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Introduction-tire’s cavity noise 
• Reduction of tire/road noise is an important issue for luxury sedans and EV vehicles1. 

• Tire/road noise can be categorized into air-borne and structure-borne noise3. 

• Structure-borne noise is dominant in the low-frequency range up to 400 Hz, transmitted 
through vehicle’s body structure3. 

• The fundamental (first) air-cavity mode is the culprit of increased force and cabin noise 
between 200 Hz and 250 Hz in the structure-borne transmission due to the huge net 
displacement4. 

Cavity noise (Michelin tire1) . The dominance of tire noise (Bernhard 2). 4 



• The frequency split in the fundamental air-cavity mode is induced by two factors 

: Static loading (Asymmetry), Rolling (Doppler shift) 

5
The frequency split by static load and rolling (Patil)5 . 
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21-24 AUGUST 2 0 2 2 SCOTTISH EVENT CAMPUS 
GLASGOW Introduction-force amplification at the wheel hub 

• The coupling between two directional acoustical modes and structural resonance mode 
increases the force level at the wheel hub (thus, increased cabin noise) 7. 

• Previous studies discovered the possible contribution of cavity mode to increased force. 

Ex.) Alignment between vertical mode and structural resonance mode 𝑓𝐻 𝑓𝑉 

Amplified 

Force at 𝑓𝑉 

Net vertical 

displacement 

(N=7th) The influence of cavity mode on the force 5,6 . 6 

𝑓𝐻 

𝑓𝑉 



 

 
 

 

 
   

 

21-24 AUGUST 2 0 2 
SCOTTISH EVENT CAMPUS 2 

GLASGOW Introduction-Objective 
• Decoupling between 1st cavity mode and the adjacent structural mode is suggested to accomplish 

a low-noise tire as well as reduced force transmission from a tire to the vehicle. 

• To this end, the prediction of the frequency split caused by a static deformation and rolling effect 
needs to be implemented both in numerical (CAE) and empirical ways. 

• Actual acceleration and force response at the hub were measured for rolling tires in TPTA (Tire 
Pavement Test Apparatus) at different rotation speeds up to 48 km/h (30 mi/h). 

• Further, the spindle force (X, Z) response between 50 Hz and 300 Hz is reproduced in simulation, 
which will be used as a input source of tire/road interaction in the transfer path analysis for a 
cabin noise. 
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120 

Literature review 
• Liu et al.11 performed the FE simulation to investigate the frequency split depending on the speed. 

• The influence of inflation and static load is smaller than the rolling effect (i.e., Doppler shift) 

Split due to load 
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Measurement-TPTA (Tire Pavement Test Apparatus) 

• TPTA (Tire Pavement Test Apparatus) for tire noise measurement (Max. Speed 48 km/h (30 mi/h), Load 6,000 N) 

• Previously used for tire-pavement interaction noise (above 400 Hz) 

• Recently utilized for tire-cavity noise measurement (below 250 Hz) 

• It consists of six different concrete blocks, the diameter is 4.4 m 

Rotating Beam 

Connecting Arm 

Hub Center 

Y (Axial) 

Z (Vertical) 

X (Horizontal) 

TPTA in hemi-anechoic chamber Test rig12 
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Measurement-Setup 

• WFT (Wheel Force Transducer) 

• A single tri-axial accelerometer 

• Wireless connection via a router 

Type Brand Model Remark 

DAQ B&K 3560-B/C-130 Eleven Ch. 

Accelerometer PCB 356B18 Tri-axial 

WFT Michigan Scientific LW12.8-50 Passenger car 

Router 
Power Supply 

*TIU 

DAQ 

X 

Y 

Z 

Z
Y 

Hub 

(a) Wheel Force Transducer (b) Accelerometer (c) Data Acquisition Devices 

The layout of measurement devices 

*TIU : Transfer Interface Unit (WFT control module) 10 
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Measurement-Signal processing 
• Test was performed between 6.4 km/h to 48 km/h. (4 mi/h to 30 mi/h) 

• A trigger signal was also captured. Highest freq. Sampling Total time Time window Time span Overlap Averaging 

240 s Hann 1 s (1 Hz) 50% 32 ~ 240 times 
Hann window (𝑇𝑤 ∙ 𝑓𝑠) 

Trigger (N) Trigger (N+1) 

𝑇𝑤 
Travel 

𝑇𝑤 

Magnetic Trigger 

1-rev time 

Vertical force with a trigger signal (48 km/h) Smooth pavement at a trigger signal position 11 
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Measurement-Specification of test tire 

No #1 

Size 235/50/R18 

Pressure 0.24 MPa (35 psi) 

Load 5496 N (1245 lbs.) 

Stiffness (N/mm) 306 

Mass (tire) 12.7 kg 

Mass (custom rim) 11.8 kg 

Mass (adapter) 2.7 kg 

Mass (WFT, force transducer) 8.6 kg 

• Test tire, 235/50/R18 Custom rim 

Wheel force transducer 

Tuned mass damper for 160 Hz rig resonance12 
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Measurement-Dynamic Force at the hub 
• Force amplification was identified near 200 Hz due to the cavity mode. 

• The frequency split is observed at 195 Hz and 208 Hz at 48 km/h. 

❑ Test Tire (#1) : 235/50/R18 1st horizontal (tire) 

1st vertical (tire) 

𝑓𝐻 

𝑓𝑉 

Force amplification Force amplification 

𝑓𝑉 = 208 𝐻𝑧 

𝑓𝐻 = 195 𝐻𝑧 𝑓𝑟𝑖𝑔 
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Measurement-Acceleration 
• Acc. amplification was identified near 200 Hz due to the cavity mode, mixed with other vibrational modes. 

• The frequency split is observed at 195 Hz and 208 Hz at 48 km/h. 

❑ Test Tire (#1) : 235/50/R18 

𝑓𝐻 

𝑓𝑉 

Acc amplification 

𝑓𝑉 = 208 𝐻𝑧 

𝑓𝐻 = 195 𝐻𝑧 
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Measurement-Campbell diagram 
• The two diverged lines, originating from 200 Hz, indicate the force amplification by the split in the cavity mode. 

• The tire’s low-order structural modes are prominent below 100 Hz. 
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FE Simulation-FE Model 
• Abaqus 2020 was used for simulating rolling tire. 

2. Deformation 

3. Modal analysis 

4. Harmonic analysis 

1. Inflation 

5. Steady-state transport analysis 

Air 

Contact patch (rigid) 

Sidewall 

Input static & dynamic harmonic force (Vertical displacement) 

Rotation, Ω 

Treadband 

Rim 

Hub (fix) 

• 2D Shell/Rebar (Tire), 3D Solid (Air). 
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FE Simulation-Dispersion relation 

• The surface velocity was extracted at mean radius in air-cavity in simulation. 

• The mobility (surface velocity/input force) and dispersion curve were obtained. 

• The resonance frequencies and characteristics in wave propagation were identified. 

r 

𝐹0𝑒
𝑗𝜔𝑡 𝜃 

2𝜋 2𝜋 𝑁 
• 𝑘𝑚𝑎𝑥 = = = = 222 [𝑚−1] > 100 (requirement) 

2𝜋𝑟/𝑁 𝑟 𝜆𝑚𝑖𝑛 

• N=60 (the number of circumferential points on sidewall) 
• r=0.27 [m] 

Wave number Decomposition13 
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FE Simulation-Mobility 
• The surface velocity was extracted at mean radius in air-cavity in simulation. 

• The similar trend in the frequency split was observed. 
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FE Simulation-Dispersion relation 
• The asymmetric curve (kinematic tilting) appears under rolling condition, phase speed difference. 

• The frequency split can be expanded in the presence of rolling. 
Fast (parallel) 

𝑓𝑉 

Static 

indistinct 
𝑓𝐻 

Slow (opposite) 

Enlarged split 

Coupling 

48 km/h 

𝑓𝐻 

𝑓𝑉 
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FE Simulation-Animation 
• The clockwise air-flow made the split broader, interacting with structural vibration. 

Static (loaded) Rolling (loaded) 

198 Hz 
195 Hz 

(3 Hz ↓) 

208 Hz 

205 Hz (3 Hz ↑) 
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Vertical Force, F z 
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FE Simulation-Force response 
• The two force responses in simulation are similar as the test measurement. 

• The frequency split is well reproduced at the similar location. 

• Modal shift is observed in test due to the mass of wheel force transducer (WFT) at the hub. 

1st vertical (tire) Modal shift (mass of WFT, 11 kg) 

𝑓𝐻 = 195 𝐻𝑧 

𝑓𝑉 = 208 𝐻𝑧 

𝑓𝑟𝑖𝑔 𝑓𝐻 = 195 𝐻𝑧 

𝑓𝑉 = 208 𝐻𝑧 

𝑓𝑟𝑖𝑔 
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FE Simulation-Campbell diagram 
• The force amplification due to air-cavity mode is well reproduced. 

• Test result has some blurry effect due to the structural damping and external noise signals. 

Simulation Test 

22 



 

  

300 

250 

,........, • 
~ 200 . 
,__, X 6.4 

>--. 
u 
i::: 
<l.) 
:::l 
cr4 

e 150 u:, 

100 

50 
10 

Vertical Force, F 
z 

15 20 25 30 35 40 
Rotational peed [km/h] 

45 

z 
<...: 
(I.) ..... 

,...., 
i:::o 
-0 
'-----' 

eb 
c;: 

-15 ~ 

300 

250 

,........, 
N 200 :r:: ,__, 

>--. 
u 
i::: 
<l.) 
:::l 
cr4 

e 150 u:, 

100 

50 
10 

Vertical Force F 
z 

15 20 25 30 35 40 
Rotational pe d [lan/h] 

45 

~\flh.r.Tt f h~ .. 
inter.noise 

21-24 AUGUST 2 0 2 2 SCOTTISH EVENT CAMPUS 
GLASGOW 

z 
<...: 
(I.) ..... 

,...., 
i:::o 
-0 
'-----' 

eb 
c;: 

-15 ~ 

-25 

-30 

FE Simulation-Campbell diagram 
• The force amplification due to air-cavity mode is well reproduced. 

• The 1st tire’s vertical (radial) mode is shifted down by 20 Hz due to mass effect. 

Simulation Test 
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- Simulation ( 48 km/h, 200 % ) 
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FE Simulation-Stiffness optimization for force mitigation 

• Stiffness (Young’s modulus) on sidewall and treadband was adjusted to 200 % from the reference value. 

• The force level is reduced to 10 dB at maximum. 
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FE Simulation-Stiffness optimization for force mitigation 
• The coupling at the vertical acoustic mode becomes less significant. 

• Thus, it contributes to the force mitigation near the air-cavity mode. 
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Conclusions 

• The laboratory test environment was established for measuring force and acceleration when tire is rolling. 

• In the current work, the amplification in both force and vibration at the wheel hub was well identified near 200 Hz due 
to the air-cavity mode. 

• The frequency split due to the rolling effect was well estimated in simulation, comparable to the test result and 
analytical solution. 

• Force response and Campbell diagram were reproduced at various speeds in simulation, correlated to the test results. 

• The adjustment in tire’s stiffness can attenuate the force level by decoupling acoustic mode with structural vibration. 

• In future work, on-board sound intensity measurement will be applied to see the relation between acoustic mode and 
near-field sound radiation. 

• Also, Laser-scanning measurement under rotation can produce reliable dispersion relation, which will be introduced 
with further improvement in FE simulation . 
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