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ABSTRACT 
 

Many heat transfer and fluid flow problems are too complex to model using traditional regression methods. Machine 

learning (ML) offers a new way to develop predictive models with high accuracy. However, current ML models are 

often uninterpretable and used as “black boxes”. This paper presents an approach to develop explicit, algebraic 

correlations from neural networks. An interpretable neural network, namely DimNet, is designed. One can train 

DimNet with experimental or simulation data and then convert the trained network to an explicit, power-law-like 

piecewise function. Besides being interpretable, DimNet inherits advantages of neural networks in modeling complex 

nonlinear problems. The mechanism and effectiveness of DimNet and the correlation development approach is further 

demonstrated by two case studies: 1) correlating simulation data for the friction factor of flow in smooth pipes; 2) 

correlating experimental data for flow boiling heat transfer coefficient within microfin tubes. Both case studies show 

DimNet can produce simple, explicit, algebraic correlations that are both statistically and phenomenologically 

accurate. The presented approach can be potentially used to develop correlations for various thermal-hydraulic 

problems, such as the pressure drop and heat transfer of single- and multi-phase flow, heat exchangers, and other 

thermal-hydraulic equipment. 

 

1. INTRODUCTION 
 

Empirical algebraic correlations are an essential element in thermal hydraulic engineering to describe transfer 

processes, as transfer processes generally involve turbulence for which theoretical solutions are typically not possible. 

Traditionally, correlations are developed by fitting experimental data to an assumed basis function. This approach 

often leads to large error or regression divergence for complex nonlinear problems such as multi-phase flow and heat 

transfer.  

 

Machine learning (ML) is a promising alternative class of methods to develop empirical models, and it is increasingly 

popular in recent years (Hughes, Kini, and Garimella 2021). Among numerous ML methods, the neural network is the 

most successful one and has a vast spectrum of applications (Bishop 2006; Schmidhuber 2015). The ability to divide 

the input space based on the data pattern afford neural networks a powerful capability to model complex problems. 

The modeling capability is embodied in the universal approximation theorems, which state that neural networks can 

approximate arbitrary continuous functions to any desired degree of accuracy (Cybenko 1989; Sonoda and Murata 

2017).  

 

Despite the superior modeling capability and a wide range of applications, neural networks (and other ML models) 

remain somewhat controversial, particularly in the field of heat transfer and fluid flow. The major criticism is 

concerned about the lack of transparency or interpretability, as most of neural networks and other ML models are used 

as “black boxes”. By contrast, traditional regression methods always give simple algebraic equations where the input–



 

 2120, Page 2 
 

19th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2022 

output relationship is clear. The prevailing reluctance toward neural networks and ML also stems from the seemingly 

lack of connection of these methods to the existing body of knowledge. 

 

This paper presents a new approach to develop algebraic correlations using an interpretable neural network, namely 

DimNet. DimNet was designed such that it can be converted to a piecewise function of power-law-like equations, 

which are especially suitable for modeling complex problems of heat transfer and fluid flow. DimNet also inherits 

neural networks’ advantages in data pattern recognition, making it excellent in capturing the different input–output 

trends in different physical regimes. In what follows, Section 2 describes the methodology of the proposed approach, 

Section 3 provides two exemplary cases with different number of input dimensions, and Section 4 draws the 

conclusions. 

 

 

2. METHODOLOGY 
 

2.1 Formulation 
DimNet (Dimensionless Neural Network) is designed primarily for correlating a set of dimensionless quantities with 

power-law-like relations. The design is based on the consideration that most heat transfer or fluid flow correlations 

are based on power-law functions. A DimNet model can be expressed by a function 𝑓  that maps a set of input 

dimensionless quantities {Π1, Π2, … , Π𝐿} to the target dimensionless quantity Π0: 

 

Π0 = 𝑓(Π1, Π2, … , Π𝐿) (1) 

 

DimNet is fully connected, feedforward neural network that consists of an input layer, two hidden layers, and an 

output layer. The notation L–M–N–1 is used to describe the DimNet’s configuration, where L, M, N, and 1 denote the 

width (i.e., number of neurons) of each layer, respectively. 

 

The input layer corresponds to a L-dimensional vector, 𝐱, that consists of the logarithms of the input dimensionless 

quantities: 

 

𝐱 = [𝑥1 𝑥2  ⋯ 𝑥𝐿] = [lnΠ1  ln Π2  ⋯ lnΠ𝐿] (2) 

 

The first hidden layer is activated by the rectified linear unit (ReLU): ReLU(𝑧) ≜ max(0, 𝑧), and the second hidden 

layer is activated by the exponential function: Exp(𝑧) ≜ 𝑒𝑧. For convenience, the two hidden layers are referred to as 

the ReLU-layer and Exp-layer, respectively. The output layer computes the linear combination of the outputs of the 

Exp-layer, giving the final output y, which corresponds to the target dimensionless quantity Π0.  

 

The whole DimNet can be expressed in the following form: 

 

𝑦 =∑𝑤𝑘
(3)Exp [∑𝑤𝑘𝑗

(2)ReLU(∑𝑤𝑗𝑖
(1)𝑥𝑖 + 𝑏𝑗

(1)

𝐿

𝑖=1

)

𝑀

𝑗=1

+ 𝑏𝑘
(2)] + 𝑏(3)

𝑁

𝑘=1

 (3) 

 

where w and b denote the weight and bias, respectively, both of which are adjusted parameters; the superscripts denote 

the number of the layer1. 

 

To ensure numerical stability and facilitate the training efficiency, the input vector is standardized:  

 

𝐱𝑛 ≜ (𝐱𝑛 − 𝐮) 𝐬⁄  (4) 

 

 
1 The layers herein are counted using the convention that only includes the hidden layers and the output layer, and the 

input layer is excluded because they do no computation (Reed and Marks 1999). In case of the DimNet, the first layer 

is the ReLU layer. 
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where u and s are vectors of the mean and the standard deviation of the samples {𝐱1, … , 𝐱𝒩}, respectively; the output 

are scaled by the maximum: 

  

�̂�𝑛 ≜ �̂�𝑛 �̂�max ⁄  (5) 

 

where �̂�max is the maximum of the labels {�̂�1, … , �̂�𝒩}. 
 

As explained in Chen (2016) and Hansson and Olsson (2017), the ReLU-layer essentially acts as generating 

hyperplanes that partition the input space into several regions. Each hyperplane corresponds to a neuron of the ReLU 

layer. The j-th (j = 1, 2, …, M) hyperplane can be expressed by 

 

𝑧𝑗 = 0 (6) 

 

where  

 

𝑧𝑗 =∑𝑤𝑗𝑖
(1)𝑥𝑖 + 𝑏𝑗

(1)

𝐿

𝑖=1

 (7) 

 

Substituting Eqs. (2), (4), and (5) to Eq. (7) leads to  

 

𝑧𝑗 = ln(∏Π
𝑖

𝑤𝑗𝑖
(1)
/𝑠𝑖

𝐿

𝑖=1

) + 𝑏𝑗
(1) −∑

𝑤𝑗𝑖
(1)𝑢𝑖

𝑠𝑖

𝐿

𝑖=1

 (8) 

 

Each ReLU hyperplane divides the space into two half-spaces, i.e., 𝑧𝑗
(1) > 0 and 𝑧𝑗

(1) ≤ 0. Thus, a DimNet with M 

neurons in the ReLU layer can create M hyperplanes and partition the input space into 2M regions.  

 

Define a binary variable 𝛿𝑗: 

 

𝛿𝑗 ≜ {
1 for 𝑧𝑗 > 0

0 for 𝑧𝑗 ≤ 0
 (9) 

 

Then an arbitrary region with the index 𝑟 = 1,2, … , 2𝑀 can be represented by a vector:  

 

𝚫𝑟 = (𝛿0, 𝛿1, … , 𝛿𝑗, … , 𝛿𝑀) (10) 

 

As proved in Lin et al. (2022), the DimNet’s equivalent function for the r-th region is  

 

𝑦 = 𝑝0 +∑(𝑝𝑘 ∙∏Π
i

𝑞𝑘,𝑖

𝐿

𝑖=1

)

𝑁

𝑘=1

= 𝑝0 + 𝑝1∏Π
𝑖

𝑞1,𝑖

𝐿

𝑖=1

+ 𝑝2∏Π
𝑖

𝑞2,𝑖

𝐿

𝑖=1

+⋯+ 𝑝𝑁∏Π
𝑖

𝑞𝑁,𝑖

𝐿

𝑖=1

 (11) 

 

where 𝑝0 = �̂�max𝑏
(3) and  

 

𝑝𝑘 = �̂�max 𝑤𝑘
(3)Exp [∑𝛿𝑗𝑤𝑘𝑗

(2) (𝑏𝑗
(1) −∑𝑤𝑗𝑖

(1) 𝑢𝑖
𝑠𝑖

𝐿

𝑖=1

)

𝑀

𝑗=1

+ 𝑏𝑘
(2)] (12) 

𝑞𝑘,𝑖 =
1

𝑠𝑖
∑𝛿𝑗𝑤𝑘𝑗

(2)𝑤𝑗𝑖
(1)

𝑀

𝑗=1

 (13) 
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2.2 Procedure 
DimNet can be trained in the same way that common neural networks are trained, and common neural network training 

algorithms and techniques generally apply to DimNet. The procedure used for training DimNets in the present study 

is as follows. The Adam algorithm (Kingma and Ba 2014) with a fixed learning rate of 0.001 and the default Adam 

parameters (β1 = 0.9, β2 = 0.999, ε = 10−8, no weight decay) were used for training. In each iteration (or “epoch”), the 

entire training set was used to compute the gradients and update the parameters, and the training samples were shuffled 

to avoid biased optimization. The training was considered converged when the loss (i.e., mean squared error, or MSE) 

did not decrease by 0.0001% in 100 consecutive iterations. The convergence typically occurred after 104 to 105 epochs 

for the studied cases, which took one to several minutes on an average personal computer. It is well known that the 

solution for neural network training is sensitive to the initial values of the network parameters, and the training 

algorithm can be usually trapped in local minima or saddle points, meaning the global minimum is not guaranteed (in 

fact, it is very rare). In this study, each model was randomly initialized using the Kaiming algorithm (He et al. 2015) 

and repeatedly trained for 100 times to select a solution with the lowest training loss. All neural networks in this study 

were constructed and trained based on the PyTorch package. 

 

The trained DimNet can be converted to a piecewise function following the procedure below: 

i. Obtain the DimNet’s parameters, i.e., weights and biases. 

ii. Compute hyperplane expressions 𝑧𝑗 using Eqs. (6) and (7) for j = 1, 2, …, L where L is the dimension of the 

input vector. 

iii. Generate region vectors 𝚫𝑟, as defined in Eq. (10), for r = 1, 2, …, 2M where M is the number of neurons in 

the ReLU-layer, then substitute Eq. (9) to write 𝚫𝑟 in terms of the inequalities of 𝑧𝑗. For example, if M = 2, 

all possible 𝚫𝑟 are [1,1], [1,0], [0,1], and [0,0], which are equivalent to [z1 > 0, z2 > 0], [z1 > 0, z2 ≤ 0], [z1 < 

0, z2 > 0], and [z1 ≤ 0, z2 ≤ 0], respectively. 

iv. For each region 𝚫𝑟, the corresponding algebraic function can be written in Eq. (11), with the coefficients 

computed by Eqs (12) and (13). These functions collectively constitute the piecewise function. 

 

 

3. CASE STUDIES 

 
3.1 One-dimensional case: friction factor for flow within smooth pipes 
The flow in smooth pipes is a classical fluid mechanics problem where the friction factor (λ) is a sole function of the 

Reynolds number (Re). Three distinct physical regimes exist over the entire range of the Reynolds number: laminar 

flow (Re ≲ 2300), transitional flow (2300 ≲ Re ≲ 4000), and turbulent flow (Re ≳ 4000). Avci and Karagoz (2019) 

proposed a universal model that combines laminar, transitional, and turbulent regime into a single equation:  

 

𝜆 = 𝛼𝜆L + (1 − 𝛼)𝜆T (14) 

 

where 𝜆L and 𝜆T are the friction factor for fully-developed laminar and turbulent flows, respectively; 𝛼 represents the 

ratio of laminar component to the flow. For smooth pipe, 𝛼 is computed by:  

 

𝛼 = exp[−(Re/2560)8] (15) 

 

The laminar friction factor has an analytical solution:  

 

𝜆L = 64/Re (16) 

 

The turbulent friction factor can only be empirically or semi-empirically computed. A classic semi-empirical model 

for smooth pipe was derived by Prandtl from the logarithmic velocity profile (Durand 1935):  

 

1

√𝜆T
= −2 log10 (

2.51

Re√𝜆T
) (17) 
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In this case study, Eqs. (14) – (17) were collectively used as the “true function” for DimNet to “learn”, with Re as the 

only input variable and 𝜆 as the output variable. It is noted that this paper is focused on how well DimNet “learns” the 

“true function”, while the intrinsic accuracy of the true function is beyond the scope. 

 

A training dataset with 250 synthetic data samples were generated using the true function. 200 of the samples were 

randomly drawn from the log-uniform distribution for the interval of Re from 102 to 108. The rest 50 samples were 

sampled in the same way for the interval [103, 104] in order to increase the data density in this region where the 

laminar–turbulent transition occurs. The output value of each sample was calculated by the true function added by a 

random noise to simulate experimental errors. The noise was drawn from a Gaussian distribution with zero mean and 

the standard deviation being 5 % of the true value. The DimNet with 1-2-2-1 configuration was trained with the 250 

noisy samples following the procedure in Section 2.2. The trained network is hereafter referred to as the DimNet-λ 

model, and was converted to the following explicit piecewise function: 

 

 𝜆 = −0.0021 + 61.7Re−1.00 − 1.1 × 10−21Re5.60 (for 𝑧1 > 0, 𝑧2 > 0) (18-1) 

 𝜆 = −0.0021 + 0.83Re−0.45 − 0.05Re−0.10 (for 𝑧1 > 0, 𝑧2 ≤ 0) (18-2) 

 𝜆 = −0.0021 + 7.49Re−0.55 − 6.7 × 10−22Re5.70 (for 𝑧1 ≤ 0, 𝑧2 > 0) (18-3) 

 𝜆 = 0.1287 (for 𝑧1 ≤ 0, 𝑧2 ≤ 0) (18-4) 

 

where 

 

𝑧1 = ln(Re
0.484 ) − 2.284 (19-1) 

𝑧2 = ln(Re−0.485 ) + 3.850 (19-2) 

 

Note that the coefficients for the above piecewise function were rounded to give finite decimal numbers. Caution 

should be exercised when rounding the coefficients, especially when the values are very small. For example, the 

coefficient 1.1 × 10−21 in Eq. (18-1) should not be rounded to zero, otherwise the rightmost term would vanish, and 

the resulting function would not have the reversed, increasing trend for Re between approximately 2000 and 3000 (see 

Figure 1). 

 

Figure 1 shows the true function’s curve, the training samples, and the DimNet-λ model’s predicted curve. The mean-

absolute-error (MAE) between the model prediction and the training data is 4.0 %, which is within the standard 

deviation of the artificial noise imposed to the data (i.e., 5 %). The MAE between the DimNet prediction and the true 

function is even lower –– 0.7 %, showing that DimNet adequately learns the true function from the noisy data. 

 

As indicated by Eqs. (18) and (19), the 1-2-2-1 DimNet creates two hyperplanes: z1 = 0 and z2 = 0, dividing the entire 

input space into 4 regions. Solving z1 = 0 and z2 = 0 with Eq. (19) leads to Re = 112 and Re = 2788, respectively. Then 

Figure 1 Training data,  DimNet-λ model prediction, and true function’s calculation for friction factor 

(λ) of smooth pipe flow  
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the four regions can be represented in terms of Re: 1) 112 < Re < 2788; 2) Re ≥ 2788; 3) Re ≤ 112; 4) Re ≤ 112, Re ≥ 

2788 (which is not a valid interval). The sub-equation of Eq. (18) corresponding to each region can be considered as 

the best-fit model or curve to the training data in that region. Then, it can be implied that DimNet essentially uses the 

hyperplanes to classify the training data and simultaneously fit the data to a piecewise curve, which may be described 

as “simultaneous classification and regression”.  

 

The hyperplanes and the functional forms of the fitting curves are controlled by the ReLU-layer and the Exp-layer of 

DimNet, respectively. In this case, the ReLU-layer has 2 neurons, thereby 2 hyperplanes and 22 = 4 regions are created. 

The Exp-layer has 2 neurons, then the functional form is the sum of two power-law terms. Obviously, more flexibility 

can be achieved by increasing neurons in ReLU-layers and the Exp-layers, which, however, also increases the risk of 

overfitting. Knowing the relationship between the DimNet’s configuration and characteristics of its equivalent 

piecewise function is important to choose a proper configuration for problems to be solved. 

 

Note that the hyperplane Re = 2788 is approximately the onset of the turbulent regime for the true function. This is a 

great embodiment that the DimNet recognizes the pattern (or trend) variation underlying the training data and makes 

classification accordingly. One may ask why one of the hyperplanes was not placed in the end of the laminar regime, 

which would ideally separate laminar and transitional regimes. The reason is that current optimization algorithms for 

training neural networks are generally unable to reach the global minimum of the error surface, and hence the trained 

neural network is typically near optimal but not globally optimal. Consequently, when the algorithm “found” the 

neural network parameters that satisfactorily fit the training data, it reached a local minimum that gave a relatively 

small error, and were unable to escape this local minimum to search for lower error surfaces. 

 

Figure 2 shows the evolution of the DimNet-λ model and the associated hyperplanes over the course of the training 

process. It can be seen that the hyperplanes and fitting curves are simultaneously and continuously adjusted until a 

satisfactory fit is obtained. An intuitive analogy for this one-dimensional DimNet is the spline, while the hyperplanes 

Figure 2 Evolution of the DimNet-λ model and the associated hyperplanes during the training process. 
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are essentially knots for the spline. The difference between the DimNet’s equivalent spline and a conventional 

interpolating spline is that the latter’s knots are placed “manually” and before curve-fitting, while the former’s knots 

are placed automatically by an optimization algorithm and in parallel with curve-fitting.  

 

Because the hyperplane Re = 112 (or z1 = 0) is near the boundary of the computation domain and almost not possible 

in practice, the regions #3 and #4 (i.e., z1 ≤ 0 or Re ≤ 112 ) are practically redundant and can be omitted. Then, the 

DimNet-λ model, or Eqs. (18) and (19), can be simplified as: 

 

 𝜆 = −0.0021 + 61.7Re−1.00 − 1.1 × 10−21Re5.60 (for Re < 2788) (20-1) 

 𝜆 = −0.0021 + 0.83Re−0.45 − 0.05Re−0.10 (for Re ≥ 2788) (20-2) 

 

3.2 Multi-dimensional case: flow boiling heat transfer within microfin tubes 
In our recent paper (Lin et al. 2022), DimNet was applied to developing a universal correlation for flow boiling heat 

transfer within microfin tubes using real experimental data. The following is a brief description for this application. 

 

The modeling objective here was to correlate the pre-dryout flow boiling heat transfer coefficient (htp) with pertinent 

parameters (including those representing operational conditions, geometries of microfin tubes, and fluid properties). 

These parameters are grouped into one target dimensionless quantity: Nu = htpDh/kf and seven input dimensionless 

quantities: [Bo, PR, Mw, Ref, Prf, Co, Bd], which were identified based on their physical significances and model 

performances. 

 

The database was compiled by carefully examining and collecting flow boiling measurements in the existing literature. 

It has 7349 data points from 31 sources for 16 refrigerants. The refrigerants include 12 pure refrigerants (CO2, 

R1234yf, R1234ze(E), R1234ze(Z), R1233zd(E), R1224yd(Z), R134a, R32, R125, R161, R22, R245fa) and 4 

refrigerant mixtures (R513A, R410A, R410B, R450A). The refrigerant mixtures are with temperature glides less than 

1 K, thus they were treated in the same manner as pure refrigerants. 

 

A DimNet with 7-2-2-1 configuration was used to develop the correlation. Considering DimNet was designed to deal 

with dimensionless inputs and output, an extra step was added to the network to multiply the output, which corresponds 

to Nu, by a factor of kf/Dh so that the resulting network’s output corresponds to htp. Note that this step was incorporated 

into the forward- and back-propagation of the network. The resulting network is referred to as the DimNet-HTC 

model.  

 

The DimNet-HTC model was first trained with 80 % of the entire database, while the rest of data were withheld for 

validation. The trained model predicted the withheld dataset with a MAE of 13.9 %, and 89.1 % of the withheld data 

were within ± 30 % of the prediction. The DimNet-HTC was compared with two extant non-ML-based models 

(Mehendale 2018; Tang and Li 2018), which were chosen because they were the most recent, and both of them were 

reported to outperform earlier models. The MAEs (evaluated on the withheld data) for the Tang–Li model and the 

Mehendale model are 20.3 % and 33.9 %, respectively, which are both significantly higher than that of the DimNet-

HTC model.  

 

The DimNet-HTC model was then trained with the entire database. Following the procedure in Section 2.2, the final 

model can be converted to the following function:  

 

ℎtp =

{
 
 
 
 

 
 
 
 (
𝜆f
𝐷h
) [

7730(Ref
0.1929Prf

0.3359Co−0.0318Bo0.1912PR
0.0555Mw

−0.3428Bd0.2880)

+3.094(Ref
−0.1039Prf

−0.8458Co−0.2494Bo−0.2031PR
−0.1398Mw

0.7766Bd−0.0485) − 581.3
] , for 𝑧1 > 0, 𝑧2 > 0 

(
𝜆f
𝐷h
) [

7803(Ref
0.2044Prf

0.3081Co−0.0529Bo0.1954PR
0.0509Mw

−0.3207Bd0.3128)

+2.675(Ref
−0.2797Prf

−0.4217Co0.0724Bo−0.2674PR
−0.0697Mw

0.4389Bd−0.4281) − 581.3
] , for 𝑧1 > 0, 𝑧2 ≤ 0 

(
𝜆f
𝐷h
) [

528.9(Ref
−0.0115Prf

0.0278Co0.0211Bo−0.0042PR
0.0046Mw

−0.0221Bd−0.0248)

+121.5(Ref
0.1758Prf

−0.4241Co−0.3218Bo0.0643PR
−0.0701Mw

0.3377Bd0.3796) − 581.3
] , for 𝑧1 ≤ 0, 𝑧2 > 0 

(
𝜆f
𝐷h
) × 57.7 , for 𝑧1 ≤ 0, 𝑧2 ≤ 0 

 (21) 

 

where ℎtp, 𝜆f, and 𝐷h are in SI units, and 𝑧1, 𝑧2 are given by: 
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𝑧1 = ln(Ref
0.4197Prf

0.6327Co−0.1086Bo0.4012PR
0.1045Mw

−0.6585Bd0.6423) + 5.507 (22-1) 

𝑧2 = ln(Ref
0.1527Prf

−0.3684Co−0.2796Bo0.0559PR
−0.0609Mw

0.2933Bd0.3298) + 0.1263 (22-2) 

 

Figure 3 shows the overall performance of the DimNet-HTC model in comparison with the Tang–Li model and the 

Mehendale model. The MAE, P30 (i.e., percentage of data predicted to within ± 30%), and RMSE (root-mean-square-

error) of the DimNet-HTC model for the entire dataset are 13.8 %, 89.6 %, and 1.1 kW/m2K, respectively. As shown 

in Figure 3, the DimNet-HTC model outperforms the Tang–Li model and the Mehendale model in terms of each of 

these metrics. 

 

Figure 4 compares the predicted htp vs. xq curves with experimental data of R134a and CO2 for selected conditions. 

The data of R134a and CO2 are from Longo et al. (2017) and Gao et al. (2007), respectively. Overall, the model 

prediction agrees with experimental data in terms of both magnitude and trend. The MAE for each htp vs. xq curve in 

Figure 4 is between 5 % and 15 %. All data points in Figure 4 are within ± 30 % predictive error bands, with the only 

exception of CO2 under the conditions of xq > 0.7, q = 5.8 kW/m2 and G = 380 kg/m2s, as shown in Figure 4 (c).  

 

 
Figure 3 Comparison of experimental data versus the prediction of the DimNet–HTC model and extant correlations 

(Mehendale 2018; Tang and Li 2018). Logarithmic scale is used on both horizontal and vertical axes. 

 

 
Figure 4 Comparison of the predicted htp vs. xq curve by the DimNet-HTC model with experimental data.   
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4. CONCLUSIONS 
 

The approach presented in this paper enables one to develop explicit algebraic correlations by training neural networks. 

This approach overcomes the interpretability bottleneck of neural networks, allowing the trained network to be 

converted to an explicit, algebraic, piecewise function, while keeping the superior predictive power of neural network.  

 

A special neural network, DimNet, is designed such that it can be converted to a power-law-like piecewise function. 

This design is based on the consideration that most heat transfer or fluid flow correlations are based on power-law 

functions. The properties of the equivalent piecewise function of DimNet are related to its network configuration 

parameters, which is demonstrated mathematically in Section 2 and by examples in Section 3. The knowledge of this 

relationship can be used to guide the construction of the network (i.e., setting the number of neurons in each of the 

layers) and effectively adjust the model’s flexibility based on the prior domain knowledge. 

 

Two case studies have been presented to illustrate the feasibility of this approach and the modeling capability of 

DimNet. Both case studies show DimNet can produce simple, explicit, algebraic correlations that are both statistically 

and phenomenologically accurate. The excellent prediction capability of DimNet was attributed to the neural 

network’s ability to automatically classify the data into optimal regions and simultaneously correlate the data within 

each region. It is expected that DimNet and the presented approach can be used to develop correlations for various 

thermal-hydraulic problems, such as the heat transfer and pressure drop of single- and multi-phase flow, heat 

exchangers, and other thermal-hydraulic equipment. 

 

 

NOMENCLATURE 
 

𝐛, 𝑏 bias of neural network 𝐬, 𝑠 standard deviation of inputs 

Bd modified Bond number, 𝜋𝑔𝜌f𝑒𝐷t/(8𝑁fin𝜎) 𝑇sat saturation temperature 

Bo boiling number, 𝑞/(𝐺ℎlv) 𝐮 mean of neural network input 

Co convection number, [(1 − 𝑥q)/𝑥q]
0.8
 (𝜌v/𝜌L)

0.5 𝐖,𝑤 weights of neural network 

𝑐𝑝 specific heat We Weber number, 𝐺2𝐷h/(𝜌f𝜎) 

𝐷h hydraulic diameter 𝐱, 𝑥 input of neural network (or “feature”) 

𝐷t inner diameter at the fin tip 𝑥q vapor quality 

𝑒 fin height 𝑦 output of neural network (or “target”) 

𝐺 mass velocity 𝑧 inactivated value of a hidden unit 

ℎtp two-phase heat transfer coefficient   

ℎlv enthalpy of vaporization Greek symbols 

𝐿,𝑀,𝑁 parameters of DimNet’s architecture  𝛼 helix angle 

𝑘 thermal conductivity 𝛽 apex angle 

Mw molecular mass  𝜆 friction factor 

𝑁fin number of fins in the microfin tube 𝜇 viscosity  

Nu two-phase Nusselt number, ℎtp𝐷h/𝑘 Π dimensionless group 

Ref two-phase Reynolds number for liquid flow, (1 − 𝑥q)𝐺𝐷h/𝜇f 𝜌 density 

𝑝, 𝑞 parameters in the piecewise form of DimNet  𝜎 surface tension 

𝑝sat saturation pressure 𝛿 binary variable 

P30 percentage of data predicted to within ± 30 %   

PR reduced pressure Subscripts 

Pr Prandtl number, 𝑐𝑝𝜇/𝑘 f liquid 

𝑞 heat flux v vapor 
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