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ABSTRACT 
 
Automated fault detection and diagnosis (AFDD) for residential air-conditioning systems and heat pumps has 
significant potential to provide benefits, such as reducing environmental impact, operating cost, energy usage, and 
peak power required. This is accomplished by addressing faults that would otherwise go unnoticed, or by early 
detection of progressive faults, such as refrigerant leakage. The key challenge of AFDD development is to provide a 
method that is both accurate and cost-effective. Since there are very few accessible sensors included in most residential 
systems, this challenge is often focused on finding a balance between diagnostic accuracy and minimization of sensors. 
This paper describes a pilot study to test the hypothesis that high-resolution measurements of electrical power can be 
used to detect and diagnose faults. An experiment was conducted in which faults were simulated in an air-conditioner 
under controlled laboratory conditions. The system is a standard 10.5 kW nominal capacity single-speed split system 
with R-410A refrigerant and a scroll compressor. The faults that were imposed were liquid-line restrictions, improper 
refrigerant charge, and reduced evaporator airflow. The faults were imposed with a range of typical operating 
temperatures. Electrical data from startup and from steady operation were gathered in various resolutions, using 
multiple instrumentation sets capable of sampling frequencies in the 1-20 kHz range. The electrical measurements 
were made on the outdoor unit, which includes the condenser fan, compressor, and control board. The power signatures 
of the faulted and fault-free system were compared, using unsupervised machine-learning based methods. The 
LAPART (laterally primed adaptive resonance theory) approach explores detectable differences between fault and no-
fault conditions and classifies voltage and current signatures into learned categories. The initial results show that this 
method can successfully discriminate between the faulted and fault-free condition at steady state operation, showing 
that there is potential to develop AFDD methods based upon single-location electrical measurements. Ongoing work 
will explore the limits of the diagnostic potential from this approach, explore possibilities for simplifying the 
measurements, and develop practical methods for cloud-based data processing. 
 

1. INTRODUCTION 
 
Heating and cooling services are still the largest individual energy consumer in residential buildings, although EV 
charging may eventually become the leader. The majority of heat pumps and air conditioners for residential space 
heating and cooling currently installed in the United States is of the single-speed type, in which the thermal load of 
the building is matched by cycling the compressor on and off. Specifically, most of these units are controlled by a 
thermostat that cycles the compressor and associated equipment on and off, to maintain space temperature within a 
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deadband around a temperature specified by the user. There is ample evidence that many of these machines operate 
in sub-optimal conditions, due to a variety of faults that result from improper installation, setup or maintenance. This 
often leads to excessive energy consumption, resulting in higher bills for the end user, and in higher electrical loads 
for distribution system operators and electricity providers in general. In a study to assess the impact of HVAC faults 
on electricity consumption, Domanski et al. (2014) report that a 30% increase in annual energy consumption is a 
plausible result of faults such as refrigerant overcharge or low indoor air flow. Pigg et al. (2016) report that average 
performance degradation due to installation or maintenance faults is on the order of 12%, with about one in six systems 
suffering a 25% degradation due to a combination of factors, primarily refrigerant charge and improper airflow. 
Moreover, while professional service calls for heating and cooling systems are common, there are few incentives 
promoting proper installation and maintenance, accompanied by little awareness or concern of associated problems. 
In a recent market survey, Butzbaugh et al. (2020) report that such problems are pervasive, with 70-90% of homes 
having some type of HVAC fault. So, in summary, while inexpensive maintenance interventions could produce large 
energy and cost savings for consumers and electric utilities alike, there is little awareness of the problem, and as a 
consequence little is done to resolve it. 
 
It is possible to use thermomechanical data from various sensors on vapor compression HVAC equipment as features 
to detect and diagnose faults. For example, Rossi and Braun (1997) used seven temperatures – five refrigerant 
temperatures and two air temperatures) in a statistical rule-based method to detect five common faults. Yuill and Braun 
(2017) tested the effectiveness of several fault diagnostic methods that use thermomechanical features, and found that 
performance varied from very good to very bad, with a trend that the simpler methods, which used fewer measurement 
features, had weaker performance. Some manufacturers are beginning to offer fault diagnostics for their high-end 
systems as part of their service, with operational data originating from on-board control instrumentation. However, 
the penetration of these systems is currently low. One third-party fault diagnostics product can be retrofitted to most 
currently deployed systems, with the retrofit, in the form of sensors, data logging and communications equipment, 
implemented by service professionals. In most cases, diagnostics information is collected by the service provider, and 
service calls are sent to associated contractors (Butzbaugh et al. 2020). Unfortunately, high costs mean that few such 
diagnostics are currently present, or likely to be deployed on the existing fleet of heat pumps and air conditioners. 
Rather, with this paradigm, diagnostics capabilities are likely to grow organically, over one to two decades, following 
replacement of existing units, initially at the higher end of installation costs and gradually permeating all installations. 
To promote pervasive and fast deployment of fault detection and diagnostics, it is necessary to provide a solution that 
is easy to install, accurate, and has very low hardware cost. Non-intrusive load monitoring (NILM) is an approach that 
is intended to provide such a low-cost solution. NILM has been studied extensively, and an extensive review of the 
technology was recently provided by Rafati et al. (2022). A typical approach is to detect the on/off state of an HVAC 
unit, and determine whether degradation exists (e.g. short cycling), or whether the cycling is consistent with prevailing 
weather conditions. Another approach relies on analysis of electrical data at a high sampling rate, to detect faults 
(thermomechanical or electrical) that carry through to the electrical signal. Armstrong et al. (2006) tested NILM for 
fault diagnostics in rooftop units, using high frequency sampling electrical measurements, and concluded that several 
faults could be reliably detected, and in some cases diagnosed, using electrical measurements, particularly if they are 
combined with thermomechanical measurements. Analysis of electrical data at a high sampling rate is increasingly a 
possibility, due to the rapidly decreasing cost of computation, accompanied by the decreasing cost of sensing and 
communications equipment. This paper is based on the hypothesis that short-timescale thermomechanical processes 
in the compressor are reflected in the electrical signature of the power feed to the vapor compression unit of a 
residential type split system, and that such electrical signatures could reveal diagnostic information related to the 
operating condition of the system, including potential faults. 
 

2. EXPERIMENTAL SETUP 
 
The experiments were carried out in a university’s environmental testing chambers. One chamber simulates the 
outdoor environment, allowing controlled temperatures ranging from -29 °C to 54 °C, at relative humidity between 
5% and 95%. The outdoor unit, placed in the outdoor chamber, is outfitted with a refrigerant mass flow sensor, and is 
modified using a manually adjustable valve in the liquid line that simulates a liquid line restriction. This fault can 
result from several causes, including accumulation of debris or impurities in the filter-drier, or physical damage, such 
as a crimp in the line. The other chamber simulates indoor conditions, also with controlled temperature and humidity 
conditions. In the indoor chamber, an accurately controlled air flow can be imposed on the indoor unit heat exchanger, 
allowing the simulation of fault conditions such as undersized ducting or clogged filters that reduce evaporator airflow. 



 
 2342, Page 3 

 

19th International Refrigeration and Air Conditioning Conference at Purdue, July 10 - 14, 2022 

Two other common faults, undercharge or overcharge of refrigerant, are simulated by undercharging the system or 
overcharging the system by a controlled amount by weighing the amount removed or added. 
 
The laboratory setup also includes temperature measurements at multiple points in the cycle, temperature and humidity 
measurements on the air side, and refrigerant pressure measurements on the high and low side. All of the 
thermomechanical measurements are recorded in a data acquisition system on one-second intervals. Future work will 
consider combinations of thermomechanical and electrical measurements as a potential path toward increasing 
accuracy and certainty of fault diagnostics. 
 
The experiments conducted in this work are summarized in Table 1. The test matrix is meant to span the range of most 
commonly encountered faults, including multiple faults, in typical settings of outdoor temperature and indoor 
temperature. The fault intensity denotation in Table 1 uses the definitions in Hu et al. (2021). All tests were conducted 
for 20-30 minutes, allowing the system to reach steady-state conditions. Between tests, the system was turned off for 
approximately 10 minutes or a period of several hours, simulating typical cycling times for a range of loads. Electrical 
measurements were collected at startup and at steady-state. 
 

Table 1: Experimental test matrix 

Moderate Temp. (27 OD / 23 ID °C) High Temp. (40 OD / 23 ID °C) 
Baseline – no fault Baseline – no fault 

Evaporator airflow 60% (EA60) Evaporator airflow 60% (EA60) 
Liquid line restriction 30% (LL30) Liquid line restriction 30% (LL30) 

EA60 + LL30 EA60 + LL30 
Overcharge 20% Overcharge 20% 

Undercharge 30% Undercharge 30% 
 
 
 

 
 
 

Figure 1: Mechanical system configuration and thermomechanical instrumentation. 
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2.1 HVAC system configuration 
The mechanical configuration of the HVAC system, and the associated thermomechanical instrumentation, is shown 
in Figure 1. The system under test has a rated capacity of 34,700 Btu/h (10.2 kW), rated SEER of 13, and nominal 
(i.e. with no EA fault) indoor airflow of 1200 CFM (0.57 m³/s). The nominal refrigerant charge, including adjustment 
for the mass flow sensor and liquid line restriction valves, is 2.10 kg of R-410A. The system has a fixed orifice 
expansion device, and rated suction superheat of 6.67 °C at the AHRI (2017) rating condition A (35/26.7/19.4 °C 
outdoor drybulb/indoor drybulb/indoor wetbulb). The system has a single-speed scroll compressor, representative of 
the vast majority of modern compressors for systems of this class. 
 
 
2.2 Electrical Measurements configuration 
The electrical measurements were concentrated on the outdoor unit, as shown in Figure 2. Voltage common to all 
circuits was measured between two legs of the split phase, 240 V supply. Current transducers and voltage measurement 
probes were placed on the main power supply to the outdoor unit to measure electrical data. For specific tests current 
transducers were placed on the compressor and the fan, respectively. Further, currents through the run winding and 
the start windings of the compressor motor and fan motor were measured individually. The rationale for such a fine-
grained measurement is that the source of the harmonic content in the waveform is not known a priori, and could result 
from the start circuitry or from the compressor / motor dynamics, or both simultaneously. 

 
Figure 2: Configuration of the electrical measurements. 

The electrical measurements were made, in parallel, with a series of instruments of varying capability and cost. The 
characteristics of the instruments are listed in Table 2. 
 

Table 2: Waveform meter characteristics 

Meter Data 
resolution 

Sampling Reporting interval Nominal 
cost 

Application 

Dewetron 
PQ Analyzer Very high 20 kHz Hundreds of measurements 

per second $30,000 Power quality diagnostics 

PQube3 High 10 kHz 
10 measurement per second 
(Modbus), higher on trigger 
waveform 

$5,000 Power quality 
disturbance diagnostics 

Meazon Low 1 kHz 1 measurement per 5 second 
interval 

 
$500 

Submetering and energy 
management 

OpenZmeter Medium 5 kHz 
V,I measurements at 3 
second intervals, reactive 
power every 15 minutes 

$400 
Standardized power 
quality diagnostics, smart 
metering (opensource) 
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The Dewetron PQ Analyzer can be considered as the “reference” instrument. The analysis conducted in the present 
paper is based on Dewetron data, as a first step in the development of AI solutions to detect and diagnose faults. If AI 
solutions work with the Dewetron data, then it will be possible to test them on data from lower cost instruments. In 
principle, there is good reason to believe that data from the OpenZmeter will be of sufficient quality, with the proviso 
that the AI developed in this project would be embedded in the onboard data processing. Ultimately, the goal is to 
deploy even lower-cost sensing and diagnostics, with a total cost of less than $100. 
 
For the work presented in this paper, we utilized the voltage and current waveforms measured near the startup of the 
machine, but sufficiently distant from startup transients, which may be influenced by startup conditions such as scroll 
position. For the process of deciding how far away from actual startup would be ideal, several cycles were plotted on 
a current-voltage (I-V) diagram, as shown in Figure 3. 
 

 
Figure 3: Scatter plots of I vs V over three 60 Hz voltage cycles at various locations in time series. Headers indicate 
the time step interval used in the plot.  Each time step is 5.0e-5 seconds. Top and bottom rows of plots have different 

current scales. 

The evolution of the I-V plots shows that there is a strong transient phase over the first 20 or so cycles (inrush currents 
on the order of 150 A), but that electrical steady-state is not reached until after about 10 s after startup, when the shape 
of the I-V curve completely stabilizes. Data prior to stable conditions were discarded for the purpose of this analysis.  

 
3. DATA ANALYSIS 

 
3.1 Overall strategy 
Several I-V plots, generated for different operating conditions (i.e. combinations of operating temperatures and fault 
condition), indicate that there is “shape” of the waveform associated with each condition. The test data for each 
condition were subdivided into a set of test patterns, consisting of time series for a set of consecutive current cycles. 
The idea was to use a biologically-inspired neural network to see whether the waveform shapes collected for each 
operating condition could be associated with the operating condition itself in a reliable manner. The ultimate goal is 
to train a neural network that, based on a measured waveform, could then reliably indicate the operating condition. 
Among the wide variety of neural networks available, the Adaptive Resonance Theory (ART) class of networks was 
chosen, because these neural networks are known to be fast learners, and to also have the capacity to learn new patterns 
if needed. 
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3.2 The LAPART neural network 
The LAPART (Healy and Caudell 1997) network architecture is based upon the lateral coupling of two Fuzzy ART 
subnetworks (Carpenter et al. 1991, Carpenter and Grossberg 1987), referred to as A and B, which perform 
unsupervised categorization of analog input patterns, as illustrated in Figure 4(a). Fuzzy ART class networks are 
generally composed of three interconnected layers of nodes: the F0 input layer, the F1 comparison layer, and the F2 
winner-takes-all unsupervised class labeling layer that recruits more class nodes as learning occurs.  In addition, 
each Fuzzy ART network has an attentional subsystem manifest in its vigilance node, 𝑉𝑉𝑉𝑉𝑉𝑉. The vigilance parameters 
for these subnetworks are respectively, {0 < ρA , ρB   ≤ 1}. Note that ρ controls the level of generalization performed 
by the subnetwork.   If its value is close to unity, the number of F2 layer categories (nodes) rapidly increases during 
training, essentially memorizing each individual input pattern.  Conversely, if ρ is near zero the number of F2 
categories increases very slowly during training, creating a system that greatly generalizes the input patterns, 
lumping many patterns into a small number of categories. 
 

 
Figure 4: Details of the LAPART neural architecture. Note that the Input Systems perform the necessary 

normalizations required by Fuzzy ART. (a) training mode, (b) testing mode. 

 
The interconnects between the two subnetworks force an interaction of the respective learning performed by the 
Fuzzy ART subnetworks on their inputs.  This modifies their unsupervised learning properties to allow the learning 
of inference relationships or associations between the learned pattern categories representing their individual input 
domains.  This can be thought of as supervised learning, or supervised classification. In actuality, however, it is 
much more general.  The usual sense of classification is that of creating a partition of the inputs; that is, separating 
them into disjoint sets, with a label (the desired output specified by the “teacher”) attached to each element of the 
partition.  With the LAPART architecture, sets are labeled with sets - in other words, the network extracts rules with 
antecedent and consequent predicates.  The sets are referred to as classes because they are labeled by Fuzzy ART F2 
nodes whose connections to the F1 layer nodes have formed patterns of weights that are templates for the input 
patterns in their classes.  The template weights for a class are the fuzzy AND of the input patterns adopted into the 
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class.  The input patterns, Fuzzy ART layers, and templates will be labeled with an A or B referring to the A or B 
Fuzzy ART subnetworks.   
 
During LAPART’s training mode, pairs of input patterns IA(k), and IB(k), where k is this pattern index, are passed 
through the Input Systems, which performs all appropriate scaling and normalizations, to the F0 layers of 
subnetworks A and B, respectively.  As A and B form class templates for their inputs, the LAPART network learns 
inference relations between their resonant F2 nodes (category nodes) through a Hebbian (Hebb 1949) learning 
process, by forming strong 𝐹𝐹2𝐴𝐴 → 𝐹𝐹2𝐵𝐵 weighted interconnections between pairs of simultaneously-activated F2A 
and F2B nodes. 
 
Convergence of a LAPART network in a finite number of passes through a training set requires that it reach the 
following operational state:  Presentation of any input pair (IA, IB)(k) from the training set results in pattern IA being 
immediately assigned a class in Fuzzy ART subnetwork A through direct access to the class template.  Through a 
strong, learned inferencing connection, the class F2A node signals a unique F2B node to which it is connected, 
forcing it to become activated.  This results in the inferred B class template being read out over the F1B layer just as 
pattern IB reaches the F1B layer.  The ensuing vigilance test in subnetwork B confirms that the inferred class is an 
acceptable match for IB, forcing the subnetwork B vigilance node to remain inactive.  Further, the B class template is 
a subset template for IB.  In summary, a final pass through the data shall result in no resets and no synaptic strength 
changes (i.e., no learning). For most applications, this occurs in two presentation epochs of the training data. 
 
During the evaluation (or testing) mode of operation, learning is disabled and no input is supplied to the B 
subnetwork, as illustrated in Figure 4. An input pattern IA(k), drawn from the testing data set, is passed through the 
Input System to the F0 layer of subnetwork A where it functions independently of the B subnetwork, activating 
existing AF2 nodes or attempting to recruit a new one. If an existing AF2 node resonates, then its lateral inference 
connection primes a BF2 node, causing the read out of its class encoding template across the BF1 layer. The Output 
System decodes the class label from the BF1 layer activation pattern. If the A subnetwork attempts to recruit a new 
AF2 node, then the Output System is instructed to report an “unknown” classification of the current A input. 
Finally, at the end of a single testing epoch, performance statistics are computed for the trained LAPART. Three 
outcomes are possible for each testing input: 1) a correct prediction, 2) an incorrect prediction or error, and 3) unable 
to predict or unknown. These overall statistics and the actual predicted classes, summarized in the form of a 
confusion matrix, are results of the evaluation process. 
 
3.3 The creation of the tri-cycle input representation. 
For this current work, the A subnetwork input was chosen to be current waveforms.  Ideally, each input pattern would 
be a single 60Hz cycle current wave.  But given the Dewetron sampling period of 5.0e-5 sec, one 60Hz cycle does not 
contain an integral number of samples (333.333...).  Alternatively, three 60Hz cycles do contain a whole number of 
samples (1000) and is therefore used for this analysis. These 1000-dimensional input patterns are referred to as “tri-
cycle” input representations.  
   
3.4 Preparation of the data set for neural network training and evaluation. 
Each Dewetron time series data set from 31 trials and nine experimental conditions was divided into 1000 timestep 
tri-cycles. These were then concatenated into a single list of 146,114 condition (class) labeled tri-cycle input 
patterns.  For clarity, the nine conditions selected from the experimental matrix in Table 1 are numbered as follows: 
 

Table 3: Fault and operating conditions 

Class Condition Class Condition 
0 Low temperature, baseline, no faults 1 High temperature, baseline, no faults 
2 Low temperature, LL30 fault 3 High temperature, LL30 fault 
4 Low temperature EA60 fault 5 High temperature EA60 fault 
6 High temperature CH120 fault 7 Low temperature CH70 fault 
8 High temperature CH70 fault   
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3.5 Training LAPART 
The order of the list of inputs pattern was shuffled multiple times using the Fisher-Yates (Fisher & Yates 1953) 
algorithm.  The resultant list was divided into two sub-lists, by assigning the training set as even numbered shuffled 
list indices (73057) and the testing set as odd numbered (73057), producing a disjoint random sampling of class 
examples for the two modes. The training mode was performed over two presentation epochs during which LAPART 
convergence was verified.  One important result of the training process is the resultant total number of A subnetwork 
templates. The ratio of this to the total number of training patterns is a measure of memorization/generalization. The 
closer to zero, the more generalization.  
 
3.6 Evaluating LAPART 
During evaluation mode, learning is disabled and the patterns not used in training are presented to the A subnetwork 
of LAPART for class prediction. Only a single testing presentation epoch is required. Multiple studies were 
performed using a range of vigilance parameters and numbers of shuffles. The overall statistics and the actual 
classifications, in the form of a confusion matrix (Stehman 1997), are the most important results of the evaluation 
process.  
 
3.7 Examples of results 
The following three plots are examples of the results of this study. The first, Figure 5(a), shows the number of A 
subnetwork categories versus its vigilance value, 𝜌𝜌𝑎𝑎.  As can be seen, the number of categories grows exponentially 
towards the total number of testing patterns as 𝜌𝜌𝑎𝑎 approaches unity. At its largest value in the plot, the ratio of number 
of A subnetwork categories to the total number of testing patterns is ~27%. This is far from memorization. 
 

 
Figure 5: (a) Number of A subnetwork templates versus 𝜌𝜌𝑎𝑎 and (b) fraction of correct predictions versus 𝜌𝜌𝑎𝑎 

 
The second figure in the set, Figure 5(b), plots the fraction of correct predictions during testing as a function of A 
subnetwork vigilance value, 𝜌𝜌𝑎𝑎 . Note that after a range of slow improvement, the fraction appears to be on an 
asymptote towards a value of unity. 
 
The third figure in the set, Figure 6, shows the confusion matrix for the case where 𝜌𝜌𝑎𝑎 = 0.995.  The confusion matrix 
plots the relative frequencies of classifications and misclassifications. For each true class row, it plots in the columns 
a distribution of the predicted classes. In this figure, each row distribution has been normalized by the actual number 
of patterns in the class. For perfect classification performance, the normalized confusion matrix would be a diagonal 
of unity height.  As can be seen in the figure, for this set of parameters, the matrix in nearly diagonal, with an average 
diagonal height of ~0.96. 
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Figure 6: The confusion matrix for the results of testing data with 𝜌𝜌𝑎𝑎 = 0.995. Values are percentages of the true 
class, rounded to the nearest whole number. The diagonal dominance indicates high performance of the classifier. 

 
4. DISCUSSION AND CONCLUSIONS 

 
While the voltage waveforms are sinusoidal as expected, the current waveforms are far from sinusoidal, and indicate 
an opportunity for waveform-based classification leading to the ability to detect and even diagnose faults. The 
mechanisms that lead to the deviation of the current waveform from a sinusoid are not well known, but are likely to 
result from a dynamic interplay between electrical and mechanical components, resulting from compressor pressure 
variations and the electromagnetic coupling of the induction motor rotor and stator. An indication that this could be 
the case comes from an experimental study on pressure variations in a scroll compressor by Picavet and Ginies (2014), 
where highly structured and variable pressure values are reported. 
  
Waveforms associated with different operational conditions cluster very strongly, i.e. similar input patterns associate 
with the same condition in training. In testing, waveform input patterns fall into categories reliably, as demonstrated 
by the very strong diagonal dominance of the confusion matrix. Errors and uncategorized outcomes are rare and likely 
can be reduced by optimization of the training. The quality of the results presented here is somewhat surprising. The 
amount of information transmitted by the compressor shaft to the motor, and hence reflected in the electrical signal, 
is unexpectedly high. The results are very encouraging, supporting the hypothesis that it may indeed be possible to 
detect thermomechanical conditions reliably by examining the waveform. 
  
Despite the encouraging results, this study only scratches the surface, and more testing is clearly needed. For example, 
it could be instructive to conduct a series of tests where the average torque experienced by the motor is the same, but 
is produced by different thermofluid conditions – e.g. high pressure lift at low mass flow rate (maybe a result of liquid 
line restriction), or low pressure lift and high mass flow rate. If a difference is detected in the current waveform, then 
it could be argued that small-scale torque variations do indeed communicate thermomechanical information. Another 
important consideration is to determine whether the methodology can be generalized from one air-conditioner or heat 
pump to another, especially if made by a different manufacturer. Test are ongoing to answer these and other questions.  
 
If the outcome of this research continues to produce such promising results, there are two possible concepts for 
deployment. The first is that waveform-based diagnostic methods could be used in place of diagnostics that use 
thermomechanical measurements. Yuill and Braun (2013) showed that many such existing methods suffer from poor 
accuracy, with error rates often above 50% for a comparable set of fault conditions, so the performance of Figure 6 
compares very favorably with those methods. A second concept is to deploy waveform-based diagnostics to electrical 
measurements made outside a home – potentially by electrical utilities – thereby providing an opportunity to sidestep 
the significant challenge of persuading homeowners to adopt diagnostics, which could lead to a greater number of 
monitored systems. Thus, the potential future impact of the findings in the current study could be substantial.  
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NOMENCLATURE 
 

AFDD Automated fault detection and diagnosis  HVAC heating, ventilation, and air conditioning 
ASHP air source heat pump LL liquid line restriction 
CH refrigerant charge  NILM Non-intrusive load monitoring  
EA evaporator airflow SEER seasonal energy efficiency ratio 
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