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ABSTRACT

This paper proves a concept of the two-port transmission matrix method employed for thermodynamic calculations
and compares them to a time-domain thermoacoustic analysis. A simple thermodynamics problem is proposed and
solved using the two different methods, and their advantages and disadvantages are compared. We conclude that using
impedance methods linearizes thermodynamic energy relations, making linear algebra methods an applicable solution
method for classical electrical to thermoacoustic problems.

1. INTRODUCTION

This correspondence investigates the possibility and utility of using the two-port transmission matrix method to ana-
lyze thermodynamic problems commonly used in modeling electrical and mechanical systems, such as LRC electrical
circuits and spring-mass-damper systems. Kim & Allen (2013) utilized the transmission matrix modeling method in
acoustic problems, and Weece & Allen (2010) used the method in mechanical problems to model bone conduction
transducers.

In this study, we investigate the use of the Laplace frequency domain to model thermoacoustic systems, and to draw
connections with components of electrical, mechanical and thermodynamic analysis using the two-port transmission
line methods.

Traditionally, thermodynamics is analyzed in the time domain using energy relationships (Ambaum, 2010). Energy
relationships are nonlinear in the conjugate variables, the product of which define the power (energy-rate). For ex-
ample, voltage times current (coulomb/sec) or temperature times entropy-rate are each a power, having units of watts
(Allen, 2020, Appendix I). Unlike thermodynamics, which is formulated in terms of energy, electrical and mechanical
circuits use impedance, defined as the ratio of conjugate variables (e.g., Z(s) = voltage/current) when modeling
electrical circuits, or Z(s) = force/velocity for mechanical systems.

The definition of an impedance Z(s) utilizes the Laplace frequency s. The Laplace transform replaces calculus with
algebra in the Laplace frequency variable (s = σ + ȷω). This is primarily because electrical, mechanical, and acoustic
systems are second-order (or higher) systems that benefit greatly from this type of analysis.

While presently, thermodynamics is modeled using only RC circuits (first-order system).

1.1 Thermodynamics Problem Statement
To show how the two-port transmission line analysis works with Thermodynamics, a simple and classic thermodynamic
problem is proposed and solved, using the classic method (Ambaum, 2010), followed by a two-port analysis.

The example electrical (i.e., initial) problem is shown in Fig. 1. The thermodynamic version will include the heat
generated in the resistor R, due to electrical current, causing it to produce heat energy.

Assume this RC circuit, with resistance (R), placed in an incompressible fluid (e.g., water) and specific heat capacity
under constant pressure (C), which is otherwise isolated from the environment (Let’s ignore the fluid’s mass for now
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Figure 1: The two-port matrix representation of an RC Circuit

to simplify the problem). Let the source voltage and current be [V1, I1]. After the RC circuit has been turned on and
has reached equilibrium, we study the change in temperature of the fluid as a function of time. Stated another way,
what is the time response of temperature of the fluid, as the capacitor is charging? Finally, what is the impact of the
power lost to heating the water around the resistor, on the charging of the capacitor? The final voltage on C will be
different due to the power lost to the water.

1.2 Transmission matrix solution - Classic solution
To determine the energy dissipated by the resistor into the fluid, the current passing through the resistor must be
determined. To find this current the RC circuit may be analyzed as a two-port transmission line. Figure 1 can then be
analyzed using a 2x2 representation matrix relation

[V1
I1
] (s) = [1 R

0 1] [
1 0
sC 1] [

V2
−I2
] (s),

where the currents are defined into the ports and the voltages across the ports (Allen, 2020). This may be found by
collapsing the matrix product,

[V1
I1
] (s) = [1 + sRC R

sC 1] [
V2
−I2
] (s).

which then provides the relations between the input and outputs

V1 = 1 + sRCV2 − RI2
I1 = sCV2 − I2.

Setting I2 = 0 and combining the two equations, we find

V2 =
V1

1 + sRC
I1 = sCV2,

or

I1 =
sCV1

1 + sRC
= CV1

s
1 + sRC

= V1

R
s

s + 1/RC
. (1)

From the initial condition (t = 0)
V1(t) = V0u(t)↔ V0/s. (2)

Substituting V1(0) in into Eq. 1 gives
I1 =

V0

R
1

s + 1/RC
.
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This equation is in the Laplace frequency domain.

In order to convert this equation back to the time domain, the inverse Laplace transform must be taken, giving

I1(s) =
V0

R
1

s + 1/RC
↔ i1(t) =

V0

R
e−t/RC (3)

= I0e−t/τ, (4)

where τ = RC and I0 = V0
R .

Figure 2: Equivalent RC circuit of Fig. 1, including the thermal losses in the resistor immersed in a water bath.

Table 1: Table of parameters for the circuit of Fig. 2.

Parameters symbol Value Units
Voltage Vo 10 [V]
Resistance R 10 [Ω]
Capacitance C 1 [F]
Mass of water mf 1 [g]
Specific Heat Capacity cf 4186 [ J

kg⋅K ]

1.3 Thermodynamic relations
The power dissipated by the resistor at time t is

P(t) = v1(t)i1(t) = i1(t)2R = I20e−2t/τR.

The total energy dissipated (Q(t)) in the resistor is the time integral of P(t)

Q(t) = ∫
t

0
P(t)dt

= I20R∫
t

0
e−2t/RCdt

= I20R τ
2 (1 − e

−2t/τ) .

Assuming all the energy dissipated by the resistor is absorbed by the fluid, the relationship between the energy absorbed
by the fluid and the change in temperature (Ambaum, 2010)

Q(t) = mfcpΔT(t).

19th International Refrigeration and Air Conditioning Conference at Purdue, July 10-14, 2022
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Rearranging and substituting

ΔT(t) = Q(t)
mfcp

=
I20R

τ
2(1 − e

−2t/τ)
mfcp

(5)

Using the values the constants as given in Table 1, we find

τ = RC = 10 ⋅ 1 = 10 [sec]

I0 =
V0

R
= 10
10
= 1 [Amp]

ΔT(t) =
I20R

τ
2(1 − e

−2t/τ)
mfcf

=
12 ⋅ 10 ⋅ 102 ⋅ (1 − e

−2t/10)
0.001 ⋅ 4186

[°C], (6)

as shown in Fig. 3, where we visualize ΔT(t).

Figure 3: Time response of the temperature ΔT(t) of the water.

While the classic analysis provides the current in the resistor, allowing us to calculate the power and total energy
dissipated in the resistor as a function of time, it is not actually correct, since the energy absorbed by the water will
change the energy balance relations. Thus the classic i1(t) is not the true current. To obtain the correct answer, we
must include the energy dissipated in the water. This requires a thermodynamic calculation, which we shall provide in
the next section.

2. TWO-PORT ANALYSIS METHOD

The system including the heat lost can also be modeled as a two-port transmission line, with a resistor, an ideal trans-
former and two capacitors, as shown in Fig. 4.

Evaluating the transmission matrix of Fig.4 gives

T(s) = [1 R1
0 1 ] [

1 1
sC1

0 1 ] [
a 0
0 1/a] [

1 0
sC2 1] ,

where
[V(s)I(s)] = [

A(s) B(s)
C(s) D(s)] [

T(s)
−Ṡ ] = T(s) [

T(s)
−Ṡ(s)] .
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Figure 4: Two-port model including the iso-baric heat lost to resistor R1 in the water bath. The turns ratio of the
transformer (a) relates the voltage and current to the temperature and entropy–rate. For example T = V/a and Ṡ = aI.
Thus the units on a are either [V/°C] or [entropy-rate/A].

Thus

[VI] (s) =
1
a
[
s+a2C1+C2

C1

sR1C1+1
sC1

sC2 1
] [ T−Ṡ] (s).

Since the system is isolated from the environment is adiabatic, the entropy flux out of the water (i.e., heat flow Ṡ) is
zero. This allows us to find the relationship between the input voltage and the temperature:

V(s) = (C1C2R1s + a2C1 +C2

aC1
) T(s).

Assuming that V(s) is a unit step function (see Eq. 2),

T(s) = Vo

s
aC1

C1C2R1s + a2C1 +C2

= Vo

s
a

C2R1s + a2 +C2/C1
.

Expressing this in pole-residue form (Allen, 2020)

T(s) = Voa
s

1
C2R1s + a2 +C2/C1

= Voa
C2R1

1
s

1
s + a2+C2/C1

C2R1

,

the inverse Laplace is then

T(s)↔ T(t) = Voa
C2R1

∫
t

0
e
−t(a2+C2/C1)

C2R1 dt.

In this case we can define τ2 = C2R1/(a2 +C2/C1)). Evaluating the integral gives

T(t) = Voa
C2R1

τ2 (e−t/τ2) + To.

Since the temperature rise ΔT is of interest, the boundary condition is T(t = 0) ≡ To = 0. This can be seen in the
following equation.

ΔT(t) = Voa
C2R1

τ2e−t/τ2 +
Voa
C2R1

τ2,

or
ΔT(t) = Voa

C2R1
τ2 (1 − e−t/τ2) . (7)

19th International Refrigeration and Air Conditioning Conference at Purdue, July 10-14, 2022
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3. DISCUSSION

Thus it is a matter of determining the value of a, C1, and C2. Assuming that C1 stays the same for the two solutions, a
and C2 can be determined by renormalizing the two solutions to have the same functional form. Given

T(t) = Voa
C2R1

τ2 (1 − e
−t
τ2 ) =

I20R1
τ1
2

mfcf
(1 − e−2t/τ1), (8)

where
τ1 = τ = RC1 (9)

then if we reapply the definition of τ2 = C2R1/(a2 +C2/C1))

Voa
C2R1

τ2 =
Voa
C2R1

( C2R1

a2 +C2/C1
) = Voa

a2 +C2/C1
(10)

and if we equate the linear constants on both sides

Voa
a2 +C2/C1

=
I20R1

τ
2

mfcf
(11)

and if we equate the exponent
−1
τ2
= −2

τ1
⇒ −(a

2 +C2/C1)
C2R1

= −2
R1C1

. (12)

we have a linear set of two equations and two unknowns.

a2R1C1 + R1C2 = 2R1C2 ⇒ C2 = a2C1

Substituting Eq. 12 back into Eq. 11 gives

Voa
a2 + (a2C1)/C1

=
I20R1

R1C1
2

mfcf
.

Simplifying
Voa
2a2
= V2

oC1

2mfcf

a =
mfcf
VoC1

Substituting back into Eq. 12 and solving for C2

C2 =
m2

f c
2
f

C1
(13)

Plotting Eq. 7 and comparing to Eq. 6, we see that the solution has the same functional form, but is numerically distinct,
due to the added heat loss into the water, thus accounting for this important missing term in the classic solution. They
are identical when C2 = 0, thus decoupling the entropy-rate (heat loss) and the electrical current and voltage.
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Figure 5: Time response of the water for both methods.

4. CONCLUSION

For trivial thermodynamics problems, such as the one demonstrated above, it is often easier to use the classic method
of power and energy conversions. However this ignores the heat lost to the resistor during the charging of the capaci-
tor.

The classical method lends itself to a more instinctual understanding of the problem, as most of the problem is solved
in the time domain. However, the two-port representation naturally includes the heat lost to the water, and is an
algorithmic approach to solving such problems. As an interesting example, consider the case where C1 is replaced by
an inductor. In this case the circuit’s resonant frequency is dramatically reduced (becomes finite) by adding the heat
capacity of the water.

The transmission matrix method is applicable for much more complex versions of the thermodynamic problem, where,
for example, the voltage applied is not be a simple unit step function. This method would also be more useful in
creating simulated environment algorithms that are more accurate and efficient compared to methods that are based
around time integration such as modeling more complex thermodynamic phenomenons such as triple point and super
cooling. By understanding this proof-of-concept analysis and being able to apply this method to thermodynamics, it
may open up new insights into the discipline of thermodynamics.
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