
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

International Refrigeration and Air Conditioning 
Conference School of Mechanical Engineering 

2022 

Rapid Energy Optimization Of Vapor Compression Systems Using Rapid Energy Optimization Of Vapor Compression Systems Using 

Probabilistic Machine Learning And Extremum Seeking Control Probabilistic Machine Learning And Extremum Seeking Control 

Ankush Chakrabarty 

Daniel J. Burns 

Martin Guay 

Christopher R. Laughman 

Follow this and additional works at: https://docs.lib.purdue.edu/iracc 

Chakrabarty, Ankush; Burns, Daniel J.; Guay, Martin; and Laughman, Christopher R., "Rapid Energy 
Optimization Of Vapor Compression Systems Using Probabilistic Machine Learning And Extremum 
Seeking Control" (2022). International Refrigeration and Air Conditioning Conference. Paper 2428. 
https://docs.lib.purdue.edu/iracc/2428 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at 
https://engineering.purdue.edu/Herrick/Events/orderlit.html 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/iracc
https://docs.lib.purdue.edu/iracc
https://docs.lib.purdue.edu/me
https://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F2428&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html


2022, Page 1

Rapid Energy Optimization Of Vapor Compression Systems Using
Probabilistic Machine Learning And Extremum Seeking Control

Ankush CHAKRABARTY1*, Daniel J. BURNS2, Martin GUAY3, Christopher R. LAUGHMAN1

1 Mitsubishi Electric Research Laboratories
Cambridge, MA, USA

Email: {chakrabarty, laughman}@merl.com

2 Email: danburns@ieee.org

3 Department of Chemical Engineering
Queens University, ON, Canada
Email: guaym@queensu.ca

* Corresponding Author

ABSTRACT

Extremum seeking control (ESC) is a popular datadriven approach for optimizing the energy consumption of vapor
compression systems (VCS). Tuning ESC control parameters can present a challenge to implementation, especially
in advanced variants of ESC, because timeconsuming and problemspecific manual tuning is often required to elim
inate numerical and dynamical instabilities. In this paper, we propose an automatic ESC tuning mechanism based
on a Bayesian optimization framework that systematically leverages closedloop ESC experiments to compute high
performing ESC parameters. We validate the proposed Bayesianoptimized ESC on a physicsbased Modelica model
of a VCS. This new approach is six times faster and yields a 9% higher coefficient of performance than a stateoftheart
timevarying ESC method under identical experimental conditions.

1. INTRODUCTION

Vapor compression systems (VCSs) provide essential functionality in many energy transfer systems due to their cost
effectiveness and reliability (She et al., 2018). As the design of VCSs has continued to evolve to meet increasingly
stringent specifications, one key trend that characterizes this development is the use of variable actuators to enable
equipment to adapt to variations in the operating conditions, disturbances, and plant uncertainties (Chua, Chou, &
Yang, 2010). While the inclusion of these actuators can result in lower energy consumption or higher thermal comfort
over a wide range of conditions, these variable actuators require the use of feedback controllers to regulate the system’s
dynamic behavior to prescribed actuator setpoints.

The design, tuning, and validation of feedback controls in VCSs can be an expensive and timeconsuming process
for equipment manufacturers, which must ensure proper closedloop performance over a wide range of environmen
tal and installation conditions. Because the system energy efficiency depends on the selection of setpoints provided
to these feedback controllers, the careful assignment of setpoints in an outerloop enables the energy optimization
of performance without reconfiguring system architectures or retuning innerloop controller parameters (e.g., PID
gains) (Jäschke & Skogestad, 2011). Unfortunately, the task of assigning a set of optimal setpoints as a function of
the regulated inputs and the driving conditions is often challenging due to the nonlinear, multivariable, and frequently
unmodeled dynamics of the closedloop system.

Extremumseeking control (ESC) design techniques have proven to be effective in computing energyefficient setpoints
of complex VCSs (Li, Li, & Seem, 2010; Wang & Li, 2019; Burns, Laughman, & Guay, 2020; Chakrabarty, Daniel
son, Bortoff, & Laughman, 2021). ESC algorithms are modelfree techniques that perform a gradient descent on an
unknown convex map representing the steadystate relationship between manipulated inputs and a performance output.
Since ESC works without an a priori characterization of this map, the approach is inherently robust to disturbances and
the wide variation of environments in which vapor compression systems are deployed. However, convergence to the
optimizer using the common perturbationbased extremum seeking control occurs at a rate two timescales slower than
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the dominant plant dynamics, which is a severe constraint for thermal systems with large time constants. To address
this limitation, a proportionalintegral extremum seeking control (PIESC) algorithm was developed that converges to
the optimizer at the same timescale as the dominant plant dynamics (Guay & Burns, 2017).

While PIESC can offer significant convergence speedup compared with other ESC algorithms (Burns, Laughman, &
Guay, 2016), its behavior is governed by multiple parameters that interact in nonintuitive ways; in some instances,
certain combinations of these parameters can even render the closedloop system unstable. This characteristic makes
the process of tuning PIESC controllers rather challenging. In this paper, we address this limitation by developing
a Bayesian optimization (BO) method that uses VCS data directly to discover combinations of PIESC gains that
achieve rapid convergence while ensuring the closedloop VCS is numerically and dynamically stable. Since BO
is a global, derivativefree optimization methodology that is designed to obtain solutions without a large number of
function evaluations/iterations, it has been reported to perform well on controller tuning problems for many industrial
applications (NeumannBrosig, Marco, Schwarzmann, & Trimpe, 2019). BO’s datadriven nature implies that it is
agnostic to the control architecture under consideration and insensitive to unmodeled dynamics of the closedloop
system (Khosravi et al., 2021; Lu, Kumar, & Zavala, 2020).

Contributions: (i) we tune PIESC parameters in the outerloop and do not modify the innerloop PID controllers,
as the innerloop controller gains are designed to ensure that the dynamic behavior of the equipment satisfied design
requirements and operational constraints; and, (ii) prior work such as (Khosravi, Eichler, Schmid, Smith, & Heer,
2019) has not explicitly considered potential instabilities that arise during the PIESC tuning process. In comparison,
our recently proposed failurerobust BO (FRBO) algorithm (Chakrabarty, Bortoff, & Laughman, 2021) is designed
specifically to learn unstable regions from unstable combinations of PIESC parameters, and avoid those regions in
future BO iterations. Since the region in the PIESC parameter space which yields ‘good’ parameters is problem
specific, we use problemspecific data to provide a suitable option to attack this problem via a novel modification
of Bayesian optimization, which is datadriven, to automatically identify regions of safe combinations of PIESC
parameters and efficiently search within such safe regions when tuning PIESC controller parameters. The success
of this failurerobust BO (FRBO) framework is demonstrated by outperforming a PIESC controller with handtuned
parameters on a VCS application.

Organization: In Section 2, we provide an overview of how PIESC is used for energy optimization in vapor com
pression systems. Section 3 delineates our novel FRBO framework for tuning PIESC parameters despite failures.
Section 4 describes our experimental setup, results, and discussion. We present our conclusions in Section 5.

2. ENERGY OPTIMIZATION USING PIEXTREMUM SEEKING CONTROL

The problem of energy minimization of the VCS can be abstracted as follows. The underlying VCS dynamical system
can be modeled by the closedloop system

xt+1 = f(xt, rt) (1a)
yt = h(xt, rt), (1b)

where t is the time index, xt ∈ Rnx is the vector of state variables at time t, rt is the setpoint variable at time t taking
values in R ⊂ Rnr and yt ∈ R≥0 is a scalar power output of the VCS at time t; our objective is to minimize y. We
assume that the dynamics f and the setpointtoenergy function h are both unmodeled (therefore, unknown at design
time). Empirically, we have observed that the energy function h exhibits sufficient smoothness to warrant the use of
datadriven gradient estimates for energy optimization (Burns et al., 2020).

The principle of ESC is based on obtaining a sequence of setpoints rt for t ≥ 0 such that each rt moves along a direction
of negative gradient of the function h. A firstorder ESC control law consequently has the form rt+1 = −kggt + dt,
where gt is an estimate of the gradient of h w.r.t. r, kg is a control gain or stepsize, and dt is a persistently exciting
dither signal (Chakrabarty, Danielson, et al., 2021). By incorporating integral action to the aforementioned control law,
its convergence rate has been significantly accelerated, as demonstrated in (Guay & Burns, 2017). The proportional
integral ESC (PIESC) law is given, in velocity form, by

rt+1 = rt − kg(gt+1 − gt) −
1
τI
gt + dt, (2)

where τI is a time constant of the integral term. The gradient estimate gt and its update gt+1 are not known because f
and h are unmodeled.
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To this end, we exploit the smoothness of h to write a Taylor series approximation of the difference in cost values,
ignoring second and higherorder terms, as

Δyt ∶= yt+1 − yt =
∂h
∂x

Δxt
´¹¹¹¹¹¹¸¹¹¹¹¹¶
≜gxt

+ ∂h
∂r
°
≜grt

Δrt. (3)

Since f and h represent unmodeled functions, we cannot obtain a numerical or analytical derivative of ∂h/∂x or ∂h/∂r.
Instead, we estimate the unknown quantities in (3) directly from data {(rt, yt)} obtained during experiments with the
closedloop system.

One can then use the data to formulate a linear regression problem that involves solving the matrix equation

⎡⎢⎢⎢⎢⎢⎣

Δyt−Nℓ+1
⋮
Δyt

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 Δr⊺t−Nℓ+1
⋮ ⋮
1 Δr⊺t

⎤⎥⎥⎥⎥⎥⎦
[g

x
t
grt
]

±
gt

.

from which estimates of the gradient gt can be obtained efficiently.

Denoting ĝrt and ĝxt as estimates of gxt and grt , respectively, and ĝt as an estimate of gt, we use the following recursive
leastsquares (RLS) estimator at time t − 1 to estimate the gradient at time t:

wt = wt−1 − Fwt−1 + φt−1, Pt = αPt−1 +wt−1w⊺t−1 + εI, (4a)

Kt =
P−1t wt−1

α +w⊺t−1P−1t wt−1
, ĝt = ĝt−1 +Ktet, (4b)

where et = yt − ŷt, φt−1 ≜ [1 rt−1], ε is a small scalarvalued term that seeks to ensure good numerical conditioning of
Pt, and F is a scalar filter gain coefficient. Subsequently, we use

ŷt+1 = ŷt + Fet + φ⊺t ĝt−1 +w
⊺
t (ĝt − ĝt−1).

to predict the cost ŷt at time t based on the estimated gradient (4b). A dither signal is also required to ensure that the
system is persistently excited. We employ a dither signal of the form dt = D sin(ωt + φ0), where ω is a vector of
unique frequencies of the sinusoidal dither, φ0 is a vector of unique initial phases of the sinusoidal dither, and D is a
userdefined small amplitude.

In summary, the following parameters must be selected to design a PIESC controller: (i) the integral time constant
τI; (ii) the control gain kg; (iii) the forgetting factor α; (iv) the filter coefficient F; (v) the dither magnitude D; (vi)
the dither frequency ω; and, (vii) the dither phase φ. We have empirically observed that the PIESC performance is
strongly correlated with the selection of each of these variables. In fact, if these variables are not carefully selected,
the PIESC can exhibit numerical instability which results in unstable dynamics for the closedloop system.

3. FAILUREROBUST BAYESIAN OPTIMIZATION FOR CONTROLLER TUNING

For the ensuing discussion, we will search for the following PIESC parameters:

θ ≜ [τI kg α F D⊺ ω⊺ φ⊺]⊺ ,

where the dimension of θ = 1+nr+1+1+nr+nr+nr = 3+4nr. We assume that the set of admissible parameters Θ, which
forms the search space for BO, is known to the designer. Clearly, even for small nr, the search space is not sufficiently
lowdimensional to justify trying to tune the PIESC parameters manually. We have observed that attempts to hand
tune these parameters for VCS applications often results in unstable closedloop dynamics or frequent triggering of
failsafe mechanisms due to impractically large PIESC control actions.

We begin by describing classical Bayesian optimization methods, and then describe details of the failurerobust BO
approach. For the jth BO iteration, let θj denote the candidate set of PIESC parameters. With these parameters, an
experiment is performed in which the PIESC closedloop system parameterized by θj is observed on a time interval
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of interest [T0,Tf], and measurements yT0∶Tf ∶= {yT0 , yT0+1,⋯, yTf} obtained from the system over this time interval are
used to compute a performance value Jj. By learning a probabilistic surrogate model from θ to J and exploiting the
statistics of the learned surrogate model, BO generates a sequence of θ candidates that converge to the optimal (in the
sense of the performance metric chosen) PIESC parameters θ⋆.

For performancedriven BO, an objective function (to be minimized) we have found to be useful has the form

J(x) = η1Javg(x) + η2Josc(x),

where x is an initial condition of the system and η1 and η2 are positive weights on each component. Here, Javg is
designed to filter out the dithering effect in steady state and promote lower steady state J values. This component
of the cost is obtained by computing the mean of the final T ′ cost values, that is Javg ≜ E[JTf−T ′∶Tf], where E is the
expectation operator. The second component of the cost Josc ≜ 1

(Tf − T0) ∑
Tf
t=T0+1 ∣Jt∣ is designed to penalize oscillations

in the closedloop PIESC response. Since we aim to evaluate performance over multiple initial conditions within an
admissible set of initial conditions, X, we repeat these simulations for a set of Nx ∈ N initial conditions {xi}Nx

i=1 and
compute the total cost over this set. That is, the cost assigned to the parameter θj is given by

Jj =
Nx

∑
i=1

Javg(xi) + Josc(xi), (5)

where the two components are defined above.

Classical BO methods assume the presence of a single global optimum, and smoothness of the θ to J map. Since J
is typically assumed to be continuous, one can leverage the data at the jth iteration to construct a surrogate Gaussian
Process (GP) model of the cost, given by

Ĵj ∶= GP (μ(θ;Dj), σ(θ, θ′;Dj)) , (6)

where μ(⋅) is the predictivemean function, and σ(⋅, ⋅) is the predictive variance function, andDj containing {θ[0∶j], J[0∶j]}
is the dataset collected thus far. Typically, the variance is expressed through the use of kernel functions (Snoek,
Larochelle, & Adams, 2012).

At the jth learning iteration, for a new query sample θ ∈ Θ, the GP model predicts the mean and variance of the reward
to be

μ(θ) = kj(θ)⊺K−1j J0∶j and σ(θ) = K(θ, θ) − kj(θ)K−1j kj(θ)⊺,
where

kj(θ) = [K(θ0, θ) K(θ1, θ) ⋯ K(θj, θ)] , and Kj =
⎡⎢⎢⎢⎢⎢⎣

K(θ0, θ0) ⋯ K(θ0, θj)
⋮ ⋱ ⋮

K(θj, θ0) ⋯ K(θj, θj)

⎤⎥⎥⎥⎥⎥⎦
,

The accuracy of predicted mean and variance is strongly linked to the selection of the kernel and the best (in some
sense) set of hyperparameters such as length scales and variance parameters of the kernels and estimated noise. We
obtain these hyperparameters by maximizing the log marginal likelihood function.

In Bayesian optimization, we use the mean and variance of the surrogate model Ĵj in (6) to construct an acquisition
function to inform the selection of a θj that increases the likelihood of minimizing the current best cost. To this end, we
compute the incumbent Ĵ⋆j ∶= minθ∈Θ μ(θ;Dj) and use it to define an expected improvement (EI) acquisition function
that has the form

EI(θ, j) =
⎧⎪⎪⎨⎪⎪⎩

σ(θ)γ(z) + (Ĵ⋆j − μ(θ))Γ(z), if σ(θ) > 0,
0 if σ(θ) = 0.

where z = Ĵ⋆j −μ(θ)
σ(θ) , and γ(⋅), Γ(⋅) are the PDF and the CDF of the zeromean unitvariance normal distribution, respec

tively. In the jth iteration of learning, we use the data Dj to construct the EI acquisition function using the surrogate
Ĵj. Subsequently, we compute the optimizer candidate

θj+1 = argmax
θ∈Θ

EI(θ, j), (7)

which serves as the parameter estimate θ in the next BO iteration.
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3.1 Failure Robust Bayesian Optimization
While one could, in theory, apply classical Bayesian optimization directly to find an optimal set of PIESC parameters
θ⋆, we have empirically found that this approach has severe limitations. The classical BO procedure tends to select
θ candidates frequently that make the PIESC closedloop system unstable, causing a loss of cooling capacity. In
hardware, this event triggers failsafe operation; in simulated systems, this event results in nonphysical states that
violate model assumptions. These failed simulations also often result in arbitrarily large and nonsensical cost values
that render the (θ, J) datapoint useless for consequent BO iterations. Since seemingly arbitrary combinations of the
components of θ result in these instabilities, classical BO wastes many iterations evaluating candidates that cause
instability, resulting in very slow convergence rates. Rather than employing heuristics to avoid the regions in parameter
space that are likely to result in simulation failures, we adopt a datadriven approach to estimate these regions and avoid
them by means of a modified acquisition function tailored to promote ‘failure robustness’. We refer to this algorithm
as failurerobust BO, or FRBO, (Chakrabarty, Bortoff, & Laughman, 2021). A few exemplar iterations of FRBO are
shown in Fig. 1 to accompany this mathematical description.

The first step of the FRBO algorithm involves constructing a dataset for failure region estimation, which we will pose
as a supervised learning problem. We begin by randomly sampling a set of initial conditions XNx ∶= {xi}

Nx
i=1 within the

space of admissible initial conditions X; this set is then kept fixed. At the jth FRBO iteration, we simulate the PIESC
closedloop system on [T0,Tf] where the PIESC is parameterized by the candidate parameter θj. If the simulation
fails, we assign a label ℓj = 1 and store a nonsense value in the cost Jj = NaN. If the simulation is successful, we assign
a label ℓj = −1 and store the realvalued cost Jj described in (5). Thus, at the end of the jth FRBO iteration, we have a
dataset {(θk, ℓk, Jk)}jk=0.

We can use the (θ, ℓ) components of this dataset to estimate the failure region boundary by casting the estima
tion problem as a supervised learning problem. In particular, we need to construct a probabilistic learning machine
F ∶ Θ → [0,1], where the output of the learner is the probability that θ ∈ Θ is inside the failure region. That is, F(θ)
is the learned probability that the closedloop PIESC parameterized by θ will be unstable (and therefore, fail). A few
considerations go into the selection of a learning algorithm suited for the task of failure region estimation. First, F
should be able to generate meaningful estimates of the failure region despite being trained on limited (θ, ℓ) data, since
the FRBO algorithm is designed to converge without requiring a large number of iteration. Second, F needs to be
retrained often, so a learner that requires a large number of training iterations before yielding accurate predictions is
not ideal for FRBO. Third, F needs to be able to generate decision boundaries exhibiting complex geometries, since
the failure region may have irregular contours. One or more of these prerequisites restrict the utility of deep neural
networks (needs large datasets) or linear classifiers (cannot generate nonlinear decision boundaries). Instead, we have
found that a nonparametric kernelbased probabilistic classifier such as a variational Gaussian process classifier (VG
PCs) (Chakrabarty, Bortoff, & Laughman, 2021; Hensman, Matthews, & Ghahramani, 2015) works well in practice for
failure region estimation in the context of FRBO. Over comparable classifiers like a probabilistic support vector ma
chine, the VGPC has the advantage that its outputs—a mean and variance—is easily interpretable since the variational
proxy distribution is taken to be Gaussian.

Once the failure region estimator is trained, the FRBO algorithm utilizes a failurerobust expectedimprovement (FREI)
acquisition function of the form

FREI(θ, j) = EI(θ, j) ⋅ (1 − PF(θ, j)), (8)

wherePF(θ, j) = F(θj) is the probability of failure calculated by trainingF using (θ, ℓ) data up to the jth iteration, and
EI is described in (7). Note that the GP surrogate of the cost (6) is trained on (θ, J) data which resulted in stable closed
loop trajectories for which ℓj = +1. Upon maximizing this acquisition function, FRBO selects the next optimizer
candidate

θ∗j+1 = argmaxθ∈Θ
FREI(θ, j). (9)

This maximization problem is often solved in low dimensions by sampling on Θ, evaluating the acquisition function
on those samples, and choosing the maximizer on that finite set of samples. In such an approach, the samples on Θ are
selected randomly at each FRBO iteration to encourage exploration.

We note that maximizing FREI indicates that the component EI should be large, and that the component PF should be
small, i.e., near zero. The former indicates that the considered θ is likely to minimize the cost function (5), and the
latter implies that such a θ is likely to result in a successful simulation. By combining both these beneficial qualities
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Figure 1: Iterations of the FRBO approach demonstrated on a simple 1D objective function. In [A], we have no
knowledge of the failure region, so the FREI acquisition function is nearly identical to the EI acquisition function. In
later iterations, our understanding of the failure region improves and regions of potential successes (black bands in PF)
weigh the EI function more, and enable us to quickly find good feasible solutions. As shown in [B] and [C], improved
estimates of the failure region in later iterations can significantly change our candidate solutions.

into the selection of the next candidate θ, FRBO automatically increases the likelihood of choosing θ values that do
not result in instabilities of the closedloop system, while remaining likely to optimize the cost function.
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4. RESULTS

We demonstrate the practical application of the FRBO algorithm for the parameter tuning of PIESC controllers to
reduce the energy consumption of a variable capacity VCS under standard operating conditions (Burns et al., 2020).
Contemporary VCSs often have many variable actuators, such as compressor speed, expansion valve position, and
fan speeds; since the number of actuators often exceeds the number of variables regulated by feedback controllers,
the remainder of these actuators can be used to optimize the system performance according to a given metric. In this
case study, we regulate the cooling capacity provided by the equipment to a userprovided setpoint by controlling the
compressor speed, and seek to identify the values of the other actuators that minimize the energy consumption.

Figure 2: Block diagram of FRBOtuned PIESC for optimizing energy in VCS.

4.1 Experimental Setup
A highfidelity model for the dynamics of a prototype VCS with the above architecture was developed in the Modelica
language (ModelicaAssociation, 2017). Equationbased models of the compressor, heat exchangers, valves, and fans
were constructed using an objectoriented approach and interconnected to form a complete cycle model. For full details
about this model, we refer the reader to (Chakrabarty, Danielson, et al., 2021).

As multiple combinations of actuator positions produce the same cooling capacity but differing values of electrical
power consumption (Burns & Laughman, 2012), we configured the vaporcompression cycle for realtime optimization
via extremum seeking control to identify actuator values that minimize the energy consumption as shown in Figure 2.
The value of the compressor frequency is computed by a proportionalintegral (PI) controller acting on the difference
between a setpoint of 2 kW and the measured value of the cooling capacity; the PI controller gains are designed and
fixed offline and demonstrate good regulatory performance under regular operating conditions. This controller was
also implemented in Modelica, as the vapor compression system and compressor feedback are thus treated as the op
timization target for a proportionalintegral extremum seeking controller (PIESC) (Burns et al., 2020). The PIESC
algorithm assigns the EEV position, outdoor fan speed (OFS) and indoor fan speed (IFS) such that a measurement of
equipment power is minimized. Assuming that zone setpoint and system disturbances (heat load and ambient temper
ature) are held constant, the combination of EEV, IFS, and OFS values at steady state are energyoptimal. A block
diagram schematic of the FRBOtuned PIESC for energy optimization is provided in Figure 2.

The closedloop Modelica system model was interfaced to the PIESC code using the Functional Mockup Interface
(FMI) standard (ModelicaAssociation, 2019). The Dymola (Dassault Systemes, 2019) environment was used for the
initial development of this model, which was then exported as a Functional Mockup Unit (FMU) containing executable
simulation code as well as a DAE solver. An advantage of this FMUbased approach is that the original model can be
implemented in Modelica, which can efficiently solve large sets of stiff nonlinear differential equations and preserves
physicsinformed dynamics, while the PIESC and FRBO code can be written in Python to leverage existing machine
learning tools.

For this example, nr = 3 as the values of three setpoints (EEV, IFS, and OFS) are to be determined by the PIESC.
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Figure 3: Comparison of closedloop performance of PIESC, TVESC, and baseline, for the multivariable space
cooling application. (EEV = electronic expansion valve position; OFS = outdoor fan speed; IFS = indoor fan speed;
Qc = capacity; CF = compressor frequency.)

Thus, θ is 12dimensional, as the phase φ is fixed at zero. The search space Θ is identical to that in Example 1, with
the exception that the final two intervals for D and ω are [0.01,10]3 and [1,103]3 because nr = 3, and the search space
for kg is [0.1,102]3. The initial set of states is fixed for this system in order to start the experiment on the VCS at an
equilibrium point, so all FRBO costs are calculated for the same initial condition. From this initial time T0 = 0, we
simulate forward to Tf = 120 min to allow the system to enter a 95% settling zone. Each run of 120 min simulation time
requires a wall time of 10–15 min due to the large number of internal states in the Modelica model. We select T ′ to be
the final 20 min, and assume that power measurements are obtained every 60 s. We also use the same hyperparameters
for the VGPC failure classifier and GP regressor as in Example 1, except that both are trained for 2000 iterations
with a learning rate of 0.01, and allow the FRBO to terminate after 500 iterations. At termination, the parameter set
generated by FRBO is given by τI = 61.3, kg = [4.15,10.55,25.42], α = 0.92, F = 0.99, D = [1.31,2.15,4.85],
ω = [10.21,13.55,17.96].

4.2 Results and Discussion
We demonstrate the potential of the FRBOtuned PIESC by comparing its performance to three different scenarios:
a constant baseline set of actuator setpoints, a timevarying ESC (Guay, 2014) that has been previously validated on
the heat pump energy optimization problem (Chakrabarty, Danielson, et al., 2021), and a PIESC tuned by classical
BO. We did not compare the performance of the FRBOtuned PIESC method to a handtuned PIESC method because
we were unable to manually identify parameters that did not result in closedloop instabilities. Figure 3 illustrates the
results of this comparison. While both classical BO and FRBO are allowed the same number of optimization iterations,
FRBO converges to a better solution within those iterations while BO wastes many iterations searching for candidate
parameters that result in failure. In addition, the power is reduced significantly from the baseline power by both
the TVESC and our proposed FRBOtuned PIESC, which converges more quickly than the TVESC method. This
comparison was performed by switching on both ESCs at the 1 hour mark, after the initial transient has disappeared.
The focused plot within the top left subplot also illustrates that the FRBOPIESC converges to the optimal power
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Figure 4: Comparison of coefficient of performance for PIESC and TVESC. Both classical BO and FRBO solutions
have been obtained after allowing 1000 optimization iterations.

value1 within 1 hour, while the TVESC continues to gradually move towards the optimizer and reaches it around 10
hours. In comparison, the BOPIESC does not reach an optimal energy level. This is supported by the timevariation
of the EEV, IFS, and OFS: for PIESC, the values quickly converge to their final locations after an initial oscillation,
whereas the trajectory is much more gradual for the TVESC method. Note that the capacity is maintained at 2 kW
despite setpoint changes in the ESC outer loop.

The efficiency of the vapor compression system is described by the coefficient of performance (COP), defined as the
instantaneous thermal capacity divided by electrical energy consumed by the system. The COP for both PIESC and
TVESC are shown in Figure 4. FRBOPIESC converges to a higher COP compared to TVESC (6.81 v. 6.64) and
BOPIESC (6.81 v. 5.44). Since the compressor frequency is directly under capacity control, the extremum seeking
controllers manipulate the fan speeds and valve position. The outdoor fan speed is reduced, the indoor fan speed
largely settles near its initial setting, and the electronic expansion valve opens. This change in the EEV, in particular,
will reduce the pressure difference across the compressor and correspondingly reduce its apparent load and increase
the cooling capacity. Because the compressor is under capacity feedback control, the higher cooling capacity allows
the controller to reduce the compressor speed while continuing to meet the desired capacity setpoint, which accounts
for the large increase in COP.

In addition to identifying an improved operating point, PIESC converges in less time than the alternate methods. The
actuators manipulated by PIESC initially experience large swings in amplitude, but this excitation does not cause
a reduction in capacity in this case. Scenarios in which these swings are too large for practical considerations can
be addressed by reducing their amplitude via appropriate adjustments to PIESC parameters, or allowing them to be
intercepted by protection logic. The improvement in convergence rate to about 1 hour overcomes important obstacles
to wide scale deployments of ESC in VCS applications. Disturbances acting on the system are typically associated
with building dynamics or diurnal weather patterns and therefore have timescales slower than 1 hour, implying that
PIESC could be used to track optimal energy performance while rejecting disturbances in this frequency band.

1This was confirmed by exhaustively sampling the setpoint space.
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5. CONCLUSIONS

Parameter tuning is an important consideration in the application of ESC methods, as the success of advanced variants
turns on their proper identification. The proposed BO technique is a valuable tool in the broader context of modelfree
realtime optimization system design using ESC. Future work will be focused on the application of the BO tuning
approach over a wide range of competing ESC methodologies. This is particularly important in the application of fast
ESC techniques for optimizing the operation of vapor compression systems.
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