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ABSTRACT 
 

Ensuring occupants' thermal comfort is rapidly becoming an essential objective in building design and operation, as 

it plays a crucial role in well-being and productivity. Conventional HVAC system controllers operate based on 

predefined setpoints and schedules, or individuals’ selections. However, as thermal sensation may vary, not only 

from person to person but also differ over time, the automated operation needs to be informed by real-time sensing. 

In recent years, advancements in deep learning models have provided an opportunity to deploy vision-based sensors 

in buildings toward occupant-centric controls (OCC). Vision-based systems are popular devices used to monitor 

individual thermal sensation and satisfaction due to their capacity to non-intrusively measure skin temperature, a 

physiological variable that is related to thermal comfort prediction. However, this advantage of remote sensing also 

leads to reduced accuracy compared to conventional temperature sensors. One of the critical variables responsible 

for the reduced accuracy is the camera’s distance from the subject, also known as ‘the working distance’. As the 

requirement of thermal cameras in front of the targets within a fixed distance is not applicable to real operational 

conditions, this study proposes an experimental framework to perform real-time correction of the thermal camera’s 

temperature for targets at the distance longer than the thermal camera’s calibration distance. The prediction 

framework uses a low-cost thermal camera and an RGB-D module to extract the target’s surface temperature and 

their distance to the camera, and its output can be used to assess an individual's thermal comfort based on skin 

temperature variation. This approach can be combined with computer vision approaches to allow the continuous 

detection of the occupants' faces or motion patterns, providing a holistic, multi-modal sensing solution towards 

occupant-centric controls. 

 

1. INTRODUCTION 

 
A thermal camera is a non-intrusive tool used to measure surface temperatures quantitatively and/or qualitatively by 

displaying warm objects against a cooler background. In thermography, thermal cameras detect infrared radiation 

and produce images that show temperature variations across an object. In order to measure the temperature of any 

target, radiometric thermal cameras measure the radiant energy and create a thermal image, in which the temperature 

of each pixel is determined based on the radiant energy. Microbolometers are commonly used as detectors in 

thermal cameras due to their lower cost. They measure radiation in the long-wavelength infrared band. The use of 

Non-Contact Infrared Thermometers (NCIT) and IR thermal cameras has been extended for detecting higher body 

temperatures in public settings during infectious disease pandemics including the recent COVID-19 pandemic. After 

the SARS pandemic in 2003, International Organization for Standardization (ISO), The International 

Electrotechnical Commission (IEC), and other governing agencies like U.S. Food and Drug Administration (FDA) 

developed standards to ensure the success of relevant screening programs (IEC, 2017; FDA, 2019). Medical 

purposes require high-accuracy thermal cameras, however, there have been attempts to use low-cost thermal 

cameras to capture the variation of skin temperature parameters to address occupants' comfort status, paving the way 

to extend the use of such technologies for human comfort studies (Li et al., 2018). However, the use of thermal 

cameras also includes uncertainties, such as the emissivity of the target, intrinsic errors, and systematic errors in the 

measurement procedure. To obtain the actual temperature from the apparent temperature measured by thermal 
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cameras, it is required to compensate for the emissivity of the measured object, while there has been research 

proving that changing the working distance and angle of view of a thermal camera compared to the factory-

calibrated values has a negative impact on accuracy. More specifically, (Cheung et al., 2012) experimental results 

showed that increasing the working distance between the target and the camera decreases the reading temperature by 

0.26◦ C per meter, while (Litwa, 2010) showed that, as long as the angle of view remains lower than 50 degrees, the 

temperature measurement results can be reliable. In that direction, correction models were proposed to compensate 

for the effect of distance and angle of view. Zhang et al. (2016) proposed a theoretical formula to investigate the 

effect of the angle of view and working distance on the accuracy of thermal cameras. The proposed theory was 

validated by fitting experimental data to blackbody temperature. The proposed distance correction theory applied 

two working distance ranges. For the working distance of less than 7 meters, a linear relation was considered for the 

distance correction factor, however, a quadratic relation was proposed for the correction factor for distances larger 

than 7 meters. Gutierrez (2020) study was the first attempt to use low-cost handheld thermal cameras for distance 

correction experiments. Although the low-cost thermal cameras included higher noise and less accuracy, their 

compensation formula based on working distance and angle of view was able to improve thermal camera accuracy 

from a range of (-2.56C to +2.31C) at the baseline to a range of (-1.44C to +1.6C) for the narrow working 

distances considered in the study (10-50 cm). Also, Li et al. (2019) proposed a linear model for distance 

compensation of low-cost thermal cameras within 0.8 and 2 meters working distance while using humans as the 

target. 

 As demonstrated in a previous study, high-cost instruments such as an expensive thermal camera and/or a black 

body target were used for distance calibration. Human targets are also used for camera calibration purposes when 

using a low-cost thermal camera that cannot provide a uniform and constant temperature target. 

This proven dependency of accuracy on working distance pointed out the fact that automatic distance detection is 

the next milestone required for the integration of thermal cameras as automated smart sensing systems. RGB-depth 

sensors are primarily used for distance detection, but they are also useful in human-centered applications, aiding in 

human detection and tracking. To be utilized in a system with a thermal camera, a registration process is required to 

locate the corresponding points for the two sensors that have different optical characteristics and are not in the exact 

same position. The computation time, complexity, and required robustness of the registration method used can all 

differ. The research on multi-modal registration approaches has advanced rapidly, with studies on the fusion of 

thermal and RGB cameras ranging from medical applications (Gonzalez-prez et al.,2021; Muller et al., 2018; Ma e 

al.,2019) to low-cost 3D thermal model reconstruction for monitoring and inspection purposes (Yang et al.,2018; 

Aryal et al., 2019). A comparison of four different feature and intensity-based image registration algorithms for 

diabetic foot monitoring (González-Pérez et al., 2021) found that using feature-based algorithms that rely on feature 

point detection can lead to higher errors, especially for low-cost thermal cameras. In contrast, intensity-based 

registration performed better than feature-based however they add the requirement of image segmentation. 

Multi-modal stereo cameras have also been utilized in the field of occupant-centric building control applications (Li 

et al., 2019; Aryal et al., 2019) to measure human face skin temperature and comfort or towards glare assessment 

and controls (Kim et al., 2019). Off-the-shelf low-cost thermal and RGB cameras with calibration-based registration 

were used to extract temperature information from an object detected in an RGB image (Li et al.,2019), while the 

2D transformation matrix was obtained by selecting control points for thermal and RGB cameras registration (Aryal 

et al.,2019). 

Despite the previous research on multi-modal camera integration and correction methods for low-cost thermal 

cameras, the validity and applicability of the experimental methods should be investigated further. In this paper, a 

dual-camera registration and distance correction experiment for low-cost off-the-shelf thermal cameras is designed 

for various measuring distances. The stereo-calibration process for image registration and the influence of the 

working distance on thermal camera measurement accuracy is obtained and analyzed using the experimental results. 

For thermal camera calibration, we proposed a low-cost framework that did not require the use of a black-body or a 

human target. Based on our results, the proposed distance correction formula helps in reducing the thermal camera’s 

temperature measurement error, while the fusion of the depth sensor allows for this correction to be seamless and 

automatic in real-world implementations.  The distance correction model and image registration of thermal and RGB 

cameras will be valuable for vision-based human thermal comfort assessment, while the accuracy of low-cost 

thermal cameras remains low. 

 

2. METHODOLOGY 
 

This study employs two techniques to establish a framework that will allow assessing comfort using a low-cost-

thermal camera and a depth sensor: (i) Computer vision to register two cameras so that the corresponding pixels 
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from two different cameras can be found; and (ii) Distance Calibration of a thermal camera to compensate for the 

effect of distance on thermal camera accuracy through a correction function. Below, the main components are 

summarized: 

a. Low-cost thermal camera: A low-cost off-the-shelf thermal camera with an uncooled Vox microbolometer 

detector was chosen for this study. This long-wave infrared camera (LWIR) can detect electromagnetic wavelengths 

in the range of 8 to 14 μm and produces images with a resolution of 160 by 120 pixels, the thermal camera's 

radiometric feature can measure the temperature of each pixel based on the intensity of the infrared signal received 

by the camera (Table 1). 

 

Table 1: Thermal camera specifications 

Features Descriptions 

Dimensions 11.8x12.7x7.2mm 

Array Format 160x120 pixels 

FOV Horizontal 56 

FOV Diagonal 71 

Radiometric accuracy  ±5◦C or ± 5% of reading in the working distance 

 

The camera (Figure 1 left) was hosted in a custom 3D-printed case and connected to a chipset-on-board computer 

through a breakout board providing 3.3 input voltage for the camera, and the camera's output displays each pixel's 

temperature in Kelvin.   

 

 

Figure 1: Thermal capture prototype (left) – Dual camera setup (right) 

 

b. RGB-D Sensor: To extract depth and RGB images, a stereo-vision depth camera was utilized (Table 2). After 

capturing images from the left and right IR sensors, the sensor undergoes disparity and triangulation to calculate 

depth data. 

 

Table 2: RGB-D sensor specifications 

Features Descriptions 

Operating Range 0.3-3m 

Depth FOV 87x58 

RGB FOV 69x42 

Depth resolution Up to 1280x720 

RGB frame resolution Up to 1920x1080 

Depth accuracy <2% at 2m 

 

The proposed dual-camera system consists of a thermal camera and RGB-D sensor rigidly placed on a mounting 

plate (Figure 1 right). As the resolution and Field of View (FOV) for these two image sensors differ, image 

registration was a necessary step to identify the corresponding pixels in their resulting images, as described below. 
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2.1 Sensor Fusion 
For a multi-modal system, two different image registration approaches were used: feature-based and calibration-

based. Key points were detected in feature-based, and then feature mapping and image transformation were 

discovered. The information from the two cameras, including their intrinsic and extrinsic matrices, is required for 

calibration-based image registrations. The Zhang (2000) method was used to map 3D coordinates into 2D image 

planes, with the camera modeled as a pinhole camera, in order to determine the intrinsic and extrinsic matrices. 

The intrinsic matrix expresses the relation between 3D camera coordinates and the 2D image coordinates, while the 

extrinsic matrix shows the relation between the 3D world coordinates and the 3D coordinates of the camera. The 

extrinsic matrix includes rotation and translation matrices. 

Figure 2 shows a schematic diagram for a stereo camera, where P is a part of a scene in 3D world coordinates and 

captured with a thermal camera on an image plane IR at point PIR and a RGB-D camera on an image plane RGB at 

point PRGB. 

 

 
Figure 2: Stereo multi modal camera geometry 

The coordinates of the corresponding point in image plane of IR as PIR ( ) and RGB as PRGB ( , ) are 

obtained from the pinhole camera model (Zhang, 2000) in a stereo calibration process, Z1 is the scaling factor. The 

Homography matrix shown in Equation (1), describes the transformation of points from one image to another image 

when the points lie in a plane. To find the Homography matrix, at least four pairs of corresponding points from 

thermal and RGB cameras are required (Swamidoss et al.,2021): 

 

 

  , H33= 1                    (1) 

 

 
 

 

(2) 

 
 

(3) 

 

If we have “i” corresponding points from stereo-calibration, we can change the form of Equations (2) and (3) to 

Equation (4), which incorporates all corresponding points: 
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(4) 

In order to find the Homography matrix, the Least Square method is used to solve Equation (4). 

For the stereo calibration experiment, an aluminum plate with 50cm x 40cm dimension with a chessboard pattern 

(8x7) on it was used. The square pattern on the chessboard had a 5cm dimension. Ten image pairs were taken from 

an aluminum chessboard plate by RGB-D and thermal camera in different orientations and distances from the 

camera. The results of the calibration are presented in Section 3. 

 

2.2 Distance Calibration 

To perform calibration for different working distances, the first step required setting up an experiment where 

temperature can be measured and controlled. To that end, a reptile pad was utilized, enabling to maintain the 

temperature at the desired temperature for an hour. As our end objective for this framework is the use for human 

skin temperature screening, this reptile pad was considered to be a good fit able to provide a temperature of 30-40 

C. The reptile pad was attached to an aluminum sheet painted with a flat black color spray to avoid reflection. The 

process started once the aluminum temperature reached 36C, with the plate temperature being monitored through 

T-type thermocouples. The aluminum plate maintained its temperature within a margin of approximately 36C, with 

the minor fluctuations being a result of the fluctuations of the reptile pad.  The camera was fixed in place and the 

working distance with the target was varied from 50 cm to 2 meters in 10 cm increments. As a result, 160 thermal 

images were captured and processed to obtain a correction function as presented in Section3. 

 

3. RESULTS AND DISCUSSION 

 
Figure 3 shows the detected points of the reference chessboard by the thermal camera (camera 1) and RGB camera 

(camera 2) that were used for the calibration process. Despite the low resolution of the low-cost thermal camera, the 

mean re-projection error was kept within 0.1 pixels (Figure 4). This shows the calibration was able to detect the 

corners of the chessboard for both the thermal and RGB images with high accuracy.  

 

 
 

Figure 3: Detected and re-projected points after stereo calibration 
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Figure 4: Mean re-projected error in pixels 

The relative position and rotation of these two cameras with respect to the target orientation are shown in Figure 5, 

while Figure 6 reflects through rectified images how the corresponding points of thermal and RGB images are in the 

same row coordinates.  

 
 

Figure 5: Extrinsic parameter visualization 

 

 
 

Figure 6: Epipolar geometry of rectified images 

 



 

 3363, Page 7 
 

7th International High Performance Buildings Conference at Purdue, July 10 – 14, 2022 

The Homography matrix is calculated using the corresponding points, so by having Homography matrix, the 

associate points in RGB image in thermal image will be found.  

 

1.0407 0.0252 6.42

0.0016 1.0460 8.8858

0 0 1

H

 
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= − 
 
   

 

After the successful fusion, the distance information obtained from the RGB-D sensor will be utilized to correct the 

resulting temperature of the thermal imaging base on the measured distance from the camera. To that end, Figure 7 

illustrates an example of the image shooting process for distance correction. 

 

 
 

Figure 7:  Experiment measurement 

A noteworthy issue with low-cost thermal cameras is the occurrence of temperature peaks in standard frequencies. 

Figure 8 illustrates the issue, with the experience of peaks for the plate temperature reading from the thermal camera 

at 1m. These peaks are an inherent characteristic resulting from the Flat Filed Correction of low-cost thermal 

cameras and are necessary for temperature readings to cancel the impact of increasing temperature of the internal 

camera. After coordination with the manufacturers, these standard peaks were filtered out of the data, as they were 

out of the scope of our study. 

 

 
Figure 8: Thermal camera reading and Plate temperature 

The plate temperature was measured by calculating the average value of the region of interest (ROI) of 10x10 pixels 

(Tcam), as shown in Figure 9. The temperature reading by the thermocouples is referred to as reference temperature 

(TREF), while the relative error is defined as the difference between the reference temperature (TREF) and thermal 

camera reading (Tcam) divided by TREF. 
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Figure 9: ROI of 10x10 pixels in the thermal image 

 
Figure 10: Thermal camera relative error in different working distances 

As it can be observed in Figure 10, there is an increasing trend in the impact of working distance on the relative 

temperature error for the thermal camera. The behavior of this trend can be approximated through a linear 

relationship, which in turn advocates towards a correction function for the measured temperature by the thermal 

camera.  

For our study, a regression model was used to correct the estimated temperature using thermal camera readings. The 

model used TREF as one of the inputs (predictor variables) as well as working distance. The camera measurement 

was used as the response variable. After inferring the model, the inverse methodology can be used to obtain a 

corrected temperature based on the thermal camera reading and the working distance measurement. The result was 

assessed through 10-fold cross-validation that showed a RMSE of 0.28 with a standard deviation of 0.039. 

 The 80% of the collected data was chosen as the training dataset for linear regression model, and 20% of the data 

was used to validate the developed model. The structure of the developed model is shown in Equation (6), where D 

is the working distance and TREF is the temperature measured by the thermocouple. The model results are shown in 

Table 3. 

 

Tcam = Const + ( )*(D) + (  )*(TREF)       (6) 
 

 

Table 3: Model Parameters 

 

Predictors Values P-Value 

Const 12.083 0.002 

Distance Coefficient ( ) -1.168 0.000 

Reference Coefficient (  ) 0.616 0.000 

R2 0.776  

Adjusted R2 0.772  
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TCorrected (or TREF in Equation (6)) is the thermal camera's distance-corrected temperature derived from Equation (6). 

As a result, the corrected camera reading is estimated using Equation (7), which includes the distance and thermal 

camera reading. 

 

                     Tcorrected = -Const +Tcam -( )*(D)]          (7) 

 
Figure 11 shows that using the distance corrected formula on the validation dataset can reduce relative error from 

9% to 0.9%. 

 

 
Figure 11: Relative error of thermal camera reading 

4. CONCLUSION 

 
This paper presented the formulation of a thermal imaging system consisting of a thermal camera and a depth 

sensor, aiming to address the deficiencies of thermal imaging with respect to errors due to varying target working 

distances. The system, aided by a newly developed distance correction formula, was proven to reduce the thermal 

camera’s measurement error from 9% to 0.9%. The overarching goal and the future work of the authors is for this 

vision-based system to be able to provide non-intrusive information about occupant thermal comfort. Flexible 

temperature sensors of adequate accuracy as the proposed one can be used in that context to capture temperatures of 

the occupants’ skin or even surrounding surfaces, which can serve as feedback in future occupant-centric building 

controls. Currently, the authors are also working on adding face or video patterns detection features to this 

framework, further expanding its usability as an integrated human comfort feedback device. 
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