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ABSTRACT

Thermal energy storage (TES) for a cooling plant serving a campus or district of buildings can shift cooling energy
from peak to non-peak hours so that it is able to reduce electrical operation costs in buildings and increase stability
and operational efficiency in the grid. Traditionally, heuristic control approaches, such as the storage priority control,
have been widely used in practice. Those simple control approaches have shown reasonable or even near-optimal per-
formance in the past. However, the increasing penetration of renewables changes the situation: exposing the electrical
grid to the growing supply demand challenge which encourages greater consumption at times when renewable energy
is plentiful and lesser when dirtier supply is used. This paper presents a model predictive control (MPC) strategy, site
demonstration and evaluation results for optimal operation of a chiller plant, TES and behind-meter photovoltaics for a
campus-level district cooling system. The MPC was formulated as a mixed-integer linear program using the General-
ized Disjunctive Programming for better numerical and control properties. Results show that the MPC can effectively
utilize PV generated electricity to drive chillers for charging the TES during the day and avoid sending excess elec-
tricity back to the grid. Compared with the storage priority control, the MPC reduces the excess PV power by around
25%, the greenhouse gas emission by 10%, and peak electricity demand by 10%.

1. INTRODUCTION

Traditional control strategies for TES cooling plants, i.e., the storage priority or chiller priority controls, fully charge
TES using chillers during OFF peak price period (typically a night time period) while discharging TES to meet cooling
load partially or fully during ON peak price period (typically a day time period). Although the rule-based controls
have shown near-optimal behavior and provided benefits to facilities, buildings, and the grid in the past by lowering
the total electrical load during peak price period and hence requiring less spinning/non-spinning reserves and other
back-up power plants in the grid, the rapid penetration of renewable energy resources is changing the situation. The
intermittent nature of behind-meter renewable energy sources and the grid’s movement toward more dynamic price
signals challenge building or facility operators to rely on the rule-based operations.

Despite many studies of optimal operation of TES with behind-meter renewable and energy storages, a majority of them
are using simulations as shown in the table, and therefore real performance of MPC including self-consumption ratio
are not clear. Although there are some papers with experimental assessment of MPCs coordinating TES and HVAC
systems, they are limited to small-scale systems, e.g., laboratory or small-sized building (e.g., residential) levels. For
large-scale systems, there are very few papers that demonstrate an MPC for renewable energy integration and present
site performance. In addition, there is a lack of knowledge about applying MPC to mitigate CO2 emissions (Tarragona
et al., 2021).

This paper fills the gaps by implementing an MPC for a campus-level cooling TES plant and presenting on-site perfor-
mance compared with carefully selected, historical rule-based operation data for the plant. The MPC aims at promoting
the self-consumption of the on-site renewable and minimizing CO2 in the grid. Because utility cost reduction is one
of the key motivations for the facility, the MPC is also formulated to reduce peak demand. In this paper, we present
a novel MPC formulation (Mixed Integer Linear form using the Generalized Disjunctive Programming) and the site
performance evaluation.
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Figure 1: The equipment configuration of the central cooling plant at University of California, Merced

2. SITE DESCRIPTION AND BASELINE CONTROL STRATEGY

2.1 Site description

The central plant of the University of California, Merced is the demonstration site located in California, U.S. The
cooling TES plant, shown in Fig. 1, has five chillers with a total cooling capacity of 17.6 MW, 5000 ton of refrigeration,
serving around 40 buildings. It has the primary-secondary (decoupled) chilled water loop configuration, where separate
variable speed pumps are dedicated to the primary and secondary water loops. The chillers in the primary water
loop, where each chiller has rated cooling capacity from around 1,000 to 1,500 ton, are high-efficiency units with
centrifugal compressors and internal capacity controls using variable speed compressor, inlet guide vane and diffuser
modulations, and hot-gas bypass for part-load operations. The chiller configuration is a combination of series and
parallel connections. Depending on a selection of plant modes, the plant could operate a single chiller, two serially
connected chillers, three chillers (two series chillers and one parallel chiller), and four chillers (two parallel chiller
groups of chillers where each group has two series chillers). The variable frequency drives for the secondary water
pumps adjust the pump speed to regulate the differential pressure between the supply and return pipes to transport the
chilled water to multiple building load terminals.

A two million gallon chilled water tank (sensible energy storage) is located at the bypass line (or decoupler) between
the primary and secondary water loops. The tank is a stratified cool storage where warmer and less denser water floats
on the top of colder and denser water. There are no isolation valves on the bypass line, and therefore the mismatch
between primary water flow rate and secondary flow rate determines the charging or discharging flow rate. In order
not to disturb the thermocline in the water tank, the chilled water supply temperature setpoint should be maintained at
around 39°F (around 4°C). This constraint on the chiller leaving temperature together with no-isolation valves on the
bypass line results in that the primary water flow rate setpoint as the only decision variable that defines charging and
discharging heat rate when chillers are running.

In addition, the UC-Merced campus has more than 4 MW of on-site solar farm which covers 8.5 acres southeast of the
campus and an approximately 960-space parking lot. The PV has a single-axis sun tracking system, which captures up
to 30% more sunlight than conventional fixed-tilt systems by following the sun throughout the day.

It is important to mention the utility tariff structure which is one of the key driving forces for MPC. Because of the
scale of energy consumption, the energy price rate is much more complex than a typical TOU (time of use) structure.
It purchases energy from selected energy service providers within the energy wholesale market through a negotiation
process. This program makes 1) the time variation of the energy price rate small, and 2) the demand charge is much
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Figure 2: Daily-averaged plant power at the UC-Merced

more dominant than the energy charge at the site.

In this study, the optimization variables to the system are the primary volume flow rate setpoint (V},) and the plant
operation mode (s;) as depicted in Fig. 1. Note that s; does not indicate the ON/OFF status of a chiller. Instead, the
model activates and deactivates some chiller(s), pumps(s), cooling towers(s) and isolation valve(s), pre-defined by the
existing control sequence.

2.2 Description of baseline control

The basic operation strategy for the cooling TES plant is the storage priority control that runs chiller(s) during the
nighttime to store cooling energy in the chilled water tank and uses the cooling energy during the day time to fully
meet the daytime campus cooling load. Fig. 2 shows a representative plant electrical power profile of the chiller plant
operation. To generate this plot, the daily profiles of the total plant electrical power consumption, which aggregates
chiller compressor powers, cooling tower fan powers, pump powers for the primary and condensor water pumps, over
the month of August were collected and averaged. Note that the plant power is zero from 12:00 to 17:00 hour. This
means the chilled water tank completely serves the campus load, which clearly characterizes the control and system
as the storage priority control and full storage system. It is important to remember that the storage priority control in
general does not account for behind-meter, on-site renewable energy.

3. MIXED INTEGER LINEAR MPC FORMULATION

3.1 Objective function

The control objective for the chiller plant is to minimize utility cost and CO2 emission in the grid region (California
Independent System Operator, CAISO), and self-consume the behind meter PV generation.

-1
min " E[k] x max{Pye[k],0} + wq x d, )
=0

where E represents a time varying grid signal which could be utility price rate, a carbon emission rate, or a weighted
combination of them. P, is the net power consumption of the entire campus measured at the grid connection point
which is the total power consumption subtracted by the on-site PV generation, i.e.,

Ppes = Pplant + Pnonplant - Ppy. (2)

When P, is positive, the campus imports the power from the grid while the campus exports the power to the grid
when negative.

The first term represents time-integrated GHG emission [MTCO2eq], energy cost [$] or a combination of them over
the prediction horizon (N,) depending on the definition of £. Note that we integrate max{P,|k],0} rather than P,,,.
This is to promote the self-consumption of on-site renewable energy by not incentivising power export. @, is a weight
on the max peak power (d)' over the prediction horizon.

IStrictly speaking, d is an upper bound of the max peak power over the prediction horizon.
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Figure 3: Conceptual plot for a switching system. A feasible set in (x, y)-space switches depending on a mode
selection.

3.2 Modeling total plant power as a switching system

Because the plant mode determines a different set of chillers, cooling towers, pumps, and isolation valves, the plant
power and COP behaves differently depending on plant modes. Due to this nature, one has to model the total plant
power as a switching system regardless of modeling approaches (i.c., white-box, gray-box or black-box models).

We chose the following model structure for the total plant power modeling.

0 for the plant mode 0

b (T for the plant mode 1
P - :CZIQCH+ 1(Twg) for the plant mode 3)

a;Qcy +by(Tyg) for the plant mode J

where Qcy, Twp are the total chiller load (or the sum of chiller loads), and the outdoor wet-bulb temperature, respec-
tively. a; is a constant and b; is a function of Ty, respectively. There is no restriction on the model structure for b;
but the linear affine form, i.e., b; = b; o + b; 1 Tws, is selected in this paper. Since Ty is not an optimization variable,
we denote b;(Typ) as b; for the simplicity of notations.

The technical challenge of a switching system for mathematical programming, in general, is that some constraints
appear or disappear depending on a selection of modes because of the IF-THEN nature. For our plant power model
of Eqn. (3), the feasible set of (Ppian, Qcu) switches via a mode as depicted in Fig. 3. A straightforward approach
is to model it as Pe; = 3;(a;Qcn + b;) x s;, but it results in a mixed integer nonlinear programming problem which
suffers from the lack of convergence, global optimality (Wolsey, 1998; Elsido et al., 2017), computational efficiency,
and MPC closed-loop stability. To resolve this issue, we utilized the Generalized Disjunctive Programming approach
as described in the next section.

3.3 Treatment of Switching Plant Power Model using Generalized Disjunctive Programming Ap-
proach

3.3.1 Recap of Generalized Disjunctive Programming: The Generalized Disjunctive Programming (GDP) is an alter-
native mathematical programming approach to the mixed integer programming. It was first introduced by Raman
and Grossmann (1994) who extended the Disjunctive Programming (Balas, 1985). Unlike typical programming ap-
proaches which only allow algebraic expressions, GDP allows formulating optimization problems with logical ex-
pressions. The logical constraints consist of disjunctions and logic propositions. Once an optimization problem is
formulated with the logical expressions, GDP provides methods of transforming the disjunctions into mixed-integer
(nonlinear/linear) equality and/or inequality constraints, and the logic propositions into integer-only equality and/or
inequality constraints. Then, the converted mixed-integer (nonlinear/linear) program is solved by available mixed-
integer programming solvers.

There are several representations of a mathematical structure of GDP in the literature, but we introduce the form
introduced in (Grossmann and Ruiz, 2012).
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min f(x) + i ¢r  Objective Function 4

k=1
g(x) <0 Algebraic Constraints %)

Yik

ie\é/, Ajgxr < b Disjunctions 6)

Ck =ik
Q(Y) = True Propositions @)
L<x<UxeR" ¢, eR! Continuous Variables ®)
Y; x € {True, False} ~ Boolean Variables )

« f(:R" > R"), g (: R" - R™) are a function and algebraic constraints of continuous variables x
» K represents the number of disjunctions

» Yy is a Boolean variable that controls the feasible space where the global continuous variable, x, lies (represented
by the inequality constraint) and the cost represented by the equality constraint in Eqn. (6). That is, when
Y; x = True, the constraints of 4, yx; < by, ¢k =y, apply. Otherwise, they are ignored.

* Dy is a set of integers associated with the k-disjunction
» Q is a propositional logic involving only the Boolean variables

Note Yy is controls the feasible space depending on the value of Yj;. This is exactly the problem for a switching system
discussed in Section 3.2.

The conversion of the above disjunctions and logic propositions to algebraic expressions can be done systematically
by utilizing either the Big-M method or the Convex-Hull approach. The latter approach finds the convex hull (that is
the minimal convex envelope) of the disjunctive sets, and hence provides a tighter convex envelope than that of the
Big-M approach. In addition, it does not require tuning parameters as opposed to the Big-M method. The Convex-Hull
approach leads to the following mixed-integer program.

min f(x)+ ick (10)
k=1
g(x) <0 (11)
Syis=1  ke{l,K} (12)
ieDy
A,~7kv,-7k < bi7kyi7k ke {1, ~~~,K}, ieDy (13)
Xp= Y Vik ke{l,- K} (14)
ieDy.
cr = sz ViwVik ke{l,- K} (15)
i<Dy
0<vig<Upyix ke{l,~ K} ieDy (16)
Ay >a (17)
L<x<UxeR" ¢ eR! (18)
yixe{0,1} (19)

where y; x is the binary variable that corresponds to Y;x, v;x is an axially variable and U, is an upper bound for v; 4.
Please refer to Grossmann and Ruiz (2012) for detailed discussions.

3.3.2 Application of Generalized Disjunctive Programming: According to the GDP modeling approach, Eqn. (3) can
be expressed as follows.

7' International High Performance Buildings Conference at Purdue, 2022



3223, Page 6

So S Sy
Ocr=0] Vv | Onint £ Oct £ Omax,t |V V| Oming < Ocr £ Omax, | (20)
Pplant =0 Pplant = alQCH + by Pplant = aJQCH +by

where S; is the Boolean variable indicating an active plant mode. That is, when §; = True, the J™ constraints become
active, and vice versa.

Applying the Convex-Hull approach and eliminating the redundancy associated with the 0” mode result in the following
desired, mixed-integer constraints.

J
Yoso< 1 21)
j=1
Sijin,j < Vj < Qmax,jsja ] € {17 7J} (22)
Ko = LZ_/V/+Z)_/S}7 jE{l,,J} (23)
J
Ocn = Z Vi (24)
j=1
J
Pplant = Z#j (25)
J=1
where vy, -+, v, are the auxiliary variables for Qcy, and p, -+, u; are the auxiliary variables for Pjq.

Note that, when any k (¢ {1,---,J}) is selected, then sjj+& = 0 and v; jux = 0 from Eqns. (22) and (23), and therefore
Och = Vi Omingk < Vk £ Omax> and Ppjgy; = apQOcy + by which are the desired algebraic constraints. When none of
modes is selected, i.e., 51 = 0,---,57 = 0, Ocy = 0, Ppians = 0. Note also that all equality and inequality constraints are
linear in vy, w;, 57, Ocy and Ppjan;.

3.4 Start-up and shut-down constraint

It is well known that frequent mode switching causes negative impacts on the life of equipment and part-load perfor-
mance. An intuitive approach is to add a penalty whenever the mode changes. However, it was not trivial to tune
the weights, and it is not applicable to our case since one has to shut down the chiller whenever the storage is fully
charged for example. To resolve this, we adopted the mathematical programming approach from the Unit Commitment
problem (Rajan et al., 2005; Knueven et al., 2020) in the electrical power system. This method enforces minimal ON
or OFF times for each unit operation: that is, once a power generation unit is activated (deactivated), it has to maintain
the ON (OFF) status at least for a predefined minimal ON (OFF) time period. Application to our system is described
as follows.

For the /" mode and a time-step &, let don,;[k] (€ {0, 1}) and dorr ;[k] (€ {0, 1}) be turn-ON and turn-OFF variables,
respectively. The relationship between those variables is

si[k] = sj-1[k] = don,[k] = dorr k] (ke {0, N, —1},j e {1, J}). (26)

In addition, we impose the following constraint to prevent the situation where turning ON and OFF occur simultane-
ously.

50NJ[k:| + 5OFF,j[k] <1 (27)

Let OT; be the minimal run-time for the j mode. The formulations to incorporate the minimal run-time in the MPC
formulation are as follows.

7' International High Performance Buildings Conference at Purdue, 2022
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1) For k> OT; -1,

OT;-1
> donylk—1] < s;[k] (28)
=0
oT-1
Sorri[k—1]< 1 - s[k]. (29)
=0
2)For k< OT; -1,
OT;—k-1 y k
> Sony =11+ Y donlk —1] < s;[k] (30)
=1 1=0
OT;—k-1 . &
> Sopr [F+ ) dorr,lk =1 < 1= s[k]. 31)
=0 =0

3.5 Reformulation of the objective function

Remember that we tend not to incentivize the negative net power by using the max function in Eqn. (1) in order to
promote the self-consumption of the on-site PV. Technically, the term Zgja 'E [k] x max{P,.[k],0} constitutes a mixed
integer convex program. It would be greatly useful to have an equivalent mixed integer linear program, if possible, for
the use of fast and reliable solvers (e.g., CPLEX, GLPK, Gurobi, LPSOLVE) and for better scalability to the increase
of the number of variables.

Like the epi-graph formulation (Boyd et al., 2004), we may define an upper bound of max{P,[k],0} for each k, put
inequality constraints to replace each max term with the upper bound, and minimize the upper bounds. This approach
was strictly proved (the proof is not omitted in this paper due to the page limit). The conclusive, mixed integer linear
formulation for Eqn. (1) is;

min Mo U (EK] x Py [k]) + wg x d (32)
Pptant[k] + Puonplan[k] = Ppy[k] < Pr,[K] (k€ {0+, N, - 1}) (33)
OSP;et (ke{():"'aNp_l}) (34)

where P

* [] are auxiliary variables.

4. SITE PERFORMANCE OF MPC

The presented MPC has been implemented for the campus cooling TES plant for several test periods, and sample test
results for a week in May 2021 are shown and discussed in this section. We start describing our approach to evaluate
performance of MPC compared with the baseline control described in Section 2.2.

4.1 Selection of baseline control period for actual performance assessment

To make fair comparisons between two controllers and evaluate actual performance for the real site, a baseline period
was carefully selected considering the followings: 1) the baseline control was implemented, 2) uncontrollable distur-
bances including campus cooling load, MOER signal and on-site solar generation were consistent to that of the MPC
period, and 3) initial and final SOC were close enough.

4.2 MPC performance assessment

4.2.1 Comparisons of closed-loop responses between baseline control and MPC: Fig. 4 compares the closed-loop re-
sponses of the baseline control and the MPC. The first sub-figure shows the campus net power consumptions, i.e.,
total consumption subtracted by the on-site PV generation, and the second sub-figure shows the profiles of the state
of charge (measured from the relative height of the thermocline) for the two control periods. The blue and red colors
are dedicated to the baseline control and MPC, respectively. The shaded areas indicate when the MOER is higher than
0.3 [mTonCO2e/MWh] that is equal to the average level of GHG emission for a natural gas power plant in the U.S.
according to the EPA’s Emissions and Generation Resource Integrated Database (eGRID). In other words, the shaded
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Figure 4: Comparisons of experimental net power consumption and state of charge between the baseline and
MPC at UC-Merced (red: baseline, blue: MPC)

areas are when the grid is dirty, and non-shaded areas are when the grid is clean. First, look at the afternoon period for
the first day where the state of the charge decreases from 100% to 60% for the baseline control. This means that the
control utilizes the stored thermal energy to meet the entire campus cooling load during the daytime period. For the
time being, the chillers were off, causing significant excessive power around 2 MW that was sent back to the grid as
shown in the first subfigure. Compare the behavior of the state of charge with the MPC for the same period. The MPC
actually increased the state of the charge which implies that the chillers were ON, met the entire campus cooling load
and charged the storage. Since the MPC increased the chiller power during the period, the excessive power export was
eliminated as shown in the first subfigure. Second, when the grid condition got dirtier, the baseline control increased
the state of charge and this charging process continued until the TES was fully charged (see the evening time for the
first day in the second subfigure). On the other hand, the MPC consumed less energy when the grid was dirty by
leveraging the stored energy from the on-site renewable. This pattern repeats for the entire test period as shown in the
figure.

It should be mentioned that facility operators requested to preserve 50% to 60% of the charge level during the MPC
implementation period which significantly limits savings potentials. This can be confirmed in the second subfig-
ure.

The baseline control which is independent of renewable consumed 23.7 MWh (daily average) out of 32.6 MWh (daily
average) total solar generation, resulting in 72.8% self-consumption ratio. On the other hand, the MPC control con-
sumed almost all on-site PV energy resulting in a 99.2% self-consumption ratio. In other words, the increment of the
self-consumption ratio via MPC is 26.4%.

The comparison of GHG emission rates are shown in Fig. 5. One can see visible reduction in the emission rate. The
daily average value of the carbon reductions using the MPC is 1 [mTonCO2e] per day. The unit metric ton CO2e is
equivalent to the emission rate driving a car for around 2,500 miles or 4,023 km (roughly San Francisco, California to
Washington, DC). Again, the reduction was achieved by coordinating operations of cooling TES plant with on-site PVs
in response to the grid carbon emission signal. The calculated GHG savings is around 10% but it is anticipated that
more than 20% reduction can be achievable for the plant once the minimum state of charge constraint (varied between
50% to 60%) can be relaxed.

The peak power reduction was around 10%. It is not that significant considering the size of the tank (2 million gallons
of water). This is mainly because the facility operators requested to preserve 50% to 60% of the charge level during the
MPC implementation period. This significantly limits the capability of a peak demand reduction and CO2 reduction,
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Figure 6: Comparisons of representative (daily averaged) net power profiles between the baseline control and
MPC at the UC-Merced for the weeks of evaluation in May

because during the nighttime chillers have to run to maintain the minimum charge level. If the strong constraint has
been relaxed, MPC would not need to operate chillers for the nighttime and would increase the savings. It should be
mentioned that even with the conservative 10% peak reduction, it attracts the interest of facility operators because of
the magnitude of power consumption for the campus-level cooling plant. For the UC-Merced case, the utility cost
savings are around ten thousand dollars per month.

4.2.2 Benefits of MPC to the grid: Although the time series comparison provides comprehensive information, it is
difficult to capture the overall behavior of the MPC. To more clearly characterize this behavior, we averaged daily
power consumption profiles for the two controls and they are shown in Fig. 6. Like before, the blue and red lines are
associated with the baseline control and MPC. It is interesting to see that the representative (daily averaged) profiles at
the site look similar to the duck-curve which the grid is experiencing. This figure clearly shows that the MPC consumes
and stores more energy during the daytime using the clean on-site solar, and consumes less during evening and night
time when the grid gets dirty by leveraging the stored energy.

The smooth load curve could provide significant benefits to the grid, because 1) The higher consumption during the
daytime addresses the issue of high renewable curtailment in CAISO, 2) The proper operation of the chilled water
storage in response to the on-site renewable allows tolerating the increasing PV penetration to the grid, 3) The reduced
ramping rate during the evening time addresses the issue of running gas turbines to follow the high ramping rate of the
neck of the duck-curve as discussed in Introduction, and 4) The self-consumption of the behind-meter solar reduces
the concern of voltage regulation in the distribution line and improves the grid reliability and efficiency.

5. CONCLUSIONS

Cooling TES plants are one of the oldest and reliable energy storage technologies. This paper shows that cooling
plants with existing TES could be one of the most cost-effective resources to achieve state and government’ carbon
neutrality goals, since it does not require installing new energy storage but only requires changing the operation. We
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presented a novel, Generalized Disjunctive Programming-based MPC and its site performance for a campus-level
cooling TES plant that coordinates operations of multiple chillers, chilled water tank and behind-meter PVs. It aims
at self-consuming on-site 4 MW solar farms, lowering carbon emission at the grid and minimizing utility bills. The
performance of MPC was assessed by comparing with a carefully selected baseline period where the storage priority
control has been implemented. The MPC reduced the excess PV power by around 25%, the greenhouse gas emission by
10%, and peak demand by 10%. The savings estimates were conservative, since only a partial usage of the chilled water
tank was allowed during the MPC implementation period. The capability of achieving utility peak demand in addition
to lowering GHG emission is the uniqueness of the MPC. Future work will include a longer-term implementation of the
MPC (> 1 year) to provide a more comprehensive savings assessment and reliability of the MPC technology.
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