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ABSTRACT 
 

Good heat and mass transfer rates in components like the absorber and generator are required to improve the overall 

performance of a vapour absorption refrigeration system (VARS). The present study carries out experimental 

investigations on an absorber to improve the heat and mass transfer characteristics during the absorption process. 

The heat and mass transfer characteristics of R134a (1, 1, 1, 2-tetrafluoroethane) vapour in DMF 

(dimethylformamide) liquid are studied using a copper tubular bubble absorber with swirl entry of refrigerant 

vapour. In order to create a swirling flow in an absorber, a cavity-type swirl generator is used in the present study. 

Hot water, cooling water and cooling load simulators are used to exchange the heat between VARS and the water 

medium. Experiments are carried out by altering the operating parameters, such as hot water temperature from 75oC 

to 91oC, cooling water temperature from 17oC to 27oC, weak solution flow rate from 0.04 m3h-1 to 0.056 m3h-1, and 

liquid refrigerant flow rate from 0.005 m3h-1 to 0.011 m3h-1. To understand the effects of weak solution flow rate and 

refrigerant flow rate on absorber performance, absorption rate, solution concentration at the outlet of the absorber, 

volumetric mass transfer coefficient, overall heat transfer coefficient, and absorber heat load have been evaluated. 

 

1. INTRODUCTION 
 

Vapour absorption refrigeration system (VARS) is an alternative refrigeration method that works based on low-

grade energies like solar, geothermal, etc. VARS consists of four major heat and mass transfer components: 

evaporator, absorber, generator, and condenser. Because of the lower solution heat and mass transfer coefficients 

(Xie et al., 2008) and substantial exergy destruction during the absorption process (Kilic and Kaynakli, 2007), the 

absorber is considered to be one of the critical components. The poor performance characteristics of the absorber 

result in poor performance of the VARS system. As a result, numerous enhancement techniques, including active 

and passive methods, have been used in the literature to improve the performance of an absorber. Experimental 

investigations have been conducted on a vertical tubular bubble absorber working with R22-DMF to explore the 

effect of operating parameters on the absorption phenomenon (Sujatha et al., 1999). Suresh and Mani (2012) used a 

glass bubble absorber to study the heat and mass transfer characteristics of R134a in DMF. Effects of operating 

parameters, viz., gas flow rate, solution initial concentration, solution pressure, solution temperature and cooling 

water flow rate on absorber performance are investigated. Correlations for heat and mass transfer coefficients for 

R124-DMAC working pair in a copper vertical tubular bubble absorber have been developed by Jiang et al. (2017). 

Recently, an experimental study on heat and mass transfer characteristics of R124-NMO in a vertical glass bubble 

absorber has been conducted under operating conditions of an air-cooled absorption system (Wang et al., 2020).  

 

A single vertical nozzle (vapour distributor) is used in a tubular bubble absorber in all the studies reported above. In 

a double pipe heat exchanger, heat transfer is poor. This makes it challenging to use in absorption cooling systems 

(Cerezo et al., 2018). Hence, simple passive and active enhancement techniques should help improve the heat and 

mass transfer rates, mainly in the absorber. Various studies that have been carried out in the literature to improve the 

absorption characteristics of the absorber in the VARS system are reported here. The absorption process in a bubble 

absorber has been enhanced by modifying absorber surface geometry, adding surfactants, nanoparticles and the 
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presence of external magnetic fields, etc. Experiments are being carried out to study the effect of advanced surfaces, 

i.e. internally micro-finned tube with internal helical micro-fins of 0.3 mm length with 20o helix angle on the 

ammonia absorption process in a tubular bubble absorber working with NH3-LiNO3. The absorption rate with a 

micro-finned tube is enhanced up to 1.7 times that with the smooth tube at a solution mass flow rate of 40 kgh-1 

(Amaris et al., 2014a). In addition, to improve the performance of an absorber,  plate heat exchanger type bubble 

absorbers are used instead of a tubular bubble absorber (Oronel et al., 2013, Suresh and Mani, 2013). An 

experimental comparison of the NH3-H2O bubble absorption process using a double tube heat exchanger with a 

helical screw static mixer in both the central and annular sides is conducted by Cerezo et al. (2018). According to 

the findings of the experiments, the absorber with a helical screw mixer absorbed 20% more vapour than the smooth 

tube. CFD studies are performed on an R134a-DMF tubular absorber with two tangential injectors having a 30o 

angle with a vertical axis to improve the efficiency of VARS (Panda and Mani, 2016). The heat and mass transfer 

coefficients are nearly 120%-170% and 20%-40% higher than that of the vertical nozzle in a bubble absorber. 

 

Adding surfactants to working pairs causes surface gradients in solution and vapour, increasing heat and mass 

transfer rates due to the Marangoni effect (Kulankara and Herold, 2002). Similarly, adding nano-sized particles to 

base fluid improves the absorption rate due to increased thermal conductivity (Ma et al., 2007). Effects of 

surfactants (n-octanol, 2-Octanol and 2E1H), surface roughness (micro-scale hatched tubes with a roughness of 0.39 

µm and 6.97 µm) and binary nanoparticles (Cu, CuO and Al2O3) on absorption performance are studied on NH3-

H2O system by Kim et al. (2006). The absorption rate for the bare tube with 700 ppm 2E1H surfactants is 4.8 times 

that of the bare tube without surfactants. The micro-scale hatched tube with surfactants has 4.5 times greater 

absorption performance than the bare tube without surfactants. The maximum effective absorption ratio of 3.21 is 

achieved with 0.01% Cu nanoparticles. Furthermore, both 2E1H and Cu nanoparticles improve the absorption rate 

by 5.32 times (Kim et al., 2007). Experimental studies are carried out to estimate the individual and simultaneous 

effects of carbon nanotubes (CNT) and advanced surfaces on the performance of an NH3-LiNO3 tubular bubble 

absorber. The highest increase in absorption mass flux attained with CNT is around 1.64 times that obtained from 

plane tube. On the other hand, the simultaneous effect of CNT and advanced surfaces has increased the absorption 

mass flux by 1.8 times of that for the base fluid mixture and smooth tube (Amaris et al., 2014b). Investigation of 

Fe3O4 nano ferrofluid in combination with the application of an external magnetic field on ammonia-water bubble 

absorber has revealed that the combined effect of the nano ferrofluid and the external magnetic field significantly 

enhanced ammonia-water bubble absorption greater than either technique alone under the same conditions. Under 

adiabatic conditions, the effective absorption ratio reached a maximum of 1.0812 ± 0.0001 with an initial ammonia 

mass concentration of 20%, a Fe3O4 nano ferrofluid mass concentration of 0.10% and external magnetic field 

intensity of 280 mT (Wu et al., 2013). In the present study, heat and mass transfer studies on a bubble absorber 

working with R134a-DMF by employing a passive enhancement technique, namely a swirl generator (SG), are 

carried out to understand the absorption characteristics.  

 

2. EXPERIMENTAL SETUP 
 

The experimental setup is depicted schematically in Figure 1. The setup consists of VARS, a cooling load simulator, 

a cooling water simulator, a hot water tank simulator to mimic solar energy, and different measuring instruments, 

control devices and valves. The refrigerant vapour liberated from the generator storage tank (GT) is condensed in 

the condenser and stored in a liquid refrigerant storage tank. Condensation heat is removed using cooling water 

circulation. This liquid R134a from the liquid receiver is expanded through the throttle valve and evaporated in the 

evaporator by taking the heat from the chilled water supplied from the cooling load simulator. R134a vapour from 

the evaporator is absorbed in the absorber by the weak solution coming from the generator tank. The absorber is a 

tube in tube type exchanger with inner tube dimensions of 50 mm ID and 55 mm OD and outer tube dimensions of 

ID 65 mm and OD 75mm. R134a vapour is injected via a swirl generator installed at the bottom of the inner tube, 

and a weak solution from the generator storage tank is sent to the bottom of the inner tube. The heat of mixing 

during the absorption process is removed by cooling water from the cooling water simulator and supplied through 

the annulus of the absorber in the counter-flow direction. Due to the absorption of R134a vapour in a weak solution, 

the strong solution results at the absorber outlet and this strong solution is collected in the absorber storage tank. The 

strong solution from the absorber storage tank is pumped through a solution heat exchanger to the generator by a 

metering type solution pump. R134a vapour is boiled off in the generator due to the hot water supply, and it is 

separated in the generator storage tank. The weak solution in the generator storage tank is sent back to the absorber 

for absorption via a solution heat exchanger and pressure reducing valve. The solution heat exchanger is an add-on 
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component that transfers heat from a hot weak solution to a cool strong solution, hence reducing the amount of heat 

supplied to the generator. 

 

Figure 2 illustrates the details of the swirl generator used in the present study (Sanikommu et al., 2021). The swirl 

generator has four nozzles of the cavity profile shown in Figure 2a with a 0o camber angle and 20o twist angle. The 

authors have carried out bubble visualization studies to visualize the swirl motion created by SG. The cooling load 

simulator comprises a chilled water tank insulated with expanded polyethylene sheets (EPE), electric heaters, pump, 

flow meter, PT100 sensor, PID temperature controller, contactor, piping, and valves. The chilled water is used to 

supply the heat load in the evaporator, and the cooling load simulator is used to maintain a constant chilled water 

flow rate and temperature at the inlet of the evaporator. The cooling water simulator is made up of a cooling water 

tank with EPE insulation, vapour compression refrigeration system (VCRS), electric heaters, pump, flow meter, 

PT100 sensor, PID temperature controller, contactor, piping and valves. Cooling water simulator is used to supply 

cooling water in parallel to the absorber and condenser at a set temperature and flow rate. The hot water tank 

simulator consists of a hot water tank with glass wool insulation, electric heaters, pump, flow meter, PT100 sensor, 

PID temperature controller, contactor, piping and valves. This simulator sends hot water to the generator to liberate 

refrigerant vapour from a strong solution. Various measurement instruments, such as pressure transmitters, 

temperature sensors, flow meters, and online density meters, are installed at suitable locations, as shown in Figure 1. 

All of these measuring instruments have been pre-calibrated. Twenty-seven copper-constantan thermocouples are 

used as temperature sensors with ±1oC uncertainty. Fourteen piezoelectric pressure transducers are used as pressure 

sensors with a measurement error of ±1.5%. The density of the strong and weak solutions is measured using an 

online density meter with a measurement uncertainty up to ±0.1 kgm-3. Concentrations of weak and strong solutions 

are evaluated from the Hankinson-Brobst-Thomson (HBT) equation as reported by Reid et al. (1987) using the 

density values measured by an online density meter during the experiment. The readings are continuously monitored 

by integrating all of these instruments and sensors to a data acquisition system and a computer. Based on data 

measured during the experimental tests, performance evaluation of tubular absorber with swirl entry of refrigerant 

vapour has been performed.  

 

 
 

Figure 1: Schematic diagram of the experimental setup 
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Figure 2: Details of the swirl generator (a) profile of the cavity (b) front view of SG (c) isometric view of SG 

(Sanikommu et al., 2021)  

 

3. EXPERIMENTAL METHODOLOGY 
 

The VARS system is initially charged with calculated R134a vapour and DMF liquid based on the system volume 

using the triple vacuum technique. The refrigerant and solution circuits are separated in the idle condition by closing 

the valves between the generator storage tank and condenser, evaporator and absorber. Simulators for hot and 

cooling water have been started. Hot water is supplied to the generator at a temperature higher than that to be 

maintained in the generator once the hot water has reached the prescribed temperature. Cooling water is circulated 

through the condenser and absorber in a parallel arrangement. Cooling water is sent at a temperature lower than the 

required temperature to be maintained in the respective components. A cooling load simulator is used to circulate 

the chilled water through an evaporator. Water temperature in the chilled water tank is maintained constant by 

operating the heaters same as the system's cooling capacity. Water flow rates in the hot water simulator, cooling 

water simulator, and cooling load simulator are kept constant. Then, the solution pump is switched on to supply the 

strong solution to a generator. The level of weak solution in the generator storage tank, the level of strong solution in 

the absorber tank and the pressure in each component of the solution circuit are continuously monitored. When the 

pressure in the generator storage tank surpasses the pressure in the condenser, the valve between them is opened to 

allow the refrigerant vapour to enter the condenser for condensation. The liquid R134a level in the liquid receiver is 

being checked. After collecting a sufficient amount of refrigerant liquid, it is allowed to enter the evaporator through 

the throttle valve. The valve between the evaporator and absorber is opened to allow refrigerant vapour to enter the 

absorber. Flow rates of weak solution and refrigerant are regulated to maintain a steady flow in the system. While 

the system is running, the readings of all the devices are continuously monitored, and steady-state readings are 

recorded on the computer when all of these readings remain constant over time. Experimental tests are repeated for 

different operating conditions, i.e. different hot water temperatures, cooling water temperatures, weak solution flow 

rates and refrigerant liquid flow rates. Finally, the solution and refrigeration circuits are isolated by closing 

appropriate valves while shutting down the system after the experimental tests are completed. Then the solution 

pump is switched off, as well as all of the simulators. 

 

4. RESULTS AND DISCUSSION 
 

Experiments with a cooling capacity of 3.4 kW are carried out by varying the operating parameters, such as weak 

solution flow rate from 0.04 m3h-1 to 0.056 m3h-1, liquid refrigerant flow rate from 0.005 m3h-1 to 0.011 m3h-1, hot 

water temperature from 75oC to 91oC, cooling water temperature from 17oC to 27oC. Water flow rates are 

maintained constant at 0.1 m3h-1 for hot water, 0.08 m3h-1 for absorber cooling water, 0.0775 m3h-1 for condenser 

cooling water and 0.0475 m3h-1 for chilled water. The performance parameters, including absorber heat transfer rate, 

overall heat transfer coefficient, absorption rate, and volumetric mass transfer coefficient, have been studied by 

varying solution and refrigerant flow rates by keeping all other parameters constant. These quantities are defined in 

Appendix. All of the results presented here are for a hot water temperature of 90.6oC, cooling water at 17oC 

temperature and chilled water temperature of 31.1oC.  
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Figure 3: Effect of refrigerant and weak solution flow rates on absorber heat transfer rate 

 

Figure 3 illustrates the heat transfer rate in the absorber as a function of weak solution flow rate for various 

refrigerant flow rates. The absorber heat transfer rate increases as refrigerant flow increases because of high 

absorption rates and increased heat of mixing during the absorption process. The heat transfer rate in the absorber 

increases with an increase in weak solution flow rate due to increased weak solution mass flow rate and an increased 

overall heat transfer coefficient which is evident from Figure 4. An increase in refrigerant flow rate causes more 

vapour bubbles in the solution, resulting in increased heat transfer and a higher overall heat transfer coefficient. 

Similarly, as the weak solution flow rate increases, convective heat transfer in the absorber increases, which results 

in an increased overall heat transfer coefficient with the solution flow rate. As a result, with weak solution and 

refrigerant flow rates, the overall heat transfer coefficient of the absorber increases. Figure 5 depicts the variation of 

solution pressure drop with weak solution flow rate for different refrigerant flow rates. It is seen that with the weak 

solution and refrigerant flow rates, the solution pressure drop increases. This is due to an increase in flow velocity 

and friction due to the increase in weak solution and refrigerant flow rates. 

 

 
Figure 4: Variation of overall heat transfer coefficient with weak solution and refrigerant flow rates 
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Figure 5: Effect of weak solution flow rate on solution pressure drop for different refrigerant flow rates 

 

Figure 6 shows the effect of refrigerant flow rate on solution concentration at the absorber outlet for various weak 

solution flow rates. As the gas flow rate increases, the amount of absorbed refrigerant vapour increases for a given 

amount of weak solution, resulting in increased solution concentration at the outlet of the absorber. However, at 

higher weak solution flow rates, the concentration decreases due to the dilution of the solution with a weak solution. 

As a result, the concentration difference between strong and weak solutions increases as the refrigerant flow rate 

increases. In addition, the concentration difference reduces as the solution flow rate increases, as seen in Figure 7.  

 

 
Figure 6: Effect of refrigerant flow rate on absorber outlet concentration for various weak solution flow rates 
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Figure 7: Variation of solution concentration difference with weak solution and refrigerant flow rates 

 

The absorption rate varies with refrigerant and weak solution flow rates, as shown in Figure 8. The amount of 

refrigerant vapour absorbed in the weak solution increases as refrigerant flow increases, resulting in high absorption 

rates. Furthermore, with high weak solution flow rates, the quantity of solution available for gas absorption is more, 

resulting in a higher absorption rate. As the refrigerant flow rate increases, the initial turbulence, mixing, and the 

mean interfacial velocity also increase, causing the mass transfer rate to increase, leading to an increased volumetric 

mass transfer coefficient, as shown in Figure 9. The increase in the weak solution flow rate means the decrease in 

the average mass fraction of the solution in the absorber, which causes the average mass transfer driving potential to 

increase. As a result, the volumetric mass transfer coefficient increases with an increase in the weak solution flow 

rate.  

 

 
Figure 8: Effect of refrigerant and weak solution flow rates on the absorption rate 
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Figure 9: Effect of weak solution flow rate on volumetric mass transfer coefficient for different refrigerant flow 

rates 

 

6. CONCLUSIONS 
 

The present work reports experimental studies on heat and mass transfer characteristics of a tubular copper absorber 

with swirl entry of refrigerant vapour. The cavity type swirl generator is used in this study, and it has a 0o camber 

angle and 20o twist angle. By varying solution and refrigerant flow rates while maintaining all other parameters 

constant, performance parameters like volumetric mass transfer coefficient, overall heat transfer coefficient, 

absorber heat load, concentration difference and pressure drop are examined. The absorption heat transfer rate, 

absorption rate, overall heat transfer coefficient, volumetric mass transfer coefficient and solution pressure drop 

increased with an increase in refrigerant and weak solution flow rates. Solution concentration at the absorber outlet 

and concentration difference across the absorber are found to increase as the refrigerant flow rate increases and the 

weak solution flow rate decreases.  

 

NOMENCLATURE 
 

Cp specific at constant pressure    (𝑘𝐽𝑘𝑔−1𝐾−1) 

D absorber inner tube diameter  (m) 

h enthalpy  (𝑘𝐽𝑘𝑔−1) 

ID inner diameter  (m) 

𝑘𝑙𝑎 volumetric mass transfer coefficient (𝑘𝑔𝑚−3𝑠−1) 

L length of absorber  (m) 

LMCD logarithmic concentration difference (-) 

LMTD logarithmic mean temperature difference (-) 

m mass flow rate  (𝑘𝑔𝑠−1) 

OD outer diameter  (m) 

Q heat transfer rate  (W) 

R radius  (m) 

T temperature  (oC) 

U overall heat transfer coefficient  (𝑊𝑚−2𝐾−1) 

V volume flow rate  (𝑚3ℎ−1) 

X liquid mass fraction  (𝑘𝑔𝑘𝑔−1) 

α camber angle  (o) 

θ twist angle  (o) 

 

Subscript   

A, a absorption 
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ai equivalent absorber inlet temperature 

cw cooling water 

eq equilibrium 

l liquid 

r refrigerant 

ss strong solution 

ws weak solution 

1 inner 

2 outer 

  

APPENDIX A 

 
Heat rejected in the absorber to cooling water: 𝑄𝑎 = 𝑚𝑐𝑤𝐶𝑝,𝑐𝑤(𝑇20 − 𝑇19) (1) 

Logarithmic mean temperature difference: 𝐿𝑀𝑇𝐷 =  
(𝑇𝑎𝑖−𝑇20)−(𝑇7−𝑇19)

ln (
𝑇𝑎𝑖−𝑇20
𝑇7−𝑇19

)
 (2) 

where 𝑇𝑎𝑖  is the equivalent solution temperature at the inlet of the absorber corresponding to ℎ𝑎𝑖 =  
𝑚𝑟ℎ6+𝑚𝑤𝑠ℎ14

𝑚𝑟+𝑚𝑤𝑠
 

Overall heat transfer coefficient: 𝑈𝑜 =
𝑄𝑎

(𝜋𝐷2𝐿)𝐿𝑀𝑇𝐷
 (3) 

Absorption rate: 𝑚𝑎 =  
𝑚𝑤𝑠(𝑋𝑠𝑠−𝑋𝑤𝑠)

𝑋𝑟−𝑋𝑠𝑠
 (4) 

Logarithmic mean concentration difference: 𝐿𝑀𝐶𝐷 =
(𝑋𝑒𝑞,𝑠𝑠−𝑋𝑠𝑠)−(𝑋𝑒𝑞,𝑤𝑠−𝑋𝑤𝑠)

𝑙𝑛(
𝑋𝑒𝑞,𝑠𝑠−𝑋𝑠𝑠

𝑋𝑒𝑞,𝑤𝑠−𝑋𝑤𝑠
)

 
(5) 

Volumetric mass transfer coefficient: 𝑘𝑙𝑎 =
𝑚𝑎

(
𝜋

4
𝐷1

2𝐿)𝐿𝑀𝐶𝐷
 (6) 

 

APPENDIX B 

 
Uncertainity in derived quatities 

Heat transfer rate: 
𝛿𝑄𝑎

𝑄𝑎

= [(
𝛿𝑉𝑐𝑤

𝑉𝑐𝑤
)

2

+ 2 (
𝛿𝑇

𝑇
)

2

]
1/2

= [(0.05)2 + 2(0.0416)2]1/2 = ±7.72% 

Overall heat transfer coefficient: 
𝛿𝑈𝑜

𝑈𝑜
= [(

𝛿𝑄𝑎

𝑄𝑎

)
2

+ 2 (
𝛿𝑇

𝑇
)

2

]

1/2

= [(0.0772)2 + 2(0.0416)2]1/2 = ±9.70% 

Absorption rate: 
𝛿𝑚𝑎

𝑚𝑎
= [(

𝛿𝑉𝑤𝑠

𝑉𝑤𝑠
)

2

+ (
𝛿𝑉𝑟

𝑉𝑟
)

2

]
1/2

= [(0.05)2 + (0.0595)2]1/2 = ±7.77% 

Volumetric mass transfer coefficient: 
𝛿𝑘𝑙𝑎

𝑘𝑙𝑎
= [(

𝛿𝑚𝑎

𝑚𝑎
)

2

+ 2 (
𝛿𝑋

𝑋
)

2

]
1/2

= [(0.0707)2 + 2(0.0267)2]1/2 = ±8.01% 
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