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ABSTRACT 
 

Ejectors have found its application in improving the performance of carbon dioxide refrigeration systems over the last 

three decades. As the cycle complexity increases with the addition of an ejector, it is imperative to design the ejector 

cycle after thorough system analysis. The system model requires accurate heat exchanger models, and therefore, 

detailed Finite Volume (FV) models are needed. Though the FV heat exchanger models are accurate, they can be 

computationally expensive which hampers an extensive component analysis during the design phase. In this study, a 

computationally efficient Artificial Neural Network (ANN) evaporator model is developed from the wide range of 

experimental data of a given evaporator, operated in a standard ejector cycle. Usually, several number of temporal 

data points are collected for a single steady state data point. Though, the steady state data has less uncertainty than the 

temporal data, it is difficult and time consuming to collect large number of steady-state performance data points. This 

limits the number of neurons in the ANN, as the model run into an overfitting problem. In this study, the ANN 

evaporator model is developed using both the steady state (331 data points) and the temporal data (28,853 data points). 

The ANN model is developed after optimizing the neural network topology while using different activation functions 

and backpropagation techniques. The study finds that the ANN based on temporal data does not show any 

improvement over ANN based on steady state data. The ANN model with 2 layers (4 neurons in the first layer, and 

16 neurons in the second layer) is found to have the minimum residual. The ANN model is trained using Bayesian 

Regularization backpropagation technique with symmetric sigmoid as the activation function. The ANN model 

predicts 99.7% of the data points, whereas the FV model with 100 elements, predicts 91.2% of the data points within 

± 10% accuracy for the capacity when compared with the experimental data. The ANN model takes around 

15milliseconds, whereas FV model with 10 elements, takes around 12-19 seconds to compute evaporator performance. 

Later, both the ANN and the FV evaporator models are used in a standard ejector cycle system model. The system 

model with FV (100 elements) predicts 79% of the data points, whereas the system with ANN evaporator model 

predicts 100% of the data points within ±10% accuracy. The system using ANN model is found to be 139 times faster 

than the FV (10 elements) based system model. This shows that the developed ANN model can be useful in conducting 

an extensive component selection analysis as it is not only computationally fast, but also accurate. The applicability 

of the technique extends to other refrigerant systems as well. 

 

1. INTRODUCTION 
 

Ejectors, as work recovery device, have been widely studied for improving the performance of carbon dioxide 

refrigeration systems (Elbel and Hrnjak, 2008). The research has also found that the ejectors can also improve the 

performance of other low and medium pressure refrigerant systems like R1234yf (Lawrence and Elbel, 2014) and 

R410A (Lawrence and Elbel, 2016). However, with the addition of ejector, the complexity of the system increases as 

compared to the conventional vapor compression system. This makes the design and control of an ejector system a 

challenging task. It is, therefore, important to develop detailed ejector system models that allow system designers to 

carry out thorough component selection analysis in which different combinations and cycle architectures can be 

evaluated numerically with high level of confidence (Haider and Elbel, 2021b). 
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The heat exchangers performance prediction accuracy is important in determining the overall prediction accuracy of 

the cycle performance. There are different approaches to the heat exchanger modeling. One of the basic approaches is 

the thermodynamic state analysis in which only the inlet and outlet conditions of the refrigerant are considered. 

Similarly, fixed UA values are considered for modeling heat exchangers that include the effects of heat transfer fluid 

conditions. The highest fidelity models available are Finite Volume (FV) models that discretize the heat exchangers 

into small discrete elements and solve mass, energy, and momentum balances within each volume. The FV models 

can give insights into the heat exchanger design. They are accurate; however, they are computationally expensive. 

 

Other components of the vapor compression cycle are usually modeled using computationally efficient methods. For 

example, variable speed compressors can be modeled using ten coefficient polynomials (Haider and Elbel, 2020), and 

recently ejectors have been modeled using performance map (Haider and Elbel, 2021a). In this line of argument, heat 

exchangers for system analysis can also be modeled using computationally efficient approaches. The Artificial Neural 

Network (ANN) based heat exchangers model have been studied extensively (Mohanraj et al., 2015). However, their 

utility in component analysis of an ejector system has not been studied so far in the literature.  

 

An additional inquiry is to figure out if ANN based on temporal data can give better prediction over steady state data.  

During experiments, several number of temporal data points are collected for a single steady state data point. Though, 

the steady state data has less uncertainty than the temporal data, it is difficult and time consuming to collect large 

number of steady-state performance data points. Less number of steady state data points mean the number of neurons 

in NN remain limited, else the model can run into an overfitting problem. One solution to this problem could be use 

of the temporal data for training the ANN. Therefore, ANN based on both steady state and temporal data are developed 

and analyzed. 

 

In this study, only evaporator is considered among other heat exchangers. It is modeled using FV and ANN. The two 

models are compared for accuracy and computational cost both at component and system level. The study is divided 

into three sections. The first section introduces the experimental facility used to collect the evaporator performance 

data. The second section introduces the modeling methodologies and different procedures that are adopted. The third 

section discusses the results while comparing FV and ANN evaporator models. 

 

2. EXPERIMENTAL FACILITY 
 

The experiments for measuring evaporator capacity are conducted using an air conditioning system working on a 

transcritical CO2 standard ejector cycle with internal heat exchanger (IHX). The detailed system layout and description 

can be found in Lawrence and Elbel (2016). The microchannel gas cooler and the evaporator are housed inside two 

separate closed loop wind tunnels. In the evaporator side wind tunnel, an electric heater is installed for controlling 

inlet air temperature, and thus, the cooling capacity of the evaporator. Similarly, the gas cooler wind tunnel is equipped 

with a chilled water heat exchanger which helps in controlling inlet air temperature and heat transfer rate.  The 

compressor used in the study is a variable speed radial piston compressor. The IHX is a microchannel heat exchanger 

with a high and low-pressure line.  

 

The detailed uncertainties in temperature, pressure and mass flow rate sensors installed in the experimental facility, 

along with the geometry specification of the evaporator can be found in Zhu et al. (2018). A total of 331 steady state 

data points are available for the evaporator. Similarly, a total of 28,853 data points is available for temporal data. 

Table 1 shows the input and output variables used in the study for evaporator model with their minimum and 

maximum values. The data is normalized using min-max approach. The simulations/training in the study are 

conducted on a desktop computer with Intel® Core™ i7-2600 CPU @3.4GHz and 16GB installed memory. 

 

3. MODELING METHODOLOGY 
 

3.1 Finite Volume (FV) evaporator model 
The microchannel evaporator with four slabs has been modeled by discretizing it into finite volumes. It is assumed 

that there is no temperature gradient due to the conduction resistance. The flow inside the evaporator is counter-

crossflow with dry conditions on the air side as shown in the Figure 1. A hybrid scheme is used in solving evaporator, 

in which air side temperatures are updated after each iteration, whereas the energy and the momentum balances are 

solved simultaneously in each finite volume as the solution is marched from one finite volume to the other. 
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MATLAB’s lsqnonlin function available in Optimization Toolbox is used to solve each finite volume using four 

variables, namely, 𝑃𝑟𝑜, ℎ𝑟𝑜, 𝑇𝑎𝑜, and 𝑇𝑓. The refrigerant and air-side heat transfer coefficients are calculated using the 

empirical correlations specified in Table 2. The pressure drop is only considered on the refrigerant side, while fixed 

mass flow rate is assumed for the air side flow. The iterations are repeated until the change in predicted capacity 

between two consecutive iterations are less than the set tolerance for all the finite volumes. It is important to note that 

in finite volume model, the pressure drop predictions are usually not good, as significant part of pressure drop is 

expected to occur in headers, which have not been modelled. As a results, fixed scaling factor is used to improve the 

pressure drop predictions.  

Table 1 Input and output variables used for evaporator models with minimum maximum values, and uncertainty 

 

Variable Unit Variable type max min Uncertainty 

𝑇𝑎𝑖  
oC Input 27.5 26.5 ±0.5 

�̇�𝑎𝑖 kg/s Input 0.427 0.251 ±0.005 

𝑅𝐻𝑎𝑖  - Input 0.465 0.109 ±0.025 

𝑇𝑟𝑖 
oC Input 17.1 0.1 ±0.5 

�̇�𝑟 kg/s Input 0.049 0.0086 ±0.2% 

𝑋𝑟𝑖 - Input 0.068 0 0.002 

�̇�𝑒 kW Output 7.419 1.997 ±6% 

Δ𝑃𝑒𝑟  kPa Output 86.7 9.7 ±0.9 

 

 

Figure 1 Schematics of microchannel evaporator in a counter-crossflow conditions 

 

Table 2 Empirical correlations used for modeling evaporator 

  
Parameter Reference 

Pressure drop 1ph refrigerant ΔP Churchill (1977) 
 

2ph refrigerant ΔP Friedel (1979) 

HTC 1ph refrigerant HTC Gnielinski (1976) 
 

2ph refrigerant HTC Shah (2017) 
 

Air-side HTC Park and Jacobi (2009) 

 

3.2 Artificial Neural Network (ANN) evaporator model 
Key concepts related to ANN are briefly introduced here. These include single perceptron ANN, multi-layer 

feedforward ANN, activation function, loss function, training of the ANN, topology optimization of ANN etc. A more 

detailed description of ANN can be found here (Priddy and Keller, 2005). 
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3.2.1 Artificial Neural Network (ANN) 

Perceptron is the basic building block of ANN. Figure 2(a) shows a single perceptron Artificial Neural Network with 

multiple inputs and a single output. The perceptron is combination of summation function that sums the weighted 

inputs with a bias value, and an activation function that determines the contribution of a particular perceptron to the 

output value. The ANN also has a loss/error function which is a function that relates measured output value and the 

predicted output value. The training of ANN with backpropagation technique is the process of reducing the loss 

function by adjusting the weights NN using gradient methods. The method calculates the gradient of the loss function 

with respect to the NN’s weight. The gradient is calculated backwards through the network, i.e., the gradient of the 

last hidden layer’s weights is calculated first, and the gradients of the first layer’s weight is calculated last. Figure 

2(b) shows a multi-layer feedforward neural network (MLFNN) comprising of multiple perceptron arranged in 

multiple hidden layers. In developing evaporator model, six input and two output variables are used. These variables 

are first normalized using min-max method. 

 

 

 

 

 
(a) (b) 

Figure 2 Artificial Neural Network (a) single perceptron ANN (b) multiple perceptron ANN 

3.2.2 Activation function 

The summation function is a linear combination of weights, inputs, and biases. The activation function adds non-

linearity in the ANN. The activation plays important role in determining the accuracy and training time for the ANN. 

In this study, three different activation functions are used after carrying out analysis which is presented in section 4.2. 

These activation functions are symmetric sigmoid (tansig, ts), logarithmic sigmoid (logsig, ls), and radial basis (radbas, 

rb). These functions are shown in Figure 3. 

 

3.2.3 Training function: 

MATLAB offers several backpropagation techniques for training feedforward neural network. After conducting 

simulations using single layer ANN, presented in the section 4.2, two of the training functions are shortlisted for 

training rest of the NNs. These training functions are Levenberg-Marquardt (LM) and Bayesian Regularization (BR) 

algorithms. LM updates the next set of weight using the Equation (1) 

𝑥𝑘+1 = 𝑥𝑘 − (𝐽𝑇𝐽 + 𝜇𝐼)−1Jϵ     (1) 

where, 𝜖 is the loss function, J is the Jacobian matrix, 𝜇 is the factor that allows LM to switch between Gradient 

Descent (GD) method and Newton method. When 𝜇 is large, LM acts as GD, whereas if it is small then LM acts as 

Newton method. The Newton method offers fast convergence as it uses Hessian. However, the Hessian matrix is not 

calculated as it can be computationally expensive, rather it is estimated through Jacobian. In BR, the loss function 𝜖 

not only contains the error term from the output variables 𝜖𝑦, but also a term that sums the weights 𝜖𝑤 as given by 

Equation (2). 

𝜖 = 𝜖𝑦 + 𝛼𝜖𝑤      (2) 

𝛼 is usually a small number. In this study, 𝛼 = 0.005 is considered. BR performs better at avoiding over-fitting. The 

loss function for the output variables for the training is chosen to be mean square error. 
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Figure 3 Three activation functions used in the study 

 

3.2.4 Shortlisting training and activation functions 

MATLAB has several built-in activation and training functions. It is not straight-forward to answer which of these 

functions will be appropriate for the ANN evaporator model. The analysis is limited to only single layer ANN 

evaporator model in shortlisting training and activation functions. A total combination of 195 while considering 

thirteen training functions and fifteen activation functions, are tested with 4,8,12,16 neurons. The steady state 

experimental data is first normalized. The number of neurons is selected such that the number of weights and biases, 

𝑁𝑤𝑏  of the NN remains less than half the number of sample data points. This is done to avoid over-fitting. The 𝑁𝑤𝑏  is 

a function of number of layers, number of neurons in each layer, number of inputs and outputs. After generating a NN 

with set number of neurons, multiple trials are run for training and performance prediction. This is done because 

weights and biases are initialized randomly. Also, 70% of the data is randomly selected for training, while 15% is 

used for cross-validation, and 15% as test data. Multiple trials help in getting a statistical data. The prediction 

performance is evaluated by summing the absolute error (sae) terms for all the data points. The cumulative normalized 

error sums the error (sae) from all the trials. The combination of training and activation functions with minimum mean 

cumulative normalized error from all the number of neurons is shortlisted for further analysis. 

 

3.2.5 Topology optimization 

Topology optimization is to find the number of layers and number of neurons of the ANN that gives the best 

performance prediction. A brute force method is adopted where all the possible combinations are tested. The NN with 

number of layers 1, 2, 3, 4 and 5 are evaluated. The number of neurons in each layer can be 4, 8, 12, and 16. The 

number of layers and neurons in each layer are selected such that the 𝑁𝑤𝑏  is lower than the half of the number of the 

steady state data points. NN training is carried out by considering both steady state and temporal data. However, 

performance prediction is done considering steady state data points only. The NN with same number of neurons are 

used for training with steady state and temporal data.  

 

3.3 System model 
A system model for a standard ejector cycle with internal heat exchanger (IHX) has been developed in MATLAB for 

predicting system performance using different combinations of the system components. Fluid properties are obtained 

using CoolProp (Bell et al., 2014). The ejector is modeled using recently developed ejector performance map (Haider 

and Elbel, 2021a). The compressor is modeled using ten coefficient polynomials for each of the three efficiencies 

(Haider and Elbel, 2020). The gas cooler and IHX is modeled by heat exchanger effectiveness obtained from 

experimental data. It is assumed that there is not pressure drop inside gas cooler, IHX, and the separator. The quality 

at the vapor port of the separator is set from the experimental data. The same code is used to switch between FV and 

ANN evaporator model for fair comparison in computational speed and accuracy. 

 

The MATLAB function lsqnonlin with trust-region-reflective algorithm is used for solving the set of nonlinear 

equations. A total of four variables 𝑃𝑐𝑝𝑟𝑜, 𝑃𝑐𝑝𝑟𝑖 , 𝑃𝑒𝑟𝑖 and 𝑃𝑒𝑟𝑜 are used for finding the solution of the ejector system. 

The model does not fix the high side pressure, rather it takes the pressure drop across the expansion valve before the 

motive nozzle as an input. This reflects the control of high side flow more realistically than fixing the high side 
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pressure. For incorporating this, an additional equation is introduced that related the ejector motive inlet pressure with 

suction inlet pressure as function of motive nozzle characteristics and operating conditions. It is given by Equation (3) 

𝑃𝑚𝑛 − 𝑃𝑠𝑛 = 𝐶𝑣
�̇�𝑚𝑛

2

𝜌𝑚𝑛
+ 𝐶0     (3) 

where, 𝐶𝑣 and 𝐶0 are coefficients estimated by using experimental data for the fixed geometry ejector. 

 

4. RESULTS AND DISCUSSION 

 

4.1 Accuracy and computational speed of Finite Volume evaporator model  
The FV model is initially developed using CoolProp’s MATLAB wrapper for calling refrigerant properties (Haider 

and Elbel, 2021b). The MATLAB’s profiler feature shows that more than 60% of the computational time is spend in 

calling CoolProp wrapper. As a result, in the updated FV evaporator model, the fluid properties are called by 

interpolating fluid property tables which are populated using CoolProp wrapper. The FV model becomes 10-15 times 

faster using tabular fluid properties.  

 

The FV model is simulated for all the 331 steady state data points. Figure 4 shows the prediction accuracy for the 

capacity and the pressure drop of the FV model using 𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 = 10. Table 3 compares the FV model for two 

different 𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, i.e., 10 and 100. The FV model with 100 elements is almost six times more computationally 

expensive than the model with 10 elements. The accuracy improvement from 10 elements to 100 elements is 

appreciable, but not significant. For example, with 10 elements, FV model can predict capacity for the 84.3% of the 

data points within 10% accuracy, whereas with 100 elements it is 91.2%. There is a clear tradeoff between the accuracy 

and computational cost. For practical reasons, small number of elements are desirable. The accuracy of the FV model 

may be improved by using tuning factors.  

 

4.2 Shortlisting activation and training functions  
Figure 5 shows the cumulative normalized residual for all the 195 combinations of the training and the activation 

functions using only single layer ANN. The reported residual is the mean value for all the NNs evaluated for the given 

combination of training and activation function. The Box 1 contains NN trained by BR, whereas Box 2 contains NN 

trained by LM. These two training functions are shortlisted for further analysis as the NN trained by these functions 

has relatively smaller mean cumulative normalized residual. In general, the training time and accuracy using BR as 

training function is more than that of LM. Similarly, the activation functions against the three lowest mean cumulative 

normalized residual are shortlisted for further analysis. These include symmetric sigmoid, logarithmic sigmoid, and 

radial basis function. The rest of the analysis considers the six combinations from these two training and three 

activation functions.    

 

  
(a) (b) 

Figure 4 Prediction of the FV model (a) capacity (b) pressure drop 
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Table 3 Computational speed and prediction accuracy of FV model with two different number of elements 

𝑵𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 
𝒕𝒄𝒐𝒎𝒑,𝒂𝒗𝒈 (𝒔)  Accuracy 

1ph 2ph % Data ±5% ±10% ±15% ±20% ±25% ±30% 

10 19.1 12 𝑄𝑒 27.8 84.3 98.2 100 100 100 

Δ𝑃𝑒𝑟 20.9 42 60.4 75.5 82.8 87.3 

100 129.4 65.3 𝑄𝑒 32.3 91.2 98.2 100 100 100 

Δ𝑃𝑒𝑟 21.3 42.5 60.6 75.5 82.8 87.3 

 

 
Figure 5 Cumulative normalized residual from single layer ANN models 

4.3 Topology optimization for the ANN evaporator model  
The six combinations of training and activation functions are used to evaluate several NN with different number of 

layers and number of neurons in each one of them. Figure 6 shows the comparison of the cumulative normalized 

residual using both the steady state and temporal data points. The reported residual is the minimum residual obtained 

by a certain NN against the given combination of training and activation function. The NN with steady state data have 

relatively large variation in residuals as compared to the NN with the temporal data, however, the NN with steady 

state data gives the minimum cumulative normalized residual. The NN with minimum residual has 2 layers with 4 

neurons in the first layer and 16 layers in the second layer. It has BR as training function and tansig as the activation 

function. It can be observed that the temporal data based NN does not have higher prediction accuracy than the steady 

state data based NN, but it appears to be less sensitive to the choice of neurons in the NN. The temporal data may be 

helpful if the number of steady state data points are less. Moreover, it can be observed in both steady state and temporal 

data that typically the residual decreases as number of layers are increased from single layer. However, the residual 

increases again when the number of layers exceed the third layer. 

 

4.4 Accuracy and computational speed of ANN evaporator model  
The selected ANN is trained ten times and the NN in the trials that gives the minimum residual is selected for reporting 

the final result. Figure 7 shows the prediction accuracy of ANN evaporator model. Table 4 gives the computational 

speed and prediction accuracy in terms of the percentage data. The ANN has relatively significant training time, but 

has neglible computational cost which matters in the system level simulations. The prediction accuracy of ANN is 

better than the FV i.e, the FV model could predict 91.7% (100 elements) of the data with 10% accuracy, whereas ANN 

can predict 99.7% of the data with the same accuracy. 
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(a) (b) 

Figure 6 Residuals for different layers against six combinations of training and activation functions (a) steady state 

data (b) temporal data 

  
(a) (b) 

Figure 7 Prediction accuracy of ANN evaporator model (a) capacity (b) pressure drop 

Table 4 Computational speed and prediction accuracy of ANN evaporator model 

Time (s)  Accuracy 

Training Comp. % Data 5% 10% 15% 20% 25% 30% 

105 0.014 
𝑄𝑒 92% 99.7% 99.7% 100% 100% 100% 

Δ𝑃𝑒𝑟 51.4% 76.4% 88.2% 95.2% 96.4% 97.6% 

 

4.5 System level comparisons for accuracy and computational speed 
The data for system level validation contains 24 data points. The data points have both single and two-phase evaporator 

exit conditions. The ambient temperature is in the range of 35-45oC, while compressor speed is in the range of 900-

1500min-1. The suction inlet quality for IHX is not considered to be one, rather it is considered as one of the parameters, 

taken from experimental data after doing energy balance across IHX, for each of the simulation point. Table 4 

compares the accuracy and computational cost of the three system models: the two using the FV evaporator model 

with 10 and 100 elements respectively, and the third using the ANN evaporator model. It can be observed that not 

only ANN model gives accurate prediction, but also the computational time is significantly less. The system model 

using ANN evaporator model is 139 times faster the FV model with 10 elements. 
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Table 5 Computational cost and accuracy of three ejector system models 

 
FV 10elements FV 100elements ANN 

% Data within ±10% COP 66% 79% 100% 

𝑡𝑎𝑣𝑔(𝑠) 598.4 5684 4.3 

𝑡𝑎𝑣𝑔/𝑡𝑎𝑣𝑔,𝐴𝑁𝑁(−) 139 1321 1 

 

 

5. CONCLUSIONS 
 

This study has explored the ANN evaporator model as computationally efficient, yet accurate modeling approach 

which can be utilized in ejector system model analysis. The study has developed two types of evaporator models: the 

first one is the detailed FV model, and the second is the ANN model. The ANN model has been developed using both 

the steady state and the temporal data, however, it has been found that the ANN using steady state data gives better 

performance prediction. The selected ANN model has two layers (4 neuron in the first layer, and 16 neurons in the 

second layer) with Bayesian Regularization backpropagation as training function and symmetric sigmoid as the 

activation function. Both the FV and the ANN models are compared with 331 steady state data points. The ANN 

evaporator model is found to be more accurate than the FV model, i.e., it predicted 99.7% of the data within 10% 

accuracy compared to 91.2% for the FV model with 100 elements. Furthermore, a system model for an ejector system 

working on a standard ejector cycle is developed for comparing the prediction accuracy using these two different 

evaporator models. The ejector system with the ANN evaporator model was not only more accurate, but also 139 

times faster than the FV model with 10 elements. This has proved that the ANN heat exchanger models can be useful 

tool in conducting thorough component system analysis for an ejector system design. This study is conducted for 

carbon dioxide system; however, it can also be applicable to other refrigerant systems.  

   

 

NOMENCLATURE 
 

BR Bayesian Regularization  (-) 

J Jacobian  (-) 

LM Levenberg-Marquardt  (-) 

�̇� mass flow rate  (kg/s) 

N number of quantity  (-) 

P pressure  (kPa) 

�̇� heat transfer rate  (kW) 

RH relative humidity  (-) 

t time  (s) 

T temperature  (°C) 

x normalized input variable vector (-) 

X quality  (-) 

y normalized output  (-) 

𝜖 loss function  (-) 

 

Subscript   

a air 

comp computational 

cp compressor 

e evaporator 

i inlet 

mn motive nozzle 

o outlet  

sn suction nozzle 

r refrigerant 

wb refer to number of weights and biases in NN 
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