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ARTICLE

Heart rate and age modulate retinal pulsatile
patterns
Ivana Labounková 1,2, René Labounek 2, Radim Kolář1, Ralf P. Tornow 3, Charles F. Babbs4,

Collin M. McClelland5, Benjamin R. Miller 6 & Igor Nestrašil 2,7✉

Theoretical models of retinal hemodynamics showed the modulation of retinal pulsatile pat-

terns (RPPs) by heart rate (HR), yet in-vivo validation and scientific merit of this biological

process is lacking. Such evidence is critical for result interpretation, study design, and (patho-)

physiological modeling of human biology spanning applications in various medical specialties.

In retinal hemodynamic video-recordings, we characterize the morphology of RPPs and assess

the impact of modulation by HR or other variables. Principal component analysis isolated two

RPPs, i.e., spontaneous venous pulsation (SVP) and optic cup pulsation (OCP). Heart

rate modulated SVP and OCP morphology (pFDR < 0.05); age modulated SVP morphology

(pFDR < 0.05). In addition, age and HR demonstrated the effect on between-group differences.

This knowledge greatly affects future study designs, analyses of between-group differences in

RPPs, and biophysical models investigating relationships between RPPs, intracranial, intrao-

cular pressures, and cardiovascular physiology.
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In vivo dynamic video-ophthalmoscopy (VO) provides a
potential opportunity for a non-invasive and easily accessible
evaluation of retinal hemodynamics. VO is inexpensive and

well suited to become a diagnostic and disease monitoring tool for
the real-time imaging of local microvascular blood supply and
detecting various pathologies. VO is applicable in many fields of
medicine such as ophthalmology (e.g., diabetic retinopathy1,
glaucoma2–4), neurology (e.g., Alzheimer disease5, multiple
sclerosis6, stroke7), or cardiology (e.g., coronary heart disease8,
arterial stiffness9–11, hypertension12, diabetes12,13).

Blood flow14,15, blood volume4,16 and structural venous dia-
meter changes17–19 are the most commonly evaluated hemody-
namic parameters from dynamic retinal imaging. The
hemodynamic parameters are usually extracted in a manual or
semi-automated fashion from specific morphological segments of
a retinal vessel tree16–18,20–23. However, the reproducibility of the
parameters remains a challenge due to the uniqueness of each
individual’s retinal vessel tree24 and the bias introduced by a
subjective inter-rater and inter-participant selection of analyzed
morphological segments25. To increase the reproducibility of
local retinal hemodynamics, we have recently implemented a
blind source separation that automatically divided the optic nerve
head (ONH) into 2-3 functionally distinct areas that emerged as
specific retinal pulsatile patterns (RPPs)26. The reproducible RPPs
were spontaneous venous pulsation (SVP) and optic cup pulsa-
tion (OCP) with mutually phase-shifted hemodynamics. OCP
was postulated to represent arterial blood filling preceding the
SVP outflow26.

Spontaneous venous pulsation is the most investigated hemo-
dynamic phenomenon over the whole retinal background with
the best detection capability and highest reproducibility in the
area where the central retinal vein crosses the ONH. The etiology
and visibility of the ONH SVP are likely related to the gradient
between intracranial pressure (ICP) and intraocular pressure
(IOP) waveforms27–30. Limited in vivo evidence of the SVP-ICP
relationship exists30–34. The underlying biophysics is a subject of
active investigation35.

Mathematical models, which were proposed to describe IOP-
ICP-SVP relationships35–38, have not been verified by in vivo
experiments yet. Levine and Bebie’s SVP-ICP theory assumes an
influence of heart rate (HR) on SVP amplitude, yet without
providing the in vivo evidence37,38. Therefore, the influence of
HR on retinal intra-vessel hemodynamics deserves further
investigation. In addition to HR, demographic characteristics
(e.g., age or sex) were linked to vessel stiffness39,40, vessel cross-
section area41,42, pulse pressure39,40 or cardiac cycle parameters
(e.g., filling time, preload, stroke volume) and, consequently,
modify intra-vessel hemodynamics including the blood flow/
volume in retinal mini- and micro-vessels42. Exactly how the
in vivo video-ophthalmoscopic data (sensitive to blood flow or
volume fluctuations) are affected by HR, age, or sex remains to be
determined. If the impact of any variable is proved, a revisiting of
clinical video-ophthalmoscopic outcomes demonstrating corre-
lations between VO measurements and retinal neural fiber layer
(RNFL) thickness4,19,43 or other outcomes in populations of
healthy subjects and those with disease conditions such as glau-
coma is warranted.

In this study, we investigated human in vivo video-
ophthalmoscopic data and the effects of HR and age on the
morphology of blood-volume-specific RPPs. We isolated two
RPPs (i.e., SVP and OCP) from the video-ophthalmoscopic
dataset, tested SVP-OCP phase shift, evaluated RPP reproduci-
bility and morphology, and cross-correlated the morphology with
HR, age, IOP, and RNFL thickness. Finally, we estimated the
effects of HR and age with between-group comparisons in
resulting morphological observations.

Results
Participant characteristics. Thirty-four retinal video-recordings
(RVRs) were acquired, and exclusively left-eye RVRs were used in
the analysis. HR estimated from SVP and OCP of all participants
was 66 ± 13 min−1 (ranging 44–92 min−1). (Image analysis
workflow estimating and segregating SVP and OCP is summar-
ized in Fig. 1.) HR was significantly higher in patients with treated
ocular hypertension (OHT) than in healthy participants and was
significantly correlated with SVP and OCP morphologies
(Table 1, Figs. 2, 3). Due to this finding, HR was treated as a
confounding variable in further ANCOVA between-group tests.
Other physiological data such as age, IOP, and RNFL demon-
strated no significant between-group differences (Table 1).
Refractive error, visual acuity, and perimetry were within phy-
siological ranges without any significant pathology.

Phase shifted retinal pulsatile patterns in principal component
space. In a total of 34 RVRs, we detected SVP in 33 RVRs (97%)
and OCP in 31 RVRs (91%) when the first 12 principal components
were visually inspected and evaluated in each RVR. Averaged SVP
principal component index was 3 ± 2 (min 1; max 9), and averaged
OCP principal component index was 3 ± 2 (min 1; max 11).
Representative examples of SVP and OCP spatiotemporal patterns
with detected and corrected control points are shown in Fig. 1a. An
input-output workflow of the utilized principal component analysis
(PCA) is schematically summarized in Fig. 1b.

The cross-correlation response function (Fig. 1a) demonstrated
that OCP significantly preceded SVP about −3.71 ± 2.05 (min −8;
max 0) samples, i.e., 148 ± 82ms, (one sample t-test p= 3.95e−11).
With regard to the participant’s heart cycle period, the preceding
interval corresponded to −16 ± 8% of the heart cycle. The Pearson
correlation coefficient (r) between not-aligned OCP and SVP time-
courses (i.e., corresponding PCA eigenvectors44; Fig. 1b) was
0.31 ± 0.39 (min −0.45; max 0.92) and increased after the delay
alignment to 0.84 ± 0.08 (min 0.66; max 0.96). The linear
dependence between PCA eigenvector time-course and averaged
image-intensity computed from the same region of interest (ROI)
corresponding to the PCA-suprathreshold ROI was 0.55 ± 0.33
(min −0.06; max 0.97) for SVP and 0.51 ± 0.29 (min −0.11; max
0.94) for OCP. Lower correlation corresponded to recordings where
the averaging approach failed due to high random noise power.

Retinal pulsatile pattern morphology modulated by heart rate
and age. A sketch of the morphological measurement from the
segregated RPP is shown in Fig. 1a. Morphologies of SVP and OCP
were significantly modulated by HR (Figs. 2, 3). SVP amplitude
Ampl (r=−0.61, p= 0.0002, pBH= 0.0003, Psize= 97.8%; pBH -
Benjamini-Hochberg adjusted p-value, Psize – power of the result
regarding the sample size), total relative pulse stroke volume VT

(r=−0.87, p < 0.0001, pBH= 0.0002, Psize= 100.0%), slope-up to
baseline SlpU (r= 0.46, p= 0.0067, pBH= 0.0084, Psize= 79.7%)
and time to peak tp (r=−0.67, p < 0.0001, pBH= 0.0002, Psize=
99.5%) were significantly associated with HR (Fig. 2b). SVP slope-
down to peak SlpD was HR independent (Fig. 2). OCP VT

(r=−0.53, p= 0.0029, pBH= 0.0073, Psize= 91.1%), SlpU
(r= 0.48, p= 0.0078, pBH= 0.0130, Psize= 83.5%), tp (r=−0.61,
p= 0.0004, pBH= 0.0020, Psize= 97.8%) and SlpD (r=−0.45,
p= 0.0154, pBH= 0.0193, Psize= 77.6%) were significantly corre-
lated with HR (Fig. 3b). OCP Ampl was HR independent (Fig. 3).
HR-dependent intra-participant variability is shown in Fig. 4 for
three representative participants out of the four participants who
underwent RVRs twice (once at monocular and one at binocular
VO) with an inter-recording interval about 2 years.

HR significantly correlated with age (r=−0.45, p= 0.0090,
Psize= 77.6%). Therefore, we investigated linear dependence
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between RPP morphology and additional physiological variables.
SVP Ampl (r= 0.50, p= 0.0026, pBH= 0.0130, Psize= 87.0%) and
SVP VT (r= 0.45, p= 0.0089, pBH= 0.0223, Psize= 77.6%) were
significantly correlated with age (Fig. 5). The modulation of SVP
Ampl and VT demonstrated a larger effect of HR than age
(Figs. 2, 5). No significant correlations of RPP morphology with
IOP or RNFL were detected.

Between-group differences in RPP morphology measurements.
Lower SVP Ampl, SVP VT, and OCP tp, along with higher
absolute OCP SlpD and OCP SlpU, were detected in treated OHT
patients (two-sample t-test) (Table 1). ANCOVA with age as a

confounding variable preserved all significant between-group
differences in OCP morphology, but none in SVP morphology
(Table 1). In contrast, ANCOVA with HR as a confounding
variable only showed trends of the higher absolute OCP SlpD and
the lower OCP tp (Table 1). Group averaged OCP pulses with
25–75% confidence intervals are shown in Fig. 6 and demonstrate
visible changes in group-specific pulse morphologies.

Discussion
Study novelty and practical impact. Our in vivo results
demonstrate the modulation of the SVP and OCP pulse
morphologies by HR and of the SVP morphology by age.

Fig. 1 Image and statistical analysis workflow. a The block diagram summarizes the whole image and statistical analysis workflow. ONH optic nerve head,
ROI region of interest, SVP spontaneous venous pulsation, OCP optic cup pulsation, T period [s], Ampl amplitude, SlpD slope-down, SlpU slope-up, tp time
to peak, VT total relative pulse stroke volume, ANCOVA analysis of covariance. b The block diagram summarizes the input-output system of the utilized
principal component analysis (PCA). The left input side demonstrates array operations forming the PCA input matrix. The right output side demonstrates
temporal and spatial extraction of the results. x, y spatial axes of images, nt total number of time points, m total number of pixels of the ROI in one time
point, n1 index of the principal component number 1 in the output principal component and eigenvector matrices (first red-highlighted columns), and time
point number 1 in the PCA input matrix. Each column in the eigenvector matrix represents an eigenvector time-course of the principal component in the
corresponding column of the principal component matrix. In the right bottom corner, the thresholded n1 principal component of m-samples was reshaped
back into the original xy space and overlayed the averaged anatomical background image. All images show recordings of the left eye.
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Therefore, the unverified biological impact of HR and age at RPP
morphology was in vivo confirmed and validated. The impact of
HR and age on the SVP/OCP morphology has been neglected in
previous clinical research4,19,33,34,43 and even in theoretical SVP-
intracranial/intraocular pressure models35,36. The in vivo findings
validate Levine and Bebie’s theory, assuming that SVP Ampl is
influenced by HR37,38. This discovery may also indicate
descriptive vessel compliance characteristics as demonstrated by
the uniformity of the SVP SlpD parameter. The studied mor-
phology parameters should be investigated in future research as
objective quantitative in vivo markers of retinal hemodynamics.
Importantly, HR and age need to be considered and added as
confounding variables in biological models or clinical studies
evaluating between-group differences in RPP. The optimal
strategy for the study design is a dataset free of between-group
differences in HR and age, but such proper matching would be
challenging and hardly achievable.

The analysis via spatial PCA of RVRs detected reproducible
phase-shifted SVP and OCP patterns in healthy controls and
treated OHT patients. SVP and OCP patterns demonstrated low
inter-participant variation in eigenvector scaled time-courses, i.e.,
temporal pulses, and were highly reproducible. These results
emphasize the feasibility of the spatial PCA for inferences
achieved by RPPs and its applicability in future studies, especially
those involving large population cohorts.

Although the etiology of the SVP phenomenon is still not
clearly understood, the temporal uniformity in SVP SlpD can
represent a novel insight into the SVP origin. This temporal
uniformity may be due to similar inter-participant venous
compliance characteristics that modulates venous capacitance.
As the implication of vein capability to change its geometry, the
vein compliance property enables a volume increase in local vein
segments in response to local blood filling45. Since the vein
resistance to local blood flow is minimal45, the blood filling
corresponding to SlpD in the SVP morphology displayed
temporal uniformity over investigated population.

We revealed the significant impact of HR on the morphology
of reproducible RPPs. The higher HR resulted in lower SVP
Ampl, VT, and tp and higher SlpU. Similarly, the higher HR led to
the lower OCP VT, tp, and SlpD and higher SlpU. This
observation of changes in VT linked to HR may reflect the

impact of Starling’s law. Higher HR causes a shorter period for
cardiac blood filling and, consequently, lower cardiac preload
leads to the lower blood volume ejected from the heart. All these
characteristics of heart function imprint into the RPP morphol-
ogy and may be evaluated non-invasively and in vivo with
the VO.

Additionally, three SVP parameters, i.e., Ampl, SlpD, and VT,
were significantly correlated with age. Higher SVP Ampl and VT

with age can be influenced by peripheral pulse pressure pulsatility
or vessel stiffening, which increase with age11,46. The increase of
age-related vessel stiffness is directly linked to the elasticity
loss39,40 and is a potential factor underlying the steeper SVP SlpD
trend observed in our older participants. Mechanistically, lesser
venous capacitance leads to faster venous volume outflow. If the
hypothesis is true, the SVP SlpD may become a non-invasive and
fully automated measure proportional to vessel stiffness.

Previous studies showed that SVP were influenced by the
IOP28,35,37,47 and RNFL significantly correlated with RPP
morphological measurements in the dataset, including population
with retinal neurodegenerative disesase4,19,43. In our participants,
the IOP and RNFL did not correlate with RPP morphology. A
potential explanation may lie in well-controlled OHT condition
in our patient’s cohort who presented with normalized IOP, so no
neurodegeneration assessed by RNFL was present.

SVP morphology is believed to originate from a gradient
between IOP and ICP, and many theoretical models attempted to
express the SVP-IOP-ICP relationships35–38. However, the
majority of previously reported models have not accounted for
the effects of HR or age on the SVP Ampl or timings35–38.
Therefore, the current in vivo observation represents critical
information that adds another piece to the puzzle of the SVP
etiology conundrum. Therefore, future models and studies
evaluating SVP should account for the effects of HR and age to
avoid potential erroneous conclusions.

Similar conclusions apply to the OCP assessment. Although
OCP morphology demonstrated significant differences between
healthy controls and OHT patients, a considerable deal of
uncertainty remains as the OCP morphology changes were HR-
related. The ANCOVA demonstrated the HR effect on between-
group comparisons. It is important to note that the impact of HR
has usually been omitted in previous clinical studies. In particular,

Table 1 Participant characteristics and morphology measurements of retinal pulsatile patterns.

Age [y.o.] HR [min−1] IOP [mmHg] RNFL [μm]
p_ttest2 0.1177 *0.0182 0.2198 0.5794

Physiology Healthy controls 66.0 ± 13.2 59.9 ± 9.6 15.3 ± 2.7 91.9 ± 10.5
OHT patients 58.7 ± 12.9 70.3 ± 13.5 16.5 ± 3.0 89.7 ± 11.6

Ampl VT SlpD SlpU tp [ms]
SVP p_ttest2 *0.0235 *0.0317 0.4045 0.5110 0.3537

p_ANCOVA_HR 0.2753 0.8049 0.2097 0.6353 0.3897
p_ANCOVA_age 0.1057 0.1211 0.6646 0.5442 0.4962
Healthy controls 0.143 ± 0.023 2.14 ± 0.62 −0.587 ± 0.123 0.240 ± 0.061 419 ± 66
OHT patients 0.123 ± 0.027 1.66 ± 0.62 −0.544 ± 0.166 0.254 ± 0.059 396 ± 74

OCP p_ttest2 0.2105 0.8740 *0.0077 *0.0150 *0.0047
p_ANCOVA_HR 0.1311 0.1532 0.0637 0.1299 0.0859
p_ANCOVA_age 0.1070 0.7891 *0.0058 *0.0199 *0.0091
Healthy controls 0.104 ± 0.035 1.34 ± 0.42 −0.395 ± 0.199 0.174 ± 0.057 434 ± 81
OHT patients 0.120 ± 0.031 1.31 ± 0.44 −0.590 ± 0.167 0.247 ± 0.087 355 ± 56

P-values demonstrating between-group trends (p < 0.1) are highlighted with bold font, and p-values demonstrating significant between-group differences (p < 0.05) are highlighted with bold font and asterisks.
Notes: OHT ocular hypertension, SVP spontaneous venous pulsations, OCP optic cup pulsations, HR heart rate, IOP intraocular pressure, RNFL retinal neural fiber layer thickness, Ampl amplitude, VT total relative
pulse stroke volume, SlpD slope-down, SlpU slope-up, tp time to peak, p_ttest2 p-value of between-group difference obtained from the two-sample t-test, p_ANCOVA_HR p-value of between group-difference
obtained from analysis of covariance where HR was confounding variable, p_ANCOVA_age p-value of between group-difference obtained from analysis of covariance where age was confounding variable.
Values listed for HC and OHT are mean ± standard deviation. P-values demonstrating between-group trends (p < 0.1) are highlighted with bold font, and p-values demonstrating significant between-group
differences (p < 0.05) are highlighted with bold font and asterisks. ANCOVA test, where two confounding variables (HR and age) would be used at once, has not been utilized because HR and age are
significantly correlated pair of variables.
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ICP studies33,34 (using Hedges scale48) or glaucoma diagnostic
studies4,19 demonstrated qualitative or quantitative alterations in
RPP morphology without considering group-specific HR dis-
tributions. Future studies may avoid potentially blurred and
inaccurate outcomes by reporting or, ideally, accounting for the
between-group differences in HR.

Although the PCA is an automated method, the presented data
processing pipeline utilized three manual interventions with the

potential impact on outcome measures. The interventions were:
(i) manual ONH segmentation; (ii) identification of SVP and
OCP components; and (iii) control point corrections. As PCA
integrates eigen time-course for each principal component
estimated from the whole ONH area, minimal imperfections in
ONH segmentation should not crucially impact outcome
measures. But, a further study investigating the PCA method
robustness is warranted to clarify this matter. The automated

Fig. 2 Heart rate modulated morphology of spontaneous venous
pulsations (SVP). a Visualization of mean single-pulses over all monocular
(mono) and binocular (bino) retinal video-recordings from healthy controls
and patients with medicated ocular hypertension (OHT). Graph lines are
heart rate color-coded. b Evaluation of linear dependence between heart
rate and SVP morphology measurements (Ampl amplitude of the SVP
eigenvector, VT total relative pulse stroke volume in the eigenvector
measures, SlpD slope-down from the eigenvector value at the period
beginning to the negative eigenvector peak ≈ peak of the maximal absolute
blood volume time-point, SlpU slope-up from the negative eigenvector peak
to the period end, tp time to the negative eigenvector peak). Value r
represents a corresponding Pearson correlation coefficient and value p the
p-value of the correlation level.

Fig. 3 Heart rate modulated morphology of optic cup pulsations (OCP).
a Visualization of mean single-pulses over all monocular (mono) and
binocular (bino) retinal video-recordings from healthy controls and patients
with medicated ocular hypertension (OHT). Graph lines are heart rate
color-coded. b Evaluation of linear dependence between heart rate and OCP
morphology measurements (Ampl amplitude of the OCP eigenvector, VT

total relative pulse stroke volume in the eigenvector measures, SlpD slope-
down from the eigenvector value at the period beginning to the negative
eigenvector peak ≈ peak of the maximal absolute blood volume time-point,
SlpU slope-up from the negative eigenvector peak to the period end, tp time
to the negative eigenvector peak). Value r represents a corresponding
Pearson correlation coefficient and value p the p-value of the
correlation level.
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identification of components of interest represents a challenge.
We are working on the automatization of SVP and OCP
identification. A wrong component selection can impact outcome
measures so that morphology values are evaluated for a wrong
pattern. Finally, isolated manual corrections of control points
improve the precision of the averaged single pulse estimation and
the precision of outcome measures.

Our study has several limitations to be addressed in future
research. The sample size of our dataset is limited and should be
extended to reproduce and validate our pilot observations. Still,
the utilized correction for multiple comparison errors and the
power analysis support that the presented correlation measures
are related to the human body physiology rather than false
positive observations. An optimal re-test should involve hundreds
of participants with RVRs acquired at various video-
ophthalmoscopes of various assembling technologies. Therefore,
we would like to initialize a multi-center RVR challenge collecting
10 s RVRs to re-test the impact of HR and age at RPP
morphology. Four participants who had both monocular and
binocular RVR, approximately two years apart, may decrease
inter-participant variability in our dataset. We consider this effect
of being minimal as HR differed between the first and second
RVR in three of four participants and as the intra-participant

variability mostly followed dataset trends of correlation measure-
ments. Pharmacological treatment of OHT patients may have
influenced the morphology measurements, as specific drugs can
alter ocular hemodynamics. The high diversity of used drugs in
our OHT group and our small sample size prevented the testing
post-hoc differences between the untreated group and treated
subgroups (e.g., beta-blocker versus prostaglandin treatment).
The differences in vessel stiffness and pulse pressure related to
sex49,50 may also play a significant role in RPP morphology. Sex
effects need to be validated in the larger cohort of participants.

In conclusion, we have demonstrated the in vivo evidence that
heart rate and age modulate the morphology of retinal pulsatile
patterns in humans. The observation corroborates Levine and
Bebie’s theory. The presented study will impact the design of
future biological and clinical studies, future analyses of between-
group differences in morphology of RPPs, and SVP-ICP-IOP
biophysical modeling by emphasizing the necessity to include
heart rate and age as important confounding factors.

Methods
Experimental design. In concordance with the Declaration of Helsinki, all par-
ticipants signed an informed consent approved by the ethical committee at the
Friedrich-Alexander University of Erlangen-Nürnberg. The participants are part of

Fig. 4 Representative examples of heart rate (HR) dependent intra-participant variability of retinal pulsatile patterns in one healthy control and two
medicated ocular hypertension (OHT) patients. For each participant, one retinal video-recording (RVR) was acquired with the monocular video-
ophthalmoscope (VO) utilizing the CCD camera chip and one with the binocular VO utilizing the CMOS camera chip. The between-acquisition time
interval was about two years for each representative participant. In healthy control and one OHT participant (OHT1), intra-participant RPP morphologies
were dissimilar at different HR while RPP morphology remained unchanged for comparable HR as captured for other OHT participant (OHT2). Another
OHT participant had different HR over acquisitions with similar outcomes as presented for the OHT1 participant. SVP spontaneous venous pulsations, OCP
optic cup pulsations, HR heart rate.
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the Erlangen Glaucoma Registry cohort (www.clinicaltrials.gov, NCT00494923)
founded in 1991.

Participants enrolled in the NCT00494923 trial met the criteria of age range
18–65, open chamber angle and corrected visual acuity 0.7 or better when entering
the registry. The trial excluded people with systemic disease and potential ocular
involvement (e.g., diabetes mellitus), people with myopic or hyperopic refractive
error >8.0D, and people with an eye disease (except for glaucoma). From the
registry, healthy controls and patients with a history of ocular hypertension (OHT;
i.e., intraocular pressure IOP > 21mmHg, normal visual field and ONH
appearance) were included in this study. Pharmacological treatment along with eye
surgical intervention history are described in Table 2.

Monocular or binocular retinal video-recordings (RVRs) were acquired for 16
OHT patients (age 58.7 ± 12.9 years old, seven females) and 14 healthy controls

(age 66.0 ± 13.2 years old, eight females) between January 2015 and December
2017. In three OHT patients and one healthy control, two RVRs (one monocular
and one binocular) were obtained approximately two years apart. In total, 34 RVRs
were acquired and analyzed.

Along with RVRs, refractive error, visual acuity, perimetry, IOP, and retinal
nerve fiber layer (RNFL) thickness were obtained for each eye with standard
clinical devices (white-on-white perimetry with computerized static projection
perimeter, Octopus 500, Haag-Streit; Goldmann tonometry; Spectralis OCT,
Heidelberg Engineering) followed by RVR acquisition. All measurements were
acquired within a one-day session.

Video-ophthalmoscopic data acquisition. Each participant was examined while
comfortably sitting with head rested and positioned on a video-ophthalmoscope
chin holder to minimize participant’s motion. Each participant was asked to fixate
the eyesight at the target presented as a red LED light or cross in the video-
ophthalmoscope optical path. The principles of image acquisition were previously
described16. In short, both available video-ophthalmoscope types (monocular and
binocular) acquire images of the reflected light intensity modulated by heart rate
induced attenuation changes16,26. Because such changes are caused by spatial-
temporal retinal blood volume changes, the lowest pixel image intensity corre-
sponds to the highest blood volume (and the highest attenuation) and vice versa.

Left eye monocular RVRs were acquired with the monocular video-
ophthalmoscope consisting of the optical lens system (40D ophthalmic lens, two
achromatic lenses), one monochrome CCD camera (UI-2210 SE-M-GL, USB
interface, iDS, Germany), red LED forming the fixation target, and a low power
narrow-band LED (wavelength λ= 575 nm) illuminating retina with 30 μW/cm2.
Acquired 10 s video sequences were saved in non-compressed AVI format with 25
fps (frames-per-second) and matrix size 640 × 480 pixels covering 20° × 15° field of
view (i.e., 1 pixel ≈ 9.3 × 9.3 μm216,26,51).

Binocular RVRs were acquired with the binocular video-ophthalmoscope
consisting of two optical lens systems, two synchronized CMOS cameras (UI-3060
Rev 2, USB 3.0, iDS, Germany), a green OLED display presenting a fixation target,
and two narrow-band LED low-power light sources (λ= 575 nm) illuminating retina
with 30 μW/cm2. Acquired 10 s RVRs were saved in non-compressed AVI format
with 25fps and matrix size 1000 × 770 pixels covering 20° × 15° field of view (i.e., 1
pixel ≈ 6.0 × 6.0 μm2)26,51,52. Left eye RVRs were only used in further analyses.

Image analysis. The whole image analysis workflow is summarized in Fig. 1a.
Motion artifacts in RVRs were suppressed with rigid image registration optimized
for the RVRs53. A representative example of aligned monocular RVR is available at
https://youtu.be/-CABIpjWX8Y and binocular RVR at https://youtu.be/
4anapI0TZTQ. Next, the optic nerve head (ONH) area was manually segmented
from the averaged aligned RVR image and defined as a region of interest (ROI) for
further data analysis. Each ONH time frame was spatially smoothed with a 3 × 3
uniform convolution kernel to increase the signal-to-noise ratio (SNR) between
local retinal hemodynamics and additive Gaussian noise in RVRs. Acquired relative
blood volume changes were high-pass filtered in spectral domain with the cut-off
frequency 0.12 Hz in each aligned pixel belonging to the ONH. The filter sup-
pressed DC component and low-frequency drift but preserved pixel-specific pul-
satile variance.

Spatial principal component analysis26 (PCA) was estimated via singular value
decomposition (Eq. 1) on each preprocessed ONH RVR.

X ¼ UΣVT ð1Þ
Formation of PCA input (i.e., ONH RVR matrix X of m rows and nt columns

where m is a number of analyzed pixels and nt is a number of time points) and
extraction of PCA outputs from left and right eigenvector matrices U and V are

Fig. 5 Evaluation of linear dependence between age and morphology of
retinal pulsatile patterns. Value r represents a corresponding Pearson
correlation coefficient and value p is the p-value of the correlation level.
SVP spontaneous venous pulsations, OCP optic cup pulsations, Ampl
amplitude of the single-pulse in eigenvector space, VT total relative pulse
stroke volume in the eigenvector measures, SlpD slope-down from the
eigenvector value at the period beginning to the negative eigenvector peak
≈ peak of the maximal absolute blood volume time-point, SlpU slope-up
from the negative eigenvector peak to the period end, tp time to the
negative eigenvector peak.

Fig. 6 Group averaged OCP pulses with 25–75% confidence intervals.
Confidence intervals are visualized as color-matched dashed lines.
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briefly summarized in Fig. 1b. Left eigenvector matrix U of m rows and nt columns is
a matrix of principal components in descending order of corresponding eigenvalues
in diagonal square matrix Σ of dimensions nt. One principal component is one
column vector of m samples in the matrix U. Square right eigenvector matrix V of
dimensions nt consists of column eigen time-courses characteristic for the principal
component of a matched column in the matrix U. (Illustrative lecture of these singular
value decomposition basics is available online54).

Z-scored spatial principal components (Fig. 1b) were thresholded to zero in each
pixel where |Z | < 126. The SVP26 and OCP26 spatiotemporal patterns were visually
identified as a single component for each pattern from a set of the first 12 principal
components. PCA eigenvectors characterizing pulsation time-courses (Fig. 1b) were
de-trended, and outlier values were restored utilizing the k-means clustering
algorithm, as both implemented and fully described in Labounkova et al.26. Control
points defining continuous part of an RPP time-course with high SNR (see OCP
control points in Fig. 1a) were automatically identified for each SVP or OCP
eigenvector44 (Fig. 1b) characterizing the relative blood volume changes26, and minor
manual edits were done if needed. The automated identification of the control points
is detailly described in the “Appendix C” of Labounkova et al.26.

Each RVR segregated several SVP or OCP single pulse repetitions whose
beginning and end were well defined by the control points (Fig. 1a). Averaged
single SVP or OCP pulse waveforms were derived for each RVR, and quantitative
parameters describing its morphology were evaluated. The evaluated morphology
parameters were pulse amplitude (Ampl; Fig. 1a), total relative pulse stroke volume

as VT ¼ �R T
0VðtÞdt (where V(t) is a volume in non-positive eigenvector values, T

is pulse period, and t is time; Fig. 1a), slope-down to peak (SlpD; Fig. 1a), slope-up
to baseline (SlpU; Fig. 1a), and time to peak (tp; Fig. 1a). The averaged RVR HR =
60/T[min−1] was estimated from averaged SVP and OCP periods T[s].

The Ampl measurement is proportional to the maximum blood volume in the
examined ROI during the cardiac cycle. VT is proportional to the quantity of total
blood volume change in the ROI during the cardiac cycle. SlpD is proportional to
the steepness of the blood volume filling in the ROI during the cycle and SlpU to
the steepness of blood volume drainage outside the ROI. tp is proportional to the
time of blood volume filling in the ROI during the cycle.

Statistics and reproducibility. Delay between overlapping high-quality SVP and
OCP portions (Fig. 1a) was evaluated with maximal cross-correlation response
function55. Pearson correlation coefficients between unaligned or aligned SVP and
OCP patterns were quantified (Fig. 1a). The null hypothesis that SVP-OCP delay
equals to 0 was tested with one sample t-test.

Pearson correlation coefficients and corresponding correlation p-values were
evaluated between SVP or OCP morphological features (i.e., Ampl, VT, SlpD, SlpU,
and tp; Fig. 1a) and age, HR, IOP, and average RNFL thickness, respectively. Ten
correlation effects were investigated for each variable (e.g., age, HR). False
discovery rate correction (pFDR<0.05) was applied to the correlation p-values, and
Benjamini-Hochberg adjusted p-values (pBH) were computed to minimize the risk

of the error type I. Due to the limited sample size, power was estimated for each
significant correlation to assess the risk of error type II56. Two-sample t-test
evaluated between-group differences in RPP morphology measurements, age, HR,
IOP, and RNFL. ANCOVA (analysis of covariance) was the second statistical test
evaluating between-group differences when HR or age were used as confounding
variables. Results of two-sample t-tests and ANCOVA tests were compared, and
the effects of HR or age on final between-group results were evaluated (Fig. 1a).
Due to the limited sample size, we considered uncorrected p < 0.05 significant for
t-tests and ANCOVA.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
De-identified data sets can be made available upon a reasonable email request to Ivana
Labounkova (ilabounk@umn.edu), Dr. Folkert Horn (folkert.horn@augen.imed.uni-
erlangen.de), or another responsible personnel from the Department of Ophthalmology
and University Eye Hospital, Friedrich-Alexander University Erlangen-Nürnberg at
Erlangen, Erlangen, Germany.

Code availability
The MATLAB R2017b programming environment (MathWorks, Natick, USA) with
academic license and the open-source Retina Imaging Toolbox (https://github.com/umn-
milab/retinaimagingtoolbox; GNU GPL version 3 license) were used for all image and
statistical analyses and visualizations.
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