
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Electrical and Computer 
Engineering Faculty Publications 

Department of Electrical and Computer 
Engineering 

2022 

SoK: Analysis of Software Supply Chain Security by Establishing SoK: Analysis of Software Supply Chain Security by Establishing 

Secure Design Properties Secure Design Properties 

Chinenye Okafor 
Purdue University, okafor1@purdue.edu 

Taylor R. Schorlemmer 
Purdue University, tschorle@purdue.edu 

Santiao Torres-Arias 
Purdue University, santiagotorres@purdue.edu 

James C. Davis 
Purdue University, davisjam@purdue.edu 

Follow this and additional works at: https://docs.lib.purdue.edu/ecepubs 

 Part of the Information Security Commons, Other Computer Engineering Commons, and the Software 

Engineering Commons 

Okafor, Chinenye; Schorlemmer, Taylor R.; Torres-Arias, Santiao; and Davis, James C., "SoK: Analysis of 
Software Supply Chain Security by Establishing Secure Design Properties" (2022). Department of 
Electrical and Computer Engineering Faculty Publications. Paper 160. 
https://docs.lib.purdue.edu/ecepubs/160 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/ecepubs
https://docs.lib.purdue.edu/ecepubs
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ecepubs?utm_source=docs.lib.purdue.edu%2Fecepubs%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=docs.lib.purdue.edu%2Fecepubs%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=docs.lib.purdue.edu%2Fecepubs%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=docs.lib.purdue.edu%2Fecepubs%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=docs.lib.purdue.edu%2Fecepubs%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages


SoK: Analysis of Sofware Supply Chain Security by Establishing 
Secure Design Properties 

Chinenye Okafor∗ 
Purdue University 

West Lafayette, IN, USA 
okafor1@purdue.edu 

Santiago Torres-Arias 
Purdue University 

West Lafayette, IN, USA 
santiagotorres@purdue.edu 

Abstract 
This paper systematizes knowledge about secure software supply 
chain patterns. It identifes four stages of a software supply chain 
attack and proposes three security properties crucial for a secured 
supply chain: transparency, validity, and separation. The paper de-
scribes current security approaches and maps them to the proposed 
security properties, including research ideas and case studies of 
supply chains in practice. It discusses the strengths and weaknesses 
of current approaches relative to known attacks and details the 
various security frameworks put out to ensure the security of the 
software supply chain. Finally, the paper highlights potential gaps 
in actor and operation-centered supply chain security techniques. 

CCS Concepts 
• Software and its engineering → Design patterns; • Security and 
privacy → Software security engineering; • General and reference 
→ Surveys and overviews. 

Keywords 
Software Supply Chain Attacks, Security Properties, Collaborative 
Software Engineering, Software Reuse 

ACM Reference Format: 
Chinenye Okafor, Taylor R. Schorlemmer, Santiago Torres-Arias, and James 
C. Davis. 2022. SoK: Analysis of Software Supply Chain Security by Establish-
ing Secure Design Properties. In Proceedings of the 2022 ACM Workshop on 
Software Supply Chain Ofensive Research and Ecosystem Defenses (SCORED 
’22), November 11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 
10 pages. https://doi.org/10.1145/3560835.3564556 

1 Introduction 
Industrial, government, and academic computing systems rely on a 
supply chain of open- and closed-source software components [60]. 
An actor controlling any step in this chain may, accidentally or 
∗Both authors contributed equally to this research. 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 
SCORED ’22, November 11, 2022, Los Angeles, CA, USA 
© 2022 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9885-5/22/11. 
https://doi.org/10.1145/3560835.3564556 

Taylor R. Schorlemmer∗ 
Purdue University 

West Lafayette, IN, USA 
tschorle@purdue.edu 

James C. Davis 
Purdue University 

West Lafayette, IN, USA 
davisjam@purdue.edu 

maliciously, sabotage downstream software [59, 63]. Problems in 
software supply chains have caused site- and Internet-wide dis-
ruptions at an estimated cost of billions of dollars [12, 57]. These 
problems include service outages [15, 20] and cybersecurity exploits 
that endanger human lives [25] and national security [24]. Software 
supply chain exploits may be attributed to requirements mismatch 
— many software supply chains were originally designed for shar-
ing, not cybersecurity [60]. In light of the emerging requirement 
for security, how should supply chains be designed? 

Researchers have begun by structuring knowledge of how cur-
rent software supply chains can be attacked. For example, tax-
onomies of attacks yield attack trees that help us understand how 
attackers compromise supply chains. Ecosystem analysis has also 
helped understand how the structure of software dependencies 
can make us more or less vulnerable when selecting external de-
pendencies [19, 80, 81]. Data-science based eforts in the industry 
and academia have attempted to identify signals or indicators of 
compromise [79]. 

Other researchers have examined design changes to improve the 
security of software supply chains. Using these insights, eforts have 
focused in developing systems and mechanisms to mitigate these 
attack vectors. Eforts like in-toto and Sigstore attempt to provide 
a layer of security to the current operations in the software supply 
chain. These generally aim to protect against a class of attacks in 
the software supply chain. For example, Solarwind’s Trebuchet 
project [24] aims to prevent compiled backdoors by means of an in-
toto coordinated reproducible builds-based pipeline. This has lead 
to the development of “meta-frameworks” or “best practices models” 
that describe a combination of mechanisms and confgurations that 
can be used to provide a strong security posture against software 
supply chain attacks. Examples of these approaches are the Cloud 
Native Computing Foundations Technical Advisory Group on Se-
curity’s (CNCF TAG-Security) reference architecture for secure 
software pipelines [31], as well as the Secure Software Factory [32]. 

Given the emerging nature of this discipline and the amount of 
disjoint eforts, various groups from academia, industry and open 
source have proposed multiple reference architectures and design 
patterns to secure their software supply chain. However, as yet 
there is no a systematized framework that helps system integrators 
and designers to understand and match how these mechanisms 
and diferent architectures are designed and applied in popular 
software pipelines. This is in part due to the disconnect between 

https://orcid.org/0000-0002-4853-6870
https://orcid.org/0000-0003-2181-5527
https://orcid.org/0000-0002-9283-3557
https://orcid.org/0000-0003-2495-686X
https://doi.org/10.1145/3560835.3564556
https://doi.org/10.1145/3560835.3564556
mailto:davisjam@purdue.edu
mailto:tschorle@purdue.edu
mailto:santiagotorres@purdue.edu
mailto:okafor1@purdue.edu


SCORED ’22, November 11, 2022, Los Angeles, CA, USA Okafor and Schorlemmer, et al. 

these diferent communities, but as well as a lack of structured 
framework to map both research aims: to catalogue threats and to 
apply a combination of systems to mitigate them. 

The purpose of this paper is to summarize knowledge regarding 
design patterns for security in software supply chains. We system-
atically review current design patterns for secure supply chains, 
and develop a framework to compare their security postures. In 
doing so, we provide the frst comprehensive study of current best 
practices proposed by industry, academia and government. First, we 
describe software supply chains (§2). Next, we provide a four stage 
attack pattern for software supply chain attacks (§3.1). Then, we 
present three properties (transparency, validity, and separation) for 
securing software supply chains (§3.2). Afterwards, we document 
how current security practices fulfll our security principles (§4) and 
provide several case studies (§5). Finally, we identify opportunities 
to further improve the security of software supply chains (§6). 

In summary, our contributions are: 

(1) An attack pattern for software supply chain attacks (§3.1). 
(2) Principles for a secure software supply chain (§3.2). 
(3) A collection and analysis of current security practices (§4 

and §5). 

2 Background 

In general, a supply chain is a set of entities which interact to 
produce some product for an end consumer [67]. Each link in a 
supply chain contributes to the fnal product by providing a sub-
product to reliant links. As a result, a network of dependencies 
forms between the links in a supply chain - terminating with the 
link representing the end consumer. Therefore, a supply chain is 
characterized by the connections and attributes of the entities used 
to create and ultimately consume a fnal product. 

In computing, software supply chains are a collection of 
systems, devices, and people which produce a fnal software 
product [18]. Figure 1 depicts a typical software supply chain with 
a focus on an individual link. Each link in the software supply chain 
comprises the artifacts, operations, and actors needed to develop 
and deliver software products [21, 52]. Actors manipulate artifacts 
and operations within the supply chain to produce an output. Arti-
facts include the product team’s code, development infrastructure, 
and software dependencies. Operations include productive steps 
such as fetching dependencies or compiling software, protective 
steps such as linting or security scans, and publishing steps such 
as deployment or distribution. 

The structure of supply chains necessitates an interdependence 
between artifacts and operations within and between links. Actors 
manage the connections which form between components and be-
tween links in the chain. Responsibility for operations and artifacts 
is distributed among actors across diferent geographies, teams, 
companies, and legal jurisdictions. Modern software engineering 
is an international collaborative efort [34, 64]. A single link in 
the supply chain does not necessarily correspond to one group or 
organization. A single organization may be responsible for several 
links within a supply chain. 

3 Supply Chain Attacks and Security Properties 

3.1 Supply Chain Attacks 
The software supply chain is an increasingly popular attack vector 
[43]. It is comprised of several connected links which share artifacts 
and conduct operations. Actors manage links and components. 
The diference between software supply chain attacks and other 
software attacks, however, is not clearly defned in literature. Ladisa 
et al. [43] and Ohm et al. [57] characterize supply chain attacks 
as the injection of malicious code into the supply chain to target 
downstream links. ENISA [18] defnes a supply chain attack as 
a combination of at least two attacks — one attack on a supplier 
and a subsequent attack on intended targets. Other works such 
as Zimmermann et al. [81] and Zahan et al. [79] identify methods 
other than strict code injection for supply chain attacks. Distilling 
the concept of software supply chain attacks from multiple 
sources, we arrive at a characteristic four stage attack pattern 
shown in Figure 2: 

(1) Compromise: First, an attacker fnds and compromises an 
existing weakness within a supply chain. 

(2) Alteration: Second, an attacker leverages the initial com-
promise to alter the software supply chain. 

(3) Propagation: Third, the change introduced by the attacker 
propagates to downstream components and links. 

(4) Exploitation: Finally, the attacker exploits the alterations 
in a downstream link. 

To illustrate this defnition, consider the SOLARBURST compro-
mise [11, 49]. In this supply chain attack, an attacker altered existing 
software from SolarWinds by injecting malicious code during the 
build process. This attack can be mapped to the four-stage attack 
from Figure 2 as follows: (1) The existing weakness compromised 
was the build infrastructure. (2) The alteration was malicious code 
injected by the compiler, permitting a user to bypass authentica-
tion in a SolarWinds product component. (3) The propagation was 
via SolarWinds’s compromised product — its users include many 
companies and US government agencies like the IRS and NASA. (4) 
The exploitation was to leverage broken authentication mechanism 
to take control of afected machines. Such incidents are becoming 
common; software supply chain compromises have increased by a 
cumulative 650% in the last three years [66, 68, 69]. 

In contrast to this pattern, traditional attacks, such as those de-
scribed by Lockheed Martin’s Cyber Kill Chain [46], simply exploit 
an existing vulnerability (step 4). Attacks on software are not neces-
sarily supply chain attacks just because the software exists within 
the context of a supply chain. For this reason, an attack on software 
via the weakness of a dependency is not a supply chain attack unless 
it follows the attack pattern; the attacker must both introduce the 
upstream change and subsequently exploit it downstream. 

For another perspective on this attack pattern, consider the dis-
tinction between vulnerable and malicious dependencies as drawn 
by the European Union Agency for Cybersecurity (ENISA) [18] 
and Ohm et al. [57]. Vulnerable links in the supply chain contain 
unintended weaknesses that may be exploited further downstream. 
These exploits are not supply chain attacks. On the other hand, 
malicious links in the supply chain were intentionally designed to 



cf) 
Upstream 

~ -- (/ ~ 
Compromise Alteration 

• ~ 
Actors 

@® ~ <I> 
Operations Artifacts 

Single Link 

,. 
-- X 

Propagation Exploitation 

cf) 
Downstream 

SoK: Analysis of Sofware Supply Chain Security by Establishing Secure Design Properties SCORED ’22, November 11, 2022, Los Angeles, CA, USA 

Figure 1: A software supply chain with focus on a single link. Actors manage components and connections within and between 
links. Therefore, actors manage security. Security depends on upstream and downstream transparency, link validity via 
component integrity and actor authentication, and logical separation between components and links. 

Figure 2: Four stage software supply chain attack pattern. 
Attackers begin with an initial compromise before making 
some malicious alteration to the supply chain. This change 
then propagates down the supply chain where attackers ex-
ploit the introduced weakness(es). 

weaken the rest of the chain. Introducing and subsequently exploit-
ing such weaknesses constitutes a supply chain attack. 

Existing literature categorizes and documents known supply 
chain attacks [18, 43, 57, 81]. It is outside of the scope of this paper 
to enumerate individual attack types. Typically, this line of work 
diferentiates between how attackers compromise and alter the 
supply chain. 

3.2 Security Properties for Software Supply 
Chains 

Components of a supply chain must be secured to mitigate the pres-
ence of vulnerabilities and the risk of attack. Supply chains become 
secure when attackers are unable to compromise components, alter 
the supply chain, or propagate malicious changes. In the litera-
ture on software supply chain security, we have identifed 
three orthogonal and recurring security properties: 

(1) Transparency: Although actors only control portions of a 
supply chain, increased knowledge of the entire chain allows 
all parties to mitigate risk or employ specifc countermea-
sures against an attack [13, 22, 23, 43, 48]. Transparency 

represents the availability of that knowledge to actors in the 
supply chain. Transparency applies to the entities connecting 
and comprising links in the chain. 

(2) Validity: Software supply chains should remain correct. 
Changes to actors, operations, or artifacts in a single link 
can compromise downstream entities. Validity comprises 
integrity of operations, integrity of artifacts, and authentica-
tion of actors. Each link in the supply chain contains a series 
of operations and artifacts which interact with other links 
in the chain. Secure supply chains require that these com-
ponents remain unchanged by malicious parties [13, 23, 48]. 
Therefore, only authorized actors should make changes to 
link connections and components. Such changes must also 
receive permission to occur [23, 72, 79]. 

(3) Separation: Secure supply chains embody a compartmen-
talized nature. Connections are an integral part of supply 
chains, but should only exist when necessary. These connec-
tions should be minimized to reduce attack surface area. Ad-
ditionally, logically separate operations, artifacts, and actors 
should remain separate in practice to minimize unintended 
connections. By implementing measures such as mirroring, 
version locking, containers etc. individual components can 
decrease reliance on security of others [43, 48, 79]. 

3.3 Analysis of Security Properties 
The security properties discussed in §3.2 are only meaningful if, 
when applied ideally, they eliminate the risk of attack. For this to 
be the case, properties must be comprehensive. 

To analyze these properties, we consider a hypothetical attack 
following the pattern discussed in §3.1 and apply transparency, 
validity, and separation. Since defenders can typically only address 



SCORED ’22, November 11, 2022, Los Angeles, CA, USA Okafor and Schorlemmer, et al. 

the frst there stages of attack, we show how applying these prop-
erties prevents an attack from reaching the fnal stage: exploitation. 
Lastly, we note the diference between ideal conceptualizations and 
real-world embodiments of these security properties. 

First, transparency primarily protects against the frst stage of 
attack. Transparency, in its ideal state, enables perfect vision of all 
actors, operations, and artifacts across the supply chain. Such trans-
parency would allow managers of a supply chain to identify link 
weaknesses before they are compromised. By securing weaknesses 
through patches, fxes, or other methods, managers block attempts 
at compromise. By identifying weaknesses frst, managers prevent 
attackers from completing the frst stage. 

Second, validity primarily protects against the next stage of 
attack: alteration. By maintaining perfect integrity of operations, 
integrity of artifacts, and authentication of actors, no unauthorized 
changes can be made to the supply chain. As a result, attackers 
have no ability to maliciously alter the supply chain. 

Finally, separation primarily protects against the third stage of 
attack: propagation. If a supply chain system can perfectly com-
partmentalize and moderate interactions between entities, then 
malicious changes cannot propagate downstream. In this case, con-
nections between artifacts, operations, and actors are managed in 
such a way that malicious changes cannot afect other supply chain 
components. With ideal separation, only valid changes (e.g., system 
updates and patches) can traverse the supply chain. 

By preventing at least one of the three stages leading to exploita-
tion, a supply chain attack cannot occur. While this hypothetical 
considers an ideal case, practical application is not so easy. Real 
techniques typically do not fully realize security properties, but 
they provide partial coverage (e.g., attestations do not necessar-
ily provide complete transparency). Real techniques also do not 
always implement security properties independently. In practice, 
techniques might require cohesion between multiple security prop-
erties. For example, a technique might require transparency to 
identify threats propagating through the supply chain before ap-
plying separation methods. Conversely, achieving close-to-ideal 
transparency may only be possible if the supply chain is sufciently 
separated from other entities. 

Since techniques do not perfectly embody security properties, 
defending in depth is critical [40]. Theoretically, a single technique 
could prevent all attacks if it provided a perfect implementation of 
transparency, validity, or separation. In practice, techniques have 
faws. For this reason, using multiple techniques mapped to each 
of the security properties provides a more efective defense against 
attack. 

4 Mapping Proposals to Security Properties 
In this section, we map proposals to secure the software supply 
chain against the security properties presented in §3.2. 

4.1 Promoting Transparency 
A lot of work has been done on creating transparency in the soft-
ware supply chain. To mitigate the security risks associated, it is 
crucial to have information about the various software components 
and dependency as well as their hierarchical relationship in the sup-
ply chain [2, 50]. A primary tool for transparency is the Software 
Bill of Materials (SBOM) [6]. A SBOM is an inventory of all the 

components that that make up a software product. SBOM promotes 
transparency by tracking component metadata, enabling mapping 
to other sources of information, and tying the metadata to soft-
ware as it moves down the supply chain and is deployed [70]. As 
security vulnerabilities are discovered in these components, appli-
cations that depend on them can be quickly and reliably tracked 
and updated to newer, hardened versions. 

An SBOM provides a foundation for additional capabilities that 
enhance software supply chain security, e.g., Component Analysis. 
Component Analysis is a function within an overall Cyber Supply 
Chain Risk Management (C-SCRM) framework as it helps to under-
stand and manage risks that these components may present to the 
missions they support. As the software supply chain extends due to 
the increasing system complexities, it is increasingly important to 
understand, evaluate, and manage the risk that various components 
in the supply chain may present in addition to its function. For 
example, the criticality of artifacts and processes could be used to 
determine data dependency between components. Building on a set 
of multidisciplinary publications, standards, and guidelines [14, 36– 
39, 41, 62], Paulsen et al. [58] proposed a Criticality Analysis Process 
Model that prioritizes programs, systems, and components based 
on their importance to the goals of an organization and the impact 
that their inadequate operation or loss may present to those goals. 

Some techniques provide SBOM-similar information to users. For 
example, Sigstore’s [51] transparency log gives users the ability to 
view information about artifacts and operations used to create them; 
npm-audit [55] gives users a way to visualise dependencies; and 
git commit signing [27] provides authorship information. Several 
other tools automate information collection and assurance across 
the supply chain. 

The collection of this information founds trust within the sup-
ply chain. By understanding how artifacts, operations, and actors 
interact, members of the supply chain can trace dependencies back 
to a trusted root source. This enables the fow of trust between 
entities in the supply chain. The promotion of validity ensures that 
the interactions between supply chain elements are certifable — 
increasing trust. 

4.2 Promoting Validity 
Establishing trust entails providing security at every step, which 
incrementally evolves, each built on the preceding to provide in-
cremental confdence. While end-users know what components 
make up their software, can they trust what the component says it 
is? Furthermore, believe the integrity of the executable received is 
intact? High reliance on open and closed source packages has de-
creased the confdence that systems only do what they are intended 
for. Manual code review helps to identify vulnerabilities, but since 
some software are distributed as prebuilt binaries, it is less efective 
to manually review the individual source code for malicious faws. 

Lamb et al. [44] and Goswami et al. [30] looked at the problem 
of establishing trust in build artifacts by comparing build outputs 
from multiple independent builders [42, 47]. This way, the user can 
verify that the received binaries are identical to other builds. The 
reproducible build approach is a countermeasure solution to attacks 
that could compromise the executables at build time, where changes 
are essentially invisible to its original authors and users alike. Code 
signing and verifcation is an integral part of ensuring that software 



SoK: Analysis of Sofware Supply Chain Security by Establishing Secure Design Properties SCORED ’22, November 11, 2022, Los Angeles, CA, USA 

is from an original publisher. It ensures that the fnal published 
software is intact and contains no tampering from unauthorized 
parties. Sigstore [51] improves the integrity of the software supply 
chain by combining various technologies to provide an automated 
approach for developers to digitally sign artifacts and for users to 
verify the artifacts in Sigstore’s transparency log - a public, tamper-
proof ledger of signatures. This mapping of artifacts to verifable 
identities establishes trust that they are tamper-free. Gitsign im-
plements keyless Sigstore to sign git commits with a valid OpenID 
Connect identity which overcomes the challenges associated with 
using GPG keys in signing git commits and consequently improving 
the overall trust in open-source projects. Many point solutions have 
been implemented [3, 7, 27, 75] to ensure that individual supply 
chain actions are not altered. Torres-Arias et al. [73] implemented 
a holistic approach that enforces the integrity of a software supply 
chain by gathering cryptographically verifable information about 
the chain itself and verify that each step action of a supply chain 
is not tampered with. This approach ensures end-to-end verifca-
tion and confrms that tampering does not occur in between steps 
in the software supply chain between the development and the 
publication of the software. 

Account takeover attacks place the account owner and anything 
the account has access to at risk. Multi-factor Authentication is 
highly recommended for actors in the supply chain. Although all 
downstream systems that depend on the afected code are impacted, 
no solution provides the security posture of actors (e.g. maintainer, 
developer) in a supply chain to enable software consumers to make 
risk-based security decisions. Will it have more cons than pros? 
Several C-SCRM practices for systems and organizations have been 
recommended to mitigate attacks due to credential compromise. 
Building on existing FIPS 200 standards [56], Boyens et al. [13] 
added that information system access should be limited to only the 
necessary type and duration and monitored for cybersecurity sup-
ply chain impact. They also expanded the Awareness and Training 
control of FIPS 200 to include providing C-SCRM awareness and 
training to individuals at all levels within the enterprise as well as 
suppliers, developers, system integrators, external system service 
providers, and other information technology (IT)- or operational 
technology (OT)-related service providers to ensure that the per-
sonnel who interact with an enterprise’s supply chains receive the 
training as appropriate. 

4.3 Promoting Separation 
Several techniques currently exist for promoting separation be-
tween components in a supply chain. We distinguish between those 
techniques that apply to internal components and those that apply 
to external links. Internal-focused techniques ensure compartmen-
talization between artifacts, operations, and actors of a single link. 
External-focused techniques mitigate the risk associated with rely-
ing on other links in the supply chain. 

First, container and virtual machine (VM) based methods sepa-
rate internal operations, artifacts, and actors [23, 48, 65]. Successful 
build systems are highly automated [31]. In these systems, auto-
mated workers can behave as actors by managing operations and ar-
tifacts. In these cases, best practice is the creation of ephemeral and 
task-specifc workers [31]. This prevents any unnecessary crossover 
between logically diferent operations and actors - reducing the risk 

associated with internal connections. Additionally, the creation of 
compartmentalized containers and VM instances reduces the risk 
associated with connected artifacts. As an example, BreakApp [74] 
assists in spawning compartmentalized modules to complete tasks 
during development. By systematically creating separated build sys-
tems, attackers cannot efectively propagate vulnerabilities through-
out the supply chain. 

Second, actors adopt systems which provide separation from ex-
ternal supply chain links. For example, version locking and mirror-
ing techniques add a layer of security to external sources [21, 31, 48]. 
Version locking ensures that a link includes a particular version of 
an upstream component. The use of a constant dependency version 
ensures that malicious changes upstream do not automatically prop-
agate to downstream links. A weakness to version locking is the 
reliance on actors to accurately set and manage version numbers. 
The failure to update versions may prevent updates that remove 
vulnerabilities. In the same manner, prematurely updating to a com-
promised version defeats the purpose of version locking. Mirroring 
acts in a similar manner to version locking. Organizations create 
private package feeds to mitigate the risk of pulling dependencies 
from public sources [48, 76]. This gives organizations more con-
trol over the import of packages into their software projects. Once 
again, this relies on including the correct packages in private feeds. 

5 Mapping Embodiments to Security Properties 
In this section, we use case studies to demonstrate how each secu-
rity property from §3.2 can be embodied in practice. We specifcally 
consider eforts to secure supply chains through (1) package reposi-
tories, (2) development environments, (3) end-to-end solutions, and 
(4) security frameworks. 

5.1 Package Repositories 
Package and dependency managers such as npm for JavaScript, 
PyPI for Python, or RubyGems for Ruby have encouraged code 
reuse between packages. Consequentially package managers have 
become a vital part of software supply chains. Attackers have begun 
exploiting the weak links in these ecosystems to distribute malware. 
Several techniques have been put in place to detect and mitigate 
package manager ecosystem attacks. We examine Npm as a case 
study to discuss the techniques that have been adopted to improve 
the security properties defned in §3.2. 

Npm is the package manager for the popular Node.js JavaScript 
platform. Since Node.js is widely used for back-end software, Npm 
is widely used in security-sensitive contexts. 

Transparency: To use Npm as a package manager, a software 
engineer must declare the packages on which they depend in a 
fle called package.json. The command npm install command can 
then installs these packages. The package.json fle is a “primitive 
SBOM” since it contains almost all the required felds of one (as 
recommended by the NTIA [70]). SBOM’s in general, provide an 
example of the Transparency property in practice. 

As one application of this primitive SBOM, Npm ofers a tool 
called npm-audit [55] to audit package security and stability. Npm-
audit assesses the dependency description of a project against the 
default registry for possible security vulnerabilities and calculates 
the impact and appropriate remediation if any are found. The audit 
process entails scanning the package.json and package-lock.json 



SCORED ’22, November 11, 2022, Los Angeles, CA, USA Okafor and Schorlemmer, et al. 

fle to build the dependency tree, then comparing the packages 
from the dependency tree to a database of known vulnerabilities. If 
any vulnerabilities are found, an alert with the impact and appro-
priate remediation will be shown. Although security audits help 
you protect package users by enabling you to fnd and fx known 
vulnerabilities in dependencies that could cause data loss, service 
outages, and unauthorized access to sensitive information, recent 
researchers have started doubting the reliability of this tool [45, 78]. 

Validity: Npm has recorded several incidents on the registry 
where npm accounts are hijacked by malicious actors and the use 
of the access to infltrate packages the compromised accounts have 
access to. Following the unprecedented series of account takeovers 
resulting from the compromise of developer accounts without 2FA 
enabled [5, 16], npm has introduced even more security enhance-
ments. An extra layer of security of verifying all npm account login, 
and enrolling maintainers of top packages into a mandatory 2FA 
have been added to help prevent common accounts takeover attacks, 
such as credential stufng [71], which utilize a user’s compromised 
and reused password. 

Separation: Npm provides scopes to safeguard a diverse set 
of package names by restricting the package’s namespace to an 
organization or user [54]. This means that one does not have to 
worry about someone taking a package name ahead of time and 
only the user is allowed to publish packages under that scope on 
the public registry, which hardens the process against compromise 
as an attacker would have to compromise that npmjs.org registry 
account to take over the package. Scopes can be associated with a 
given registry which ensures that all requests for packages under 
the scope will be routed to the given registry. For instance, at login 
the myorg scope can be linked to http://registry.myorg.com with the 
command npm login: 

$ npm login −− scope =@myorg 
−− r e g i s t r y = h t t p : / / r e g i s t r y . myorg . com 

This command will ensure that any request bound to the myorg 
scope is sent to the http://registry.myorg.com registry. Scopes mit-
igate the dependency confusion risks where an Internal package 
name is claimed by an attacker on the public registry. 

The use of npm proxy [53] is a common practice for improved 
npm security. The internal registry can be confgured to take prece-
dence over the public registry to help protect against installing the 
wrong or malicious package from public registries. For example, an 
attacker might publish a malicious package to the public repository 
with the same name as a package hosted on a private registry but 
with a higher semantic version. In the case where a custom setting 
for an internal registry is omitted, the package manager would 
default to the public registry and download the latest (malicious) 
packages from there. Confguring the proxy to never allow an up-
stream request to the public registries protects against fetching 
arbitrary packages in place of the legitimate package. 

5.2 Development Environments 
Collaborative development environments like GitHub and Bitbucket 
host millions of open- and closed-source projects. The meritocratic 
premise of open-source software [60], which allows contributions 
from anyone, is an opportunity for the introduction of vulnerabili-
ties through “hypocrite commits” [77]. Hence, such platforms have 

taken steps to promote the security of the projects they host. We 
align these steps with our proposed security properties in a case 
study of GitHub. 

Transparency: In a package context such as Npm, the package 
manager can mandate the use of a package.json fle. This fle can 
be leveraged for further analysis. In contrast, in the source code 
context, the supply chain for a given project is harder to discover. 
GitHub [4] identifed unpatched software as the major threat to 
supply chain security and has provided capabilities of Software 
Composition Analysis (SCA) to determine dependencies in use, dis-
cover vulnerabilities in the dependencies, and efect patches. These 
capabilities are provided by dependency graph, dependabot alerts, 
and dependabot security updates feature and are recommended to 
organizations to help secure their repositories against supply chain 
threats [29]. 

The dependency graph is a summary of manifests and lock fles 
that shows the dependencies and dependents of your repository. 
When a pull request containing changes to dependencies that target 
the default branch is created, GitHub uses the dependency graph to 
add dependency reviews to the pull request. These indicate whether 
the dependencies contain vulnerabilities and, if so, the version of 
the dependency in which the vulnerability was fxed. Dependabot 
alerts rely on the dependency graph and GitHub advisory database 
to alert developers when a repository is afected by a newly dis-
covered vulnerability. This enables organizations and open-source 
projects to stay up to date on security vulnerabilities, and infor-
mation. Dependabot security updates make it easier to mitigate 
this vulnerability within repositories by automatically raising pull 
requests to update a software dependency to the minimum version 
that resolves a known vulnerability. These dependabot features 
provide automation to the hard work of dependency management 
and patching. However, the extent to which the dependency up-
date bot reduces update suspicion and notifcation fatigue remain 
questionable [10, 33]. 

To eliminate the security risk posed by the late detection of 
vulnerabilities, GitHub [1] developed a feature — static analysis, 
powered by CodeQL, that runs queries against codebases to identify 
potential security vulnerabilities. 

Validity: To secure build systems against build process attacks, 
Github Actions (CI/CD tool for GitHub) is designed to ensure pre-
cise and repeatable build steps and that each build starts in a new 
environment to reduce the likelihood of attackers persisting in a 
build environment [28]. GitHub builds on top of the git version 
control system, which has a feature to enable developers to validate 
that commits are coming from an identifed, trusted source while 
using other people’s work. Specifcally, git supports signing and 
verifying commits and tags using GPG [27]. 

Separation: Platforms such as GitHub allow software devel-
opers to create arbitrarily many independent repositories (within 
reason). Links between these repositories (e.g., by adding a depen-
dency or a git sub-module) are at the developer’s discretion. This 
decision improves the separation between links in the supply chain. 
However, we note that the common practice of vendoring — copy-
pasting a dependency verbatim into another codebase — degrades 
separation. 

http://registry.myorg.com
http://registry.myorg.com
https://npmjs.org


SoK: Analysis of Sofware Supply Chain Security by Establishing Secure Design Properties SCORED ’22, November 11, 2022, Los Angeles, CA, USA 

5.3 End-to-end Solutions 

Some researchers have focused on developing fully-fedged systems 
to mitigate supply chain attacks. Solutions such as in-toto [73] and 
Sigstore [51] are excellent examples and have been integrated across 
vendors to secure software supply chains [9]. We examine in-toto as 
a case study for the implementation of security properties proposed 
in §3.2. 

In-toto ensures the security of the software supply chain by gath-
ering cryptographically verifable evidence — called link metadata 
— about entities in the chain. Link metadata is a signed statement 
each actor in the supply chain emits to describe relevant operations, 
artifacts, and connections. For example, this statement may include 
information such as fles used, fles produced, building processes, or 
even environment variables. Link metadata is collected throughout 
the supply chain and is delivered alongside the fnal product. Veri-
fers can compare link metadata with a layout (created by an actor 
who dictates policy for the supply chain) describing the intended 
steps in the supply chain. 

Transparency: By disaggregating the supply chain into small, 
individual claims from each actor, in-toto provides strong trans-
parency guarantees for artifacts (they are tracked as materials and 
products) and operations (they are described in a layout fle). How-
ever, it does not provide transparency for actors in the supply chain. 
Although actors will create signed statements, in-toto does not 
have a method to tie their keys to identities (even pseudonyms). 
While this is not exclusive to the “holistic” approach of the system, 
it may be possible to extend the design to include known identifers 
using approaches such as verifable credentials [17] or distributed 
identity providers [61]. 

Validity: Regarding validity, in-toto provides guarantees for 
artifact integrity (by means of hashing each artifact) and operation 
integrity (by means of a layout policy), yet it does not provide actor 
authentication. Even though the signing keys prevent a malicious 
takeover of operations carried out by an actor, it does not protect 
against other attack vectors (e.g., account take over). It is possible 
that author validity guarantees may be achieved by combining ex-
isting mechanisms (e.g., 2FA) into the signing fow for link metadata. 
Likewise, actors provide additional proof they are a well-known, 
reputable actor in the chain through techniques like DiD and VC 
described above. 

Separation: Lastly, in-toto provides strong Separation guaran-
tees for operations and actors, but not for artifacts. This is because 
artifact separation is typically achieved by underlying mechanisms 
(e.g., a container runtime may sandbox a build process). Given this, 
it may be possible to provide stronger security guarantees by adopt-
ing hardened runtimes within solutions like in-toto. One example 
of this is SLSA’s extension to in-toto links [26], that can help com-
municate information if the build is hermetic, or if all the artifacts 
used in the build were required by the build. 

5.4 Security Frameworks 

Researchers and industry have proposed multiple end-to-end secu-
rity frameworks to simplify the process of securing a supply chain. 
These frameworks recommend practices, tooling options and design 
considerations to ensure the integrity of artifacts in the software 

supply chain. We consider three frameworks — Microsoft’s Sup-
ply Chain Integrity Model (SCIM), Google’s Supply-chain Levels 
for Software Artifacts (SLSA) and The Cloud Native Computing 
Foundation’s (CNCF) Software Supply Chain Best Practices. 

First, SCIM [8] specifes how the artifact verifcation process 
should function across a supply chain. The framework provides a 
standard for the artifact data model and exchange format (SCIM-
Evidence), the policy used in evaluating these artifacts (SCIM-
Policy), and the service that stores both the evidence and the policy 
(SCIM-Store). This enables the smooth fow of evidence (e.g., bills 
of materials, build information, etc.) between links in the supply 
chain. 

Second, SLSA [26] provides four levels of assurance (i.e., SLSA 
1-4) to describe the security posture of a supply chain, similar to the 
capability maturity model (CMM) for software development [35]. 
The framework starts with basic security at SLSA 1 and adds re-
quirements at each level until the fnal level, SLSA 4. Each level 
specifcally documents source, build, provenance, and common 
requirements. 

Finally, the CNCF [31] framework provides a fve-stage method-
ology for securing supply chains. These stages include securing the 
source code, materials, build pipelines, artifacts, and deployments 
of a supply chain. 

In Table 1, we compare how the three frameworks cover our 
security properties. SCIM provides substantially less coverage than 
SLSA 4 and CNCF. Although SLSA 4 and CNCF cover our security 
properties better, they may be difcult to implement1. 

Table 1: Comparison of how SCIM [8], SLSA [26], and 
CNCF [31] promote security properties. 

Frameworks SCIM SLSA 4 CNCF 

Artifacts ✓ ✓ ✓ 
Transparency Operations ✓ ✓ ✓ 

Actors ✓ ✓ 

Artifacts ✓ ✓ ✓ 
Validity Operations ✓ ✓ ✓ 

Actors ✓ ✓ 

Artifacts ✓ ✓ 
Separation Operations ✓ ✓ 

Actors ✓ 

Transparency: SCIM improves the supply chain’s transparency 
by providing principle for conveying evidence about the artifact. 
For example, information about the sub-components of an artifact, 
how the artifact was created, and defects identifed in the artifact. 
SLSA promotes transparency by demanding provenance attestation 
fles at the lowest compliance level. These fles contain build meta-
data which inform users about the artifacts they use. The CNCF 
framework proposes several practices to increase transparency in 
the supply chain, such as SBOMs and dependency analysis. 

Validity: SCIM improves the validity of the supply chain by 
providing principles for conveying the evidence of an artifact that 
allows it to be verifed. For example, providing the principles for 

1SLSA 4 lists 20 requirements; the CNCF proposes nearly 60 requirements. 



II II II II 

SCORED ’22, November 11, 2022, Los Angeles, CA, USA Okafor and Schorlemmer, et al. 

Table 2: Proposed and practical techniques, related to security properties (columns) and aspects of the defnition of a supply 
chain (sub-columns). Note the emphasis on artifacts and the under-emphasis on operations and actors. We believe this gap 
represents an opportunity for security research. We suggest that vetting operations may require applied cryptography and 
improved hardware root-of-trust. Meanwhile, addressing security faws related to actors will require accounting for human 
and organizational factors, a longstanding challenge in cybersecurity. 

Techniques Transparency 
Artifacts Operations Actors Artifacts 

Validity 
Operations Actors 

Separation 
Artifacts Operations Actors 

SBOM ✓ ✓ 
npm-audit [55] ✓ ✓ 

Code scanning [1] ✓ ✓ 
Dependabot features [29] ✓ ✓ 

GitHub Actions [28] ✓ ✓ ✓ ✓ 
Git Commit Signing [27] ✓ ✓ 

Scope [54] ✓ ✓ ✓ 
Multi-Factor Authentication ✓ 

In-toto [73] ✓ ✓ ✓ ✓ ✓ ✓ 
Containerization ✓ ✓ ✓ 
Version Locking ✓ 
Sigstore [51] ✓ ✓ ✓ ✓ ✓ 

Mirroring and Proxies [53] ✓ ✓ ✓ ✓ 

conveying the cryptographic hash of a software allows the soft-
ware to be verifed by the consumer. SLSA 2 to 4 generates validity 
requirements for implementers. At these levels, SLSA demands 
version control, provenance integrity, auditability, and a two-party 
review of all changes to the artifact. Such specifcations ensure that 
artifacts and operations within the supply chain are tamper-free. 
The CNCF framework recommends a combination of cryptographic 
attestation and verifcation at each stage of the supply chain (verif-
cation by reproducibility, Multi-factor authentication, and signature 
validation at every step, amongst others) to ensure integrity. 

Separation: The SCIM framework does not provide specifc 
methods to increase separation in the supply chain. SLSA 3 requires 
isolated builds in ephemeral environments (dedicated resources 
for that particular build) and SLSA 4 requires a hermetic build pro-
cess. These requirements provide strong protection against cross-
build contamination attacks [26]. Also, the CNCF framework rec-
ommends several practices that embody separation, including main-
taining controlled source code, build, and artifact environments. 
Controlled environments are created by adopting policies such 
as branch protection rules, ephemeral build workers, ephemeral 
certifcates, pipeline orchestration, minimal network connectivity, 
build worker segregation, and artifact access rules. 

6 Discussion 

In §4 and §5 we related current proposals and embodiments to the 
security properties from §3.2. We believe this demonstrates the 
usefulness of the properties we have proposed. As a last question, 
we consider whether these approaches are comprehensive with 
respect to software supply chains. Recall the defnition of a software 
supply chain given in §2: a collection of systems, devices, and people 
which produce a fnal software product Figure 1. 

We mapped each technique described in §4 and §5 to the cor-
responding security properties and the relevant aspect(s) of the 
software supply chain. Table 2 presents our results. We observe that 

most of the studied approaches are focused on artifacts. Further 
research is needed to assess the generalizability of this claim be-
yond the cases we examined. If true, we acknowledge that artifacts 
are the appropriate primary focus for security — when deployed, 
software systems consist of interacting software artifacts, and cy-
bersecurity vulnerabilities consist of exploiting these interactions. 
However, we suggest that there are many opportunities to improve 
the handling of operations and actors in secure software supply 
chains. 

7 Conclusion 
In this paper, we proposed desired properties of a secure software 
supply chain and systematized current design patterns and practices. 
We analyzed security frameworks and several real-world techniques 
and mapped these techniques according to the corresponding prin-
ciples they promote. Our analysis showed how current practices 
embody the proposed security properties and apply to components 
of the software supply chain. We intend for this systematization to 
serve as a reference and guide for those seeking to build frameworks 
and improve the security of software supply chains. 

Acknowledgments 
We acknowledge support from Cisco as well as NSF award #2229740. 
We thank the reviewers and our shepherd, Asra Ali, for their thought-
ful critiques. 



SoK: Analysis of Sofware Supply Chain Security by Establishing Secure Design Properties SCORED ’22, November 11, 2022, Los Angeles, CA, USA 

References 
[1] About code scanning. https://docs.github.com/en/code-security/code-

scanning/automatically-scanning-your-code-for-vulnerabilities-and-
errors/about-code-scanning. 

[2] Cyclonedx is sbom: Software bill of materials. https://cyclonedx.org. 
[3] Reproducible builds. https://reproducible-builds.org/. 
[4] Secure at every step: What is software supply chain security and why does 

it matter? https://github.blog/2020-09-02-secure-your-software-supply-chain-
and-protect-against-supply-chain-threats-github-blog/. 

[5] Security issue: compromised npm packages of ua-parser-js (0.7.29, 0.8.0, 1.0.0) -
questions about deprecated npm package ua-parser-js · issue #536 · faisalman/ua-
parser-js. https://github.com/faisalman/ua-parser-js/issues/536. 

[6] Software Bill of Materials. https://www.cisa.gov/sbom. 
[7] The Update Framework (TUF). https://theupdateframework.github.io/. 
[8] SCIM: Supply chain integrity model. https://github.com/microsoft/scim, 2022. 

Accessed: 2022-09-14. 
[9] In-toto ongoing integrations, Retrieved July 30. https://in-toto.io/integrations/. 
[10] Enable dependabot by milgradesec · pull request #4317 · caddyserver/caddy, 

Retrieved July 31. https://github.com/caddyserver/caddy/pull/4317. 
[11] Catalin Cimpanu . Microsoft, freeye confrm solarwinds supply chain at-

tack. https://www.zdnet.com/article/microsoft-freeye-confrm-solarwinds-
supply-chain-attack/. 

[12] A. Cherepanov. Analysis of TeleBots’ cunning backdoor. https://www. 
welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor. 

[13] J. Boyens, A. Smith, N. Bartol, K. Winkler, A. Holbrook, and M. Fallon. Cyberse-
curity Supply Chain Risk Management Practices for Systems and Organizations. 
Technical Report NIST Special Publication (SP) 800-161 Rev. 1, National Institute 
of Standards and Technology, May 2022. 

[14] J. M. Boyens, C. Paulsen, R. Moorthy, and N. Bartol. Supply chain risk man-
agement practices for federal information systems and organizations. https: 
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161.pdf. 

[15] Chris Williams. How one developer just broke node, babel and thousands of 
projects in 11 lines of javascript. https://www.theregister.com/2016/03/23/npm_ 
left_pad_chaos/. 

[16] CISA. Malware discovered in popular NPM package, ua-parser-js. 
https://www.cisa.gov/uscert/ncas/current-activity/2021/10/22/malware-
discovered-popular-npm-package-ua-parser-js. 

[17] W. W. W. Consortium et al. Verifable credentials data model 1.0: Expressing 
verifable information on the web. https://www. w3. org/TR/vc-data-model/?# 
core-data-model, 2019. 

[18] E. U. A. f. Cybersecurity. ENISA threat landscape for supply chain attacks. 
Technical report, Publications Ofce, LU, July 2021. 

[19] A. Decan, T. Mens, and E. Constantinou. On the impact of security vulnerabilities 
in the npm package dependency network. In International Conference on Mining 
Software Repositories (MSR), 2018. 

[20] A. Dellavecchia. How a Rogue Developer Ruined Millions of Software (happened 
this weekend), Jan. 2022. 

[21] R. J. Ellison, J. B. Goodenough, C. B. Weinstock, and C. Woody. Evaluating and 
mitigating software supply chain security risks. 2010. 

[22] R. J. Ellison, J. B. Goodenough, C. B. Weinstock, and C. Woody. Evaluating and 
Mitigating Software Supply Chain Security Risks. Technical report, CARNEGIE-
MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST, May 2010. 
Section: Technical Reports. 

[23] M. Ensor and D. Stevens. Shifting left on security - Securing software supply 
chains. Technical report, Google Cloud, Feb. 2021. 

[24] FireEye. Highly evasive attacker leverages solarwinds supply chain 
to compromise multiple global victims with sunburst backdoor. https: 
//www.freeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-
solarwinds-supply-chain-compromises-with-sunburst-backdoor.html. 

[25] Forbes. Supply chains are in the crosshairs of cyberattacks. https: 
//www.forbes.com/sites/forbestechcouncil/2022/04/27/supply-chains-are-
in-the-cyberattack-crosshairs/?sh=24e002951808. 

[26] T. L. Foundation. SLSA: Supply-chain levels for software artifacts. https://slsa.dev, 
2022. Accessed: 2022-04-30. 

[27] Git SCM. Signing your work. https://git-scm.com/book/en/v2/Git-Tools-Signing-
Your-Work. 

[28] GitHub. Best practices for securing your build system. https: 
//docs.github.com/en/code-security/supply-chain-security/end-to-end-
supply-chain/securing-builds. 

[29] GitHub. Secure your supply chain, Retrieved July 30. https://github.com/features/ 
security/software-supply-chain. 

[30] P. Goswami, S. Gupta, Z. Li, N. Meng, and D. Yao. Investigating the reproducibility 
of NPM packages. In 2020 IEEE International Conference on Software Maintenance 
and Evolution (ICSME), pages 677–681. IEEE. 

[31] S. T. A. Group. Software Supply Chain Best Practices. Technical report, Cloud 
Native Computing Foundation, May 2021. 

[32] S. T. A. Group. The Secure Software Factory: A reference architecture to securing 
the software supply chain. Technical report, Cloud Native Computing Foundation, 
June 2022. 

[33] R. He, H. He, Y. Zhang, and M. Zhou. Automating dependency updates in practice: 
An exploratory study on GitHub dependabot. 2022. https://arxiv.org/abs/2206. 
07230. 

[34] J. D. Herbsleb. Global software engineering: The future of socio-technical co-
ordination. In Future of Software Engineering (FOSE’07), pages 188–198. IEEE, 
2007. 

[35] W. Humphrey. Characterizing the software process: a maturity framework. IEEE 
Software, 5(2):73–79, Mar. 1988. Conference Name: IEEE Software. 

[36] International Organization for Standardization and the International Electrotech-
nical Commission. ISO - ISO/IEC 27001 — information security management. 
https://www.iso.org/isoiec-27001-information-security.html. 

[37] International Organization for Standardization and the International Electrotech-
nical Commission. ISO/IEC 20243-1:2018 - mitigating maliciously tainted 
and counterfeit products. https://www.iso.org/cms/render/live/en/sites/isoorg/ 
contents/data/standard/07/43/74399.html. 

[38] International Organization for Standardization and the International Electrotech-
nical Commission. ISO/IEC 27002:2013- code of practice for information security 
controls. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/ 
standard/05/45/54533.html. 

[39] International Organization for Standardization and the International Electrotech-
nical Commission. ISO/IEC 27036-4:2016 - information security for supplier rela-
tionships. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/ 
standard/05/96/59689.html. 

[40] Joint Task Force Interagency Working Group. Security and Privacy Controls for 
Information Systems and Organizations. Technical report, National Institute of 
Standards and Technology, Sept. 2020. Edition: Revision 5. 

[41] Joint Task Force Transformation Initiative. Security and privacy controls for 
federal information systems and organizations. https://nvlpubs.nist.gov/nistpubs/ 
SpecialPublications/NIST.SP.800-53r4.pdf. 

[42] J. C. Knight and N. G. Leveson. An experimental evaluation of the assumption 
of independence in multiversion programming. IEEE Transactions on Software 
Engineering, SE-12(1):96–109. 

[43] P. Ladisa, H. Plate, M. Martinez, and O. Barais. Taxonomy of Attacks on Open-
Source Software Supply Chains, 2022. 

[44] C. Lamb and S. Zacchiroli. Reproducible Builds: Increasing the Integrity of 
Software Supply Chains. IEEE Software, 39(2):62–70, Mar. 2022. 

[45] C. Liu, S. Chen, L. Fan, B. Chen, Y. Liu, and X. Peng. Demystifying the vulnerability 
propagation and its evolution via dependency trees in the NPM ecosystem. In 
Proceedings of the 44th International Conference on Software Engineering, pages 
672–684. ACM, 2022. 

[46] L. Martin. Cyber Kill Chain®, June 2022. 
[47] W. M. McKeeman. Diferential Testing for Software. 10(1):8, 1998. 
[48] Microsoft. 3 ways to mitigate risk when using private package feeds. Technical 

report, Microsoft, Mar. 2021. 
[49] Microsoft Security Response Center. Customer guidance on recent nation-state 

cyber attacks. https://msrc-blog.microsoft.com/2020/12/13/customer-guidance-
on-recent-nation-state-cyber-attacks/. 

[50] National Telecommunications and Information Administration. NTIA Software 
Component Transparency. https://www.ntia.doc.gov/SoftwareTransparency. 

[51] Z. Newman, J. S. Meyers, and S. Torres-Arias. Sigstore: software signing for 
everybody. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and 
Communications Security, 2021. 

[52] C. Nissen, J. E. Gronager, R. S. Metzger, and H. Rishikof. Deliver uncompromised: 
A strategy for supply chain security and resilience in response to the changing 
character of war. Technical report, MITRE CORP MCLEAN VA, 2018. 

[53] NPM. Proxy. https://www.npmjs.com/package/proxy. 
[54] NPM. Scope. https://docs.npmjs.com/cli/v8/using-npm/scope. 
[55] npm Docs. npm-audit. https://docs.npmjs.com/cli/v8/commands/npm-audit/. 
[56] N. I. of Standards and Technology. Minimum Security Requirements for Federal 

Information and Information Systems. Technical Report Federal Information 
Processing Standard (FIPS) 200, U.S. Department of Commerce, Mar. 2006. 

[57] M. Ohm, H. Plate, A. Sykosch, and M. Meier. Backstabber’s knife collection: A 
review of open source software supply chain attacks. In International Conference 
on Detection of Intrusions and Malware, and Vulnerability Assessment, pages 23–43. 
Springer, 2020. 

[58] C. Paulsen, J. Boyens, N. Bartol, and K. Winkler. Criticality Analysis Process 
Model: Prioritizing Systems and Components. Technical Report NIST Internal or 
Interagency Report (NISTIR) 8179, National Institute of Standards and Technology, 
Apr. 2018. 

[59] G. A. A. Prana, A. Sharma, L. K. Shar, D. Foo, A. E. Santosa, A. Sharma, and D. Lo. 
Out of sight, out of mind? how vulnerable dependencies afect open-source 
projects. Empirical Software Engineering, 26(4):1–34, 2021. 

[60] E. Raymond. The cathedral and the bazaar. Knowledge, Technology & Policy, 
12(3):23–49, 1999. 

https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning
https://cyclonedx.org
https://reproducible-builds.org/
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://github.com/faisalman/ua-parser-js/issues/536
https://www.cisa.gov/sbom
https://theupdateframework.github.io/
https://github.com/microsoft/scim
https://in-toto.io/integrations/
https://github.com/caddyserver/caddy/pull/4317
https://www.zdnet.com/article/microsoft-fireeye-confirm-solarwinds-supply-chain-attack/
https://www.zdnet.com/article/microsoft-fireeye-confirm-solarwinds-supply-chain-attack/
https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor
https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161.pdf
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/
https://www.cisa.gov/uscert/ncas/current-activity/2021/10/22/malware-discovered-popular-npm-package-ua-parser-js
https://www.cisa.gov/uscert/ncas/current-activity/2021/10/22/malware-discovered-popular-npm-package-ua-parser-js
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.forbes.com/sites/forbestechcouncil/2022/04/27/supply-chains-are-in-the-cyberattack-crosshairs/?sh=24e002951808
https://www.forbes.com/sites/forbestechcouncil/2022/04/27/supply-chains-are-in-the-cyberattack-crosshairs/?sh=24e002951808
https://www.forbes.com/sites/forbestechcouncil/2022/04/27/supply-chains-are-in-the-cyberattack-crosshairs/?sh=24e002951808
https://slsa.dev
https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work
https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work
https://docs.github.com/en/code-security/supply-chain-security/end-to-end-supply-chain/securing-builds
https://docs.github.com/en/code-security/supply-chain-security/end-to-end-supply-chain/securing-builds
https://docs.github.com/en/code-security/supply-chain-security/end-to-end-supply-chain/securing-builds
https://github.com/features/security/software-supply-chain
https://github.com/features/security/software-supply-chain
https://arxiv.org/abs/2206.07230
https://arxiv.org/abs/2206.07230
https://www.iso.org/isoiec-27001-information-security.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/43/74399.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/43/74399.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/45/54533.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/45/54533.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/96/59689.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/96/59689.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://msrc-blog.microsoft.com/2020/12/13/customer-guidance-on-recent-nation-state-cyber-attacks/
https://msrc-blog.microsoft.com/2020/12/13/customer-guidance-on-recent-nation-state-cyber-attacks/
https://www.ntia.doc.gov/SoftwareTransparency
https://www.npmjs.com/package/proxy
https://docs.npmjs.com/cli/v8/using-npm/scope
https://docs.npmjs.com/cli/v8/commands/npm-audit/
https://www


SCORED ’22, November 11, 2022, Los Angeles, CA, USA 

[61] T. J. Ronda, P. A. Roberge, D. Barinov, M. Varley, D. A. Stark, G. H. Wolfond, 
A. Likic, and M. J. Page. Systems and methods for distributed identity verifcation, 
Mar. 19 2019. US Patent 10,237,259. 

[62] R. Ross, M. McEvilley, and J. C. Oren. Systems security engineering: considera-
tions for a multidisciplinary approach in the engineering of trustworthy secure 
systems, volume 1. 

[63] A. Sejfa and M. Schäfer. Practical automated detection of malicious npm packages. 
In 2022 International Conference on Software Engineering (ICSE). IEEE, 2022. 

[64] D. Šmite, C. Wohlin, T. Gorschek, and R. Feldt. Empirical evidence in global soft-
ware engineering: a systematic review. Empirical software engineering, 15(1):91– 
118, 2010. 

[65] Solarwinds. Setting the New Standard in Secure Software Development The 
SolarWinds Next-Generation Build System. Technical report, solarwinds, Dec. 
2021. 

[66] Sonatype. State of the software supply chain, 2021. https://www.sonatype.com/ 
resources/state-of-the-software-supply-chain-2021. 

[67] H. Stadtler and C. Kilger, editors. Supply Chain Management and Advanced 
Planning. Springer Berlin Heidelberg, Berlin, Heidelberg, 4th edition, 2008. 

[68] Symantec Corporation. Internet threat security report, 2018. https://www. 
symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf. 

[69] Symantec Corporation. Internet threat security report, 2019. https://www. 
symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf. 

[70] N. Telecommunications and I. Administration. The Minimum Elements For a 
Software Bill of Materials (SBOM), July 2021. https://www.ntia.doc.gov/report/ 
2021/minimum-elements-software-bill-materials-sbom. 

[71] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G. Kelley, L. Invernizzi, 
B. Benko, T. Pietraszek, S. Patel, D. Boneh, and E. Bursztein. Protecting accounts 
from credential stufng with password breach alerting. page 18. 

[72] S. Torres-Arias, H. Afzali, T. K. Kuppusamy, R. Curtmola, and J. Cappos. in-toto: 
Providing farm-to-table guarantees for bits and bytes. In 28th USENIX Security 

Okafor and Schorlemmer, et al. 

Symposium (USENIX Security 19), pages 1393–1410, Santa Clara, CA, Aug. 2019. 
USENIX Association. 

[73] S. Torres-Arias, H. Afzali, T. K. Kuppusamy, R. Curtmola, and J. Cappos. in-toto: 
Providing farm-to-table guarantees for bits and bytes. Proc. of the 28th USENIX 
Security Symposium, Aug. 2019. 

[74] N. Vasilakis, B. Karel, N. Roessler, N. Dautenhahn, A. DeHon, and J. M. Smith. 
BreakApp: Automated, Flexible Application Compartmentalization. In Proceed-
ings 2018 Network and Distributed System Security Symposium, San Diego, CA, 
2018. Internet Society. 

[75] D.-L. Vu, F. Massacci, I. Pashchenko, H. Plate, and A. Sabetta. LastPyMile: identi-
fying the discrepancy between sources and packages. In Proceedings of the 29th 
ACM Joint Meeting on European Software Engineering Conference and Symposium 
on the Foundations of Software Engineering, pages 780–792, Athens Greece, Aug. 
2021. ACM. 

[76] T. Winters, T. Manshreck, and H. Wright. Software engineering at google: Lessons 
learned from programming over time. O’Reilly Media, 2020. 

[77] Q. Wu and K. Lu. On the feasibility of stealthily introducing vulnerabilities in 
open-source software via hypocrite commits. In Proc. Oakland, 2021. 

[78] E. Wyss, L. De Carli, and D. Davidson. What the fork?: fnding hidden code 
clones in npm. In Proceedings of the 44th International Conference on Software 
Engineering, pages 2415–2426. ACM, 2022. 

[79] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila, and L. Williams. 
What are Weak Links in the npm Supply Chain?, 2022. 

[80] A. Zerouali, T. Mens, A. Decan, and C. De Roover. On the impact of security vul-
nerabilities in the npm and rubygems dependency networks. Empirical Software 
Engineering, 27(5):1–45, 2022. 

[81] M. Zimmermann, C.-A. Staicu, and M. Pradel. Small World with High Risks: A 
Study of Security Threats in the npm Ecosystem. In USENIX Security Symposium, 
2019. 

https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021
https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom

	SoK: Analysis of Software Supply Chain Security by Establishing Secure Design Properties
	

	Abstract
	1 Introduction
	2 Background
	3 Supply Chain Attacks and Security Properties
	3.1 Supply Chain Attacks
	3.2 Security Properties for Software Supply Chains
	3.3 Analysis of Security Properties

	4 Mapping Proposals to Security Properties
	4.1 Promoting Transparency
	4.2 Promoting Validity
	4.3 Promoting Separation

	5 Mapping Embodiments to Security Properties
	5.1 Package Repositories
	5.2 Development Environments
	5.3 End-to-end Solutions
	5.4 Security Frameworks

	6 Discussion
	7 Conclusion
	References

