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ABSTRACT 
  

Much needed energy transition brings special focus on fuel cell micro-combined Heat and Power (mCHP) systems 

for residential uses, one of which is a SOFC, fed by natural gas, designed to provide continuously 1.5 kWel (up to 

about 13 000 kWh yearly). However, this constant power output can be modulated as desired down to 500 Wel. With 

this machine, heat can also be recovered to partially contribute to the heat demand of the household. One main 

advantage of this appliance is that the heat recovery system is designed to be purely optional and it can be shut down, 

removed or added as desired, even if the machine is running. The machine is driven and completely monitored by the 

manufacturer remotely. This study is monitoring two of those installations in residential houses in Belgium for the 

whole year 2021. It focuses on the comparison of the actual field test performance with the targets expected for this 

technology, electrical efficiency of 60% at nominal power output being the main selling argument that has been 

verified in the real onsite applications studied in this work. 

 

Since the financial incentive represents a major factor in the investor’s decision towards such a technological 

investment, focus is brought on an economic indicator based on an average Belgian household energy bill, with 

promising results of about 1,3-1,4 k€ of utilization cost savings per year. At last, ecological indicators are established 

in an attempt to foresee the place this mCHP technology in the energy transition challenge of today towards the carbon 

neutral future everyone should aim for. The ecological balances can either be considered as positive, if the system is 

supposed to replace Combined-Cycle Gas Turbine (CCGT) power plant electrical production, or negative, compared 

to the actual Belgian electrical mix. 

 

1. INTRODUCTION 
 

Although its high operating temperature could be seen as a drawback (Ellamla, et al., 2015), SOFC technology has 

nevertheless a lot of advantages in comparison to other fuel cells, as summarized in the following lines : 

 

• Higher electrical efficiency (Ellamla, et al., 2015). 

• Fuel flexibility (Hauch, et al., 2014) because practically all hydrocarbons can be used with SOFC thanks to 

internal reforming allowed by the tremendously high temperatures. 

• Low sensitivity to impurities. Carbon deposition is indeed less an issue in this system thanks to internal high 

reforming temperature whereas it is one of the main contaminants of Proton-exchange membrane fuel cells 

(Paulus & Lemort, 2022a). However, sulphur compounds are still absolute poison for SOFC’s and fuel 

desulphurization is often required when the system is not fed with pure hydrogen (Fernandes, et al., 2018). 

• No necessary use of platinum, rhodium and other precious metals as catalysts (Peng, et al., 2021). 

 

The studied system is a commercialized SOFC for residential applications. Its expected specifications are presented 

in Table 1. It is not supposed to be turned OFF and ON and it is supposed be ran at a constant power output that can 
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be chosen between 0.5 and 1.5 kWel (nominal output power). The machine is remotely controlled by the manufacturer 

over an Ethernet port and, to adapt its system power output, the owner must send an email or give a phone call. 

 

Internal schematics and working principle are unknown for intellectual property protection. However, base principle 

is quite common. Such as any fuel cell, this system provides electricity through redox reactions between a hydrocarbon 

fuel (here, natural gas) and an oxidizing agent (here, as often, oxygen). Since those redox reactions have combustion-

like resulting equations (Shao, et al., 2005), there are thus exothermic by nature (Schmidt-Rohr, 2015) and release 

heat in addition of the produced electricity. Cogeneration is thus possible. 

 

Specific literature review on mCHP SOFC’s combined with little reverse engineering performed by observing the 

system with its protective cover unmounted has nevertheless allowed for assuming the most probable internal scheme 

of the system, which is presented in Figure 1. This scheme’s lay-out is strongly inspired from literature (Braun, et al., 

2006) cross-check against a specific study conducted along with this particular SOFC’s manufacturer (Wagner, 2019). 

Adjustments to the literature scheme have been performed for relevance with the physical observations of the system 

without its covers (indeed, for example, the system involves two water outlets periodically actioned). 

 
Figure 1: Most probable internal scheme. Lay-out strongly inspired from literature (Braun, et al., 2006) 

 

Important elements are presented in the assumed configuration of  Figure 1: 

• Natural gas fuel supply is desulfurized as it is an absolute poison for SOFC’s (Fernandes, et al., 2018). 

• Natural gas is mixed with water vapor in order for steam reforming to take place (a reformer is implemented 

before the stack, also called “preformer” for this reason). Therefore, the reforming process in not only internal 

(directly onto the stack). 

• Some of the fuel (mainly methane) is not directly consumed by the stack. It is rather consumed in an “after-

burner” in order to generate the heat required for steam generation (for the reformer). 

• The post-combustion gases are then used to provide heat to the preformer, to the boiler (as explained) and at 

last, before the exhaust, to the external heat recovery auxiliary circuit (offering the CHP capability of the 

system). 

• Figure 1 does not show that the exhaust gases are providing their remaining heat to the inlet air thanks to a 

“double walled chimney” (Lichtenegger, et al., 2015), in addition to the probable “air preheater”. 

• Anode recirculation is most likely implemented to increase fuel utilization (Chen, et al., 2021). Indeed, the 

gases at the outlet of the anode still contain H2, CO and CH4 that can still react and provide power, but they 

also contain H2O usable for the required steam reforming upstream of the stack. Maybe cathode recirculation 

has also been implemented but this is not the strongest assumption one could make because it complexifies 

or “after-burner” 

or “preformer” 
Post-combustion 
gases 
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the system. It is unknown to the authors if cathode recirculation already exists in commercialized units 

whereas it is known that this SOFC involves anode recirculation (Wagner, 2019). 

• The system requires a connection to water mains for steam reforming purposes. The system periodically 

draws water from the main, processes it and stores it in a tank. However, if heat recovery is implemented 

(which is actually optional with this system, that can function as an electrical generator only), water can be 

recuperated from the condensation of the flue gases. This reduces the grid water consumption. Potential 

excess of water in the tank can be evacuated through one specific water outlet. 

• Water impurities are processed through several filters involving reverse osmosis (Fritzmann, et al., 2007). It 

is believed that, at a certain point, the water impurities concentration in the periodical inlet water volume 

becomes too high compared to the pressure used for the reverse osmosis. Thus, the remaining inlet water 

(with high levels of impurities) has to be thrown away for another periodical grid fresh water inlet to take 

place (and to be submitted to the reverse osmosis filter). 
 

Table 1: Studied SOFC expected targets (data provided by manufacturer) 

Type Technical specifications 

Operation mode Power-led, continuous (approx. 8,700 h per year) 

Fuel type Natural gas, bio-methane 

Fuel consumption1 2.51 kW 

Electrical efficiency1,2 (output) Up to 60 % (1.5 kW) 

Thermal efficiency1,2 (output) Up to 25 % (0.6 kW) 

Electrical and thermal energy generated per year ~ 13,000 kWhel      |    ~ 5,220 kWhth 

Weight, Dimensions (H x W x D) 195 kg, 1010 x 600 x 660 mm 

Service interval3 12 months 
      1 - Low Heating Value (LHV) based figures 
      2 - At maximum electrical efficiency, nominal output of 1.5 kW 
      3 - Replacement of filters depending on local water, air and gas quality 

 

As explained, two systems have been monitored in Belgian households for the whole year 2021 (one in Riemst, East 

of Belgium and the other one in Duffel, North of Belgium). The monitoring architecture is presented in Figure 2. 

Contrary to other commercialized fuel cells in Belgium (Davila, et al., 2022), there is no internal DHW tank in the 

system so the standby losses, which can be significant with such systems (Paulus & Lemort, 2022b), do not affect the 

thermal output measure. Sensor reference, precision and resolution of the acquired data are presented in Table 2. 

Table 2: Reference of the monitoring sensors. The data logger (cloud connection) is a Viltrus MX-9 

Sensors Reference Resolution Accuracy 

Indoor & Outdoor temperature 

and humidity 
Weptech Munia 

0,1 K 

0,1 % 

± 0,3 K 

± 2 % 

Heat recovery counter 
Qalcosonic E1  

Qn2,5 qi=0.025 m³/h L=130mm 
1 kWh 

1 L | 0,1 K 

Accuracy Class 2 

(OIML R 75-, 2002) 

Machine 2-ways electrical 

energy counter 
Iskraemeco  

MT174-D2A42-V12G22-M3K0 
10 Wh 

Accuracy Class 1 

(IEC 62053-21, 2003) 

House 2-ways electrical 

energy counter 
Iskraemeco  

MT174-D2A42-V12G22-M3K0 
10 Wh 

Accuracy Class 1 

(IEC 62053-21, 2003) 

Gas volume counter BK-G4T DN25 Qmax 6 m³/h 10 L <0.5% 
 

Last very important parameter not shown in Table 2 is the sampling rate, the frequency of the acquisition, of the 

measurements. It could not be smaller than 5 minutes to prevent the battery inside the sensors to empty. Except for 

temperatures and humidity, all of those meters are computing energy index values (always increasing). The heat 

counter is preferably placed on the return line (Paulus, et al., 2022a).  

It is worth mentioning that the equivalent energy of the consumed gas is established thanks to hourly heating values 

given by the gas provider. The method used for this energy computation has been described in a parallel study (Paulus 

& Lemort, 2022c).  
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Figure 2: Monitoring architecture of both field-test households 

2. METHODOLOGY 
 

2.1 Energetical performance 
Electrical efficiencies have been computed without considering the monitored electrical consumption of the system. 

Only the equivalent energy of the consumed gas has been considered at the denominator of the efficiency calculations. 

It is worth mentioning that a consumption signal at the system’s output can only be seen if the machine is not producing 

electricity. Indeed, the system provides electricity to its own auxiliaries in running mode and only the net electrical 

production is measured. Since the system is supposed to be ran constantly, its remaining measured electrical 

consumption is not relevant in the efficiency calculations.  

 

2.2 Economical and ecological performance 
The chosen methodology for establishing performance indicators is similar to what the European Parliament 

recommends for calculation of primary energy savings of CHP (European Parliament, 2012). Their directive 

recommends to study the performance of a cogeneration by comparison to state-of-the-art separate heat and electrical 

energy productions. Based on this European directive, the Walloon energy regulator (in Belgium) has stated that the 

reference state-of-the-art system for heat production is a gas condensing boiler of constant 90% LHV efficiency 

(CWaPE, 2005).  

 

Reference electrical state-of-the-art production system will consider the actual electrical Belgian mix in most cases 

or, as considered by the Walloon energy regulator (CWaPE, 2005), following European directives (European 

Parliament, 2012), a CCGT plant of constant 55% LHV efficiency (CWaPE, 2005). This assumption is only 

considered once, for one single ecological indicator. The CCGT plants considered in this work as reference electrical 

production systems are never assumed to be used as CHP, as it is still not that common. 

 

Each indicator of this paper has been established by considering the actual pricing or ecological performance in the 

field-test (computed with given assumptions) subtracted to the assumed performance that would be achieved by 

reference machines based on the same field-test heat demands (and local electrical production). Positive indicators 

imply better performance than reference machines. 

 

Economical indicator subsequently consists in utilization cost savings (€ saved/year) compared to the reference 

machine, which is, as stated, a classical gas condensing boiler. In this work, one has neither taken into account the 

investment costs of the machine nor the one of its installation (or its removal). The pricing assumptions for this 

economical indicator have been provided by the Belgian energy regulator, named CREG (Commission de Régulation 

de l'Électricité et du Gaz), that oversees the whole energy market and parties. The federal regulator is providing those 

energy pricing based on the average Belgian household energy bills (Paulus, et al., 2022b). For 2021, only the second 

semester average prices have been considered and applied to the whole monitoring data of the year, in order to partially 

consider the impact of the energy crisis (Statistisches Bundesamt - Destatis, 2021) on the economical performance of 

the machine. The energy prices, considered constant for the whole year, are thus 0.333€/kWhel for electrical energy 

and 0.093€/kWhHHV for natural gas (CREG, 2021). It must be pointed out that European natural gas prices even rose 

by almost 70% after Russia invaded Ukraine in February 2022 (Emerald Expert Briefings, 2022) but that is not yet 

considered in this work. 
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Other important pricing assumption is that the electrical energy transport and distribution costs are rounded to 

0.15€/kWhel (0.1€/kWhel for distributions and 0.05€/kWhel for transport) as considered by the Walloon regulator 

(named CWaPE) in its tariffication plans (CWaPE, 2020). This means that rejected energy on the grid will not be 

bought back to the residential customer at the same kWh price mentioned earlier. This is because the customer uses 

the grid to sell its extra energy and it must pay for it. The selling price of the rejected electrical energy is thus equal to 

the electrical price mentioned earlier minus the 0.15€/kWhel to account for transport and distribution costs. 

 

As stated, the environmental indicators are based on the same method of comparison with reference systems. The 

pricing assumptions are simply replaced by emission factors set through Life Cycle Assessment studies (Paulus, et al., 

2022b). Two sets of assumptions are considered in this work. The first one is used by the Walloon energy regulator 

(CWaPE, 2005) to promote CHP. It overestimates on purpose the reference electrical emission factor by considering 

that the local electrical production allowed by the system replaces CCGT power plants (of 55% LHV efficiency) 

whereas actual Belgian mix is far more decarbonated, as it involves renewables and significant part of nuclear energy 

considered as “low carbon” (Sovacool, 2008). Indeed, Belgian CHP investors can beneficiate from public grants 

depending on those CO2 savings. The second ecological indicator considers the hourly emission factor for the Belgian 

consumption electrical mix (data provided for the whole year 2021 by www.Electricitymap.org for academic 

purposes). Therefore, the first indicator implies an electrical emission factor of 456 gCO2eq/kWhel whereas the second 

evolves hourly. For information, the statistical electrical emission factor for the whole 8760 hours of 2021 is 167 

gCO2eq/kWhel (Paulus, et al., 2022b), well below the assumption of the first indicator. 

 

Regarding the emission factor for natural gas consumption/combustion, it is quite close between the two sets of 

assumptions : 251 gCO2eq/kWh for the first indicator as used again by the Walloon regulator (CWaPE, 2005) and, for 

the second one, relevant with the www.Electricitymap.org data, 254 gCO2eq/kWh, (Paulus, et al., 2022b). 

 

Further explanations on the method used to establish economical and ecological indicators have been presented in a 

parallel study for a different system (Paulus, et al., 2022b). That study also involves further explanations on emission 

factors. It is worth mentioning that the ecological indicator used in this work accounts for all greenhouse gases 

(expressed in CO2eq and not in CO2 only). Also, even if the first dataset has been established in 2005, it is still valid 

and used as there has neither been any game changer regarding the efficiency of the reference systems for energy 

production (nor regarding natural gas production and importation). Actually, the only emission factor that is likely to 

become obsolete in the few years to come is the electrical one considered in the second set of assumption (from the 

www.Electricitymap.org data). This is because electrical mix evolves constantly, especially with increased penetration 

of renewables.  

 

At last, to the understanding of the authors, grid transportation and distribution electrical losses, which can reach about 

6-7% in EU (Psomopoulos, et al., 2010), have not been considered in any of the electrical emission factors. However, 

this is assumed to be compensated by the fact that it could also be considered that the extra gas consumption for the 

decentralized SOFC electrical production is subjected to fugitive methane emissions, which implies a high 100-year 

GWP of about 28 (Paulus, 2022), on longer gas network distances. For information, fugitive losses can be estimated 

to 5.4×10−6kg for the transport of 1kg of natural gas for a distance of 1km (NETL, 2010). 

 

3. RESULTS 
 

Performance results are presented in Table 3. Overall, performance of both field-test machines are quite similar.  

 

The first observation is that the Duffel system is really close to the expected electrical efficiency whereas the Riemst 

system is a little below. The main reason is that the Riemst system’s power output has been modulated down for some 

significant amounts of time through the year (for the vacation of the occupants) whereas the system in Duffel was 

running at nominal power the whole year. This can be perceived by the lower yearly electrical production (Table 3). 

Indeed, partial electrical load induces a reduction in electrical efficiency, as it can be seen in Figure 3. Second possible 

explanation is the probable intrinsic statistical efficiency difference between produced units. Indeed, the difference 

between percentile 0.9 and percentile 0.1 can account for a 2.5 percentage points efficiency difference for this system 

at nominal output power (Föger, 2011). 

 

Second observation is that thermal efficiency (and heat recovered) is higher for Riemst. This is mainly again because 

of the fact that the SOFC electrical output power in Riemst was modulated down to the minimal value (500 Wel) 

http://www.electricitymap.org/
http://www.electricitymap.org/
http://www.electricitymap.org/
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during the vacation time of the owner. Indeed, the lower the electrical output, the higher the thermal recuperation, as 

it can be seen in Figure 3. In both cases, by looking only at the absolute yearly amount of heat recovered (and not the 

daily profiles nor the working temperature), the heat recovered with this system is greater than the amount required 

by the “M” DHW profile from European Standard EN 16147:2011 (Fuentes, et al., 2018). It is also greater than the 

average household’s DHW consumption for a lot countries, such as the USA, the UK, Finland or Spain (Fuentes, et 

al., 2018). The fact that this system might be able to provide all the DHW demand of the household might allow 

significant capital savings as it simplifies the DHW production system. For example, there would be no need for a 

dedicated heat pump water heater or extra investments for the gas condensing boiler or the heat pump to be able to 

provide DHW in addition to its space heating function. It seems however preferable to at least include a backup heating 

resistance in the upper part of the DHW tank in order to ensure minimum DHW delivery temperature. Especially if 

the household DHW demand occasionally peaks, the system’s DHW capability might not suffice. 
 

Table 3: 2021 monitoring performance of the field-tested SOFC’s. Utilization savings indicators consider a gas 

condensing boiler of 90% constant LHV efficiency as reference for heat production 

Monitoring performance Riemst Duffel Monitoring performance Riemst Duffel 

HHV energy consumed (kWh) 25031 24273 LHV Electrical efficiency (%) 52,4 59,0 

Electrical production (kWh) 11843 12922 LHV Thermal efficiency (%) 15,8 11,6 

Electrical consumption (kWh) 11 2 LHV Total efficiency (%) 68,2 70,6 

Heat recovered (kWh) 3569 2549 
Utilization CO2eq savings –  

1st dataset (kgCO2eq)2 
723 1107 

Utilization cost savings (€)1 1429 1308 
Utilization CO2eq savings –  

2nd dataset (kgCO2eq)3 
-3013 -2969 

1 - Electrical price: 0.333€/kWhel. Gas price 0.093€/kWhHHV.  
2 - 1st dataset emission factors : 251 gCO2eq/kWh for gas and  456 gCO2eq/kWhel for electricity.  
3 - 2nd dataset emission factors : 254 gCO2eq/kWh for gas and hourly data from Belgian electrical consumption mix 

from www.Electricitymap.org for electricity. 

 

 

Figure 3: LHV efficiencies of the BlueGen (for 30°C return temperature) reproduced from literature (Föger, 2011) 

It is worth mentioning that utilization cost savings depend greatly on the ability of the household to consume the 

electricity the system is producing while it is producing (as it is financially not that interesting to reject electricity on 

the grid with such fixed electrical tariffication assumptions). Therefore, cost savings of Table 3 are strongly case-

dependent: both households involve an electric car that truly helps increasing the “self-consumption” of the electricity 

produced, also called “supply cover factor” (Paulus, et al., 2022a), to about 60%. This improves the economical 

indicator. In addition to local spark spread (Näsäkkälä & Fleten, 2005) and household supply cover factor, utilization 

cost savings should be looked at considering the capital costs of the system, as they will define the Return On 

Investment (ROI). For instance, with those results, if an investor wanted to ensure reaching ROI before 10 years, the 

maximum capital costs of the system should not reach more than about 13-14 k€ (this is considering that the owner 

already has a gas condensing boiler as main space heating appliance and this is not considering the additional capital 

savings of the already stated simplified DHW production).  This example is also valid for households that do not need 

space heating at all (passive houses). If one particular household needed to invest in a space heating appliance such as 

a gas condensing boiler and was also considering this SOFC, that example shall not directly be considered as valid. 

Indeed, that household’s choice would therefore lie between a single gas condensing boiler (also able to provide DHW) 

against the combination of the SOFC system and a gas condensing boiler (or another space heating appliance). For 

http://www.electricitymap.org/
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the 10-years ROI to be reached, the addition of both appliances shall not exceed the stated 13-14 k€, which is more 

restrictive than the previous cases. Potential maintenance costs have not been considered in those economical analyses. 

Although this SOFC’s capital costs are unknown to the authors, it is interesting to point out that back in 2015, 

residential SOFC technology cost (with auxiliaries) was estimated to about 10 k€/kW (Napoli, et al., 2015). This 

would mean that this 1,5 kWel system would cost about 15 k€, slightly above the 10 years utilization savings stated 

earlier. It is possible that current and future SOFC technology costs have been reduced and will continue to reduce 

(with higher technology penetration and prices learning curve). 

 

At last, from an environmental point of view, the emission factors have significant influences. The ecological balances 

can either be considered as positive or negative. On one hand, the fact that the first dataset gives positive CO2eq savings 

means that these decentralized electrical production systems are more environmentally friendly than centralized 

CCGT plants. On the other hand, fact that the second dataset gives negative CO2eq savings means these systems are 

ecologically worse than the average local electrical mix (with its renewables and its nuclear energy). As these systems 

are currently used with constant output power, the second emission factor dataset with the resulting negative CO2eq 

balances is more relevant. However, since remote control is already possible, these SOFC systems have the ability to 

only be powered up to replace CCGT electrical production, which mainly occurs for grid peak load (thanks to the high 

flexibility allowed by CCGT). In addition, with potential dynamic electrical production contracts, for example based 

on day-ahead hourly prices (Huisman, et al., 2019), this SOFC potential flexibility service could lead to higher 

rejection prices for the household and subsequent quicker ROI. 

 

4. UNCERTAINTY ANALYSES 

 
The method used for uncertainty propagations in this report is the one advised by the National Institute of Standards 

and Technology (Taylor & Kuyatt, 1927) and to do so, the EES (Equation Engineering Solver) software has been 

used. 

 

In order to compute the propagation of uncertainties, one must establish it for every variable. For each monitored 

sensor, it comes directly from Table 2 and its referenced standards. However, the uncertainty has not been established 

for the hourly HHV figures given by the gas provider for each field-test site. Therefore, it is assumed that it is directly 

linked to the variance of all the given HHV figures: the uncertainty has been set to thrice the standard deviation of the 

given HHV figures for the whole monitored year (actually, the standard deviation has been calculated from the 

population of the hourly HHV figures provided for 2020 and 2021). According to statistics theory, fictively assuming 

that the actual HHV is constant all year long and that the values given by the gas provider follow a normal distribution 

around it, this would mean that the obtained uncertainty window accounts for 99.7% of the given HHV figures, which 

is, as often considered in statistics, sufficient. In reality, the actual HHV is not constant and slightly varies all year 

long but one can assume that the uncertainty window established here remains valid around the evolving actual value.  

 

This gives an uncertainty on HHV figures of approximately ±234 Wh/m³ for Riemst and ±105 Wh/m³ for Duffel. 

There is a need for separate uncertainty analyses between the sites because the gas type provided to the machine by 

the grid is different: according to the gas provider, Duffel has still been provided with lean gas (called “type L” in 

Belgium) whereas Riemst already has a rich gas supply (called “type H” in Belgium). There is about a 10% difference 

in the given HHV figures between the two types of gas. Such a difference in the chemistry of the gas could indeed 

have a significant impact on the accuracy of the method used by the gas provider to establish HHV figures.  

 

Thanks to the uncertainty on the HVV figures and the accuracy of the gas meter (about ±0.5% according to Table 2), 

one can propagate the uncertainties to the daily HHV energy consumed and then to the total yearly HHV energy 

consumed presented in Table 3 (which corresponds to 8760 observations of hourly HHV equivalent energy 

consumption). Thanks to the accuracy of the energy meters deduced from Table 2 (±5% for heat meters and ±1% for 

electrical energy meters), one obtains, for the site of Riemst, uncertainties of about ±0.5 percentage points for the 

electrical efficiency, ±0.8 percentage points for the thermal efficiency and ±1 percentage points for the total efficiency. 

For the site of Duffel, one obtains respectively ±0.6, ±0.6 and ±0.8 percentage points for the electrical, thermal and 

total efficiency. 

 

One limitation of those uncertainty calculations is that they have not considered the accuracy of the correction factor 

that must be applied to the metered volume to convert it in the reference conditions used by the gas provider in its 
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HHV definition (Paulus & Lemort, 2022c). According to this study, the metered volume has to be multiplied by a 

correction factor established from the real gases equation of state. This correction factor, close to one, involves thus 

pressure ratio, temperature ratio and compression ratio between standard conditions and delivery conditions. Only the 

delivery conditions account for uncertainties. Delivery temperature uncertainty can be neglected as the gas meter used 

in the field-test (BK-G4T, as stated in Table 2) implements temperature compensation. According to the values given 

in ISO 13443:1996, it is unlikely that the compression factor ratio would have an uncertainty greater than ±0.0002 

(absolute). At last, delivery pressure depends on the setting of the pressure regulator upstream of the system and on 

the atmospheric pressure at the field-test site. The pressure regulator setting is either 21 or 25 mbar depending on the 

gas type in Belgium (Paulus & Lemort, 2022c), so a relevant maximum uncertainty can realistically be assumed to 

about ±2 mbar. Regarding the atmospheric pressure, it comes from hourly measurement from Royal Meteorological 

Institute (in Belgium). The real uncertainty of those pressure measurements is unknown, especially since the pressure 

measurement are not performed at the field-test sites but at a meteorologic station nearby. Therefore, it has been 

assumed that the uncertainty of each pressure measurement is again equal to thrice the standard deviation of all the 

hourly pressure measurements that have been provided (again for two years: 2020 and 2021). This leads to an 

uncertainty of about ±3000 Pa. The propagated uncertainty on the correction factor is thus equal to ±0.028. This is 

actually too small to have an influence on the propagated uncertainties on the efficiencies stated before. 

 

The emission factor and pricing assumptions are not assumed to be subjected to any uncertainty (uncertainty only 

propagated on monitored measures and HVV figures). Since the economical and ecological balances are resulting 

mainly from the efficiencies of the system, it can be assumed that the maximum relative efficiency stated earlier can 

be considered for all the economical and ecological balances of this work. Actually, the relative uncertainty on thermal 

efficiencies is of about ±5% for both field-test system.  

 

In conclusion, it is safe to consider that the propagated uncertainties for all the results of this work are at about ±5%. 

Of course, this is only based on the measured values and the intrinsic accuracy of the sensors. There is no estimation 

of the uncertainty induced by potential unoptimized installations of the sensors or unoptimized fluidic conditions, 

especially for the temperature probes of the heat flow meter. Indeed, literature usually finds it is better to mount the 

probe within the pipe in an elbow to allow it to be parallel to the incoming flow (ASME, 2010). However, that is not 

the case for the monitored sites, where probes are mounted perpendicularly to the pipe-wall (easier installation as they 

are commercialized monitoring sensors and not quite laboratory equipment). This probe configuration is still accepted 

in literature. Indeed, those two possibilities of mounting temperature probes on a hydraulic pipe (along with a third 

angular one) are shown in Figure 4 (a) (Klason, et al., 2014). Also, as the temperature probes are singularly placed in 

the pipe, the assumption is made that the single in-pipe temperature point accounts for all the fluid on the measured 

section of the pipe. As shown in Figure 4 (b) (Klason, et al., 2014), this might not be the case as wall effects as well 

as temperature gradients may happen. Therefore, there might be a temperature distribution along the section of the 

pipe that one single temperature measurement might not reliably represent. This is another example of a source of 

uncertainty due to the quality of the installation and of the monitoring equipment that is neglected in this report 

uncertainty studies. At last, literature has established the need for the depth of the probe in the pipe to be set precisely, 

down to 45 to 50% of the pipe diameter (Kolpatzik, et al., 1998). This time, this is likely to be ensured for the monitored 

sites, as the probes are sold with the corresponding portion of pipe that they are supposed to be screwed in. A 

mechanical stop is also involved within this probe-pipe assembly, for which a picture is shown on Figure 4 (c). So, an 

unoptimized depth could only come from the unlikely unproper mounting of the technician that may not have screwed 

the probe all the way to its mechanical stop. Unfortunately, this could still happen and there is no way of knowing for 

sure remotely without visiting the installations. Still, as best practices and sensor mounting manufacturer 

recommendations have been followed, these kinds of eventual misplacements can be neglected.  

  

Valve that allows 
for unmounting 

the temperature 

probe (PT500) 

Body of the assembly. 
Mechanical stop is 

included to ensure 

proper probe depth  

Temperature probe (PT500) 

a) b) c) 

Figure 4:  a) The three recommended options to mount a temperature sensor in a pipe (Klason, et al., 2014) b) Example 

of the distribution of the temperature of the fluid within a pipe along with an example of multiple probes installation 

in order to study it (Klason, et al., 2014) c) Example of in-pipe temperature probe assembly used in this study 
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5. LIMITATIONS AND CONCLUSIONS 
 

The strongest limitation of this work is that the resulting economical indicators are strongly case dependent and that 

considering only two systems does not allow for drawing statistical conclusions on the system’s performance 

(especially the economical ones). The results developed here shall thus be considered as case studies. However, the 

ecological balances are unlikely to change much from one household to the other as it does not depend on supply 

cover factors and as the system is mainly used with a constant and nominal power output. 

 

This 2021 field-test monitoring study has demonstrated in real applications the 60% LHV electrical efficiency of this 

residential SOFC mCHP system (at least for one of the two SOFC’s, the other being close to that figure probably 

because of intrinsic variance between manufactured products, because it has been functioning at partial load on the 

studied timeframe and because of aging, as it was commissioned one year before the other unit). Demonstrated LHV 

thermal efficiency is not higher than 12-15%, mainly because the heat recovery is mostly used for DHW production 

(at high delivery temperature). However, the amount of heat still recovered has been proven to be quite significant 

and sufficient, for example, to cover DHW demand of the average USA household (backup heating appliance is still 

advised to ensure sufficient temperature delivery at all times). Resulting yearly utilization costs savings (not 

considering the impact of the conflict in Ukraine on the energy prices) are significant and at about 1.3 - 1.4 k€/year 

(for 2021 Belgian energy prices assumptions). This figure has been achieved thanks to a quite high supply cover factor 

of about 60% for each household (mainly allowed thanks to one electric car). Potential dynamic day-ahead tariffication 

could even improve those utilization cost savings. From an environmental point of view, two considerations could be 

made: compared to the actual Belgian consumption mix, the CO2eq balance are way negative because of the intrinsic 

use of natural gas (that remains a carbonated fossil fuel). However, the system has better efficiencies than CCGT 

power plants and its power output can be modulated from distance. Therefore, it can partially be considered that this 

system allows for decreasing the electrical demand on centralized CCGT power plants. This consideration changes 

totally the CO2eq balances that become quite positive. 

 

NOMENCLATURE 
 

CCGT Combined Cycle Gas Turbine 

CREG Commission de Régulation de l'Électricité et du Gaz 

DHW Domestic Hot Water 

HHV High Heating Value, [J/kg]   

LHV          Low Heating Value, [J/kg]  

mCHP micro-combined Heat and Power 

ROI Return On Investment, [years]  

SOFC          Solid Oxide Fuel Cells 
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