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ABSTRACT 
Carbon dioxide (CO2) has been widely used as working fluid for the vapor-compression refrigeration systems in 

large marine device. Due to the potential energy efficiency and the favorable environmental properties of CO2 as a 

working fluid, CO2 heat pump water heater (HPWH) systems are regarded a promising technology for centralized 

domestic hot water (DHW) heating in residential and commercial buildings. However, it is still at the early stage of 

appropriately optimizing and improving the energy performance of CO2 HPWH. This requires CO2 HPWH 

simulation tools capable of capturing the accurate impact of the emerging compressor, throttle device, and heat 

exchanger technology on CO2 heat transfer and energy efficiency. In this study, high efficiency components 

(compressors, pumps, fans, heat exchangers) were identified and applied to the state-of-art CO2 HPWH designs and 

analyzed their performance by using numerical simulation. This was done by simulating the performance of CO2 

HPWH using ACMODEL design model combined with the component models developed at Oak Ridge National 

Laboratory (ORNL) for orifice tube, map-based compressor, and tube-in-tube gas cooler. The simulated CO2 HPWH 

performance was then compared with the heat pump water heater using conventional refrigerants. The results 

reflected that the current CO2 HPWH component and system technology achieved a lower uniform energy factor in 

the application of U.S. residential hot water supply not exceeding 140oF. It is vital for CO2 HPWHs to continuously 

improve compressor and system efficiency via novel component design. 

 

1. INTRODUCTION 
Carbon dioxide (CO2) is used as working fluid in large marine vapor-compression refrigeration device. A typical 

CO2 transcritical vapor compression cycle consists of at least four components: a compressor to lift the pressure of 

the fluid from evaporating pressure to heat rejection pressure, a “gas cooler” to reject heat to the environment, an 

expansion device to reduce the pressure of the fluid to evaporating pressure, and an evaporator to absorb heat from 

the conditioned space (Ortiz et.al., 2003). Beyond these basic components mentioned above, extra components may 

be added to control the system’s operation or to improve system efficiency. Since 1990s, CO2 has been extensively 

investigated as alternative refrigerant for residential air conditioning/heat pump and heat pump water heater in order 

to deal with global warming and ozone depletion (Kim et.al., 2004). 

The results from a large number of thermodynamic analyses have been reported that the theoretical efficiency of 

CO2 cycles is much less than R134a and R410a while CO2 volumetric refrigeration capacity is 3-10 times larger 

than R134a and R410a (Kim et. al., 2004, Groll et. al., 2007). However, higher vapor density in a CO2 transcritical 

cycle can improve compressor volume efficiency and generate more homogenous two-phase flow. Moreover, the 

available results for evaporative heat transfer have indicated that CO2 achieves 50% better heat transfer coefficient 

and 70%-80% lower pressure drop than R22 and R410a (Park et. al., 2007). Similarly, the heat transfer coefficients 

of CO2 gas cooling are also better than the condensation heat transfer coefficients of the conventional refrigerants at 

the identical operating conditions (Cheng et. al., 2008). Thus the actual performance of CO2 substantially depends 

on system optimization and emerging technologies, as well as the constraints of operation conditions.  

The experimental results from CO2 heat pump system demonstrated that the CO2 system achieved lower heating and 

cooling cycle-COP with higher capacity compared to R410a or R22 heat pump systems, except at low ambient 

temperatures in heating mode. A prototype CO2 system was tested in 2002 and showed that the cooling COP of the 

CO2 unit was much lower than the R22 unit (Nekså, 2002). This study, however, also pointed out the heating COP 

of the CO2 unit was slightly higher than the R22 unit at low ambient temperatures, but the overall result could be a 

significant increase in space heating energy efficiency for the CO2 system owing to a lower need for supplementary 

electrical heating. A similar result was reported in 2003 and confirmed that the CO2 heat pump system designed to 

match the packaging constraints of an R410a heat pump system was able to achieve less heating COP and greater 

capacity except at low outdoor temperature (Richter et. al., 2003). The studies in 2006 further compared the latest-

generation prototype CO2 split type heat pump unit with the most energy-efficient Japanese R410a split-type heat 

pump unit available on the market. The tests were carried out at two different climates. The results show that the 

heating seasonal performance factor (HSPF) for the CO2 was about 3%-7% higher than that of R410a in heating 
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mode, but the seasonal energy efficiency ratio (SEER) of the CO2 unit in cooling mode could be 17 % less than that 

of the R410a unit (Jakobsen et.al., 2006).  

Compared to CO2 air conditioning or heat pump systems, the reported cases have shown a good potential of energy 

saving for CO2 heat pump water heater (HPWH) (Nawaz, 2018, He 2020, Ye 2020). A CO2 heat pump water heater 

can heat water through using supercritical CO2 and efficiently can raise water from low to high temperature in a 

single-stage compressor cycle. Supercritical CO2 does not experience phase change, thus the temperature of CO2 

drops gradually as the water is heated. Usually, conventional refrigerants have to use high condensing temperature 

to heat up low-temperature water instead, leading to irreversible heat loss and low performance. Thus, as a 

refrigerant, CO2 is more appropriate for water heating application with large temperature lifting. The study of CO2 

heat pump water heater was initiated at SINTEF/NTNU from the late 1980s (Nekså et.al, 1998), and the results from 

extensive measurements at a 50kW-heating-capacity prototype showed that a COP above 4 was achieved even for a 

hot water temperature of 140 oF. The energy consumption can be reduced by 75% compared to electrical or gas fired 

systems. Hwang and Radermacher (1998) theoretically compared the performance of R22 and CO2 for water-heating 

applications, and concluded that CO2 heat pump water heating was approximately 10% better than R22 across a 

wide range of ambient temperatures. Other literatures shows that a CO2 heat pump water heater can produce hot 

water with temperature up to 194 oF without operational problem and with only a small loss in efficiency (Kim 

et.al., 2004). Stene (2005) developed a residential CO2 vapor compression system combining space heating and hot 

water heating. His experimental results illustrates that a CO2 heat pump system achieves the same or higher seasonal 

performance factor (SPF) than the most energy efficient state-of-the-art heat pump systems as long as: (1) the 

heating demand for hot water production constitutes at least 25% of the total annual heating demand of the 

residence, (2) the return temperature in the space heating system is about 86 oF or lower, (3) the city water 

temperature is about 50 oF or lower. Air-to-water and water-to-water CO2 HPWH systems in the capacity range 

from about 5 to 60 kW are now available in Japan and Europe from a few of manufacturers. 

Due to potential energy efficiency and the favorable environmental properties of CO2 as a working fluid, CO2 heat 

pump water heater systems are regarded a promising technology for centralized domestic hot water (DHW) heating 

in residential and commercial buildings. However, there are few examples of appropriately evaluating the options 

improving uniform energy factor (UEF) of CO2 heat pump water heater on the US market in the literatures. This is 

due, in part, to lack of CO2 heat pump water heater simulation tools capable of capturing the accurate impact of the 

emerging compressor, throttle device, and heat exchanger technology on CO2 heat transfer and energy efficiency. In 

this study, high efficiency components (compressors, pumps, fans, heat exchangers) were identified and applied to 

the current CO2 HPWH designs and analyzed their UEFs by using numerical simulation. This was done by 

simulating the performance of CO2 heat pump water heater using ACMODEL design model combined with orifice 

tube, map-based compressor, and tube-in-tube gas cooler component models developed at Oak Ridge National 

Laboratory (ORNL). ACMODEL is an equipment design model for CO2-based air conditioners and heat pumps 

developed by Purdue University to account for the details of each component (Ortiz et.al., 2003). The CO2 system 

performance maps were then input to TRNSYS models for the analysis of UEF. In the following section, the details 

of the methodology are explained.  

2. HPWH simulation model 
A number of simulation models have been developed to predict steady-state CO2 vapor compression cycle. These 

models are classified into simple thermodynamics models (Liao et.al., 2000, Fartaj et.al., 2004, Yang et.al., 2005) 

and the low-order phenomenological models Rigola et.al., 2005, Ortiz et.al., 2003). The thermodynamics models are 

essentially based on the first and second laws of thermodynamics to conduct parametric studies on the transcritical 

carbon dioxide refrigeration cycles. They were used to identify the thermodynamic mechanism of CO2 vapor 

compression cycle, but not enough to fully understand the performance of CO2 system. The low-order 

phenomenological models reasonably consider the effect of heat transfer, realistic component geometry and 

behavior on the performance of CO2 system. Thus, the low-order phenomenological CO2 models are able to better 

predict and design the performance of CO2 system. For example, ACMODEL developed by Purdue University were 

used to account for the geometry of each heat exchanger; the type (hermetic or open-drive), volume, speed and 

efficiency of the compressor; the type (isenthalpic or work-producing) and efficiency of the expander; and other 

necessary components. The simulation package has been widely applied by Groll and his coworkers in simulating 

CO2 air conditioners (Ortiz et.al., 2003, Li et.al., 2005, Liu et.al., 2008). However, these models are still insufficient 

to evaluate the CO2 heat pump water heater design, as mentioned above. This paper reports a simulation model for 

CO2 heat pump water heater based on updating ACMODEL with the additional component models of emerging 
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compressor, water-to-CO2 heat exchanger, microchannel evaporator, and expansion device. The key component 

models are described below. 

2.1 Compressor 
The compression process is defined based on a simple approach of using compression efficiency and volumetric 

efficiency to correct the ideal compression process. These efficiencies are considered as functions of compressor 

discharge pressure and pressure ratio.  
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where is  is isentropic efficiency; v  is volumetric efficiency; dP  is compression discharge pressure; Pr is the 

pressure ratio of compression process; isentropicedischh ,arg  is discharge enthalpy at ideal compression; suctionh  is 

enthalpy at suction line; ntdisplacemeV  is compressor displacement; suction  is density at suction line; 
2COW  is CO2 

compression power consumption; 
2COm  is CO2 mass flow rate. The efficiencies are used to calculate 

2COm  and 

2COW . 

Table 1 The parameters used in Eqs. (1)-(2).  

i 
ia
 ib

 
1 8.92831251E-01 1.62057438E+00 

2 -5.54602580E-04 -8.82693649E-04 

3 1.37908840E-07 2.26374783E-07 

4 4.89701570E-02 -8.36998637E-02 

5 -1.05806466E-02 -3.39793735E-03 

6 1.98432624E-05 3.93938644E-05 

 

The coefficients used in Eqs. (1) and (2) are listed in Table 1. These values are directly estimated by fitting OEM 

compressor technical data. The compressor is a reciprocating model designed for use with CO2 with 0.107 in3 (1.75 

cm3) displacement, nominal 220V, and 60 Hz frequency.  

The enthalpy at the exit of the entire compressor is further refined as Eq. 3 to account for heat loss of the 

compressor.  
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where loss (= 0.45) is compressor heat loss ratio; edischh arg  is CO2 discharge enthalpy at compression process. The 

assumptions for this compressor shell heat loss were obtained from the manufacturer which provided measured 

discharge temperatures, from which the shell heat loss levels were calculated over the range of condensing 

temperatures.   

2.2 Water-to-CO2 Heat Exchanger 
The water-to-CO2 heat exchanger is considered as a counterflow tube-in-tube heat exchanger. CO2 moves within 

inner tube while water is in opposition to go through annulus tube (shown in figure 1). Both inner and annulus tubes 

are assumed to be smooth tubes, and CO2 is assumed to be homogeneous and supercritical state. The model accounts 

for energy conservation and heat transfer between CO2 and water flow. Briefly, the volume of the water-to-CO2 heat 

exchanger is divided into multi-segment. The calculation of each segment is iterated until the given variables are 

equal to the variables calculated by the LMTD method. The simulation of the heat exchanger model requires CO2 
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enthalpy and pressure at the inlet, as well as water inlet and outlet temperature of this heat exchanger. Other required 

parameters include carbon dioxide mass flow rate as well as the geometry of the heat exchanger. Key features of the 

component model follow.  

 

i-1 i 

n+1 n n-1 

L 

2COm  

(Inner flow) 

waterm  

(Annulus flow) 

 
Figure 1 Scheme of single segment in the water-to-CO2 heat exchanger.  

The equation for the overall heat transfer rate in each segment is described as below. 

                                                     ( )inwatinCONTU TTcQ ,,min 2
−=   (4) 

where minc  is the minimum thermal capacitance of  and ;   is the heat exchanger 

effectiveness; inCOT ,2
 is CO2 inlet temperature; inwatT ,  is water inlet temperature.  

The equation of   for a counterflow heat exchanger is given as 
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where maxmin cccr = ; 
mincUANTU = ; UA is the overall heat transfer conductance which is followed. 
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Here or  and ir  are outside and inside radiuses of inner tube, respectively; k is the tube thermal conductivity; L is 

segment length; ( )
2COhA  and ( )wathA  are the CO2-side and water-side overall heat transfer conductance, 

respectively.  

Meanwhile, the overall heat transfer rate is expressed by using heat transfer and energy conservation in the inner 

tube and annulus tube, as follows.  

                                              watCOUAUANTU QQQQQ
watCO

 ====
22

 (7a) 

                                                  ( ) ( )
2222 _ COwallCOCOUA TThAQ
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−=  (7b) 

                                                    ( ) ( )watwatwallwatUA TThAQ
wat

−= _
  (7c) 

                                                    ( )outCOinCOCOCO hhmQ ,, 2222
−=   (7d) 

                                                     ( )inwatoutwatwatwat hhmQ ,, −=   (7e) 

The heat transfer rate predicted by Eq. (4) and Eq. (7) are required to match in an effort of numerical convergence. 

2COT , watT  
2_ COwallT , and watwallT _ are the average CO2 temperature, average water temperature, average wall 

temperature at CO2 side, and average wall temperature at water side, respectively. The segment CO2-side and water-

side outlet temperatures are estimated based on water and CO2 energy conservation (see Eqs. (7d)- (7e), 

respectively. The segment CO2-side and water-side inlet and outlet temperatures are used to estimate the average 

CO2 temperature and average water temperature. In the above equations, single-phase refrigerant-side heat transfer 

coefficient is calculated using the modified Gnielinski correlation. Water-side heat transfer coefficient is computed 

using Dittus-Boelter correlation.  
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CO2 pressure drop in the counterflow tube-in-tube heat exchanger accounts for pressure loss (
iP ) at the entrance 

to the inner tube, pressure loss ( fP ) due to frictional loss, pressure change ( cP ) due to compressibility effects, 

and pressure loss ( eP ) associated with expansion of flow at the exit of the inner tube. They are described as:  

                                                    ecfi PPPPP  +++=  (8a) 
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where iK  is CO2 entrance loss coefficient; eK  is CO2 exit loss coefficient; d  is the diameter of inner tube; f  is 

the friction factor for supercritical CO2 in inner tube; f  is estimated by using the Kuraeva and Protopopov 

correlation (see Ortiz et. al., 2003). 
2COm  is CO2 mass flow rate. 

2COV  is CO2 volume flow rate; 
2CO  is CO2 

density.  

The above heat transfer coefficient and friction factor for CO2 in the heat exchanger are calculated in the same 

manner as used for the gas-cooler which is described in (Ortiz et. al., 2003). Water-side heat transfer coefficient is 

calculated using Dittus-Boelter correlation (Dittus et. al., 1930). The power consumption of water pump, pumpW , is 

calculated by using an empirical correlation, which is considered as a function of water mass flow rate: 

                                                   watpump mW  = 1427.0  (9) 

In the equation, the unit of power consumption is kilowatt. watm  is the water mass flow rate (kg/s).  

 
Inputs: CO2 inlet states, water 

inlet/outlet temperature 

CO2 Mass flow rate, and geometry 

Estimate CO2-side wall temperature 

Calculate CO2-side heat transfer 

coefficient 

Calculate segment heat transfer rate 

Calculate water-side wall 

temperature 

Calculate water-side heat transfer 

coefficient 

Calculate NTU and  

?
2COUANTU QQ =  Update CO2-side 

wall temperature 

Calculate outlet 

 
Figure 2 Control diagram of single volume segment for water-to-CO2 heat exchanger.  
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The numerical procedure for water-to-CO2 heat exchanger follows the same methodology presented by Ortiz et. Al. 

(2003). The calculation of this counterflow tube-in-tube heat exchanger starts at volume segments and thermal 

temperature initialization. In each volume segment, the CO2-side wall temperature in the inner tube is then estimated 

as a linear interpolation of CO2 and water inlet temperatures. Thus CO2-side heat transfer coefficient and segment 

heat transfer rate are computed based on the estimated wall temperature. Then, the water-side wall temperature of 

inner tube is evaluated by using the segment heat transfer rate, CO2 inlet temperature, and the inner-tube thermal 

conductance. The water-side heat transfer coefficient is also calculated. Then, the segment CO2-side and water-side 

outlet temperatures are calculated. After that, the number of transfer units (NTU) and heat exchanger effectiveness 

( ) are calculated and Ridders’ method is used to seek the correct value of the inside-wall temperature of inner 

tube, which allows Equations (3) and (6b) to achieve the same value of segment heat transfer rate. Finally, the 

segment CO2-side pressure drops are calculated. This procedure is illustrated in Figure 2. 

2.3 Evaporator 
The evaporator module provided in the ACMODEL code is directly used to predict evaporation behavior. The 

module accounts for wet-surface air-side heat transfer and two-phase refrigerant-side heat transfer process in the 

code. In the methodology, the evaporator volume is also divided into multiple segments. Briefly, air-side heat 

transfer coefficients and friction factors for dry volume segments in the evaporator are treated using the Chang et al. 

correlation (1994); air-side dry surface friction factors are calculated using the accompanying Chang et al. 

correlation (1994); wet surface friction factors are calculated using the Wang et al. correlation (2000). Two-phase 

refrigerant-side heat transfer coefficients are calculated according to the Kandlikar correlation (1990). Single-phase 

refrigerant-side heat transfer coefficients are calculated according to the modified Gnielinski correlation (Pettersen 

et.al., 2000). Two-phase refrigerant-side friction factors are calculated using the Churchill correlation (Yin et.al., 

2001) with the Reynolds number evaluated using a homogeneous two-phase density and viscosity. Single phase 

refrigerant friction factors are calculated using the Churchill correlation with a single-phase Reynolds number. 

Permissible evaporator states are subcooled, two-phase or superheated. In the simulation, the evaporator is 

considered as a louvered-fin heat exchanger with microchannel. 

2.4 Expansion device 
The expansion device is assumed as isenthalpic expansion process with negligible kinetic and potential energy 

changes. The expansion device in the simulation model uses the literature model (Chen et.al., 2004) to balance 

refrigerant pressure level and mass flow rate between compressor and expansion device. The model claimed that 

approximately 95% of the measured data were within 6%. The flow mass rate control is described as follows.  
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fupupsCO PPAm −= 2
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where up  is upstream CO2 density; upP  is upstream pressure; fP  is downstream pressure; cP  is critical pressure; 

cupR PPP = ; sA  is cross-sectional area of the short tube; RD  is normalized diameter ( )refDD . 

( ) ccupR TTTT −= ; L is tube length; D is tube diameter; refD  is referenced diameter; upT  is upstream 

temperature; cT  is critical temperature. 

3. SIMULATION CONDITIONS AND RESULTS 

To evaluate the potential of a residential CO2 HPWH designed under US residential application standards, it is 

important to design an appropriate CO2 HPWH by referring to the size and auxiliary components of an efficient 

HPWH commercially available. Thus, a residential R410A HPWH available in US market is considered as a 

benchmark equipment (Gao et.al. 2003, Gao. 2010), which is equipped with a high-efficiency rotary compressor, a 

water-to-refrigerant condenser, a finned tube evaporative heat exchanger, and TXV device, as well as water pump 

and air fan (Baxter et.al. 2011). The compressor with the displacement of 0.33 in3 has 4850 Btu/hr cooling capacity 

rated at 45 oF Te/130 oF Tc/20 oF SH/15 oF SC. The water-to-refrigerant condenser is a counterflow Packless double-

walled fluted tube heat exchanger with a size to give a relatively low mean condensing temperature difference of 

about 9oF for the R-410A case at 115oF entering water temperature (EWT). The water pump used in the condenser is 

a brushless permanent magnet motor (BPM) with the pump flow to be optimized for each design for an assumed 
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system head curve. The evaporator is a cross-flow finned tube heat exchanger with about 10% more area than 

models presently on the market, and this sizing gave a mean evaporative temperature difference of about 6.5oF for 

the R-410A case. The HPWH assumes 300 CFM airflow across the evaporator with 30 watts of fan power, which 

also implies a BPM motor. The R410A HPWH design were optimized for heating COP at an assumed average EWT 

of 115oF and at the fixed 67.5F DB, 50% RH inlet air condition of the DOE UEF test.  

Therefore, in the design of a comparable transcritical CO2 HPWH, the heat exchanger sizes were adjusted to obtain 

the same mean temperature differences designed in the R-410A case. The pump and fan power and airflow 

assumptions were consistent with those used for the R410A case mentioned above. For the compressor, we adopted 

a relatively high efficiency reciprocating model for which we could obtain a performance map comparable to those 

for the HFC refrigerant compressors, as no rotary CO2 compressor performance maps could be obtained for this 

analysis. The overall isentropic efficiency of the CO2 compressor is 15% less than the rotary R410A compressor 

(Baxter et.al. 2011) at rated cooling conditions. A once-through design for the water flow was assumed for the 

primary CO2 HPWH system to obtain best matching of the water and refrigerant temperature glides in the gas 

cooler. In the once-through design, a fixed 140°F return water temperature was maintained by adjusting the pump 

flow and power assuming a BPM pump. 

Figure 3 show the steady-state performance of COP and heat capacity of R410A and CO2 systems with the same 

mean temperature differences of condenser and evaporator calibrated at EWT of 115oF and 67oF DB, 50% RH inlet 

air conditions. The COP of R410A is significantly higher than CO2, and the heating capacity of R410A is also 

higher than the comparable CO2 system. The lower heating capacity of the CO2 HPWH is mainly due to the small 

compressor displacement. The lower COP of the CO2 HPWH is probably due to the lower overall isentropic 

efficiency and the higher compressor heat loss ratio (i.e., loss= 0.45), leading to higher electric energy consumption 

and lower CO2 discharge enthalpy at compression process, respectively. Our simulations reflect that the overall 

isentropic efficiency of the CO2 compressor is 0.52 compared to the R410A compressor of 0.58 at EWT of 115 oF 

and 67 oF DB, 50% RH inlet air conditions. This is a 10.3% lower isentropic efficiency at water heating conditions. 

This indicates that it is vital for CO2 HPWH to continuously improve compressor efficiency via novel component 

design. On the other hand, the system optimization is also vital. Figure 4 shows that different CO2 HPWH 

calibration design will substantially affect the COP and heating capacity with different overall heat transfer 

coefficients and mean heat transfer temperature difference.  
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Figure 3: Comparison of COP and heat capacity between R410A and CO2 systems calibrated at the same mean 

temperature differences of condenser and evaporator for EWT of 115oF and 67oF DB, 50% RH inlet air conditions.  
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Figure 4: Impact of CO2 HPWH calibration design on COP, heating capacity, UA and mean temperature difference.  

The performance maps along with the water flow rates (Baxter et.al. 2011) were used in TRNSYS to carry out 24-

hour UEF simulation. The results are shown in Table 2. This simulation included a nominal 50-gallon water tank 

model (actual assumed capacity of 45 gallons), divided into 6 equal volume regions from top (zone 1) to bottom 

(zone 6). During the first 6 hours, 10-gallon hot water each hour is drawn from the zone 1 with 3.0 gpm. Two 

HPWH heat-up modes were chosen to compare the UEFs between R410A and CO2 HPWHs. One of a typical 

HPWH heat-up mode is a stepwise heat-up, where the water was removed from node 6 and returned to node 5 with 

small temperature rises on each pass. The other is the once-thru cases, where the water is removed from node 6, 

heated in one pass of HPWH, and returned to node 1. The primary HPWH control locations are at node 5 for the 

stepwise heat-up cases and node 2 for the once-thru designs. To account for tank heat losses, ORNL UEF 

calculations assumed that tank insulation for these analyses gives a 0.90 UEF for a tank heated with electric 

resistance elements. The once-thru heat up method can improve CO2 HPWH UEF, but the CO2 HPWH still achieves 

less UEF than the comparable R410a unit. 

Table 2. Numerical comparison of R410A and CO2 HPWH designs (Data source: Baxter et.al. 2011) 

Case  Refrigerant Heatup method EWT (oF) UEF0.9 

1 R410A Stepwise 114.3 2.84 

2 CO2 Stepwise 110.5 2.02 

3 CO2 One-thru 92.0 2.34 

4 CO2 One-thru 82.9 2.57 

5 CO2 w/ LSHX One-thru 82.9 2.66 

The studies described above are focused on residential hot water supply applications not exceeding 140oF in the 

United States. However, CO2 HPWH systems typically operate in supercritical conditions, resulting in an effective 

heat transfer to lift the water temperature up to 194oF or 248 oF (90°C or 120°C). In such hot water applications, the 

performance and efficiency of the conventional refrigerants degrade. Therefore, CO2 HPWHs still have good 

potential applications, particularly in commercial hot water supply, which usually requires over 194oF.  
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4. CONCLUSIONS 
An air-source CO2 HPWH simulation model was developed based on ACMODEL design model combined with the 

component models developed at ORNL. The updated model was used to evaluate the potential of a residential CO2 

HPWH designed under US residential application standards, as well as in guiding the state-of-art CO2 HPWH 

designs by using numerical simulation. In the study, we simulated CO2 HPWH performance and compared with the 

heat pump water heater using conventional refrigerants. The results show that, compared to conventional 

refrigerants, the current CO2 HPWH component and system technology results in a lower efficiency performance in 

the application of U.S. residential hot water supply not exceeding 140oF. Therefore, it is vital for CO2 HPWHs to 

continuously improve compressor and system efficiency via novel component design. On the other hand, CO2 

HPWHs still have good potential applications in commercial hot water supply, which usually requires over 194oF. 
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