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ABSTRACT 

 
Thermal energy storage (TES) decouples heat generation from use, providing a crucial tool to mitigate fluctuating 

thermal loads.   TES systems may often contain a phase change material (PCM) which stores heat isothermally through 

the enthalpy of phase change, and thus the TES as a whole operates at a near constant temperature.  Integrated into a 

heat pump (HP) or heat transfer fluid (HTF) circulation loop, the TES will behave as an isothermal heat exchanger 

(HX), absorbing or releasing heat into the HTF.  For near-ambient TES (-15-85°C), solid-liquid PCMs provide the 

highest energy storage density.  However, the PCMs available in this temperature range often have low thermal 

conductivity that hinder the power capacity of a TES.  As such, modifications such as metallic extended surfaces or 

fins are made to the TES to increase its power capacity.  This work instead uses an enhanced PCM composite material 

in a simple and scalable shell-and-tube design.  In this work, two prototype-scale TES units are demonstrated: 1) a 

benchtop scale unit as a proof-of-concept with targeted specifications 50 W, 100 Wh, and 2) an intermediate scale 

with target specifications 200 W, 0.8 kWh.  The PCM composite is based on sodium sulfate decahydrate (SSD) and 

high thermal conductivity expanded graphite (EG).  Both TES units containing this material met or exceeded design 

performance.  The design, production method, and performance results are discussed. 

 

Keywords: Thermal energy storage, heat exchanger, salt hydrate, graphite, phase change material 

 

1. INTRODUCTION 

 
Thermal energy storage (TES) is a powerful energy storage mechanism that is perfectly suited for applications where 

the end use is heat.  TES may be especially useful for low-grade thermal energy near ambient temperatures which 

traditionally rely on a near-instantaneous conversion of one energy form into heat.  For example, heat pumps and 

refrigeration cycles typically utilize electrical energy to move thermal energy for heating or cooling the target 

application, or resistive heating elements that convert electrical energy or furnaces that convert chemical energy into 

thermal energy for heating applications.  TES provides a tool that may enable an application to decouple this 

conversion, and also may offer a solution for capturing and reusing waste heat.   

 

Two important characteristics of any TES system are the quantity of heat storable within, and the rate at which this 

heat can be dispatched or moved in and out of the TES.  The energy storage capacity of a TES is almost entirely 

dictated by the materials used.  Including a phase change material (PCM) into the TES sharply increases its energy 

storage capacity; through the latent heat of phase change, the PCM can isothermally absorb and release quantities of 

heat much greater than most sensible thermal storage.  Furthermore, the PCM allows the TES to operate nearly 

isothermally, a feature which can improve reliability and target TES for specific applications. 

 
1 DISCLAIMER:  This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department 

of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States 

Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or 

allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally 
sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). 
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The thermal power of a TES is dictated by the materials and application, but also largely dependent on the geometry 

of the system.  Material thermal conductivity and thermal effusivity characterize the ability of these materials to move 

heat through themselves.  But heat moving in and out of the TES relies on its geometric interfacing with external heat 

transfer surfaces.  In this sense, a TES system may be considered an isothermal heat exchanger (HX) that couples in 

some way to its application.  The TES could be integrated into a heat pump (HP) refrigeration loop or some other heat 

transfer fluid (HTF) circulation loop.  Often, extended metallic fins or complex serpentine coils are used to increase 

the heat transfer contact area thereby increases TES thermal power (Abdulateef et al., 2019; Asgari et al., 2021; 

Herbinger & Groulx, 2022; Pakalka et al., 2020).  However, these features displace PCM lowering the energy storage 

capacity and may not be cost-effective at large scales.  To this end, this work presents a TES PCM-HX design with a 

PCM composite material of enhanced thermal conductivity and a simple HX design to demonstrate that high TES 

thermal performance can be achieved in a scalable design. 

 

In this work, the design and performance of two TES units are presented.  The two TES discussed are 1) a small 

benchtop unit with target specifications nominally 50W of thermal power and 100Wh of thermal energy, called TES-

α, and 2) a larger unit with target specifications nominally 200W of thermal power and 800Wh of thermal energy, 

called TES-β.  The PCM is a composite salt hydrate and expanded graphite.  The addition of the graphite increases 

the bulk thermal conductivity of the PCM, negating the need for fins or extended heat exchanger surfaces in the HX.  

This work evaluates the viability of this design and PCM-graphite composites materials for TES systems. 

 

2. MATERIALS 
 

The TES are based on a shell-and-tube design.  The shell is sourced from standard schedule 40 PVC pipe, and the tube 

is standard ¼ in. outer diameter copper pipe.  PVC knockout caps are used to encapsulate the PCM in the shells.  The 

caps are epoxied to the shells using a two-part steel enforced epoxy. 

 

The PCM is a composite of consisting of mainly salt hydrate and graphite.  The salt hydrate is sodium sulfate 

decahydrate, Na2SO4·10H2O, (SSD).  The salt was sourced in its anhydrous form from Alfa Aesar.  The graphite is 

expanded graphite (EG) which has been commonly studied for use in PCM composites (Fang et al., 2019; Mao et al., 

2017; Ye et al., 2017).  The SSD, EG, and other materials are mixed and compressed into the annulus of the HX shells. 

 

For TES-α, borax, B4O7Na2·10H2O, was added as a nucleating agent and sodium polyacrylate (SPA) added as a 

thickening agent.  Borax is historically a nucleating agent for SSD due to similar crystal characteristics (Ruben et al., 

1961; Telkes, 1952).  The borax and SPA were sourced from Alfa Aesar.  For TES-β, borax was again added as a 

nucleating agent.  Dextran sodium sulfate (DSS) was added as a thickening agent.  Both sourced from Alfa Aesar.  

The change in thickening agent is a result of research conducted between the fabrication and testing of the two TES 

units analyzed here; the DSS showed greater stability in repeated thermal cycling tests (Li et al., 2022). 

 

The composition of the PCM composites of both TES units are reported by mass percent in Figure 1.  Both units were 

composed of several individual modules that were assembled containing PCM in these same ratios, although some 

variations exist between modules for each.  The total PCM composite mass for TES-α was 3.2 kg with a packing 

density of 0.84 kg/m3.  The total PCM composite mass for TES-β was 27.537 kg with a packing density of 0.92 kg/m3.  

The additional material and their ratios relative to the SSD were not arbitrary; they were found to be high performing 

material compositions based on other research being conducted congruently to this work.  The details of why these 

materials are chosen and in what ratios are outside the scope of this present work.   

 

 
 

Figure 1. PCM composite composition for the two TES in mass percent 
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3. DESIGN 

 
The design of these TES units is a pseudo shell-and-tube design.  Figures 2 & 3 depict the general geometry of these 

two designs.  The HTF passes through an axially centered copper tube; the total metallic content composes less than 

5% of the total TES volume.  The PCM is packed into the annulus of the shell.  The shell is PVC plastic material 

which is low thermal conductivity and acts as a relative insulator.  The TES modules are wrapped in insulating foam 

during testing.  Thermocouples are placed in the HTF stream at the inlet and outlet of all modules.  A mass flow meter 

measures the HTF flow rate.   

 

The dimensions of each design were determined by an iterative process.  With certain target performance metrics 

(power, energy, time), known PCM composite and HTF thermophysical properties (phase change temperature, 

enthalpy, density, specific heat), and capabilities and standard dimensions of the instrumentation available (pump flow 

rate, hot water and cold water bath temperature limits, standard copper tubing dimensions, stand PVC dimensions), a 

series of equations were found to relate these constraints to the unknown quantities: overall TES length, number of 

parallel TES modules, inlet and outlet target temperatures, and desired flowrate. 

 

Figure 2 illustrates the iterative design process to achieve the defined TES performance metrics.  There are two classes 

of design variables: selectable and customizable.  Selectable variables include standard sized, off-the-shelf 

components: schedule 40 PVC shell size, copper tube size, PCM properties.  Customizable variables include parts that 

are easily adjusted around the selectable variables, such as HTF flow rate and temperature, and number of modules in 

parallel or series.  The first step in the iterative design process is arbitrarily choosing some selectable variables.  Then 

the customizable variables are tuned to meet certain criteria for the TES, including the performance metrics, but also 

more tangible metrics like size and weight, and some less tangible metrics like if the design can be produced in the 

lab with the tools available.  A series of equations were written containing heat transfer, thermodynamic, and fluid 

dynamics relationships to check for consistency in power and energy between the HTF and the TES.  These 

relationships capture most of the selectable and customizable variables, and most are reversible so that the process 

could be done if other metrics are important considerations, if necessary.    

 

As an example of the design process, the thermal energy performance metric is used to determine the quantity of PCM 

composite necessary in the annulus of the shell-and-tube design based on the phase change enthalpy and density of 

the PCM composite.  Once the diameter of schedule 40 PVC shell and copper tube size are selected, the quantity of 

necessary PCM informs the overall length of the TES.  This length influences the necessary HTF flow rate, and inlet 

and outlet temperatures to achieve the desired thermal power metric.  Fluid dynamics equations would be used to 

compute the HTF heat transfer rate, and this compared to heat transfer equations on the PCM composite under these 

temperature conditions to ensure thermodynamic consistency.  On the last step, the feasibility of production was 

considered for the determined size of each TES module.  If infeasible, one selectable variable would be changed and 

the process repeated until a feasible design met all considerations.   

 

 
Figure 2. TES iterative design process overview 
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For each TES system, the PCM composite material was synthesized in large quantities.  The graphite-PCM material 

was then compressed into the annulus of the shell-and-tube design with the tube in place, shown in Figure 3: A) The 

material was first poured into the shell (A) until nearly full (B).  A piston/plunger added atop the material (C).  

Handheld bar clamps used to apply even force, compressing the material (D).  Several piston/plungers of varying sizes 

were used to compress deep into the shell.  Processes A-D repeated until the shell is filled before being capped (E).  

This process resulted in good thermal contact between the tube and the PCM composite material.  Producing several 

identical modules increases the scalability of this design; several modules may be attached to achieve certain 

performance metrics by following the process outlined in Figure 2. 

 

 
 

Figure 3. Process of compressing PCM composite into TES shell 

 

For TES-α, two shell-and-tube modules were synthesized.  These were arranged in series with each other.  Figure 4 

shows the dimensions of this design and the design installed on the test bed before insulation foam was added to the 

exterior of the shells.  A peristaltic pump was needed to throttle the HTF flow rate from the hot water bath and the 

chillder for this small TES size. 

 

 

 
Figure 4. TES-α dimensions and test bed setup 
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For TES-β, fourteen shell-and-tube modules were constructed.  They were arranged in two banks in series composed 

each of seven modules in parallel.  Figure 5 shows this arrangement and the TES on the testbed with insulating foam 

blanketing the two banks. 

 

 

 
 

Figure 5. TES-β dimensions and test bed setup 

 

4. OPERATION & POWER CALCULATION 
 

The HTF used in these TES units is water which has well-characterized thermophysical properties for ease in analysis.  

Two water baths, one hot and one cold, are separately controlled with PID temperature controls.  The cold bath is a 

Cole-Parmer Polystat chiller with integrated water pump.  The hot bath is a custom-built system with an external water 

pump and enclosed in an insulating chamber.  Details of this hot water bath are omitted for brevity; any commercially 

available or custom-built water bath capable of maintaining a constant temperature and pumping water with steady 

flow rate will suffice in replicating this experiment. 

 

The baths are connected to the TES units with three-way valves that enable the operator to switch between heating 

and cooling modes.  Figure 4 depicts the orientation of the water baths on TES-β. 

 
Figure 4. Integration of TES-β with hot- and cold-water baths 
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Thermocouples are embedded in the HTF stream, and the thermocouple measurement location are placed 

approximately at the inlet and outlet of each TES module.  For TES-β, a header splits the flow into the seven parallel 

shells.  It is assumed that the flow is split approximately evenly between the seven parallel pathways. 

  

The calculation of thermal power P(t) is done by measuring the HTF temperature difference at the inlet and the outlet 

of the TES modules multiplied by the mass flow rate, �̇�(𝑡), and the specific heat of the HTF, 𝑐𝑝,𝐻𝑇𝐹, Eq. 1.  However, 

the HTF takes some time to traverse from the inlet to the outlet.  Thus, rather than measuring an instantaneous spatial 

HTF temperature difference, Eq. 1 is modified to measure a temporal HTF temperature difference.  This is 

accomplished by offsetting the time reading of inlet temperature by 𝜏 which is the calculated time the water travels 

from inlet to outlet.  𝜏 is calculated by using the flow rate measurement, density of the HTF, and geometry of the tube 

in the TES unit.   

 

 𝑃(𝑡) = �̇�(𝑡) ∗ 𝑐𝑝,𝐻𝑇𝐹 ∗ (𝑇𝐻𝑋,𝑖𝑛(𝑡 − 𝜏) − 𝑇𝐻𝑋,𝑜𝑢𝑡(𝑡)) (1) 

 

The total energy E(t) is determined by integrating the power over time of operation, Eq. 2. 

 

 𝐸(𝑡) = ∫ 𝑃(𝑡)
𝑡=𝑒𝑛𝑑

𝑡=0
𝑑𝑡 (2) 

 

5. RESULTS 
 

The thermal power and energy results of TES-α are shown in Figures 5 & 6 for a single heating cycle.  The green 

region of Figure 5 shows a time of approximately 1 hour wherein TES-α maintained a thermal power greater than the 

target of 50W.  This small TES required the peristaltic pump to be adjusted mid-experiment which explains the jumps 

in the power curve prior to this window and at the end of the experimental run.   Note how the first shell in series is 

responsible for nearly twice as much power as the second shell during the first three hours of the run, then its 

performance drops below the second shell drastically.  This is the effect of phase change within the TES-α.  Once the 

phase change is complete on the first shell, it is incapable of storing heat isothermally and thus its temperature rises 

to match the HTF, significantly reducing the driving temperature and lowering its effect on overall thermal power.  

Real systems utilizing this design will need to account for this drop in power. 

 

 
 

Figure 5. Thermal power of TES-α 

 
Figure 6 shows the cumulative energy stored within the TES-α during this same heating cycle.  The target for this 

TES-α was 100 Wh of storage which was exceeded by ~20% in the green highlighted window, within added the factor 

of safety.   Even if some energy stored is accounted for by sensible storage, the majority is assumed to be latent storage 

of the PCM due to the plateaued power curve of Figure 5. 



3509, Page 7 

 

7th International High Performance Buildings Conference at Purdue, July 10-14, 2022 

 

 
 

Figure 6. Thermal energy storage of TES-α 

 

The thermal power results of TES-β are shown in Figure 7.  A large spike of thermal power at the beginning of the 

test is due to sensible heating from the relatively cold steady state to the sudden influx of relatively hot HTF.  However, 

once the power settles from this initial spike, its output is nearly 2-3 times the expected value.  It was later understood 

that the HTF flow rate and the hot water bath temperature were both higher than was planned, an oversight by the 

operator.  As such, the power for each bank in this TES achieves > 200 W of thermal power for nearly two hours. 

 

Due to the flowrate mishap, there is no clear distinction between the first and second bank of tubes like was observed 

between the first and second modules in TES-α.  It is speculated that the higher-than-expected flow rate moved the 

HTF though the TES more quickly than the initial design calculations predicted.  As such, the HTF temperature change 

was small for each bank of the TES and thus each bank saw approximately the same thermal forcing temperature 

gradient.  Paired with slight variations in the 14 TES modules, both the first and second bank acted approximately 

identically.  In a real system, this may be ideal; there may not be a performance drop until all TES capacity is depleted.  

But this is erroneously done here. 

 

After operation for 2 hours, the hot water bath water pump developed a leak.  An attempt to patch the leak mid-test 

was unsuccessful and the test had to be aborted after 2.5 hours.   
 

 
Figure 7. Thermal power of TES-β 
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Despite the issues encountered during the testing of TES-β, its energy storage far exceeded the performance metric, 

as shown by Figure 8.  Even if the initial spike at the start of the test is ignored, and the period between 0.5 and 2.5 

hours is analyzed, this TES stored over 1 kWh of thermal energy.  This higher-than-designed energy storage is not 

surprising as the updated PCM composite mixture was seen to have much higher performance than the PCM composite 

mixture in TES-α, with higher enthalpy and more stability, but this was not updated in the TES design process.  The 

energy storage values are reasonable and within the designed factor of safety once accounting for the updated 

thermophysical properties.  However, because the test was aborted early, the heat leakage rate was unable to be 

quantified.  As such, some of this energy may be lost to the ambient and not truly stored in the TES.   

 

 
Figure 8. Thermal energy storage of TES-β 

 
Furthermore, this TES-β showed that the design was capable of high thermal power performance.  This exemplifies 

the potential for TES systems containing an enhanced PCM-graphite composite material in a simple and scalable shell-

and-tube HX setup; no extended metallic fins, heat exchange surfaces, or complex designs were necessary to achieve 

high performance.   

 

6. CONCLUSION 

 
Thermal energy storage (TES) is an ideal mechanism for recouping waste heat that may be used in applications where 

low-grade heat is the end use: refrigeration, indoor heating and cooling, domestic hot water.  TES system are often 

characterized by its energy storage capacity and its thermal power which will vary between applications. 

 

Implementing a phase change material (PCM) into TES can drastically improve the energy storage capacity by 

leveraging the latent heat of phase change as an isothermal heat source or sink.  In regard to increasing the thermal 

power, the TES with integrated PCM may be better described as a PCM heat exchanger (HX).  These PCM HX have 

been the subject of much research, but typically rely on some metallic extended finned surface or complex geometry 

to aid in moving heat in and out of the TES and to the target application. 

 

This work demonstrated a high performing TES using a simple shell-and-tube geometry and an enhanced high thermal 

conductivity PCM composite material made of an inorganic salt hydrate and expanded graphite.  Two TES units were 

demonstrated: a 50W, 100Wh proof-of-concept (TES-α), and a 200W, 800Wh intermediary to a full-scale TES system 

(TES-β).  The design was based on an iterative method that factored in the constraints of the equipment available, 

commercially available products, and a laboratory-based manufacturing process without heavy equipment.   

 

TES-α performed as designed, averaging 56.8W of thermal power for 1.2 hours, and ~120Wh of thermal energy in 

this time.  TES-β encountered issues during test, but still surpassed the target performance metrics.  This system 
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experienced over 400W of thermal power for over 1.5 hours and stored over 1kWh of thermal energy.  The success 

of the TES-β is attributed to adjustments to the experimental test bed as a result of lessons learned from the TES-α, 

and an improved PCM composite recipe with higher enthalpy and more stability.   

 

These tests show that high performing, high thermal conductivity PCM composite materials can be effectively utilized 

in simple TES system geometries without the need for extended heat transfer surfaces.  Future work will explore these 

TES designs for stability, adjustable power modes, and heat pump integration. 

 

NOMENCLATURE 

 
TES  Thermal Energy Storage 

PCM   Phase Change Material 

HP  Heat Pump 

HTF  Heat Transfer Fluid 

HX  Heat Exchanger 

TES-α  Benchtop demonstration unit with targeted specifications 50 W, 100 Wh 

TES-β  Larger demonstration unit with targeted specifications 200 W, 0.8 kWh 
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