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ABSTRACT 
 
Ice makers are no longer a high-end feature but a must in modern domestic refrigerators. In order to maximize the ice 
production rate without compromising the refrigerator performance, the solidification of water must be analyzed in 
the most realistic fashion. In this context, the present work is aimed at putting forward a three-dimensional moving-
boundary model to calculate the water solidification in ice trays subjected to operating conditions typically found in 
household appliances. To better understand the physical phenomena and validate the model, experiments were 
performed in a purpose-built closed-loop wind-tunnel facility at -23 °C and air flow rate of 10 m³ h-1 using a single 
volume of 145 ml fed with distilled, mineral, and filtered tap water. The end of the solidification process was identified 
by monitoring the cooling curves with the aid of seven thermocouples placed within the ice cube. In the numerical 
front, the ice cube was modeled as a pyramid trunk and Stefan's formulation was applied to each of the domain 
boundaries so that the ice thickness could be calculated over time. Deviations within a ±10% error band were observed 
for all cases. A good agreement between the model predictions for the time evolution of the ice cube temperature and 
the experimental counterparts was also verified. In addition, literature data for the position of the solidification front 
and the remaining liquid fraction were fairly predicted by the model. 
 

1. INTRODUCTION 
 
In household refrigerators, automatic ice machines, also known as icemakers, cyclically fill a storage reservoir that 
can be placed within the freezer compartment or the refrigerator door. In general, icemakers are cooled by forced 
convection using the cold air from the freezer. The ice production starts by feeding water into a tray. Then the water 
is cooled down and freezes, so that the formed ice can be harvested. The icemaking cycle is then restarted, and the 
processes are repeated until the ice bucket is loaded. 
 
During the ice production, the intense heat transfer can negatively affect the temperature of the other compartments 
of the refrigerator. Literature results showed that the mean temperature changes in the refrigerator compartments when 
the icemaker is turned on with no change in thermostat settings (Yashar and Park, 2011; Meier and Martinez, 1996). 
According to the US Department of Energy (DOE), refrigerators with an embedded icemaker consume more energy 
than those without it (Yashar, 2012). As stated by Yashar and Park (2011) icemakers can add up to 20% to the annual 
consumption of the appliance. Thus, the use of mathematical models to predict the freezing time and ice production 
rate can significantly contribute to improving the performance of refrigerators equipped with icemakers. 
 
However, the mathematical modeling of the icemaking process is not trivial. The phase change problem is highly non-
linear and exact solutions exist only for simpler one-dimensional scenarios, as is the case of the analytical expressions 
proposed by Plank (1913) and Plank (1941) for the freezing time, based on the pioneering study of Stefan (1891). For 
most applications, it is necessary to use numerical models, which not only take into account the convection in the 
liquid, of great importance in the heat transfer between phases and in the evolution of the liquid/solid interface 
(Morgan, 1981; Voller and Prakash, 1987), but also allow the simulation of multidimensional geometries subjected to 
realistic initial and boundary conditions. 
 
Numerical methods for phase change can be divided into two main categories: variable and fixed mesh (Samarskii 
et al., 1993). Variable mesh methods must somehow equate the position of the interface and, for this reason, are also 
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called interface location methods. In this case, the discrete phase change interface is continuously tracked, and the 
mesh is transformed or deformed to adapt to this interface. Another approach is to vary the time interval so that the 
boundary coincides with the existing mesh lines at each step of the solution, but this method is hardly applied to 
multidimensional cases (Hu et al., 1996). Unlike a moving mesh method, the fixed mesh ones identify the 
solidification front a posteriori with the solution of the temperature field or other marking variable. Fixed mesh 
methods are considered simpler, mainly from an implementation standpoint (Voller et al., 1990). 
 
Kowalewski and Rebow (1999) and Kowalewski and Cybulski (1998) studied the phase change of water within a 
cavity with the purpose of creating a benchmark solution. The velocity and temperature fields were monitored using 
TLC (Thermochromic Liquid Crystal) tracers and analyzed with DPIV (Digital Particle Image Velocimetry). The 
three-dimensional numerical model by Yeoh et al. (1990), based on finite differences, was used to simulate the 
experiment. They reported that effects such as supercooling, stagnant boundary layer at the bottom, imperfections in 
the ice structure, as well as non-ideal contact between ice and tray surfaces may have been responsible for the 
discrepancies between model and experiment. 
 
Michałek and Kowalewski (2003) compared different models using the same reference as the previous works. In one 
of the models, a finite volume formulation with a fixed mesh of 145,000 volumes was adopted and the phase change 
was modeled by introducing an enthalpy source term in the energy equation. It was shown that the solutions agreed 
with each other when very fine meshes and small time steps were used. Loyola et al. (2019) formulated a transient 
finite volume model for the two-dimensional solidification based on the mass, momentum and energy conservation 
principles. The model was developed for a structured cartesian mesh based on the enthalpy-porosity methodology and 
implemented to emulate the unidirectional solidification process. The results were compared with the analytical 
solutions of Stefan's problem with errors close to 1% for the position of the ice and water interface for a 100 mm 
domain. In a similar fashion, Bourdillon et al. (2015) implemented finite volume models based on enthalpy-porosity 
using the OpenFOAM software. Differently from the previous studies, where the properties of the porous region 
(called mushy) were linearly distributed, Bourdillon et al. (2015) adopted an error function distribution. It is 
noteworthy that the model was also extended to consider slurry regions (ice particles suspended in the liquid medium). 
Tenchev et al. (2005) presented a convection solidification model based on finite elements. In the mesh, the connection 
between elements and the total number of nodes were maintained but reorganized at each time interval for the interface 
region. Danaila et al. (2014) also used an adaptive mesh finite element approach. The developed algorithm mapped 
the liquid/solid front and identified the interfaces between the recirculation, such as those generated by the inversion 
of the water density. Tests were performed at different levels of complexity and the results agreed with those of other 
authors. 
 
As shown, the models that have advanced the most in recent times were those using numerical approaches, such as 
finite volumes or Euleurian and Lagrangian methods, which provide better accuracy at the expense of higher 
computational cost, even in two-dimensional simulations (Danaila et al., 2014; Michałek and Kowalewski, 2003; 
Loyola et al., 2019). This cost can be attributed to the necessity for refined meshes, the dynamics of mesh renewal at 
each time interval, the high nonlinearities related to the inversion of water density and the complexity of the equations 
to be solved. Also, the modeling of all physical phenomena associated with the solidification process, such as 
supercooling and the transition zone, is a burdensome task that can further increase the simulation time (Bourdillon et 
al., 2015; Criscione et al., 2015). On the other hand, Stefan-Plank's classic analytical solutions demand very low 
computational cost, but do not solve multidimensional problems (Carslaw and Jaeger, 1959; Crank, 1984).  
 
Therefore, the present paper is aimed at devising a 3D model for predicting the freezing time (and the ice production 
rate) in ice trays. To do so, the pioneering formulation of Stefan-Planck was implemented in the domain of a single 
ice cube to track the position of each freezing-boundary over time. Experiments were also performed by means of a 
purpose-built wind-tunnel facility to gather data to proper validate the results. Also, to ensure robustness and 
reliability, the model was additionally verified against experimental and numerical results obtained elsewhere. 
 

2. EXPERIMENTAL WORK 
 
In order to validate the mathematical model, experiments were conducted in the wind-tunnel facility designed and 
constructed by Berno et al. (2019), which allows the control of the air flow rate and psychrometric conditions at the 
test section, which in turn emulates the door compartment of a typical domestic refrigerator, including the air supply 
and return ducts. To facilitate data analysis, a single volume of 57x57x44 mm and 145 ml, which is about ten times 
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the size of a conventional ice cube, was considered. In the experiments, the cooling curves representing the time 
evolution of water temperature during the phase change processes were monitored and it was possible to define the 
initial and final freezing points. The volume was fixed on an insulating base made of expanded polystyrene (EPS) and 
positioned symmetrically in relation to the air inlet duct. Concerning the z-axis, the water surface of the cube was 
positioned at the center of the air jet, as shown in Figure 1. Hence, most of the air flows through the top interface of 
the cube. The cold air flow is stagnant on the front face and drains through the side faces until it completely passes 
the cube. Then, the air is directed to the lower part of the test section, where the air outlet duct is located. Thus, the 
favored directions for cooling are the top and front surfaces. Seven thermocouples were positioned symmetrically and 
equally spaced as shown in Figure 2 (1 to 4 from top to bottom and 5 to 7 from front to back). In this configuration, 
solidification is expected to occur in a planar regime, with the preferred direction from 1 to 4 and from 5 to 7. 
 
 

 
Figure 1: Ice cube positioning in the test section 

 
 

 
Figure 2: Thermocouple positioning in the volume 

 
 
All tests were performed with air at -23 °C and a flow rate of 10 m³ h-1. Three runs were performed, each one using 
water from different sources, such as distilled, mineral, and filtered tap water. Water was always added at 23 °C. The 
computation of the solidification time starts when the central thermocouple, T3, indicates 6 °C. The final solidification 
point could then be identified by the seven thermocouples in the volume. The effect of the solidification endpoint 
reading was evaluated in relation to the instrumentation placement. For this, the end of solidification was determined 
using the inflection point in the final stretch of the curves for each thermocouple. The inflection point at the end of 
the cooling curve of a finite volume always exhibits the exact moment when the latent heat liberation is ceased, i.e. 
solidification is complete. Thus, the total solidification time, from 6 °C to the inflection point, is shown in Table 1, 
while Figures 3 and 4 show the cooling curves for mineral and distilled water, respectively, where the end of the 
process is indicated by the red vertical lines for each of the readings. Using thermocouple T4 as a reference, 
representing the last solidified point, it can be observed that the highest relative deviation in the identification of the 
end point was 3.9%, showing that even at one extreme the inflection is identifiable. Note that the standard deviation 
of the differences between T4 and other readings did not exceed 1.5% compared to the total test time. 
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Table 1: Experimental solidification times 

Parameter Mineral water Distilled water Filtered tap water 
Mass [g] 138 144 145 
T1 [min] 189.4 196.1 194.5 
T2 [min] 189.2 192.1 189.6 
T3 [min] 187.1 190.3 189.1 
T4 [min] 185.4 189.0 187.2 
T5 [min] 188.4 191.6 190.9 
T6 [min] 187.4 190.8 189.2 
T7 [min] 186.1 189.9 188.8 
Minimum [min] 185.4 (0.0%) 189.0 (0.0%) 187.2 (0.0%) 
Maximum [min] 189.4 (2.2%) 196.1 (3.8%) 194.5 (3.9%) 
Standard deviation [min]   1.5 (0.8%)    2.7 (1.4%)   2.7 (1.4%) 

 
 

 
Figure 3: Test with mineral water 

 

 
Figure 4: Test with distilled water 

 
 

3. MATHEMATICAL MODELING 
 
The proposed moving-boundary model relies on an energy balance in which the liquid center of the volume is 
represented by a lumped model at constant melting temperature. The heat released during freezing is conducted 
through the solid phase and then convectively rejected to the external medium. Stefan's formulation is the starting 
point and is applied to each of the domain boundaries, which in this case are the walls in contact with the ice tray and 
the water-air interface. As the liquid volume changes with time, the freezing front has different boundary areas Ai,k 
that vary in time with respect to the outer wall areas Ao,k, as illustrated in Figure 5. 
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Figure 5: Moving-boundary model: (a) initial and boundary conditions, (b) process evolution, and (c) final state 

 
Solidification occurs from the outside to the inside, such that layers of solid are added at each time step reducing the 
liquid volume. The model is given by the following evolutionary equation for the ice thickness, δ, which must be time-
integrated for each boundary, k: 
 

  (1) 

 
being Ao,k/Ai,k the ratio of the internal and external areas, re-evaluated at each time step, and ΔT the difference between 
the melting and surrounding temperatures. The term in parentheses is the specific resistance between the ice boundary 
and the outer medium, where hk is the outer convection heat transfer coefficient for each side, δk is the ice thickness 
of each boundary, δw is the tray thickness, and ks and kw are the thermal conductivities of the ice and plastic tray, 
respectively. Integration with respect to time was performed using Heun's method and the boundaries advance was 
assumed to occur until the following stopping criterion, based on the liquid volume fraction, ϕ, was satisfied: 
 

  (2) 

 
The real volume geometry was simplified so that the ice was inscribed in a pyramid trunk. The six required boundary 
conditions were obtained through a steady state simulation of the entire test section using the Star-CCM+ (2018) 
software, admitting an air flow rate of 10 m³ h-1 and a temperature of -23 °C. The boundary conditions extracted on 
the surface of the volume were expressed, for example, as the steady state heat flux (or heat transfer coefficient), when 
the water/ice is at the melting temperature, as summarized in Table 2. The resulting solidification time was of 163.2 
min, starting from 0 °C to a remaining liquid volume fraction of 0.5%. 
 

Table 2: Boundary conditions at the ice cube edges 

Face Heat transfer rate [W] Heat flux [W m-²] hk [W m-² K-1] 
North 1.26 489.9 21.3 
South 0.60 232.2 10.1 
East 0.74 286.1 12.4 
West 0.76 295.7 12.9 
Top 1.18 354.2 15.4 
Bottom 0.19 83.9 3.6 

 
4. MODEL VALIDATION 

 
In order to validate the model, its predictions were compared with the results presented in Table 1 regarding the tests 
with mineral, distilled and filtered tap water. In this sense, data associated with the latent period from 0 °C to the final 
point of solidification were considered, i.e. without considering the sensible heat transfer period. However, as the 
volume did not reach 0 °C in all seven thermocouple readings in a homogeneous way, for a better analysis, the 
comparison was made at two different extremes: (i) the beginning of the latent period is considered from the point that 
the first thermocouple reaches 0 °C while the others are still above 0 °C; and (ii) the latent period is considered starting 
from the point that all thermocouples are at 0 °C, that is, only after the last one reaches 0 °C. 
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In all cases, errors within a ±10% band were observed (see Table 3). The liquid and solid boundaries were also plotted 
over time as per Figures 7 and 8. Starting from the initial volume, each line represents the position of the solidification 
front in a time interval of 10 min. Note that the markers represented within the volume are aligned with the 
thermocouple positions during testing. 
 
 

        
 

Figure 7: Solidification fronts: side view (right) and rear view (left) 
 

 
Figure 8: Solidification front: isometric view 

 
 

Table 3: Mathematical model validation 

 Parameter Mineral water Distilled water Filtered tap water 
 Exp. solidification time (T4) [min] 180.4 184.0 182.2 
 Calculated solidification time [min] 163.2 

(i) 
First thermocouple to reach 0 °C [min] 4.8 11.5 9.6 
Phase change time [min] 175.6 172.5 172.6 
Relative error [%] -7.1 -5.4 -5.4 

(ii) 
Last thermocouple to reach 0 °C [min] 18.0 16.5 16.8 
Phase change time [min] 162.4 167.5 165.4 
Relative error [%] 0.5 -2.6 -1.3 

 
 
Figure 9 shows the evolution of the solidification fronts along the cooling curves of the mineral water test, where some 
bands were marked for analysis. The first represents the interval in which curves T1 and T5 are no longer at 0 °C. The 
second does the same for thermocouples T2 and T6. In the third, T3 and T7 are explored. The last band, in turn, refers 
to thermocouple T4. The divergences at the end of the process are expected, since the model represents flat and not 
curvilinear borders, as they would be in a real case. Furthermore, at the end of the process, the air previously dissolved 
in the water is also concentrated in the gaseous form. Finally, the boundary conditions in the model were uniformly 
applied at the boundaries, whereas the tendency is for the heat transfer to be non-uniform in practice. Even so, a 
reasonable agreement between the solid front advancement and the temperature decay observed in thermocouples 
positioned symmetrically in the volume was verified. 
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Figure 9: Evolution of the solidification fronts along the cooling curves of the mineral water test 

 
5. FURTHER COMPARISONS 

 
The moving-boundary model was verified against the results presented by Yeoh (1993) who, in one stage of his work, 
studied solidification in an open-topped square cavity though experimental observations and simulation. The 
experimental observation at discrete times was compared with computational predictions from its finite element model 
for validation purposes. Here, the same problem studied by Yeoh (1993) was simulated by the proposed moving-
boundary model, so that the results were evaluated at the same discrete times. 
 
As a boundary condition, Yeoh (1993) adopted in his simulations and experiments a constant temperature of to -10 °C 
for all closed walls of the cavity. The temperature at the top face, in contact with air, was predicted with an energy 
balance assuming a convective heat transfer coefficient of 20 W m-2 K-1 and a surrounding temperature of 20.6 °C. 
The only difference in relation to Yeoh's (1993) simulations is that in the proposed model, the top surface was 
considered adiabatic. In this way, to balance, the heat that should have entered through the top was redistributed 
between the other faces and was calculated considering a heat transfer coefficient of 20 W m-2 K-1 and a surrounding 
temperature of 20.6 °C, just like Yeoh (1993). The model was integrated with a time step of 1 s. 
 
The experimental and numerical results of Yeoh (1993) and those obtained by the three-dimensional moving-boundary 
model are illustrated in Figures 10 and 11. In the cross-sectional photos, the remaining water has been removed from 
the cube. Then, the cube was detached from the form and cut in the transverse center plane. As expected, the ice 
growth occurs in a planar way and, at the end of the process, the largest concavity appears. This was seen in the two 
analyzed plans. Again, the more accurate model, this time with finite elements, can even predict curvature and 
concavities. However, the moving-boundary model predicted reasonably well the solidification front position and the 
remaining liquid fraction. 
 

6. FINAL REMARKS 
 
A three-dimensional moving-boundary model based on the Stefan (1891) solution was proposed to predict the water 
solidification in ice trays. The implementation was carried out for a pyramidal single volume firstly subjected to a 
convection boundary condition obtained from a steady-state CFD simulation with water at 0 °C. In order to validate 
the model and improve the analysis, experiments were conducted with an ice cube instrumented with 7 thermocouples 
placed in a purpose-built wind-tunnel. Concerning the experimental results, negligible differences in the solidification 
times were observed when feeding the tray with three different types of water: distilled, mineral and filtered. Also, the 
standard deviation of the differences between the reference thermocouple (T4) and other readings was lower than 
1.5% in relation to the test time. Experiments showed that the inflection point at the end of the cooling curve of a finite 
volume always exhibits the exact moment when the latent heat liberation is ceased, i.e., solidification is complete. 
Regarding model validation, errors within a ±10% band were observed for all cases when comparing simulations and 
experiments. Finally, the proposed model predicted reasonably well when compared to simulation and experimental 



 
2145, Page 8 

 

19th International Refrigeration and Air Conditioning Conference at Purdue, July 10 - 14, 2022 

results of Yeoh (1993) from the literature with respect to the solidification front position, considering a prescribed 
temperature boundary condition. 
 

 
Figure 10: Top view: (a) Yeoh (1993) experiment, (b) Yeoh (1993) model and (c) proposed model 

 
 

 
Figure 11: Cross-sectional view: (a) Yeoh (1993) experiment, (b) Yeoh (1993) model and (c) proposed model 
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NOMENCLATURE 
 
Roman 
A area (m2) 
h convection coefficient (W m-2) 
k thermal conductivity (W m-1 K-1) 
ρ density (kg m3) 
T temperature (°C) 
t time (s) 
V volume (m3) 
 
Greek 
δ thickness (m) 
ϕ liquid volume fraction (dimensionless) 
λ latent of solidification (J kg-1) 
ρ density (kg m3) 
 
Subscripts 
i inner  
k solidification front index 
l liquid 
o outer 
s ice/solid 
w plastic wall 
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