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ABSTRACT 
 
The present study introduces the concept of extracting liquid refrigerant in microchannel condensers and its potential 
to enhance condenser performance. The benefit comes at no cost – the condenser geometry is the same except for one 
or a few well-sized drainage holes in the header baffle. A 1-D finite-volume model is built for the condenser and is 
validated with R134a experimental data. The capacities agree within ± 5% and the pressure drops agree within ± 35%. 
Using this model, the performances of a conventional condenser tested in experiments and its extraction counterpart 
are compared. When the inlet mass flow rate is the same, the extraction condenser lowers the refrigerant outlet 
temperature by 2.2 K (equivalent to increasing the capacity by 1.6%). When the outlet temperature is the same, the 
extraction condenser increases the mass flow rate by 2.3%. The reason for the improvement is analyzed thoroughly in 
terms of the local heat transfer coefficient, refrigerant pressure, refrigerant temperature, and heat transfer rate. The 
main reason for the higher capacity is attributed to the reduced pressure drop by extraction and thus the higher 
refrigerant temperature. 
 

1. INTRODUCTION 
 
In an in-tube condensation process, liquid generated on the wall is an extra thermal resistance that reduces the heat 
flux. Figure 1(a) shows the heat transfer coefficient (HTC) of R134a at different values of mass flux, G, in a 1 mm-
inner-diameter microchannel based on the correlations of Cavallini et al. (2006). Figure 1(b) shows the corresponding 

 

 

Figure 1: R134a in a 1mm smooth tube at Tsat = 40 °C: (a) Heat transfer coefficient (Cavallini et al., 2006); (b) 
Frictional pressure gradient (Cavallini et al., 2009) 
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frictional pressure drop gradient (dP/dz)f based on the correlations of Cavallini et al. (2009). When G is a constant, as 
the vapor quality, x, decreases from around 0.9, representing the formation of liquid condensate, HTC and (dp/dz)f 
decrease. The high-x (0.9-1) refrigerant flow can have 5-7 times higher HTC than the low-x (0-0.1) refrigerant flow 
does. As for the impact of G, at the same x, Figure 1 shows clearly that HTC and (dp/dz)f become higher as G increases. 
 
Microchannel condensers which are used in mobile and stationary air conditioners usually adopt the multi-pass design. 
The multi-pass design provides the opportunity to maximize condenser performance by changing G of the refrigerant 
as condensate is formed, affecting the local HTC and (dp/dz)f. Typically, the number of tubes in each pass decreases 
as the refrigerant flow proceeds, providing the in-tube HTCr and pressure (Pr) profiles shown in Figure 2. After a short 
single-phase zone which represents the superheated vapor flow entering the condenser, HTCr in Figure 2(a) soon 
elevates to the maximum where the bulk quality of the refrigerant flow equals 1. Then, based on the trends in Figure 
1(a), HTCr falls as the refrigerant flow proceeds. The discontinuity at the entrance of each pass is because of the 
increased mass flux. Pr in Figure 2(b) decreases as the refrigerant flow proceeds, which is mainly because the frictional 
pressure drop dominates the decelerational pressure increase. The decelerational pressure increase is generally a few 
hundredths of the frictional pressure drop. 
 

2. CONCEPT OF LIQUID EXTRACTION 
 
From Figure 1, in the same flow passage, removing the liquid phase during condensation will increase x and may 
increase HTC, with the trade-off of reduced G which will decrease HTC. On the other hand, reduced G will decrease 
(dp/dz)f, with the trade-off by increased x. Just as shown by Figure 1(b), usually the effect of G on (dp/dz)f is much 
larger than the effect of x, so the benefit of reduction in pressure drop is almost always ensured. Therefore, removing 
liquid during condensation can be a way to improve the performance of a condenser. 
 
In a multi-pass microchannel condenser, an intermediate header can be a perfect location to remove liquid, and the 
cost may not be high. Two inexpensive pass circuitries can realize this goal: the separation circuitry and the extraction 
circuitry. The separation circuitry refers to separating liquid from vapor and then reassigning the flow passages for the 
separated vapor flow and liquid flow. Details can be found in Li and Hrnjak (2017a; 2017b; 2021a; 2021b). 
 
The extraction circuitry for microchannel condensers can be designed as shown non-exhaustively in Figure 3, which 
covers designs for 3-pass to 5-pass condensers. We are only focusing on single-slab, parallel-tube, cross-flow 
microchannel condensers. Different from the separation circuitry, the extraction circuitry is designed to extract liquid 
flow in one or several vertical intermediate headers through a well-designed hole in the lower baffle of the header. 
The liquid flow is directed to the exit of the condenser or the entrance of downstream passes. The liquid flow will 
move downward through the hole based on the pressure difference. 
 
If the liquid can be drained efficiently, the flow rate in downstream passes will be smaller, thus effectively reducing 
 

 

Figure 2: Heat transfer coefficient and pressure in a typical microchannel condenser: (a) heat transfer coefficient; 
(b) pressure (inset: schematic of the condenser) 
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Figure 3: Some possible circuitries for extraction condensers 
 
the pressure drop. Reduced pressure drop increases the saturation temperature of the refrigerant and increases the 
LMTD of the condenser. From the heat transfer point of view, after the same 1st pass, extraction leaves the flow at the 
inlet of the downstream pass close to the onset of condensation, where the HTC is the highest. These factors may 
increase the heat transfer rate, i.e. capacity, of the downstream pass. 
 
Figure 4 shows the nomenclature for quantification of the liquid and vapor extraction in the second header. Two 
efficiencies are defined for liquid and vapor, respectively. The liquid extraction efficiency, ηL, is defined as the ratio 
of the liquid mass flow rate through the extraction hole to the total liquid mass flow rate coming into the header, as 
shown by Eq. (1). The vapor separation efficiency, ηV, is evaluated as the ratio of the vapor mass flow rate going into 
the downstream pass to the total vapor mass flow rate entering the header, as shown by Eq. (2). 
 

 L,ex
L

L,ex 2Li





 

m

m m
  (1) 

 

 
Figure 4: Parameters related to the definition of separation efficiencies of the second header 
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where 𝑚 ,   and 𝑚 ,   are the vapor mass flow rate and liquid mass flow rate extracted through the extraction 
hole; 𝑚  and 𝑚  are the vapor mass flow rate and liquid mass flow rate at the inlet of the 2nd pass. 
 
The ranges for both ηL and ηV are [0, 1]. In the present study, we assume a complete separation of liquid from vapor 
in the second header, i.e., ηL = 1 and ηV = 1. Real separation efficiency and the size of the orifice hole will be 
experimentally quantified in our upcoming work. 
 
The objective of the present study is to provide a theoretical basis for the improvement of microchannel condensers 
by liquid extraction. Using an experimentally validated model, the effect of liquid extraction on the heat transfer of 
the condenser is studied. In-tube heat transfer and pressure drop characteristics are analyzed. 

 
3. EVALUATION OF THE CONCEPT 

 
The performance of two condensers from a major heat exchanger manufacturer is evaluated and compared by a 
condenser model. We use two methods for the comparison. The two condensers are also evaluated by experiments, 
which will be presented in a separate study. The experimental results are used to validate the model in this study. 
 
3.1 Model description 
Park and Hrnjak (2008) built a steady-state microchannel condenser model using the 1-D finite-volume discretization. 
We adopt the same methodology to model our microchannel condenser under state-state operation with and without 
liquid extraction.  
 
The following assumptions are made for one pass of the condenser: (1) refrigerant flow distribution is uniform among 
the microchannel tubes; (2) refrigerant flow distribution is uniform among the microchannel ports in one microchannel 
tube; (3) no heat is conducted along the tube nor between tubes through fins; (4) all headers are adiabatic; (5) the 
pressure drop in headers is neglected; (6) incoming air has a uniform temperature and velocity profile. 
 
The empirical correlations for heat transfer and pressure drop are listed in Table 1. The heat transfer correlation for 
the condensing superheated region and the condensing subcooled region is referred to (Xiao and Hrnjak, 2017). The 
refrigerant properties are calculated by REFPROP 10.0 (Lemmon et al., 2018). The simulation is carried out in 
MATLAB 2018a. 
 

Table 1: Summary of heat transfer and pressure drop correlations 
 

Item Correlation 

Air side 

Heat transfer coefficient Chang and Wang (1997) 

Pressure drop Chang and Wang (1996) 

Refrigerant side – Single-phase region 

Heat transfer coefficient Gnielinski (1976)  

Frictional pressure drop Churchill (1977)  

Refrigerant side – Two-phase region 

Heat transfer coefficient Cavallini et al. (2006) 

Frictional pressure drop Cavallini et al. (2006) 

Deceleration pressure drop Cavallini et al. (2009) 

Refrigerant side – Condensing superheated region and condensing subcooled region 

Heat transfer coefficient Xiao and Hrnjak (2017) 
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3.2 Experimental validation of the model 
A single-slab, 4-pass, cross-flow microchannel condenser from a major heat exchanger manufacturer for vehicular air 
conditioners is selected to validate the condenser model. Figure 5 shows the pass circuity schematic of this condenser 
and names it the conventional condenser. Figure 5 also includes its corresponding extraction design for performance 
comparison and names it the extraction condenser. The number of microchannel tubes is marked for each pass. The 
extraction design falls into the category represented by Figure 3(c): liquid is extracted at the bottom of the second 
header and sent to the inlet to the 4th pass. 
 
Table 2 presents the main geometrical dimensions of the condenser. One microchannel port in one microchannel tube 
has a hydraulic diameter of 0.67 mm. The number of microchannel ports per tube is 16. The fin density of the 
condenser is 17 per inch, the face area 0.2447 m2, the total air-side area 5.2895 m2, and the total refrigerant-side area 
1.3232 m2. 
 
Experiments for the conventional condenser in Figure 5 are conducted on a mobile air conditioning test facility. It can 
be referred to in Li and Hrnjak (2017a). The working fluid is R134a. The compressor uses PAG 46 synthetic oil. 81 
data points are obtained under operating conditions per SAE Standard J2765 (SAE International, 2008). The air inlet 
temperature is set to be 35 ºC, 40 ºC, or 45 ºC. The air face velocity is in the range of 1.6 – 3.7 m/s. The R134a-oil 
mixture outlet pressure (Pcmo) used to calculate the saturation temperature for the condenser ranges from 860.4 to 
1827.5 kPa. The R134a-oil mixture mass flow rate (ṁm) ranges from 24.5 to 46.0 g/s, which corresponds to mass flux 
through the 1st pass of 197 – 368 kg/(m2-s). The subcooling (i.e., the difference between the saturation temperature 
and the temperature) at the condenser outlet is controlled in the range of 0 – 22.6 K. 
 

     

Figure 5: Schematics of the 4-pass conventional microchannel condenser and its corresponding extraction design 
 

Table 2: Main geometrical dimensions of the microchannel condenser in Figure 5 
 

Item Value Item Value 

Width w. headers [mm] 620 Louver pitch [mm] 0.77 

Width w/o headers [mm] 590 Louver length [mm] 6.0 

Width covered by fin [mm] 575 Louver angle [-] 27 

Height w/ side plates [mm] 405 Header type D-shape 

Height w/o side plates [mm] 390 Header equivalent diameter [mm] 18.0 

Depth [mm] 16.0 Length of the extraction tube [mm] 2200 

MC tube thickness [mm] 1.0 Diameter of the extraction tube [mm] 3.175 

MC tube pitch [mm] 7.8 Length of the vapor extraction tube [mm] 2400 

MC port Dh [mm] 0.67 Diameter of the vapor extraction tube [mm] 6.35 

Number of MC ports per tube [-] 16 Length of the liquid extraction tube [mm] 2550 

Fin thickness [mm] 0.1 Diameter of the liquid extraction tube [mm] 3.175 

Fin pitch [mm] 1.53   
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Figure 6 shows the comparison between the experimental results and the modeling results for the heating capacity Qc 
and the pressure drop ∆Pc of the condenser. Figure 6(a) shows the comparison of predicted and measured Qc. 98% of 
the data points are predicted within +/-5% deviation from the experimental results. Figure 6(b) compares the predicted 
and measured ∆Pc. 88% of the data points are predicted within ±35% deviation from the experimental results. Overall, 
the modeling results show good agreement with the experimental results. 
 
Not only the pressure drop in the whole condenser is measured, but the pressure drop in the 1st pass (∆P1) and the first 
three passes (∆P1-3) are also measured. Figure 7(a) shows the comparison between the experimental results and the 
modeling results for ∆P1. Figure 7(b) shows the comparison for ∆P1-3. Only 58% of the data points are predicted within 
±35% deviation from the experimental results in Figure 7(a), and 80% of the data points are underpredicted. 
Meanwhile, all data points are predicted within ±35% deviation from the experimental results in Figure 7(b). The 
 

 

Figure 6: Comparison of the experiment results and the model results: (a) condenser capacity; (b) condenser 
pressure drop 

 

 

Figure 7: Comparison of the experiment results and the model results: (a) refrigerant pressure drop in the 1st pass; 
(b) refrigerant pressure drop in the 1st pass to the 3rd pass 
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reason for the underpredicted ∆P1 is probably because the pressure drop in the header is neglected, as stated in the 
assumptions for the condenser model. While the pressure drop in header is higher in the 1st pass due to the higher 
quality of the refrigerant flow, neglecting the pressure drop in header has a bigger impact on ∆P1 than on ∆P1-3 or ∆Pc. 
 
3.3 Results 
The performance of the two condensers in Figure 5 is compared by using the condenser model. On the refrigerant-oil-
mixture side of a condenser, the condenser capacity is calculated as Eq. (3): 
 

  c m cmi cmo Q m h h  (3) 

 
where ṁm is the mass flow rate of the refrigerant-oil mixture, hcmi is the inlet specific enthalpy of the refrigerant-oil 
mixture, and hcmo is the outlet specific enthalpy of the refrigerant-oil mixture. 
 
We assume oil is fully miscible in liquid refrigerant, and there is no heat of mixing. Refrigerant and oil are also 
assumed to have a uniform temperature and pressure on one cross-section in the pipeline. The specific enthalpy of the 
mixture (hm) at one location of the pipeline of the refrigeration system can be expressed as 
 

  m r o1 OCR OCR  h h h   (4) 

 
where hr is the refrigerant specific enthalpy, ho is the oil specific enthalpy, and OCR is the oil circulation ratio. hr and 
ho are determined using the same temperature and pressure at that location. 
 
The criteria to compare these two condensers are selected to be the same as those used in (Li and Hrnjak, 2017b) on 
the heat-exchanger level, and they are shown in Table 3. The air-side inlet conditions for the two condensers are 
maintained the same. For the exit enthalpy criterion in Table 3, ṁm and hcmi are maintained the same. Based on Eq. 
(3), the condenser with a lower hcmo has a higher capacity Qc, thus it is more effective. For the condensate flow rate 
criterion in Table 3, hcri and hcro are maintained the same. Based on Eq. (3) again, the condenser with a higher ṁm has 
a higher Qc, thus it is more effective. 
 
For each comparison condition in this study, the condenser has subcooled refrigerant at the outlet to reflect a realistic 
operating condition. Based on the thermophysical properties of refrigerants, in the superheated state or the subcooled 
state, the specific enthalpy of a refrigerant is only a function of the temperature. Therefore, a lower condenser outlet 
temperature (Tcmo) means a lower hcmo. 
 
An R134a operating condition is chosen from the experimental data in Figure 6 to compare the extraction condenser 
and the conventional condenser. All parameters of this operating condition are inlet parameters and listed in Table 4. 
 
Figure 8 shows the extraction condenser outperforms the conventional condenser using the two criteria in Table 3. 
Using the exit enthalpy criterion, Figure 8(a) shows that the extraction condenser has a lower Tcmo (33.5 °C) than the 
conventional condenser (35.7 °C), so the extraction condenser is more effective than the conventional condenser. As 
shown in Figure 8(b), the corresponding capacity increase is 1.6%. Using the condensate flow rate criterion, Figure 
8(c) shows ṁm of the extraction condenser is higher than that of the conventional condenser by 2.3%, which is equal 
to the percental improvement in Qc as well. 
 

Table 3 Criteria set for the comparison of the two condensers 
 

 
Constants Parameter to 

compare Refrigerant side Air side 

Exit enthalpy 
criterion 

Pcmi, Tcmi, ṁm, 
OCR 

Tcai, RHcai, vcai hcmo / Tcmo 

Condensate flow 
rate criterion 

Pcmi, Tcmi, hcmo, 
OCR 

Tcai, RHcai, vcai ṁm 
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Table 4 R134a operating condition for the simulation 
 

Parameter Value 

Pcmi [kPa] 1075 

Tcmi [°C] 70 

ṁm [g/s] 43.5 

OCR [-] 5% 

Tcai [°C] 25 

RHcai [-] 35% 

vcai [m/s] 4.0 
 

 

Figure 8: (a) Lower Tcmo for the extraction condenser using criterion 1 (condition in Table 4); (b) Higher Qc for the 
extraction condenser using criterion 1 (condition in Table 4); (c) Higher ṁm for the extraction condenser using 
criterion 2 (Pcmi = 1075 kPa, Tcmi = 70 ℃, Tcmo = 35.7 ℃, OCR = 5%, Tcai = 25 ℃, RHcai = 35%, vcai = 4 m/s) 

 
To explain the reason for the improvement in Figure 8(a-b), Figure 9(a-d) show the profiles of HTCr, U, Pr, and Tr for 
the extraction condenser and the conventional condenser. ṁ2ri = 23.7 g/s after the liquid extraction in the second header. 
It can be concluded from Figure 9(a) that although HTCr,ex has a spike at the inlet of the 2nd pass due to high inlet 
quality, it reduces quickly. Plus, due to lower mass flux than the conventional, HTCr,ex actually becomes lower than 
HTCr,conv as the flow proceeds to the downstream 3/4 length of the 2nd pass. It is clear that HTCr,ex is also lower than 
HTCr,conv for all flow passages of the 3rd pass and the 4th pass. With a constant HTCa, U shares the same trend as HTCr, 
as shown in Figure 9(b). It is worth noting that because U takes into account a much lower constant HTCa, the relative 
improvement in U for the extraction condenser decreases compared to the improvement in HTCr. Figure 9(a-b) 
demonstrate that the improvement by extraction on heat transfer is not drastic and exists for a short length after liquid 
extraction. 
 
Nevertheless, due to the lower mass flux in the 2nd pass and the 3rd pass compared to the total mass flux, the benefit in 
pressure drop can be confirmed. Figure 9(c) shows a 61 kPa reduction in ∆Pc for the extraction condenser compared 
to the conventional baseline. Because Pr,ex is higher than Pr,conv entering the 2nd pass, so is Tr,ex compared to Tr,conv, as 
shown in Figure 9(d). This increases the refrigerant-air temperature difference and compensates for the penalty in 
HTC. 
 

4. SUMMARY AND CONCLUSION 
 
This study presents the concept of liquid extraction in the second header for a microchannel condenser. A 1-D  
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(a) (b) 

 

(c) (d) 

Figure 9: In-tube analysis for the extraction condenser and the conventional condenser (inlet condition in Table 4): 
(a) refrigerant-side heat transfer coefficient; (b) overall heat transfer coefficient; (c) refrigerant pressure; (d) 

refrigerant temperature 
 
numerical model is built to predict the performance of the condenser and validated with the experimental data. Most 
of the data for the capacity agree within ±5 % and most of the data for the pressure drop agree within ± 35%. 
 
Assuming ηL = ηV = 1, the capacity of the extraction condenser is higher than the conventional condenser by 1.6% 
(refrigerant outlet temperature lower by 2.2 K). The mass flow rate of the extraction condenser is higher than the 
conventional condenser by 2.3%. Based on detailed in-tube analysis on heat transfer and pressure drop, the main 
reason for the higher capacity is attributed to the reduced pressure drop by extraction and thus a higher refrigerant 
temperature. 
 
The experimental confirmation of the improvement and the experimental quantification of the separation efficiency 
in header have been conducted in another study by the same authors. 
 

NOMENCLATURE 
 

D diameter (m) 
∆P pressure drop (kPa) 
𝑚 mass flow rate (g/s) 
OCR oil circulation ratio (-) 
P pressure / pitch (kPa) / (mm) 
Q capacity (kW) 
RH relative humidity (-) 
T temperature (°C) 
U overall heat transfer coefficient (W/m2-K) 
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v velocity (m/s) 
x vapor quality (-) 
   
Greeks   
η separation efficiency (-) 
ρ density (kg/m3) 

1-3 1st pass to 3rd pass cri condenser refrigerant inlet 
1ro 1st pass refrigerant outlet cro condenser refrigerant outlet 
2Li 2nd pass liquid inlet ex extraction 
2ri 2nd pass refrigerant inlet f frictional 
2Vi 2nd pass vapor inlet h hydraulic 
3ro 3rd pass refrigerant outlet L liquid 
c condenser m refrigerant-oil mixture 
cai condenser air inlet r refrigerant 
cmi condenser mixture inlet sat saturation 
cmo condenser mixture outlet V vapor 
conv conventional   
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