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ABSTRACT 
 
This paper presents a multi-objective optimization of a 38-liter vapor compression cooler aiming at performance 
maximization and weight minimization. An experimental mapping of the thermodynamic efficiencies (internal, 
external, and overall) of a vapor compression portable cooler running with two different compressors was performed 
to identify opportunities for energy optimization. In the analysis, the original crankshaft reciprocating compressor was 
replaced by a small-capacity mini-rotary one with half of the weight and one-third of the shell volume when compared 
with the baseline one. Albeit the latter presented an overall second-law efficiency about 10% lower, the refrigeration 
cycle (internal) efficiency increased by 25%, thus indicating not only that the mini-rotary compressor performed better 
than the original one, but also that there is room for a proper redesign of the heat exchangers. To this end, a steady-
state system simulation model was advanced for the design and optimization exercises, which explored not only the 
evaporator and condenser heat transfer areas, but also the thickness of the cabinet insulating walls. One the one hand, 
the Pareto front revealed a system configuration that consumes 13% less energy than the baseline cooler if the weight 
remains unchanged. On the other hand, for the same energy performance, the optimization led to a cooler 15% lighter 
than the baseline. 
 

1. INTRODUCTION 
 
The market for light portable refrigerators has increased steadily after the introduction of thermoelectric coolers a few 
decades ago. Nonetheless, such appliances have low energy performance due to their intrinsic thermodynamic 
irreversibilities (Hermes and Barbosa, 2012). Therefore, compact vapor compression systems emerged as a high-
performance alternative, in spite of being much heavier than the thermoelectric devices. Remarkably, the tradeoff 
between size and efficiency is an essential design aspect of portable coolers (Yee and Hermes, 2019), impelling the 
industry towards the development of increasingly smaller but efficient compressors (Possamai et al., 2008; Ribeiro, 
2012; Lee et al., 2014). Albeit multi-objective optimizations have been carried out for household refrigerators focusing 
on energy and cost savings (Negrão and Hermes, 2011), from the authors’ best knowledge there is no study in the 
open literature aiming at performance maximization and weight minimization of portable coolers, which is on the 
focus of the present paper. 
 
To this end, a portable cooler running with two different compressors, namely reciprocating (crankshaft-type) and 
mini-rotary, were evaluated. First, experimental tests were carried out in order to obtain the key performance 
parameters for each configuration (e.g., power consumption, cooling capacity, compressor runtime). Since the direct 
comparison between the overall energy consumption may be unfair from a thermodynamic standpoint, the 
methodology introduced by Hermes and Barbosa (2012) – consisting of splitting the refrigeration (second law) 
efficiency into two terms, one associated with internal losses (e.g., friction, mixtures) and another with external losses 
(e.g., heat transfer across finite temperature difference) – was adopted not only for comparisons purposes, but also to 
prospect opportunities for further design improvements. In addition, a steady-state simulation model was put forward 
and validated against experimental data. A multi-objective optimization exercise was carried out for the system 
running with the mini-rotary compressor, aiming not only at energy performance improvement, but also weight 
reduction, considering the heat exchangers surface areas as well as the insulation thickness. 
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2. EXPERIMENTAL WORK 
 
The portable cooler under analysis is illustrated in Fig. 1. The refrigeration system, comprised by a 38-liter cabinet, is 
equipped with a reciprocating compressor, which runs with 42g of HFC-134a. A fan-supplied tube-fin condenser is 
responsible to reject the heat to the environment, while the refrigerated compartment is cooled down by a natural draft 
evaporator distributed along the internal walls. The vapor compression refrigeration loop is depicted in Fig. 2, where 
one can notice an internal heat exchanger between the capillary tube and the suction line. 
 

 
Figure 1: Schematic of the baseline cooler: (a) tube-fin condenser, (b) insulated cabinet and (c) roll-bond evaporator 
 
The characteristics of the compressors considered in this study are described in Table 1. On the one hand, the baseline 
system has a single-speed reciprocating (crankshaft-type) compressor which operates at 60 Hz. On the other hand, a 
prospective replacement (also available on the market) is a miniature rotary-type compressor with two compression 
stages, roughly 50% lighter than the reciprocating one. In general, rotary compressors are usually used in air 
conditioning applications, as it develops low efficiencies at low evaporating temperatures. Nonetheless, according to 
manufacturer’s data, the mini-rotary compressor can operate in a wide range of evaporating temperatures spanning 
both fresh-food and freezer conditions. In addition, although it can operate with variable-speed, all the analyses 
reported in this work were carried out at a fixed speed of 58 Hz, for which the compressor performed the best. 

 
Table 1. Summary of the characteristics of the compressors under analysis. 

 
Compressor Reciprocating Mini-rotary 
Evaporating temperature range, °C -35 to 0 -30 to 20 
Compressor EER (LBP), W/W 0.89 1.11 
Stroke, cm³ 1.3 2.4 
Mass, kg 2.3 1.2 
Dimensions: H | L | W, mm 159 | 149 | 154 154 | 77 | 107 
External shell volume, liter 1.03 0.33 
Frequency range, Hz 60 20 to 80 

 
Experimental tests were carried out in a climate chamber with strict control of temperature, humidity and air speed. 
Temperature at several points in the refrigeration loop were measured using T-type thermocouples with a measurement 
uncertainty of ±0.2°C. The average air temperature inside the refrigerated compartment was obtained from nine 
thermocouples, five of which positioned in the horizontal medium plane, as shown in Fig. 3. The thermocouples used 
for measuring the cabinet air temperatures were brazed in cylindrical copper blocks, following the recommendations 
of the IEC 62552 (2015) standard. The surrounding air temperature was measured in three different positions around 
the cabinet (front, right and back). The condensing and evaporating temperatures were evaluated through surface 
thermocouples placed along the refrigerant piping and compared with the saturation temperature corresponding to the 
pressure measured by means of strain gauge transducers at the compressor suction and discharge ports. All the surface 
thermocouples employed a thin electrical insulation medium between the thermocouple and the surfaces to avoid 
undesired electrical noise. 

(a) (b) (c)
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The instantaneous power consumption was measured during the tests through a digital analyzer with an uncertainty 
of ±0.1% of the full scale, while the power consumed by other components, such as condenser fan and control board 
were evaluated beforehand. Figure 4 graphically illustrates the range of tested conditions (30 data points), in a 
pressure–enthalpy diagram, for both compressors. The numbers stand for the cycle points indicated in Fig. 2. 
 

 

Figure 2: Schematic representation of the refrigeration loop 

 
The overall thermal conductance of the cabinet was estimated based on a reverse heat flux test (Vineyard et al., 1998), 
according to which the internal temperatures are maintained above surrounding air temperature by means of heat 
dissipation inside the refrigerated compartment via electric heaters. During the test, the refrigeration system is 
switched off and the air temperatures inside and outside the cabinet are monitored, along with the power consumed 
by the heaters. At steady-state condition, the thermal conductance of the cabinet can be calculated from 
UAcab=Ẇres / (Ti – Te), where UAcab represents the overall cabinet conductance (= 0.52 W/K), Ẇres is the mean power 
dissipated by the heaters, in W, Ti is the cabinet internal temperature and Te the surrounding air temperature. 
 

  
Figure 3: Schematic of cabinet air temperature 

instrumentation 
Figure 4: Representation of the whole dataset in a 

pressure-enthalpy diagram 
 
For the energy consumption tests, electric heaters were installed inside the refrigerated compartment to maintain the 
storage temperature fixed, which was done by means of a PID controller in such a way that the refrigerator operates 
at steady-state condition with the compressor running continuously (Hermes et al., 2013). Therefore, the compressor 
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runtime ratio (RTR) can be calculated from RTR=Q̇t/Q̇ev, where Q̇t=UAcab(Te–Ti) is the cabinet thermal load whereas 
Q̇ev=Q̇t+Ẇres is the cooling capacity of the refrigeration system at steady-state conditions, and Ẇres is the power 
dissipated by the heaters. Finally, the energy consumption is obtained from EC=RTR∑Ẇ, where ∑Ẇ  accounts for the 
overall power consumption of the system, comprising the compressor, the condenser fan and the control board. For 
both compressors, the tests were performed under three different surrounding air temperatures (16, 25 and 32°C), and 
five distinct cabinet internal temperatures (-4, 0, 4, 8 and 12°C), summing up 30 tests in total. 
 

3. THERMODYNAMIC MAPPING 
 
The coefficient of performance of a real refrigeration system is defined by the ratio between the cooling capacity and 
the overall power consumption (Gosney, 1982): 
 

  (1) 
 
The coefficient of performance of an ideal refrigerator running according to the Carnot cycle, where all the 
thermodynamic processes are reversible, depends only of the cabinet and surrounding air temperatures, where Ti<Te: 
 

  (2) 
 
Moreover, assuming that the refrigeration system operates ideally between the hot (Th) and cold (Tc) ends, that stand 
for the condensing and evaporating temperatures, respectively, the coefficient of performance of an endoreversible 
(i. e., internally ideal) refrigerator can be calculated as follows: 
 

  (3) 
 
where ΔTh and ΔTc represent the temperature differences at the hot and cold ends, respectively. It is important to point 
out that εii is the maximum coefficient of performance possible for an ideal refrigeration system running with actual 
heat exchangers, that is, with a finite temperature difference between the terminals and the reservoirs. It should be 
noted that once ΔT → 0, thus εii → εid. 
 
According to Hermes and Barbosa (2012), the refrigeration efficiency associated with the internal irreversibilities 
(e.g., friction, mixture) that take place in the refrigeration cycle can be calculated as the ratio between the coefficients 
of performance of the real and the endoreversible refrigerators, while the thermodynamic efficiency related to the 
external losses (e.g., heat transfer across finite temperature differences in the condenser and the evaporator) is obtained 
by dividing the latter by the coefficient of performance of the Carnot refrigeration cycle. Hence, the overall second-
law efficiency can be calculated as follows: 
 

  (4) 
 
where ηi is the 2nd-law efficiency associated with the cycle internal irreversibilities, whereas ηe is the 2nd-law efficiency 
associated with the external losses. 
 
Figure 5 shows that the baseline system presented an overall efficiency 22% higher than configurations with the mini-
rotary compressor, reflecting the gains in the εr as the εid figures remained fairly constant. On the one hand, the baseline 
system has higher external efficiencies in comparison to the one operating with the mini-rotary compressor, as the 
latter presented very high temperature differences in the hot and cold ends. On the other hand, the trends observed for 
the internal efficiencies are quite the opposite, with the system with the mini-rotary compressor showing better figures 
than the baseline regardless the working conditions. Actually, this is so as the rotary compressor is notoriously more 
efficient than the reciprocating one, which is endorsed by the compressor calorimeter EER, as presented in Table 1. 

r evQ We = å! !

( )id i e iT T Te = -

( ) ( )ii i c e i h cT T T T T Te = -D - +D +D

( )( )2nd i e r ii ii id r idh hh e e e e e e= = =
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Figure 5: Efficiency deployment: cabinet temperature 

at 0°C and various surrounding air conditions 
Figure 6: Efficiency deployment: surrounding air 

temperature at 25°C and various cabinet temperatures 
 
Also, the experimental mapping reveals that a proper sizing of the heat exchangers for operation with the mini-rotary 
compressor could significantly improve the system performance as its internal efficiency is significantly higher than 
that observed for the baseline. As the mini-rotary compressor provides higher mass flow rate levels and, consequently, 
higher heat duties, it requires heat exchangers with larger number of transfer units to work properly. 
 

4. MATHEMATICAL MODELING 
 
A steady-state system simulation model was developed aiming at the optimization exercise, being comprised of the 
following sub-models for the compressor and the heat exchangers, namely condenser and evaporator, as described 
below. The formulation followed closely the approach introduced by Gonçalves et al. (2008), where the refrigerant 
charge and capillary tube sub-models were replaced by prescribed evaporator superheating and condenser subcooling, 
so that the condensing and evaporating temperatures can be calculated respectively from: 
 

  (5) 
  (6) 

 
This procedure not only eliminates potential convergence issues, but also brings the numerical analysis closer to the 
design practice, where both the capillary tube and the refrigerant charge are adjusted posteriori to guarantee a certain 
degree of superheating and subcooling. 
 
4.1 Compressor 
The compressor sub-model is aimed at determining the displaced mass flow rate (ṁ), the power consumption (Ẇk), 
and the thermodynamic state of the refrigerant at the compressor discharge based on the working pressures and the 
refrigerant temperature at the compressor inlet. The mass flow rate and compression power are calculated from: 
 

  (7) 
  (8) 

 
where ηv and ηg stand for the compressor volumetric and global efficiencies, respectively, Vsw is the swept volume, N 
the motor speed, in Hz, and v1 the specific volume at compressor inlet. Albeit Eqs. (7) and (8) were originally devised 
for reciprocating compressors (Gosney, 1982), some studies pointed out predictions with acceptable errors when the 
model is used to calculate power consumption and mass flow rate of rotary compressors (Li, 2013). Based on the heat 
released by the compressor to the surrounding air, Q̇k=UAk(T2s–Te), where Te is the surrounding air temperature and 
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UAk the compressor thermal conductance, an overall energy balance in the compressor returns the refrigerant state at 
the outlet: 
 

  (9) 
 
The compressor efficiencies were obtained by means of a hot-cycle calorimeter, and correlated as linear functions of 
pressure ratio (pcd/pev) and rotational speed (N). The compressor overall thermal conductance (UAk), in turn, was 
obtained from tests carried out with the whole system in a climate room. 
 
4.2 Heat exchangers 
The refrigerant at the capillary tube outlet can be obtained from the following energy balance: 
 

  (10) 
 
The compressor inlet temperature (T1) was calculated from the capillary tube-suction line heat exchanger effectiveness 
(εihx), also adjusted based on experimental data, so that 
 

  (11) 
 
A mean value of 0.8 was obtained from 30 experimental points. Regarding the condenser and evaporator, both thermal 
models were divided in zones according to the refrigerant thermodynamic state. The former counts with 3 zones 
(superheated, saturated and subcooled), whilst the latter has two (saturated and superheated) regions. The heat transfer 
in the saturated zones were calculated considering a constant thermal conductance (UAsat), yielding 
 

  (12) 
 
where Q̇ stands either for the evaporator cooling capacity or condenser heat duty, in W, and ΔT refers to the respective 
temperature difference between the refrigerant saturation temperature and thermal reservoir, in K. Concerning the 
single-phase regions, the heat transfer was calculated from the effectiveness method, as follows: 
 

  (13) 
  (14) 

 
where εhx is the temperature effectiveness of the heat exchanger, considered as a function of number of transfer units 
(NTUhx=UAhx/Cmin), Cmin is the thermal capacity rate of the stream with the lower figure. The overall thermal 
conductance terms (UAhx) were all obtained from experimental data obtained for the cooler at steady-state conditions. 
 

5. SIMULATION RESULTS 
 
The simulation model was implemented in the EES platform (Klein, 2011). Figure 7 compares the model predictions 
for cooling capacity and power consumption with the experimental counterparts, while Fig. 8 does the same for the 
working pressures. As can be seen, errors within a ±10 % deviation bands were observed for the whole dataset, with 
just a few outsiders, and roughly 95% of the predictions falling within the ±10% error bounds. Also, a maximum 
deviation of 2°C between model predictions and experimental data were found for the evaporating and condensing 
temperatures. 
 
Figures 9 and 10 illustrate the model sensitivity by means of steady-state simulations performed for the refrigeration 
system operating with the reciprocating and mini-rotary compressor. The performance trends are explored as a 
function of the runtime ratio, cabinet temperature, and surrounding air temperature, the latter represented as the upper 
and lower thresholds by the shady bands. 
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Figure 7: Model validation for the power consumption 
and cooling capacity 

Figure 8: Model validation for the condensing and 
evaporating pressures 

 
One can notice in Fig. 9 an increasing reduction of the minimum temperature reached for a certain RTR when the 
original compressor is replaced by the mini-rotary one, going from -12 to -30°C when the compressor is kept on 
continuously (RTR=1). Figure 10, in turn, shows that the energy consumption span with regard to the surrounding air 
temperature is increased by 4 kWh/month in the case the mini-rotary compressor is adopted. Such a greater sensitivity 
to the ambient temperature variations is another indication that the heat exchangers are undersized for the mini-rotary 
compressor and shall be properly redesigned.  
 

 
 

 

Figure 9: Simulation results for the cabinet air 
temperature as a function of the compressor RTR 

Figure 10: Simulation results for energy consumption 
as a function of the cabinet air temperature, Ti 

 
6. OPTIMIZATION SCHEME 

 
In compact coolers, besides energy, a reduction of the total mass is also compelling, particularly for off-grid 
applications, where portability is a must and battery power supply is employed. Moreover, the thermodynamic 
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mapping exercise indicated a large margin for energy consumption reduction once the heat exchangers are undersized. 
Therefore, an optimization exercise was conducted not only to resize the condenser and the evaporator to run with the 
mini-rotary compressor, but also to find out the optimal heat exchanger areas and cabinet walls insulation thickness 
that lead to minimum energy consumption for a fixed weight, or minimum weight for a fixed energy consumption. 
 
6.1 Problem parametrization 
In order to verify the trade-off between mass and energy consumption, the most relevant system components were 
evaluated and putted into account according to the objective function: 
 

  (15) 
 
where w stands for the mass, and the subscripts cd, ev, ins, and rest refer to the condenser, evaporator, insulation and 
other components, respectively, with the latter representing the mass of the plastic structure, fan, pipelines, etc. The 
original system mass when employing the mini-rotary compressor was 10.2 kg, as summarized in Table 2. 
 

Table 2. Mass distribution in the original system mounted with the mini-rotary compressor 
 

Component Condenser Evaporator Insulation Other Compressor TOTAL 
Mass, kg 0.29 1.38 0.96 6.37 1.2 10.2 
Distribution, %  2.9 13.5 9.4 62.5 11.8 100 

 
The thermal effect of the following independent variables, namely condenser heat transfer area, Acd, evaporator heat 
transfer area, Aev, and insulating wall thickness, δins, were explored in the optimization exercise. Therefore, for the 
heat exchangers, the overall heat transfer coefficients (U) were held constant, with the area influencing the heat transfer 
rate. Similarly, in order to consider the thermal effect of the insulation thickness on cabinet overall conductance, the 
inner cabinet volume was kept constant while the wall thickness was changed. The condenser mass was modeled as a 
linear function of Acd, fixing the properties of the heat transfer surface (e.g. compactness factor, Colburn j-factor) and 
changing only the heat exchanger length, so that wcd=0.841+0.061Acd. The evaporator mass, which consists basically 
of a flat plate, was calculated straightforwardly from wev=ρalδpAev, where ρal is the aluminum density, δp the plate 
thickness (1.5 mm). The mass of the insulated walls was calculated from wins=ρpuδins(LW+LH+WH)+ρpuδins2(L+W+H) 
+ρpuδins3, where ρpu is density of the PU insulating foam and δins is the insulation thickness. For the optimization 
exercise, the surrounding and cabinet air temperatures were prescribed at 25 and -4 °C, respectively.  
 
6.2 Optimization results 
The analysis was firstly conducted to find out the set of parameters (Acd, Aev) that minimize the total mass for a fixed 
energy consumption. In this case, the insulation thickness was not changed, which would be the first choice on 
industrial grounds since the cabinet modifications may involve serious production investments. To this end, the built-
in EES conjugate directions method was employed (Klein, 2011). The results can be seen in Pareto front depicted in 
Fig. 11 (the line with open bullets), pointing out the loci of minimum mass for each energy consumption. On the one 
hand, changing the evaporator and condenser areas by +161% and -27%, respectively, a reduction of 17% in energy 
consumption is verified. On the other hand, if one keeps the energy consumption constant, the total mass of the system 
can be reduced 5% by decreasing the evaporator area by 50% and increasing the condenser area by 74%. 
 
Later, the insulation thickness was also explored along with the heat exchangers areas. The Pareto front considering a 
variable insulation thickness can be seen also in Figure 11 (the line with solid bullets). In this case, the results were 
even more expressive, showing an energy consumption reduction of 28% for the original mass, and reducing the mass 
in 6% maintaining the energy consumption. The former requests an increase of 63% in the condenser area, a reduction 
of 55% in the evaporator area, and an addition of 24 mm in the insulation thickness, while the latter is achieved when 
the evaporator area is reduced by 64%, the condenser area increased by 28% and 9.5 mm of PU insulation is added to 
the walls. The maximum mass reduction achieved, also considering the compressor replacement, was 15% (1.7 kg). 
Finally, Fig. 12 presents an energy consumption reduction map considering the original mass (10.2 kg) under different 
operating conditions. A variation of ~6.5% is verified within the analyzed envelope, indicating that the improvements 
provided by the optimization exercise remain fairly constant regardless the operating condition. 
 

t cd ev ins restw w w w w= + + +
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Figure 11: Optimum mass as a function of energy 
consumption for a fixed operating condition 

Figure 12: Maximum energy savings for all operating 
conditions holding the original mass fixed 

 
7. FINAL REMARKS 

 
A methodology for the thermodynamic comparison of a compact cooler running with a reciprocating and a mini-rotary 
compressor was employed. Experimental tests were conducted at three levels of surrounding air temperature (16, 25 
and 32°C) and at five levels of cabinet temperature (-4, 0, 4, 8 and 12°C) in a climate chamber. The operating 
parameters of each configuration were accounted to quantify the internal and external irreversibilities of the 
refrigeration system. The baseline configuration showed higher efficiency values, roughly 20% higher than those 
observed for the system running with the mini-rotary compressor. Albeit the external efficiencies with the mini-rotary 
compressor presented lower figures than the baseline, the internal efficiency showed values slightly higher than the 
baseline, thus indicating that a proper heat exchanger sizing is a must for compressor replacement. From this 
standpoint, an optimization exercise was conducted to verify the effect of the heat exchangers areas and the insulation 
thickness on both energy consumption and total weight. Taking the original system equipped with the mini-rotary 
compressor as a reference, the optimization showed that it is possible to reduce the energy consumption by 28% while 
maintaining the original weight, or to reduce 6% of the total weight when keeping the energy consumption fixed. 
Comparing the final (optimized) system for the mini-rotary compressor with the baseline (equipped with the original 
reciprocating compressor), the total mass was reduced from 11.3 to 9.6 kg for a fixed energy consumption (15%), and 
the energy consumption was reduced from 10.8 to 9.4 kWh/month for a fixed weight (13%). Finally, since a cost 
structure can be correlated with the mass of the commodities, specifically for the heat exchangers, this methodology 
can be extended to a combined cost/energy/mass minimization exercise, which has great interest on industrial grounds. 
 

NOMENCLATURE 
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A area (m²) 
h specific enthalpy (J/kg) 
H height (m) 
L length (m) 

 mass flow rate (kg/s) 
N compressor speed (Hz) 
NTU number of transfer units (-) 
p pressure (bar) 

 heat transfer rate (W) 
T temperature (°C) 

 
UA thermal conductance (W/K) 
v specific volume (m³/kg) 
V volume (m³) 
w mass (kg) 
W width (m) 
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Greek 
δ thickness (mm) 
ε 1st-law efficiency (-) 
η 2nd-law efficiency (-) 
ρ density (kg/m³) 
 
Subscript 
al aluminum 
cab cabinet 
c cold end 
cd condenser(ing) 
e external 
ev evaporator(ing) 
h hot end 

hx heat exchanger 
i internal 
id ideal 
ins insulation 
k compressor 
p plate 
pu polyurethane 
r real 
res electric heater 
sat saturation 
sub subcooling 
sup superheating 
sw swept 
tot total
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