐸𝑈̅̅ ̅̅ Cross, 

𝐸𝑈̅̅ ̅̅ DoNotCross, 𝐸𝑈̅̅ ̅̅ Yield , and 𝐸𝑈̅̅ ̅̅ DoNotYield  to address the variability in the costs across a population (Watling, 

2006).  

Cross yield

cross
cross DoNotCrossyield

EU p
p

EU p EU
=

+

exp[ ( )]

exp[ ( )] exp[ ]
 (5) 
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1

1

Yield cross
yield

Yield DoNotYieldcross

EU p
p

EU p EU

−
=

− +

exp[ ( )]

exp[ ( )] exp[ ]
 (6) 

Additionally, the players’ anticipations Pyield  and Pcross are determined by the logit quantal response 

functions in Equations 5 and 6.  

• Pcross is the probability of the subject pedestrian choosing the strategy {cross} with the belief 

that the interacted driver will yield with the probability Pyield. 

• Pyield is the probability of the interacted driver choosing the action {yield} with the anticipation 

that the subject pedestrian will cross with probability Pcross.  

The existence and uniqueness of logit QRE has been asserted by McKelvey and Palfrey (1995).  

Mathematically computing Pyield  and Pcross is a fixed-point problem. Pyield  and Pcross are fixed points 

of functions Pyield  = F(Pcross) and Pcross  = H(Pyield) (Brouwer, 1911).  

Model parameters are estimated by maximum likelihood estimation. Let ΔEUCross and ΔEUYield be 

latent indices for pedestrian decisions and motorist decisions: 

Cross Cross DoNoCross
EU EU EU = −  (7) 

Yield Yield DoNoYield
EU EU EU = −  (8) 

The log-likelihood function of pedestrian decisions can be constructed:  

1 2 3

                              1 1 0

ped

Cross i Cross i

i

LL a a a y X

EU I y EU I y 

=

 = + −  =

( , , ; , )

{ln[ ( )]* { } ln[ ( )]* { }}
 (8) 

where 

• yi = 1 represents that the subject pedestrian chooses the action {cross}.  

• yi = 0 represents that the subject pedestrian chooses the action {not cross}. 

• (.)  is the cumulative distribution function of the logistic distribution. 

Similarly, the log-likelihood function of driver decisions can be constructed:  

4 5 6 7 8

                              1 1 0

veh

Yield j Yield j

j

LL a a a a a y X

EU I y EU I y 

=

 = + −  =

( , , , , ; , )

{ln[ ( )]* { } ln[ ( )]* { }}
 (10) 

where  
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• yj = 1 represents that the interacted driver chooses the action {yield}. 

• yj = 0 represents that the interacted driver chooses the action {not yield}.  

Therefore, let µ denote the vector of all model parameters, and the log-likelihood can be expressed 

as: 

1 2 3 4 5 6 7 8ped veh
LL y X LL a a a y X LL a a a a a y X = +( ; , ) ( , , ; , ) ( , , , , ; , )  (11) 

3.3. Solution Algorithm - Expectation Maximization 

Expectation Maximization (EM) can be applied iteratively to generate solutions of logit QRE. Pyield  and 

Pcross can be considered as latent variables. For a pair of initial probabilities{Pcross,i , Pyield,i}, µi is generated 

by maximizing the total log-likelihood function (Dixit and Denant-Boemont, 2014): 

1 2 3

4 5 6 7 8
                                

i

i ped yield i

veh cross i

LL y X LL a a a y X P

LL a a a a a y X P


 = +

,

,

max ( ; , ) ( , , ; , , )

( , , , , ; , , )
 (12) 

 

For µi, a new pair of probabilities {Pcross,i+1 , Pyield,i+1}is generated based on Equation 13 and 

Equation 14: 

1

Cross yield i i
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,
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p
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+

+

−
=

− +

,

,

,

exp[ ( , )]

exp[ ( , )] exp[ , ]
 (14) 

 

Equations 12-14 can be applied iteratively until {Pcross,i , Pyield,i} converges. The pseudocode of the 

proposed EM algorithm is shown in Figure 2. 

The convergence of the EM algorithm has been shown by Wu (1983). The logit QRE usually 

converges within 150 iterations. We use traceplots (see Figure 3) of Pcross and Pyield  with 150 iterations to 

show the convergence of the logit QRE.  Pcross and Pyield  converge to 0. 0.848 and 0.475, respectively. 
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Figure 2 Expectation Maximization Algorithm 

 

 

 

Figure 3 Trace plots of Fixed-Point Iterations 
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4. RESULTS 

4.1. Estimation Results 

The estimation results are shown in Table 2. Parameters and variables used in Equations 1b, 2b, 3b and 4b 

are shown in the first column of Table 2.  “Bootstrap standard deviation” is a surrogate estimate of standard 

error (Train, 2009). The z-score is an indication of how far from zero an estimated coefficient is. If the 

absolute value of a z-score is greater than 1.96, we can conclude that the estimated parameter is “significant” 

at the 95 percent confidence level. Note that a6 represents the intercept in the Equation 3b.  Including the 

intercept will make the model more flexible even if the intercept is not significant. 

Table 2 Estimation Results for Model Parameters 

Parameter and 

Variable 
Coefficient 

Bootstrap Standard 

Deviation 
z_score P > |z| 

a1  𝑉𝑝𝑒𝑑
2  0.245 0.043 5.654 0.000 

a2 1.920 0.513 3.746 0.000 

a3  𝑑𝑝𝑒𝑑 -0.024 0.005 -4.682 0.000 

a4  𝑑𝑣𝑒ℎ 0.054 0.023 2.389 0.017 

a5  𝑑𝑝𝑒𝑑
2  -0.00030 0.00013 -2.382 0.017 

a6 -0.464 0.593 -0.782 0.434 

a7  𝑉𝑣𝑒ℎ
2  0.057 0.010 5.484 0.000 

a8 -1.072 0.506 -2.119 0.034 

4.1.1. Pedestrian Dynamics 

The estimation of parameter a1 is associated with the approach speed (ft/s) of a pedestrian when he/she 

enters the curb area. A positive a1 represents the increase in the likelihood of a pedestrian crossing if the 

pedestrian approaches the curb with a higher velocity. The pedestrian approach speed has a strong 

correlation with the aggressiveness of the subject pedestrian.  

4.1.2.  Vehicle Dynamics 

Similarly, the estimation for parameter a6 is associated with the approach speed (ft/s) of a driver when a 

PMI occurs. A positive a6 represents the increase in the likelihood of a driver not yielding if the vehicle 

approaches the crosswalk with a higher speed.  

4.1.3.  Pedestrian Distance to Conflict Point 

The estimation parameters a2 = 1.92 and a3 = -0.024 are related to the pedestrian’s action – {not cross}. A 

negative a3 represents the decrease in the likelihood of a pedestrian not crossing if the direct distance of the 

subject pedestrian to the interacted vehicle is higher.  

4.1.4. Vehicle Remaining Distance 

dveh also reveals a non-linear effect on a driver’s decision. If the distance to the conflict point is less than 

89.49 ft, the expected utility function for {yield} increases with the increase in distance to the conflict point. 

Therefore, the probability of {yield} increases.  
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When dveh > 89.49 ft, the expected utility function for {yield} decreases as dveh increases. There 

are two possible explanations.  

1. A driver may observe the pedestrian’s behavior first and then respond to it because there’s an 

adequate buffer for the driver to “think about” the best action.  

2. There may be no need for driver to yield because, if the pedestrian leaves the curb area quickly 

and crosses quickly, the driver will not have to Yield (as defined in Table 1).  

4.2. Payoff Matrix 

The payoff matrix can be derived by applying the estimated coefficients in Table 2.  Each entry in  

Table 3 represents the payoff from each action. Each player will choose an action to maximize the payoff. 

Table 3 Payoff Matrix 

 
Driver 

Yield Do Not Yield 

Pedestrian 

Cross 
[

20.245 pedv ,  

20.054 0.0003 0.464veh vehd d− − ] 
[0, -1.072] 

Do Not 

Cross 

[1.92 0.024 pedd− , 

20.054 0.0003 0.464veh vehd d− − ] 

[1.92 0.024 pedd− , 

20.057 1.072vehv − ] 

Pedestrian 

(mean case) 

Cross [2.74, 1.86] [0, -1.072] 

Do Not 

Cross 
[1.49, 1.86] [1.49, 7.84] 

 

If the mean values of explanatory variables are used in the payoff functions, the entries in the last 

two rows of Table 3.  These entries represent the expected utilities or payoff of each action. In game theory, 

a strictly dominant strategy is defined as one that always provides greater utility than another strategy for 

one player. When a vehicle approaches the crosswalk with the speed of 5 ft/s, the payoff for {not yield} is 

0.057 * 52 - 1.072 = 0.353, and the payoff for {yield} is no less than 0.353 if dveh lies in the range [16.7, 

163.3] by solving the equation. The dominant strategy will be {yield} for the driver. Dominant strategy is 

a key point in perfect Nash equilibrium game, assuming perfect rationality for every player. In the Quantal 

Response Equilibrium, perfect rationality is relaxed to the bounded rationality, and either dominant or 

dominated strategy can be chosen in a probability.  

It is clear in the “mean value” case that there is no strictly dominant strategy for both pedestrian 

and driver. For example, if the pedestrian chooses the action {cross}, the potential outcome is 2.74 when 

the interacted motorist chooses to yield or is 0 when the interacted motorist chooses not to yield. If the 

pedestrian chooses the action {not cross}, the potential outcome is always 1.49. The outcomes for the action 

{cross} are not always greater than the outcomes for the action {not cross}. This demonstrates that the best 

pedestrian strategy depends on the driver’s behavior (the probability of driver yielding as perceived by the 

pedestrian).  Neither pedestrian behavior is dominant.  In the absence of a dominant strategy, a player must 

decide on an action based on the expected action of the other player.  The uncertainties in this zebra crossing 
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game raise issues of safety and efficiency.  Of special interest are the probabilities of the two special cases 

of interactions: 

• Confusion: The driver yields, and pedestrian does not cross. 

• Conflict: The driver does not yield, and pedestrian chooses to cross. 
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5. CONFLICT AND CONFUSION ANALYSIS 

We define the conflict probability and the confusion probability as: 

1
conflict cross Yield

p p p= −*( )  (15) 

1
confusion Cross yield

p p p= −( )*  (16) 

Pconflict and Pconfusion are two important performance measures. Pconflict is the probability that a conflict occurs, 

representing the conflict risk. Pconfusion is the probability that a misunderstanding between pedestrian and 

motorist happens, which is an efficiency measure at the semi-controlled crosswalk.  

5.1. Conflict and Confusion Prediction 

Sample calculations of the probability of conflict and the probability of confusion are provided for a 

pedestrian-motorist interaction (PMI) with covariate values dped = 51.80 ft, dveh = 38.97 ft, vped = 3.69 ft/s, 

and vveh = 28.24 ft/s.  

1. Set initial parameters for the first step in the algorithm (Figure 2).  Here, Pcross = 0.7, Pyield = 0.4, 

and ε = 0.001 are chosen. 

2. Calculate the expected utilities. Equations 17-20 below are Equations 1b-4b for the sample 

calculations:  

20 4 0 245 3 69 1.334. * . * .
Cross

EU = =  (17) 

1 92 0 024 51 80 0.677. . * .
DoNotCross

EU = − =  (18) 

20 054 38 97 0 0003 38 97 0.464 1.185. * . . * .
Yield

EU = − − =  (19)

21 0 7 28 24 1 072 12.565( . )* . .
DoNotYield

EU = − − =  (20) 

3. Recalculate the probabilities using Equations 5 and 6: P’cross = 0.659 and P’yield = 1.142*10-5. 

4. Stop if the convergence requirement is met, viz.,  P’cross – Pcross < ε and P’yield – P’yield < ε. Else, 

Pcross = P’cross, Pyield  = P’yield, and repeat Steps 1-3. 

5. At convergence, Pcross = 0.309 and Pyield = 2.224*10-13. 

6. Calculate the probability of conflict as Pconflict = 0.309 * (1 – 2.224*10-13) = 0.309 and the probability 

of confusion Pconflict = (1 – 0.309) * 2.224*10-13 = 1.538*10-13. 

The high value of Pconflict reflects the low distance (38.97 ft) of the vehicle to the conflict point, a high vehicle 

approach speed (28.24 ft/s) and a moderate pedestrian approach speed (3.69 ft/s).  
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5.2. Relationship between Explanatory Variables and Conflict 

An essential research question will be: How to reduce the likelihood of conflict between pedestrians and 

drivers at semi-controlled crosswalks?  Based on Equations 15 and 16, the relationship between the 

explanatory variables and the likelihood of conflict Pconflict is indirect. For example, the coefficient a6 is 

associated with the approach speed (ft/s) of a driver when a PMI occurs. A change in vehicle approach 

speed will directly influence the probability of vehicle yielding Pyield as perceived by the pedestrian. A 

change in Pyield will result in a change in the probability of pedestrian crossing Pcross. The probability of 

conflict is derived as Pconflict  = Pcross  * (1 – Pyield), which is Equation 15. According to Equations 1b and 4b, 

the change of vehicle approach speed will result in changes in both Pyield and Pcross. Hence, the relationship 

between the explanatory variables and the likelihood of conflict is not direct.  

For this reason, a sensitivity analysis was conducted by predicting changes in conflict probability 

if there is a 10% change in any one of the variables listed in Table 1, holding constant the values of all other 

variables. The sensitivity analysis is based on the following five steps: 

1. For each pedestrian-motorist interaction (PMI), calculate the likelihood of conflict Pconflict and 

confusion Pconfusion based on the six-step conflict prediction in Section 5.1, given the observed 

values of dped, dveh, vped and vveh for the PMI. The green bars in Figure 4(a) comprise the 

frequency histogram after Pconflict has been calculated for all PMIs. 

2.  

 

(a)      (b) 

Figure 4 Distributions of Conflict Probability Before-and-After 
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3. Change by 10% the value of a given predictor variable for each PMI and calculate the new 

likelihood of conflict P’conflict and likelihood of confusion P’confusion, based on Equations 15 and 

16. The red bars in Figure 4 Distributions of Conflict Probability Before-and-After(b) represent 

the frequency distribution of the likelihood of conflict P’conflict for all PMIs, given a 10% 

increase in the original value of Vveh for each PMI. 

4. Calculate P’conflict – Pconflict for the current PMI and add the result to the frequency distribution 

of changes in conflict probability for Vveh. 

5. After all PMIs have been examined, draw the histogram for the frequency distribution of 

changes in conflict probability for Vveh.  See Figure 5(a). 

6. Repeat Steps 1-4 for the other explanatory variables and build histograms, as shown in Figure 

5(b), Figure 5(c) and Figure 5(d).  

 

 

Figure 5 Sensitivity Analysis 

 

The histograms in Figure 5 indicate that an increase in an explanatory variable will not necessarily 

lead to an expected change in the likelihood of conflict. For example,  

• An increase in the vehicle approach speed Vveh will result in a lower probability of yield Pyield, 

based on Equations 4b and 6.  

• A decrease of Pyield will also result in a reduction of Pcross, based on Equations 1b and 5. 
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• However, an increase in (1 – Pyield) and the decrease of Pcross will not necessarily lead to a 

reduction in the probability of conflict, as calculated by Equation 15.   

When we compare the top two histograms in Figure 5 to the bottom two histograms, it is apparent 

that Probabilities of Conflict are more sensitive to changes in distances than to changes in speeds.  If the 

vehicle distance to the conflict point is increased by 10%, Pconflict is usually reduced, by as much as 0.01 in 

some cases.  Perhaps surprisingly, the Pconflict response to a 10% increase in vehicle approach speed is very 

small, usually between -0.1 and +0.2.  In response to changes in pedestrian approach speed and pedestrian 

distance to the conflict point, changes in Pconflict will be larger for distance, but without positive or negative 

tendencies in either case.   

These results may provide clues to control measures at the crosswalk.  Controlling vehicle approach 

speed is possible, but it will not necessarily reduce conflict probabilities, based on the results of the game 

theory analysis.  The findings with respect to vehicle distance to the conflict point may inform the design 

of traffic control at the crosswalk, or whether new controls at the semi-controlled crosswalk should be 

implemented at all.  In this section, we mainly discuss the effectiveness of controlling the vehicle distance 

to the conflict point.  

5.3. Relationship between Vehicle Distance to the Conflict Point and Conflict 

 

The bottom left histogram in Figure 5 indicates that an increase in vehicle distance to the conflict 

point (dveh) will result in a lower likelihood of conflict.  For a zebra crossing game, the three scenarios 

identified in a previous paper (Zhang et al., 2020) are used: 

1. If a vehicle is too close to yield to the subject pedestrian (dveh ≤ 30 ft), the normal pedestrian 

choice is to “let the vehicle go first”, and it will cause little delay to the pedestrian. 

2. If a vehicle is too far away (dveh > 120 ft), the normal pedestrian choice is to cross without any 

hesitation, because the pedestrian will feel safe. 

3. If the vehicle is neither too far from the crosswalk nor too close (esp. 40 ft to 50 ft, as 

demonstrated in (Zhang et al., 2020), the zebra crossing game will be more complicated and 

more instructive. We set a range for the parameter (30 ft < dveh ≤ 80 ft) in the Scenario 3. 

4. The remaining range for the parameter (80 ft < dveh ≤ 120 ft) is set in the Scenario 4. 
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(a) (b) 

Figure 6  Distributions of Changes in Conflict Probabilities under Scenario 1 and Scenario 2 

 

The first and second scenarios will not involve dangerous situations. If a vehicle is too close to 

yield to the subject pedestrian, a 10% increase in distance is a small change (e.g., 20 feet versus 22 feet).  

Sensitivity analysis for only the Scenario 1 observations in the database (dveh < 30 ft) indicates minor 

changes in the likelihood of conflict (-0.015 to 0.005) that are based on Equation 3b.  See Figure 6(a). 

If a vehicle is “too far away”, a 10% increase in distance will result in larger changes in dveh (e.g., 

200 feet versus 220 feet).  Sensitivity analysis for only the Scenario 2 observations in the database (dveh 

>120 ft) indicates major changes in the likelihood of conflict (0 to 0.3).  If a vehicle is too far away (dveh 

>120 ft), the normal pedestrian choice is to cross without any hesitation, because the pedestrian will feel 

safe. Therefore, a 10% increase in the vehicle distance to the conflict point will have little effect.  

However, for the third scenario (30 ft < dveh ≤80 ft), a large proportion of pedestrians must quickly 

consider the costs of being hit and the costs of delay. If at least one player has incorrect expectations 

concerning the behavior of the others, such inefficient communication can lead to unsafe situations.  The 

results of the sensitivity analysis are shown in Figure 7(a). An increased vehicle distance to the conflict 

point usually reduces the likelihood of conflict in the Scenario 3.   

An increased vehicle distance to the conflict point usually increases the likelihood of conflict in 

the Scenario 4 (80 ft < dveh ≤ 120 ft). As we discussed in the Section 4.1.4, when dveh > 89.49 ft, the expected 

utility function for {yield} decreases as dveh increases. There are two possible explanations. (1) A driver 

may observe the pedestrian’s behavior first and then respond to it because there’s an adequate buffer for 

the driver to “think about” the best action. (2) There may be no need for driver to yield because, if the 

pedestrian leaves the curb area quickly and crosses quickly, the driver will not have to Yield. 
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This results for Scenario 3 and Scenario 4 make sense, but how does this finding help inform the 

design of control measures (if any) at the crosswalk?  Because Figure 5 shows us that Pconflict is sensitive 

only to dveh, increasing dveh from the current value for each PMI covered by Scenario 3 will do the most to 

reduce Pconflict and improve safety.  Two strategies suggest themselves: 

1. First determine if a need for a control measure exists.  The value of Pconflict generated by the 

methods in this proejct can serve as a guide in that respect.  For example, if too many PMIs fall 

above a certain value of Pconflict (say, 0.15) in Figure 4(a), control measures may be justified. 

2. Although active controls might be considered, it may be sufficient (and even preferable) to 

install passive controls such as speed humps at a distance from the crosswalk that reduces 

Pconflict to an acceptable level.  The findings of this study are consistent with a distance of 40 ft 

to 50 ft that was demonstrated in Zhang et al. (2020). 

 

(a) (b) 

Figure 7 Distributions of Changes in Conflict Probabilities under Scenario 3 and Scenario 4 

5.4. Relationship between Vehicle Distance to the Conflict Point and Conflict 

We collected data from three different semi-controlled crossing locations in eight different time periods, 

during which there are temporal variations in traffic volumes and pedestrian flows. These three datasets are 

separated into eight subsets based on the time period when we collected the data. The validity of probability 

of conflict is based on the following four steps: 

1. Driver yielding rates for the eight datasets are calculated as: 

a. Derive the number of PMIs with Yield = 1 (from Error! Reference source not found.) at 

dataset i as . 

b. Derive the total number of PMIs at dataset i as . 
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c. Derive the driver yielding rate for dataset i as . 

2. Conflict probabilities of conflicts in mean for the eight datasets are derived via the proposed six-

step method (y-axis in Figure 8). 

3. To delineate the relationship between the observed driver’s yielding rates and calculated conflict 

probabilities, a linear regression (R2 = 0.71) has been developed in Figure 8.  

4. A negative relationship (y = 0.499 – 0.431x) between calculated conflict probabilities and observed 

driver yielding rates has been found, which indicates that an increase of driver yielding rate will 

result in a lower calculated conflict probability. 

 

 

Figure 8 Relationship Between Probability of Conflict and Driver Yielding Rate 
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6. CONCLUSION 

This project applies Quantal Response Equilibrium (QRE) to study the joint behavior of pedestrians 

and motorists from the perspective of risk at semi-controlled crosswalks. The essential research question 

is: How to reduce the likelihood of conflict between pedestrians and drivers?  

Quantal Response Equilibrium involves players who have incomplete information about the other 

players. In the zebra crossing game, a player must decide on an action based on the belief that the other 

player will be aggressive or cautious. The results of these decisions can put a pedestrian and a motorist in 

conflict. Our analysis, in which QRE is applied to data for a semi-controlled crosswalk, produced the 

following results: 

1. The probability of conflict Pconflict when a pedestrian-motorist interaction (PMI) occurs can be 

quantified. This makes it possible to use probability of conflict as a pedestrian safety measure. 

2. Because the relationship between the explanatory variables in the database and the likelihood 

of conflict Pconflict is indirect, a sensitivity analysis was conducted to predict changes in Pconflict 

if there is a 10% change in any one of the variables. 

3. It was found that probabilities of conflict are not very sensitive to changes in vehicle or 

pedestrian approach speeds, but are sensitive to changes in vehicle distance to the crosswalk.   

These results can provide a basis for deciding whether control measures should be installed at a 

semi-controlled crosswalk and, if needed, how they should be installed. An example using speed humps is 

presented. The information acquired from the QRE analysis can also be used to employ more active control 

measures.  

This report is based on a published paper: Zhang, Y., & Fricker, J. D. (2021). Incorporating conflict 

risks in pedestrian-motorist interactions: A game theoretical approach. Accident Analysis & Prevention, 

159, 106254. 
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7. STUDY SCOPE AND LIMITATIONS 

This study investigated the “zebra crossing” game involving two players – pedestrian and motorist 

at semi-controlled crosswalks. 1437 pedestrian-motorist interactions were observed, and the joint behavior 

of driver and pedestrian as they interact in real street-crossing situations is explored. As more data gathered 

in our dataset, the model can be further updated, and the model performance is expected to be better. In 

addition, there are several limitations in the model-based game: 

1. Limit information in data: the data used in the model was collected by a single analyst. The 

event-based framework only includes information of a PMI at one time stamp when the 

interaction occurs. Currently, we have developed pedestrian detection and tracking framework 

using deep-learning techniques. The pedestrian and vehicle trajectory data containing 

information over multiple time steps will be utilized in the future. 

2. Restricted model: expected utility functions are fixed in the pre-specified model. Agents are 

unlikely to behave exactly in the way that the model-based game defines. Advanced 

computation models and model-free imitation learning techniques will be explored.  
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8. OUTPUTS, OUTCOMES, AND IMPACTS 

8.1. Research Outputs 

8.1.1. Synopsis of Project 

The project exceeded expectations, in that the results went far beyond a basic "inventory" and categorization 

of interactions between pedestrians and motorists.  Appropriate statistical analysis has revealed factors and 

relationships that are described in three papers listed in the following section. 

8.1.2. List of Publications 

Zhang, Y., Qiao, Y., & Fricker, J. D. (2020). Investigating Pedestrian Waiting Time at Semi-Controlled 

Crossing Locations: Application of Multi-State Models for Recurrent Events Analysis. Accident 

Analysis & Prevention, 137, 105437. 

Zhang, Y., & Fricker, J. D. (2020). Multi-State Semi-Markov Modeling of Recurrent Events: Estimating 

Driver Waiting Time at Semi-Controlled Crosswalks. Analytic Methods in Accident Research, 

100131. 

Zhang, Y., & Fricker, J. D. (2021). Investigating temporal variations in pedestrian crossing behavior at 

semi-controlled crosswalks: a Bayesian multilevel modeling approach. Transportation research part 

F: traffic psychology and behaviour, 76, 92-108. 

 

8.1.3. List of Presentations 

Yunchang Zhang, Jon, D. Fricker (2020). “Multi-State Semi-Markov Models: An Application to Drivers’ 

Gap Acceptance in front of Approaching Pedestrians at Unsignalized Crosswalks”. Accepted by 

Transportation Research Board 99th Annual Meeting, January 2020. 

Zhang, Y., & Fricker, J. (2021, June). Investigating Smart Traffic Signal Controllers at Signalized 

Crosswalks: A Reinforcement Learning Approach. In 2021 7th International Conference on Models 

and Technologies for Intelligent Transportation Systems (MT-ITS) (pp. 1-6). IEEE. 

8.1.4. List of Outcomes and Highlights 

This section will emphasize list of outcomes and highlights: 

• “Semi-controlled” crosswalks are unsignalized but marked with “yield to pedestrian” signs. 

• Road user trajectory dataset wad extracted from video recordings. 1437 pedestrian-motorist 

interactions were observed. 
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• Performance measures were developed and tested to evaluate the safety and efficiency of crossing 

locations under a full range of control measures.   

• Simulation software was applied to replicate the base case in the data base and use the associated 

performance measures as the benchmark.   

• At the other extreme, a scenario was created with fully autonomous vehicles and pedestrians who 

are fully compliant with control measures.   

8.1.5. List of Impacts 

This study improves the operation and safety of semi-controlled crosswalks by developing a database and 

identifying factors that affect pedestrian and motorist behavior.   

1. This information will be used to test the impact of new technologies on crosswalk safety and 

performance.  

2. A coupling project with INDOT is a perfect complement to this study, in that it offers opportunities 

to apply a variety of designs and control methods to other types of crossing locations. 
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APPENDIX: JOURNAL PAPERS PUBLISHED FROM THIS WORK 

 

CCAT Project Title: Smart Interaction – Pedestrians and Vehicles in a CAV Environment 

 

Paper 1 

Zhang, Y., Qiao, Y., & Fricker, J. D. (2020). Investigating Pedestrian Waiting Time at Semi-Controlled 

Crossing Locations: Application of Multi-State Models for Recurrent Events Analysis. Accident 

Analysis & Prevention, 137, 105437. 

Abstract: 

“Semi-controlled” crosswalks are unsignalized, but clearly marked with “yield to pedestrian within 

crosswalk” signs. Ideally, pedestrians can cross the street immediately after they arrive at the curb. 

However, real world observations show that pedestrians and vehicles are often involved in non-verbal 

“negotiations” to decide who should proceed first. This kind of “negotiation” often causes delays for both 

parties and may lead to unsafe situations. The study in this paper was based on video recordings of the 

waiting behaviors of 2059 pedestrians interacting with 1003 motorists at selected semi-controlled 

crosswalks. One such location experienced a conversion from one-way operation to two-way operation, 

which provided a rare opportunity for a before-and-after study at that location. Multi-state Markov models 

were introduced as a novel approach to correlate the dynamic process between recurrent events. Time-

varying covariates related to pedestrian characteristics, traffic condition, and vehicle dynamics (distance 

and speed) turned out to be significant. 

The analytical method developed in this study provides a tool to dynamically model pedestrian waiting 

decisions with uncertainties. Model results reveal that, after the conversion from one-way to two-way 

operation, the probability of a pedestrian accepting a lag decreases from 69.7% to just below 60% on the 

same street. In addition, pedestrians are more hesitant to cross a two-way street than a one-way street. 

Countermeasures that increase motorist yielding rate or reduce pedestrian confusion will enhance safety 

such crossing locations. 
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Paper 2 

 

Zhang, Y., & Fricker, J. D. (2020). Multi-State Semi-Markov Modeling of Recurrent Events: Estimating 

Driver Waiting Time at Semi-Controlled Crosswalks. Analytic Methods in Accident Research, 100131. 

 

Abstract: 

At “semi-controlled” crosswalks, signs and markings are present, but delay to pedestrians and motorists is 

largely the result of the “negotiation” between the two parties to determine who yields. This paper proposes 

a novel approach using multi-state semi-Markov models to investigate motorists’ delay and their 

interactions with pedestrians. Motorist waiting behavior can be divided into a series of gap acceptance 

decisions as part of a Markov Chain. Each gap acceptance decision is modeled as a specific transition 

between two states in the Markov Chain. 

To demonstrate the reliability of the proposed models, multi-state semi-Markov models are estimated for 

the waiting behavior of more than 1,000 drivers in the presence of pedestrians at semi-controlled 

crosswalks. The multi-state semi-Markov models are capable of dealing with specific challenges related to 

(i) the need to account for recurrent events and (ii) a generalized framework for vehicle delay estimation 

and simulation at semi-controlled crosswalks. The extent to which motorists behave more aggressively and 

impatiently as their delay increases is demonstrated. Differences in behavior for operators of buses and 

trucks were also identified. The semi-Markov method is also able to deal effectively with the “pulsing” 

arrival patterns of pedestrians at crosswalks as university classes begin and end nearby and handle temporal 

heterogeneity. Finally, to address aggressive driver behavior, several safety implications are discussed. 
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Paper 3 

Zhang, Y., & Fricker, J. D. (2021). Investigating temporal variations in pedestrian crossing behavior at 

semi-controlled crosswalks: a Bayesian multilevel modeling approach. Transportation Research Part F: 

Traffic Psychology & Behavior, 76, 92-108. 

Abstract: 

“Semi-controlled” crosswalks are unsignalized, but have clear pavement markings and “yield to pedestrian” 

signs. At these locations, pedestrians and motorists frequently interact to determine who should proceed 

first. When interacting with drivers, pedestrian crossing decisions are complex events that involve a variety 

of human responses, as well as vehicle dynamics, traffic characteristics, and environmental conditions. In 

addition, these complexities can be subject to temporal effects. Without considering temporal variations in 

pedestrian-motorist interaction, statistical methods could lead to biased coefficient estimates and inaccurate 

conclusions. 

The study developed a Bayesian multilevel logistic regression (BMLR) model to capture heterogeneities in 

pedestrian interaction behavior during four different time periods. The proposed method incorporates time-

specific effects that vary randomly between time-periods based on a weakly informative prior. The results 

indicate significant factors, some of which confirm previous research and some that are new ways to explain 

pedestrian behavior at the individual level. The identification of variables such as FlowOn and FlowWait 

sheds light on the interactions between pedestrians – providing more information than the single GroupSize 

measure. 

Some consequent safety implications are discussed from the perspectives of vehicle dynamics, vehicle flow 

rate and pedestrian volume. The more detailed metrics developed in this paper will provide a valuable 

starting point. for the design of crosswalk controls that will foster a higher degree of compliance and less 

delay. 
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