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ABSTRACT

Building continuous performance monitoring is becoming a cornerstone in ensuring energy efficiency and sobriety of
existing, retrofitted and newly built buildings. Although it may help convince investors in energy efficiency projects or
bridge the gap between expected and actual performance, continuous monitoring - sometimes referred to as “Advanced
M&V” or continuous commissioning – is still the exception rather than the rule. Recent efforts to continuously char-
acterize building performance usually rely on building-level analyses: previous works include leveraging a Building
EnergyModel (BEM), monthly calibrated on building heating, ventilation and lighting consumption using real weather
data and fine grain occupancy data, for daily monitoring. While BEM calibration against sub-daily frequency data has
been increasingly studied in recent years, it is, to our knowledge, seldom used for building continuous monitoring. It is,
however, particularly tailored for this task, to the extent it extracts embedded physics within the BEM into actionable
insights for fault detection and diagnosis.

Fine grain calibration of BEM faces a number of challenges in the recent literature, among which are (i) accounting for
time varying dependent functional inputs - e.g. electric equipment and lighting energy consumption altogether with
building occupancy - but for sensor data in the calibration algorithm, and (ii) treating functional outputs as functional
stochastic variables when comparing simulation outputs with real data. Our contribution is to enhance building-level
performance monitoring by introducing a stochastic model inversion scheme, also referred to as stochastic calibra-
tion, to support robust preventive fault detection and diagnosis. Our approach extends the current state-of-the-art on
Bayesian calibration of BEM by accounting for dependent functional inputs and outputs in both selecting the most
influential parameters and calibrating the model, and deals with uncertainties in functional inputs such as daily profiles
of lighting and electric equipment energy consumption. This methodology is illustrated against a medium-size real
secondary school building, located in Rennes, France, and equipped with an AdvancedMeter Infrastructure (AMI) with
hundreds of sensors. A comparison between a classic calibration process and the described methodology is presented
and the benefits of accounting for the functional nature of the inputs and outputs in both the Design of Experiment
(DoE) and the calibration process are illustrated against this case study.

1. INTRODUCTION

The advent of Advanced Metering Infrastructure (AMI) and cloud computing is paving the way towards more af-
fordable advanced building performance monitoring, notably reducing the cost of data acquisition (Granderson et al.,
2016). Besides, Touzani et al. (2019) highlighted the necessity of accounting for non-routine event (NRE) in comparing
metered consumption to a baseline, e.g. within an IPMVP-based process. It is only a short step from there to Automated
Fault Detection and Diagnosis (AFDD) methods, where one is interested in monitoring and preventing performance
drifts in an automated and continuous manner. FDD-related research has been quite active in the past years: on one
hand, it mostly focuses on heavily instrumented commercial buildings and data-driven (Frank et al., 2019) approaches
to precisely predict specific faults such as duct fouling - Frank et al. (2016) also tried using a hybrid or data-driven
approach with a minimal set of metered data to diagnose specific faults; on the other hand, Jradi et al. (2018) used a
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model-based approach, where an EnergyPlus (EnergyPlus, 2019) model is dynamically calibrated by passing real time
metered data to the simulation, and compares simulated and metered data to help detecting and diagnosing drifts in
performance. However, while BEM calibration against sub-daily frequency data has been increasingly studied in recent
years (Chong et al., 2017), it is, to our knowledge, seldom used for building continuous monitoring without heavy data
metering to account for dynamic variables such as occupancy. It is, however, particularly tailored for this task, to the
extent it extracts embedded physics within the BEM into actionable insights for fault detection and diagnosis.

In this paper, we propose to extend the current state-of-the-art calibration process to account for dynamic variables, so
that building-level performance monitoring algorithms may be developed for building equipped with a small number of
sensors not necessarily accounting for dynamic variables such as occupancy. The following sections are organized as
follows. Section 2 describes the case study used to illustrates our methodology. Section 3 digs into the technical
details of how the calibration process is extended to account for functional and dynamic inputs and outputs, and
defines the baseline to be compared with. Eventually, section 4 compares how the exposed methodology improves
the baseline.

2. CASE STUDY OVERVIEW

The case study is a medium-size real secondary school building, Lycée Brequigny1, located in Rennes, France, and
equipped with an AdvancedMeter Infrastructure (AMI) with hundreds of sensors. For the sake of clarity and simplicity,
we only describe the building main features, and tested our methodology on the heating energy consumption only. The
BEM model used in this work is built using EnergyPlus (EnergyPlus, 2019).

2.1 Building’s description and thermal zoning
The building is a recently retrofitted educational building, comprised mostly of classrooms and offices, and is one of
three buildings that together form the Lycée Brequigny. The building total floor area is 9426 square meters. 3D view
and thermal zoning for the ground floor are displayed in Figures 1a and 1b.

(a) 3D view of Lycée Brequigny (b) Ground floor thermal zoning

Figure 1: Thermal zoning of the case study

The building was externally insulated in 2020, and is heated by hot water radiators connected to four district heating
substations. The inlet temperature of the secondary loop is regulated on the outdoor dry bulb temperature.

The study is particularly focused on the parameterization of occupancy, ventilation, electric equipment, lights and
indoor temperature, which impact the heating consumption. As the retrofit came with an Energy Performance Contract
(EPC), a BEM was built during the design stage of the retrofit. Therefore, the BEM built in our study took over all the
parameters from the previous model, and updated them according to the building as built2. Part of these parameters
will be calibrated further down the road, except for the - measured - indoor temperature that is taken as a boundary
condition used during calibration.

Heating energy is delivered to the building by a heat exchanger connected to a heating district and that feeds hot water
to the radiators throughout the building. Classrooms are equipped with motion detectors and temperature sensors that
control the hot water radiator terminal regulation and the mechanical ventilation flow rate based on pre-configured

1It was renovated in 2020 and was awarded several national and international awards.
2as opposed to the building as designed.
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values. All other rooms are regulated using thermostatic valves and pre-configured ventilation schedules except for
some teachers rooms that are ventilated according to measured CO2 levels.

2.2 Advanced Meter Infrastructure (AMI) overview
Thousands of data points are collected through the Building Management System (BMS). The site is operational
since 2019, and the sensor data from November 2020 to March 2022 are used in this study. For the purpose of the
demonstration, the ten first days of December 2020 are extracted from the data set. Because of COVID-19, the site
regulation and occupancy were particularly disturbed, in that the variability of the occupancy and ventilation flow rate
was high - in particular the overall occupancy was exceptionally low -, and the classrooms were over-ventilated (natural
ventilation) during this time period to prevent the spread of the virus. Only a small subset of the AMI data was used,
and is described in Table 1.

Table 1: Data used from the AMI to illustrate the methodology

Data # sensors Use in the proposed methodology

Indoor temperatures 71 The 71 time series are averaged out and used as observed input data in
the calibration process.

Heating energy consumption 3 The consumption of three substations out of four are aggregated alto-
gether. The fourth substation, feeding the conference hall, is voluntarily
left out.

Besides sensor data, dry bulb temperature and horizontal irradiance are also used as inputs to the model calibration
procedure. Eventually, a categorical temporal variable is used to indicate whether or not, for each day, the heating
system is turned on.

The high variability in building uses makes it even more critical to account for these changes during monitoring in
order to properly detect and diagnose potential fault during building operation.

3. METHODOLOGY

While the methodology relies on a well-known tried and tested succession of steps3 (Kennedy and O’Hagan, 2001;
Heo et al., 2012; Chong et al., 2017; Monari, 2016), our contribution dwells in bringing to BEMs calibration new
developments in stochastic model inversion so (i) functional variables are accounted for (Nanty, 2015; Nanty et al.,
2016) and (ii) the process is compatible with building performance monitoring. In addition, we emphasise on the
choices made for use within a building performance monitoring workflow. This section describes the methodology
laid out to achieve BEM calibration with functional inputs and outputs. The methodology breaks down as follows: (i)
first a Design of Experiments (DoE) is generated; (ii) then a surrogate model is trained on the simulation in order to
perform a Global Sensitivity Analysis (GSA) to select a relevant subset of features; (iii) and eventually a new surrogate
is trained on the reduced subset and (iv) Bayesian calibration is performed using the emulator. This section ends up
with describing the benchmark procedure of our methodology.

Table 2 displays the parameters that were chosen to conduct this work. N[a,b](μ, σ) is the truncated normal distribution
on the interval [a,b] with mean μ and standard-deviation σ, and U[a,b] is the uniform distribution on the interval
[a,b].

3.1 Modeling input and output functional variables
To account for functional input variables, the methodology leverages Functional Data Analysis (FDA) algorithms to
decompose multivariate time series data into a reduced basis of functions. When applied to a single day profile, the
decomposition allows to find the functional basis (φi)i=1..k and mean function e such that

3In the literature, while the calibration processes may slightly differ from one work to another, they basically all follow these three steps: (i)
reduce the number of parameters to calibrate, (ii) optionally define a surrogate model (to train before or at calibration time) and (iii) explore posterior
distribution of unknown parameters

4Only classes are regulated with a setback and comfort setpoint
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fj ≈ e +
k
∑
i=1

ai,jφi,

That minimizes

n
∑
j=1
∫

I

(fj(t) − e(t) −
k
∑
i=1

ai,jφi(t))
2

dt

In this work the functional decomposition is extended to multiple and dependent functions, using the Simultaneous
functional Principal Component Analysis (SPCA) algorithm (Ramsay et al., 2005), consequently representing all
dependent functions in Table 2 with a small number of scalars α = (a1 . . . ak), that will be further used in the BEM
calibration process.

Besides, for the methodology to be compatible with continuous monitoring, all functional metered data - inputs and
outputs, e.g. dry bulb temperatures or hourly heating energy consumption - were segmented into hourly time series of
one day.

As a consequence, a datum in the training and testing sets is no longer a simulation run period long, as it would have
been following Higdon et al. (2008a), or several months long, as suggested in Monari (2016), but a day long, bringing
the number of samples in the training set up to 365 times the number of simulations. Therefore, the number of training

Table 2: Model parameters description and distributions.

Symbol Parameter description Distribution

Scalar parameters
υocc Multiplicative factor of the occupancy nominal value N[0.3,1.6](1.0,0.5)
υvent Multiplicative factor of the ventilation nominal value N[0.4,0.6](0.5,0.2)
υnatvent Multiplicative factor of the natural ventilation nominal value U[0.5,1.5]
υli Multiplicative factor of the lights nominal value N[0.6,1.4](1.0,0.2)
υeq Multiplicative factor of the equipments nominal value N[0.6,1.4](1.0,0.2)
bvent Multiplicative factor of the ventilation baseload N[0.6,1.4](1.0,0.2)
bli Multiplicative factor of the lights baseload N[0.6,1.4](1.0,0.2)
beq Multiplicative factor of the equipments baseload N[0.6,1.4](1.0,0.2)
λ Multiuplcative factor for all opaque surface conductivities N[0.8,1.2](1.0,0.1)
Uw Multiplicative factor for all windows U-value N[0.8,1.2](1.0,0.1)
Sw Multiplicative factor for all windows solar heat gain N[0.8,1.2](1.0,0.1)
η Efficiency of the heat exchanger of the heating district N[0.7,1.0](0.9,0.1)
qinf Infiltration flow rate under 4Pa U[0.6,1.4]
tc Indoor comfort temperature offset from nominal value N[−2.0,3.0](0.0,0.5)
ts Indoor setback temperature offset from nominal value for classrooms U[−3.0,0.0]
sblinds Threshold of direct solar radiation for closing / opening the blinds U[100.0,800.0]
sli Threshold of illuminance for turning on/off the lights U[200.0,700.0]
hs Time offset from system nominal start time in hours U[−2.0,1.0]
he Time offset from system nominal shut down time in hours U[−1.0,2.0]

Functional parameters
foffices Normalized day profile used for offices GMM on the coefficient of

the functional
decomposition of randomly
generated profiles

fclass Normalized day profile used for classrooms -
ftemp Day profile of temperature setpoint in classes4 -

7th International High Performance Buildings Conference at Purdue, July 10-14, 2022



3209, Page 5

points in the simulation data set grows larger than 10,000 data points for several hundreds of simulations, making
the training of Gaussian Processes (GP) (Kennedy and O’Hagan, 2001; Rasmussen and Williams, 2005; Higdon et al.,
2008a; Chong et al., 2017) unfeasible. A Sparse Variational Gaussian Process (Titsias, 2009; Hensman et al., 2013) was
used instead, as it scales to potentially millions of training points, and is easily expressed as a probability distribution
over the model.

Figure 2 illustrates the functional decomposition by showing the effects of positively and negatively varying the
coordinates ai on the decomposed mean function, here the building energy use day profile, for the three first eigen
functions.

3.2 Accounting for functional variables in the Design of Experiment (DoE)
Let X = (x1, . . . xn) and Z = (z1(t) . . . zm(t)) be respectively the unknown scalar and functional variables (in our case
time series). Usually, an optimized Latin Hypercube Design (LHD) is created on a bounded domain of X using some
distance metric (see Jin et al. (2005); Morris and Mitchell (1995), and is used to perform GSA (Saltelli et al., 2008;
Iooss and Lemaître, 2015), which assumes the random variables are independent. Time series, besides being high
dimensional, are auto-correlated, i.e. each time step depends from the previous ones, and may be dependent from each
other, e.g. building lighting and equipment daily electricity consumption are likely to be high when the building is
occupied and low when it is not. As such, we cannot build a LHD on the functional variables.

We relied on the work of Nanty et al. (2016) for building our full DoE. Using the SPCA algorithm, an optimized
maximin DoE on the coefficients ai,j was built on a non hypercubic domain as in Auffray et al. (2012). Then the DoEs
on Z and X were combined adapting an algorithm by Muehlenstaedt et al. (2016)

Figure 2: Illustration of the functional decomposition of the normalized heating energy use hourly day profiles. The
three figures show the effect of positively (+) and negatively (-) varying the coordinates ai on the mean decomposed
function for the three first eigen functions φi. The first eigen function handles the overall amplitude of the day profile,
and the second and third ones focus on the peak amplitude and phase variations.

3.3 Global Sensitivity Analysis (GSA)
In the standard framework originally exposed in Kennedy and O’Hagan (2001), a Global Sensitivity Analysis (GSA)
(Saltelli et al., 2008) can be used to discard non influential parameters and calibrate only a handful of relevant pa-
rameters, thus helping to sanitize an otherwise under-determined problem. However, the Sobol’ indices5 (Saltelli
et al., 2008; Janon et al., 2014) are, in their original formulation, only valid between independent variables and scalar
outputs. Following the work of Nanty (2015), all coordinates ai originating from the same functional decomposition
were grouped, so only the influence of the group was quantified. Furthermore, the indices computation was also
modified to account for the multivariate / functional outputs case as in Gamboa et al. (2014).

3.4 Bayesian BEM calibration
The input data was comprised of:

• Metered dataD: these comprise daily profiles of weather - dry bulb temperature and global horizontal irradiance
5For model calibration, the total-order indices are used to screen out non-influential variables.
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- and indoor temperature, projected onto two functional bases learnt on the simulation outputs from the DoE.

• Unknown data θ: vector of parameters to calibrate. It encompasses both scalar - i.e. we assume the value of
each parameter is constant throughout the calibration period - and functional - each day has a different vector
of values - variables. Assuming there are ns scalar variables that the functional decomposition of the functional
variables has nf eigen functions, then there are n = ns +nf ×L parameters to calibrate, L being the length, in days,
of the calibration period.

The inputs were bound together by the following probabilistic model (Kennedy and O’Hagan, 2001)6:

y = η(D, θ) + δ(D) + ε (1)

The probabilistic model fromHigdon et al. (2008a) wasmodified to account for themodularity as in Bayarri et al. (2007,
2009) - since the surrogate model is trained before model calibration - while accounting for the emulator response and
the discrepancy model respective functional decomposition. The PPL Numpyro (Bingham et al., 2018) was used in
this work to factorize the likelihood on the observed days and to use enumeration of discrete latent variables7.

3.5 Benchmark
The methodology developed in this work was benchmarked against a standard calibration setting, where neither
functional nor dynamic parameters were accounted for (see Heo et al. (2012); Chong et al. (2017) for examples),
that is referred to as Static Prior (SP), as opposed to the Dynamic and Functional Prior (DFP) setting. Although the
model and its modifications in the SP setting - described in section 3.4 - is not quite the standard described in Higdon
et al. (2008a), we felt the comparison would not have been fair otherwise, or at least it would have been blurred by the
differences in the calibration procedure, besides the difference in the prior distribution.

In addition to the CVRMSE, NMBE and Q2 indicators, that inform on the goodness of fit of the calibrated model,
because our final goal is to estimate reasonable variation ranges for the observed data, and to detect and diagnose
abnormal behaviors, indicators that capture the predictive capability of the model were computed, namely the empirical
frequency coverage (EFC) (Kyzyurova et al., 2018) and the reliability-based metric (Pr(∣yi − ŷi∣ < ε)) (Ling et al.,
2014).

4. RESULTS

4.1 Comparison of posterior predictive distributions
The posterior predictive distributions inform on how well the observed data is explained by the EnergyPlus model -
through the EnergyPlus emulator η - and what sorts of discrepancies still remain between the observed data and the
EnergyPlus model - through the discrepancymodel δ. While a visual analysis is well suited for exploring discrepancies,
s.a. phase shifts in the energy use day profile - see Figure 3 for the posterior predictive distribution of η -, the indicators
displayed in Table 3 provide a more rigorous comparison as to which model explained the data best.

Table 3: Indicators computed on the posterior predictive distributions of the emulator for both models, SP and DFP.

Q2 CVRMSE NMBE EFC90% Pr(∣yi − ŷi∣ < ε)

SP 0.93 0.32 0.02 0.90 0.77
DFP 0.97 0.22 0.01 0.91 0.91

From Table 3, it seems that the DFP setting is better suited to explain the observed data in almost every respect,
and is hence likely to be of better use in an AFDD context. Indeed, indicators such as Q2, CVRMSE and NBME
appear to show better predictive power for the DFP setting. Furthermore, they abide by ASHRAE guildeline 14 about
calibrated models, contrary to the SP setting. Besides, the reliability-based metric seems to go the same route and
provide a better prediction interval at fixed ε. However, it should be noted that the SP setting provides slightly better
uncertainty coverage as the EFC90% equals its target value while the DFP setting seems to slightly overestimate the
uncertainty.

6As in Higdon et al. (2008b), the discrepancy is built as a linear combination of 5 radial basis functions that smoothly adjust the emulator response.
7Which is needed when considering a GMM prior on the functional variables.
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(a) η + ε, DFP

(b) η + ε, SP

Figure 3: Posterior predictive distributions of the emulator for both SP (3b) and DFP (3a) models. For the reliability-
based metric, ε is arbitrarily taken equal to 50 kWh.

4.2 Comparison of posterior distributions
9model parameters were selected using Sobol’s total-order indices, andwere calibrated against the building real heating
energy use. Table 4 displays the posterior distributions - mean and standard deviation - for the static parameters (that
are common to both settings). Mean estimates, along with calibrated high density intervals (HDI), seems robust since
they are quite similar between both models.

Table 4: Posterior distributions for static variables, for both models SP and DFP

DFP SP
mean sd q3% q97% mean sd q3% q97%

he -0.050 0.010 -0.069 -0.031 0.255 0.344 -0.117 0.825
hs 0.066 0.056 -0.011 0.168 0.154 0.139 -0.038 0.419
η 0.724 0.013 0.700 0.745 0.717 0.013 0.700 0.739
υnatvent 1.465 0.036 1.399 1.500 1.460 0.042 1.379 1.500
υocc 0.678 0.188 0.358 0.982 0.446 0.102 0.350 0.619
tc 1.195 0.104 1.018 1.403 1.151 0.125 0.949 1.404
ts -0.054 0.055 -0.156 -0.000 -0.084 0.077 -0.228 -0.000
υvent 0.620 0.049 0.529 0.698 0.516 0.097 0.352 0.670

It is worthwhile noting that sometimes parameters HDI overlap, e.g. for parameter tc, sometimes it seems to be shifted,
e.g. for parameter he. When they do overlap, most of the time the DFP setting reduces the uncertainty on the said
parameter, as can be expected since the functional variables add a degree of freedom per day for the emulator to adjust
its response to observed data. In all cases, parameters HDI are not too different between both models.
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4.3 Uncertainty reduction on functional variables
It is also worthwhile noting how the functional variables prior is updated with the metered data. Figure 4 displays the
resulting posterior distribution after calibration along with the standardized profile from the simulation model, used in
the SP model. While the prior distribution spans multiple kinds of profiles - half-days, full days, and holidays - the
posterior distribution focuses much more on one type of profile, sometimes two, showing potential change in building
occupancy from what would be expected. What is even more interesting is that the posterior seems to capture the fact
that, during the calibration period, Lycée Brequigny was largely under-occupied due to the pandemic. However, while
the school was under-occupied globally at this period, no record of individual days was kept, so it is difficult to assess
whether or not the DFP accurately recovers the occupancy profiles.

(a) Functional prior for DFP model and SP values

(b) Functional posterior for DFP model and SP values

Figure 4: Functional prior (4a) and posterior (4b) for standardized occupancy functional variable. In black are the
base values from the EnergyPlus model, that are taken in the SP model.

5. CONCLUSIONS & PERSPECTIVES

Our study introduces an extension of the usual calibration process exposed in (Kennedy and O’Hagan, 2001; Higdon
et al., 2008a), that accounts for dynamic states of the building throughout the calibration period. The methodology
is competitive with the current state-of-the-art, and seems to possess superior flexibility in fitting and explaining the
observed data.

However, the methodology needs to be tested against a larger set of both real life and simulated experiments to
be completely validated, in terms of parameter estimation and predictability. Besides, since the calibration period
exhibits only weak variability on the functional variables, little improvement is shown on the case study. We expect
our methodology to be much more valuable in cases where, for instance, occupancy would change more abruptly.
Eventually, testing this methodology for continuous monitoring and diagnosis in an online setting seems promising to
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update our knowledge of how the building is operated, and help diagnose faults at building level.

NOMENCLATURE

Built environment
AFDD Automated Fault Detection and Diagnosis
AMI Advanced Meter Infrastructure
BEM Building Energy Model
BMS Building Management System
EPC Energy Performance Contract
HVAC Heating, Ventilation and Air Conditioning

Computer model analysis
DoE Design of Experiment
GSA Global Sensitivity Analysis
LHD Latin Hypercube Design

Math terms
DFP Dynamic and Functional Prior calibration setting
GMM Gaussian Mixture Model
PPL Probabilistic Programming Languages
SP Static Prior calibration setting
SPCA Simultaneous functional Principal Component Analysis

Symbols
δ Discrepancy model
η Emulator
θ Unknown and calibrated variables
D Known variables, s.a. dry bulb temperature
t Time index
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