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ABSTRACT

The gray-boxmodeling approach (i.e., semi-physical thermal networkmodel) has beenwidely used for prediction appli-
cations for buildings such as a model predictive control (MPC). However, applying the modeling approach for practical
buildings is still challenging due to unmeasured disturbances such as occupants, lighting, appliances, and in/exfiltration
loads. To overcome this problem, several system identification approaches have been proposed by considering the dy-
namics of unmeasured disturbance. However, the performance of long-term (e.g., one day) zone temperature or load
predictions could still be very poor, and this is an important research topic for enabling grid-interactive buildings. In
this study, we propose a hybrid modeling approach to improve long-term temperature or load predictions. Several
system identification approaches for gray-box models are compared using simulations to understand the limitations. A
neural network model that accounts for unmeasured disturbance is developed by considering the limitation of the gray-
box model and is combined with the gray-box model. This hybrid model approach shows 0.24○C root mean squared
error (RMSE) for 1-day ahead temperature prediction on average, while the conventional gray-box model shows 1.1○C
RMSE on average.

1. INTRODUCTION

The gray-box modeling approach (i.e., semi-physical thermal network model) has been widely used for prediction
applications for buildings such as model predictive control (MPC) because it has a flexible structure representing a
complex building with a low order R-C (thermal resistance and capacitance) network model from measured data while
keeping its physical principles. However, in real buildings, some information for the gray-box model such as internal
heat gains from occupants, lighting, appliances, and in/exfiltration is generally not available due to the lack of sensors,
and the retrofit of these sensors for the unmeasured disturbance is costly prohibited especially in small and medium-
sized commercial buildings (SMCBs).

Accordingly, a conventional system identification for a real-building, which minimizes the sum of squared error be-
tween n-step ahead simulation and measurement (Braun and Chaturvedi, 2002), often results in significant bias in
parameters, especially the unmeasured disturbance is not negligible (Kim et al., 2016). It could yield a critical problem
in predictive application. For example, the unmeasured disturbance could be represented as unrealistic large thermal
capacitance and solar heat gains in the conventional system identification, so the predictive controller’s performance
(e.g., load shift) may be wrongly executed.

Several system identification approaches (Coffman and Barooah, 2018; Kim et al., 2016) have been proposed to cor-
rectly estimate model parameters of a gray-box model by handling the internal heat gains as a lumped unmeasured
disturbance. Although they showed better identification performance, the success of the identification highly depends
on the quality of data (i.e., uncorrelated control inputs and measured/unmeasured disturbances)(Kim et al., 2018). Fur-
thermore, the unmeasured disturbance information is not given for the future prediction, so the predictive performance
is poor regardless of the accuracy of identified system parameters.
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Figure 1: A simple RC network model for a case study building.

In building simulation, the unmeasured disturbances (i.e., occupant, appliance, and infiltration heat gains) are gener-
ated by time-based scheduled values in deterministic (ASHRAE, 2017) or stochastic ways (Hong et al., 2020). This
approach is valid in a predictive application for white-box simulation because the goal is to estimate typical energy
consumption based on typical unmeasured disturbance schedules for building design. However, the unmeasured distur-
bance needs to be estimated from the data in a real building in operation. While it can be easily obtained via a Kalman
(Coffman and Barooah, 2018; O’Neill et al., 2010) or a particle filter (Ham et al., 2021) from the measured data,
these methods do not provide a future prediction. Some studies (Dong et al., 2016; Lee and Zhang, 2021) developed a
black-box model to predict non-HVAC energy consumption from historical data and use it to quantify unmeasured dis-
turbances. One study models unmeasured disturbances as a function of time-related features (i.e., time of the day, day
of the week, and day of the year) via feed-forward neural network (Ellis, 2021). The model is trained after estimating
the disturbance via a Kalman filter or together with a building gray-box model. Though previous studies show good
prediction results on their data, it is necessary to investigate more in-depth investigation on the impact of the gray-box
model quality and the proper structure of the black-box model because the gray-box model quality is not guaranteed
in the real building due to the lack of sensors and low data quality.

In this research, we propose a hybrid approach that integrates a neural network-based black-box model for unmea-
sured disturbances with a gray-box model for a predictive application. First, we provide a simulation case study to
show how the conventional identification algorithm poorly behaves under unmeasured disturbances and propose and
compare alternative identification algorithms to overcome this issue. After investigating the limitation of alternative
identification algorithms in a predictive application, we propose a neural network model by considering the gray-box
model structure. Finally, the impact of input features and model types on the performance is investigated with actual
prediction performances.

2. COMPARISONS OF IDENTIFICATION APPROACHES UNDER UNMEASURED
DISTURBANCE AND EFFECT ON PREDICTION: SIMULATION CASE STUDY

For real buildings, the various heat gain information (e.g., occupants, lighting, appliances, and in/exfiltration loads) is
often not available. and it often leads to failure of the conventional system identification approach (CONV) (Braun
and Chaturvedi, 2002), which minimizes a norm of errors between simulation and measurement, despite its popularity
in the literature (Kim et al., 2016; Kim et al., 2018). Different identification approaches are needed to overcome this
problem. We provide a simulation case study to show how the conventional identification algorithm poorly behaves
under unmeasured disturbances and propose and compare alternative identification algorithms to overcome this issue.
The proposed algorithms model not only the thermal dynamics of a building envelope system but also the dynamics of
unmeasured disturbances in the form of either a lumped input disturbance (ID) (Coffman and Barooah, 2018) or output
disturbance (OD) (Kim et al., 2016; Kim et al., 2018).

2.1 True system description and data generation
It is very difficult to compare the performance of identification approaches for a real building since we do not know the
true system dynamics or parameters. Instead, we created a hypothetical building envelope model and treated it as the
True model for this study. The True model was tuned with a data set that was generated from a laboratory environment
(FLEXLAB) (Lawrence Berkeley National Laboratory, 2021). The laboratory represents a single-zone office space.
The True model has the RC network shown in Fig. 1 and the state-space form of Eq. 1 (state transition process and
measurement process).
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where Tw, Tza, and Toa are temperature nodes of large thermal mass (w), zone air (za), and outdoor air (oa), Rzw and
Rzo are thermal resistances between temperature nodes [K/kW], Cw and Cza are thermal capacitances [kWh/K], q̇sol,win
is incident solar radiation per area on windows [kW/m2], Awin is effective window area [m2], f is convective fraction of
the incident solar radiation, Q̇hc is heating/cooling rate from maximum heating/cooling rate (Q̇heat,max/Q̇cool,max) times
signal (iheat/icool) [kW], Q̇gain is internal heat gain (e.g., summation of plug, lighting, and occupancy loads) [kW], and
yza is measured zone air temperature [○C].

The parameters to be estimated through the system identification are θ = [Cw,Cza,Rzw,Rzo, f,Awin] and were tuned with
the complete measurements including Q̇gain. The values of the True model were set to Cw: 4.0 kWh/K, Cza: 1.0kWh/K,
Rzw: 1.2K/kW, Rzo: 9K/kW, f: 0.3, and Awin: 3.0m2. The maximum heating and cooling rates (Q̇heat,max and Q̇cool,max)
are set to 6kW and −6kW, respectively. Many SMCBs are controlled by a on/off thermostat controller with its own
thermostat setting such as minimum cycling time. To simulate this behavior, an ideal on-off heating/cooling controller
that sending heating and cooling operation signal (iheat and icool, respectively) with minimum cycling time of 5-minute
is implemented. Then, the data is resampled 15-minute interval through centered moving average.

To test the performance of the identification algorithms of the CONV, ID and OD under a practical scenario, Q̇gain is
assumed to be unknown. Instead, it is assumed that we can design experiments and actively control indoor temperature
setpoint (within an acceptable room air temperature band) for the purpose of better system identification. Two weeks
of data were generated from the True model with Oakland, CA, weather data. During the weekdays, cooling and
heating setpoints are set to 25○C and 21○C for occupied times (6 − 18 hour) and 30○C and 16○C for the unoccupied
time. However, the setpoint of the first weekend (2 days) was perturbed according to a pseudo-binary random signal
(PRBS) with 2-hour of time-scale and 4th order. The binary signal is mapped to sampled setpoints between 18−26○C.
The generated data set is visualized in Fig. 2.

Figure 2: Temperatures and measured/unmeasured disturbances/resampled control signals of simulated data.

2.2 Summary of system identification approaches
Eq. 1 was discretized in a 15-min sampling time by using the zero-order hold (Rouchier et al., 2019). Three different
system identification approaches (CONV, ID, and OD) were tested with the test data set aiming at identifying the True
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model. They have the same model structure for the building envelope dynamics, although their disturbance model
structures differ. Note that the unmeasured disturbance (Q̇gain) was not provided to the identification algorithms. In
other words, the identified model G maps only the measured disturbances (Toa, q̇sol,win) and control input (Q̇hc) to the
indoor air temperature (yza). In the following paragraphs, we will introduce the basic concept of each identification
approach because of the lack of space.

Conventional simulation error minimization approach: The CONV approach (Braun and Chaturvedi, 2002) as-
sumes that all unmeasured disturbances can be expressed as white noise (econv) in the measurement process. The
discretized system can be written as Eq. (2);

x(k + 1) = Adx(k) +Bdu(k)
y(k) = Cdx(k) + econv(k)

(2)

where Ad, Bd, and Cd from A, B, and C in Eq. (1).

The set of parameters (θ∗conv) is estimated by minimizing the sum of squared errors between simulation (ŷ(k; θ) =
Cdx̂(k; θ)) and measurement (y(k)) via the nonlinear optimization (Eq. 3);

x̂(k + 1; θ) = Ad(θ)x̂(k; θ) +Bd(θ)u(k)
y(k) = Cdx̂(k; θ) + εconv(k; θ)

θ∗conv = argminθ
N
∑
k=1
(εconv(k; θ))2 ,

(3)

where subscript d indicates a discretized system and, k is a discretized time index.

Input disturbance identification approach: The ID approach assumes that unmeasured disturbances come from the
input channel, i.e., the heat gain term, and treats the input disturbance as an additional dynamic state. This can be
written as an augmented state space form (Eq. 4) (Coffman and Barooah, 2018).
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where wID and eID are state and measurement noises. ζ ID represents the lumped input disturbance term.

The key idea in this approach is to treat ζ ID as Wiener process, so therefore , it behaves as the Brownian motion after
discretization according to its noise level (i.e., ζ ID(k + 1) = ζ ID(k) + wζ ID(k)). For the system identification, the ID
approach calculates one-step ahead prediction errors after filtering states via Kalman filter at each time. More details
can be found in Coffman and Barooah, 2018.

Output disturbance identification approach: The OD approach (Kim et al., 2016; Kim et al., 2018) models the
effect of unmeasured heat gain on the output (i.e., room air temperature) because the output more smoothly changes
compared to the input heat gain. The aggregated contribution of the unknown heat sources to the output is called the
output disturbance. The OD approach models the output disturbance as a filtered process of white noise (eOD(k)),
which is called output disturbance (vOD(k) in Eq. 5). The output disturbance dynamics can be modeled with two more
parameters, ρ1 and ρ2 (Eq. 5).

x(k + 1) = Adx(k) +Bdu(k)
y(k) = Cdx(k) + vOD(k)

ζOD(k + 1) = [ρ1] ζOD(k) + [ρ2] eOD(k)
vOD(k) = ζOD(k) + eOD(k)

(5)

The OD approach estimates a set of parameters by minimizing the square sum of one-step ahead prediction error. More
details for the identification algorithm can be found in Kim et al., 2016.
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Figure 3: Comparison of step response of measured disturbances (Toa and q̇sol,win) and control input (Q̇hc) for each
method.

2.3 System identification results and discussion
For each identification algorithm, the optimization problem is non-convex, and hence to find a better optimal solution,
we randomly sampled initial starting points and repeatedly solved the optimization problems 50 times. The estimation
results of CONV, ID, OD identification approaches are summarized in Table. 1.

Table 1: Comparison of estimated parameters from system identification approaches

Cw
[ kWh

K ]
Cza
[ kWh

K ]
Rzw
[ K
kW ]

Rzo
[ K
kW ]

f
[-]

Awin
[m2]

Q̇heat,max
[kW]

Q̇cool,max
[kW]

True 4.0 1.0 1.2 9.0 0.3 3.0 6.0 -6.0
CONV 40 0.38 6.17 40.0 1.0 1.06 1.48 -1.3
ID 20.63 1.37 0.81 3.37 0.03 20.0 6.7 -8.7
OD 10.58 1.33 0.84 4.14 0.15 12.37 6.72 -8.6

Overall, the estimated R, C, and Q̇ values of ID and OD have realistic scale compared to CONV, but all methods
wrongly estimate solar-related parameters (i.e., f and Awin). A building thermal dynamics is the combination of all the
inputs and current state information, so some of wrong parameters are affecting the long-term thermal dynamics of the
building. Fig. 3 shows the comparison of step response of measured disturbances and control inputs for each method.
While all three methods fail to capture long-term responses, ID and OD show better performance overall, especially
for the short-term period. For example, ID and OD capture a short-term dynamics of cooling control input (icool) for 2
hours.

2.4 Challenges in prediction application
In a predictive application such as model predictive control (MPC), the performance of prediction is critically impor-
tant to correctly respond to the current grid’s status (e.g., price signal). However, it is difficult for a building when the
unmeasured disturbances are significant, even if we have a perfect gray-box model. For example, the predicted tem-
perature profiles for daytime are much lower than the measurement if there is no credible internal heat gain prediction.
This results in a wrong prediction for the cooling period. This section provides a more detailed simulation study that
shows this issue and motivates developing an additional model, namely the hybrid modeling approach described in the
following section, to overcome this problem.

In Fig. 4, the 1-day ahead, room air temperature predictions of the True, CONV, ID, and ODmodels are compared with
the measurement. Like before, the heat gain (Q̇gain, marked with the red line in the bottom figure) information was not
given to all models. Not surprisingly, all methods show large deviations from the measurement in future prediction,
even for the True model. This is because the True model did not receive the heat gains while the physical building
did. This wrong prediction is problematic when the predictive application targets daily demand management, such as
load shift. Therefore, in addition to the correct parameter estimation, it is also essential to forecast the unmeasured
disturbances for the predictive application.

7th International High Performance Buildings Conference at Purdue, July 10-14, 2022
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Figure 4: 1-day ahead temperature predictions of different approaches without unmeasured disturbances.

Figure 5: Comparison between Conventional and Hybrid approaches.

3. HYBRID MODELING APPROACH FOR PREDICTIVE APPLICATION

3.1 Overview of Hybrid modeling approach
In this section, we introduce a hybrid modeling approach that combines the OD system identification with a method of
forecasting unmeasured disturbances for predictive applications. Fig. 5 shows the schematic diagram of the proposed
Hybrid approach compared to the Conventional approach. As shown in Figures 5 and 6 (a), a building thermal model
is a transfer function between the inputs (control inputs, measured disturbances, and unmeasured disturbances) and the
output (temperature).

In Conventional approach, the building model is used to predict future output (i.e., temperature) by using the future
measured disturbance (i.e., forecast of Toa and q̇sol,win) and future control inputs (Q̇hc). However, as discussed in section
2.3 (see Fig. 3), this approach might not provide reliable prediction when the absence of unmeasured disturbances is
not negligible.

On the other hand, the Hybrid approach attempts to include future unmeasured disturbance information through a
disturbance model. The key steps are as follows. First, a gray-box model is trained through OD system identifica-
tion. Then, we estimate the past unmeasured input disturbance (ζ̂ ID) at each sampling time by utilizing the ID model
(Eq. 5). Once the unmeasured input disturbance is estimated, then we perform the time series modeling explicitly,
e.g., via machine learning techniques, to forecast the unmeasured disturbances. In this case, we use unmeasured input
disturbance because the prediction errors on the input disturbance are filtered through the gray-box model on tem-
perature prediction, while the prediction errors of the unmeasured output disturbance directly go to the temperature
prediction.

7th International High Performance Buildings Conference at Purdue, July 10-14, 2022



3489, Page 7

Figure 6: Unmeasured disturbance estimation with the accurate model.

Figure 7: Unmeasured disturbance estimation with the inaccurate model.

3.2 Design of Hybrid model structure
The unmeasured disturbances are mainly composed of internal heat gains from occupants, appliances, and plug loads,
and it is typically modeled as a function of daily/weekly schedules (Ellis, 2021; Hong et al., 2020). It is a valid approach
when the gray-box model is accurate.

Fig. 6 shows the schematic diagram of unmeasured disturbance estimation (ζ̂ ID) with an accurate (True) model (a),
and the average of estimated weekly profiles are compared with the average of measured values (Q̇gain) (b). Since the
model is the True model, the estimation shows good agreement with the true profile.

On the other hand, Fig. 7 shows the schematic diagram of unmeasured disturbance estimation with an inaccurate
model (a), and the average of estimated weekly profiles are compared with the average of the measured values (Q̇gain)
(b). Although the unmeasured disturbance with an inaccurate model has a weekly pattern, it deviates from the mea-
sured values. In addition, each week’s estimation has more variations compared to the accurate model case (Fig. 6
(a)), meaning it has some more dynamics in addition to the weekly pattern. As shown in Fig. 7 (a), the estimated
unmeasured disturbance could be affected by control input and measured disturbance because the system model is not
accurate.

From this investigation, a design matrix of input features and model types is established as shown in 8. Based on the
design matrix, we develop several neural network models and evaluate the performance. Input features are composed
of three components: time, pattern, and measured disturbance. Time (e.g., hour of week, etc.) and pattern features (past
n days of ˆζ ID) are typically used in the time-series modeling. It explains the time-specific and autoregressive pattern
characteristics of time-series data. In addition, we also include measured disturbance (w) as shown in Fig. 7.
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Figure 8: Design matrix of input features and model types for the unmeasured disturbance model.

Three types of models are used in this study: Multi-Layer Perceptron (MLP), Convolution Neural Network (CNN),
and Long short-term memory (LSTM). MLP and CNN have input-output structure that maps input time-series vector
(x ∈ R(nxnk,x)) to output time-series vector (y ∈ Rnk,y ) (i.e., feed-forward network). Input time-series vector is 1-
dimensional vector concatenated by input features for a given input time-period (nk,x), and output time-series vector is
1-dimensional vector of estimated unmeasured disturbance for the prediction time-horizon (nk,y). On the other hand,
LSTM is a dynamical model that maps input features (xk ∈ Rnx ) to output (yk ∈ R1) in each time-step (k) (i.e., feed-back
network). All the three models are commonly used in deep-learning, so we simply summarize the structures below due
to the lack of space. MLP is a fully connected feed-forward neural network (Murphy, 2022). The output time-series
vector (y) is modeled from input time-series vector (x) through nlayer numbers of hidden linear layers with activation
function (φ) and dropout layer (Eq. 6).

z0 = dropout(φ(W0x + b0))
for i in 1 ∶ nlayer ∶

zi = dropout(φ(Wizi−1 + bi))
y =Wyznlayer + by

(6)

where Wi and bi are weights and bias parameters that maps hidden layers from zi−1 to zi is hidden. φ is activation
function, dropout is a dropout layer, which is commonly used to prevent from over-fitting (Murphy, 2022).

CNN is one type of neural network that maps input-output data and is widely used for image classification problems
because it extracts meaningful features from raw data through the convolution kernel (Murphy, 2022). The structure
is similar to MLP, but the convolution filter and max-pooling layer are used instead of the linear layer, and one more
linear layer is for the last convolution layer (Eq. 7).

z0 = φ(maxpool(conv(x)))
for i in 1 ∶ nlayer ∶

zi = φ(maxpool(conv(zi−1)))
y =Wy(dropout(φ(Wnlayer+1znlayer + bnlayer+1))) + by

(7)

where conv is convolution filter and maxpool is max-pooling layer.

LSTM is one type of recurrent neural network (RNN) using LSTM cell that maps input (xk ∈ Rnx ) to output (yk ∈ R1)
in each time (k) (Eq. 8) (Murphy, 2022). There are several types of cells for RNN, but LSTM, which includes both
short- and long-term memory states, shows a good performance for several time-series tasks.

for i in 1 ∶ (nk,x + nk,y) ∶
hi+1, ci+1,= LSTM(hi, ci,xi)

for i in 1 ∶ (nk,y) ∶
yi =Wy(dropout(φ(Whhi + bh))) + by

(8)

where h and c are hidden and cell state vector that holds short- and long-term memory, respectively. xi is subset of
(timei,wi, ζ̂ ID,i), and ŷ(nk,x+1)∶(nk,x+nk,y) are used to for ζ̂(nk,x+1)∶(nk,x+nk,y).

For all three models, there are several hyperparameters such as types of activation function, sizes and number of
hidden layers, sizes of convolution filter and pooling layers, etc. Model training is conducted on various combinations
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Figure 9: Impact of time feature and future unmeasured disturbance on test RMSE (test RMSE data is scattered in
each box for readability without any meaning).

Figure 10: One-day ahead temperature prediction of Hybrid and Conventional approaches on test data (h: Hybrid, c:
Conventional).

of hyperparameters, and the best hyper-parameter sets that shows the minimum RMSE on test data is chosen. The
details are omitted due to the lack of the space. All the models are developed using PyTorch (Paszke et al., 2019). One
month of data (June, 2020) is used for training, and the following four months of data (July-Oct, 2020) is used for the
test. All the data is resampled in hourly interval and then scaled by standardization (i.e., z-score normalization).

4. RESULT AND CONCLUSION

One of the main contributions of this study is to propose a Hybrid modeling approach in consideration of the limitation
of the gray-box system identification. To validate the design approach proposed in section 3.2, we compare the test
RMSE values of various models of input features and model structures. Specifically, the impact of time feature, future
measured disturbance (w), and model type on test RMSE is tested using linear regression (Fig. 9 (b)) and visualized in
Fig. 9 (a). The inclusion of any time features and future w clearly shows the better performance, and it is statistically
significant (p-value<0.05). However, the model types do not show the statistical differences.

Since there are no significant differences betweenmodels that include time feature and futurew, we choose one specific
model (LSTM with weekday time feature, 2 days historic ζ ID, and both past and future w) that shows consistent
performances over different data and practical issues (e.g., the required amount of historic data, number of parameters,
etc.). The one-day ahead predictions of the Hybrid approach on test data are randomly selected and visualized in Fig.
10. The Hybrid (h) approach shows better prediction than Conventional (c) approach, and the average RMSE of Hybrid
approach is 0.24○C while Conventional approach shows 1.1○C.

In this study, we propose the Hybrid approach that overcomes the gray-box model in a predictive application for
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real buildings. Throughout the investigation of the various system identification approaches and their limitations, we
design a neural network model that predicts unmeasured disturbance. The Hybrid approach shows better performance
in temperature prediction on the test data. In the future study, we will investigate the performance of the proposed
model in various real data with hyperparameter sensitivity analysis. Also, it is necessary to be discussed how to make
this approach in scale over spaces (i.e., a limited number of data) and time (i.e., different seasons). One practical
solution is to provide a guideline to deploy the model, but it is worth testing the applicability of Bayesian model update
or Transfer learning approach.
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