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Motivation 
Stacks of activated carbon are known 
to be poro-elastic (Mo et al., 2021) 
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Granular activated 
carbon particles 



Previously-proposed methods 

Arbitrary coefficient method 
(ACM) [2,3] 

Variables 

Amplitude of 
waves 

General 
method? 

√ 

Effort to 
redesign the 

system 

Time-
consuming 

Stability 

Unstable 

Global transfer matrix method 
(GTM) [4,5] State vector √ Easy Unstable 

Xue et  al.’s method [6] State vector x Easy Unstable 

Dazel et  al.’s method [7] Information 
vector √ Easy Stable 

5 



•• r ..L.~ 
inter.noise 

21-24 AUGUST 2 0 2 2 SCOTTISH EVENT CAMPUS 
GLASGOW 

Methodology 

6 



Overview of the stabilized TMM 

Layered structure 
Boundary conditions Air Model and couple at each interface Construct the system 

equation system 
Similar to GTM [3,4] in matrix form Transfer matrix 

of each layer 
Air/ rigid backing 

Increase 

 

t 
I 
I 
I 

Decompose the transfer matrix stability 
Similar to Dazel et al.’s approach [7] 

Invert and solve for the Stably predict the Follow [8,9] Reformulate overall 2-by-2 transfer acoustic properties equation system matrix of the system 
Similar to Xue et al.’s approach [6] 
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Layered structure 
Air 

Air/ rigid backing 

Construct 
equation system 

in matrix form 

Reformulate 
equation system 

Invert and solve for the 
overall 2-by-2 transfer 
matrix of the system 

Stably predict the 
acoustic properties 

Model and couple 
the system 

Increase 
stability Decompose the transfer matrix 

Similar to GTM [3,4] 

Similar to Dazel et al.’s approach [7] 

Similar to Xue et al.’s approach [6] 

Follow [8,9] 
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Boundary conditions 
at each interface 

Transfer matrix 
of each layer 
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Layer Type Waves Transfer matrix State vector 

Fluid 1 dilatational  ��[ ] %×% 
 �� = [ � ( )

�' ] 

Elastic-solid 1 dilatational + 1 rotational  ��[ ] +×+ 
 �� = -[ �, 

-�' 
- -�'' �,' )] 

Poro-elastic 2 dilatational + 1 rotational  ��[ ] #×# �� -= [ �, 
-�' 

( �' 
- -�'' �,' 

( )] �'' 

i 
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Layer Type Waves Transfer matrix State vector 

Fluid 1 dilatational  ��[ ] %×% 
 �� = [ � ( )

�' ] 

Elastic-solid 1 dilatational + 1 rotational  ��[ ] +×+ 
 �� = -[ �, 

-�' 
- -�'' �,' )] 

Poro-elastic 2 dilatational + 1 rotational  ��[ ] #×# �� -= [ �, 
-�' 

( �' 
- -�'' �,' 

( )] �'' 

� 
� 

��! = �� ��0�" 

State vector ��! 

State vector ��0�" 

Transfer matrix [��] 

Interface � 

Interface � + 1 

A layer of acoustic 
material 
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Matrix representation – boundary conditions

Interface 𝑖
State vector 𝑽𝒊!

𝑧
𝑥

State vector 𝑽𝒊"
Upper layer

Lower layer

Boundary Matrix [𝑩𝒊"]
Boundary Matrix [𝑩𝒊!]

𝑖0

𝑖2

10

𝑩𝒊" 𝑽𝒊" = 𝑩𝒊! 𝑽𝒊!
In a matrix form

General expression:

---------------------+ [ ] [ ] 
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Matrix representation – boundary conditions

Interface 𝑖
State vector 𝑽𝒊!

𝑧
𝑥

State vector 𝑽𝒊"
Upper layer

Lower layer

Boundary Matrix [𝑩𝒊"]
Boundary Matrix [𝑩𝒊!]

𝑖0

𝑖2

10

𝑩𝒊" 𝑽𝒊" = 𝑩𝒊! 𝑽𝒊!

More specifically, interface between a poro-elastic layer (𝒊!) and a fluid layer (𝒊"):

In a matrix form

0 0 0 1 0 0
0 0 0 0 0 1
0 1 − 𝜙 𝜙 0 0 0
0 0 0 0 1 0

𝜐,-
𝜐'-

𝜐'
(

𝜎''-
𝜏,'-

𝜎''
(

=

−(1 − 𝜙) 0
−𝜙 0
0 1
0 0

𝑝
𝜐'
(

Matrix form: 𝑩𝒊" 𝑽𝒊" = 𝑩3! 𝑽𝒊!Boundary conditions:

• 𝜎''- 4 = − 1 − 𝜙 𝑝 (

• 𝜎''
( 4

= −𝜙 𝑝 (

• 1 − 𝜙 𝜐'- 4 + 𝜙 𝜐'
( 4

= 𝜐'
( (

• 𝜏,'- 4 = 0

General expression:

fluid

Poro-elastic

𝜙: porosity

---------------------+ [ ] [ ] 

__ [] [ ] 

[ 1 c )[ 1 I 
[ ] [ ] .____________, 

( )[ ] [ ] [ ] 
[ ] 
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Transfer matrix
of each layer

Boundary conditions
at each interface

Overview of the stabilized TMM
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Layered structure
Air

Air/ rigid backing

Reformulate
equation system

Invert and solve for the
overall 2-by-2 transfer
matrix of the system

Stably predict the
acoustic properties

Increase
stabilityDecompose the transfer matrix

Similar to Dazel et al.’s approach [7]

Similar to Xue et al.’s approach [6]

Follow [8,9]

Construct
equation system

in matrix form

Model and couple
the system

Similar to GTM [3,4]

t 
I 
I 
I 
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Model and couple the layered system

𝑧
𝑥

𝐕𝟏! = 𝐓𝟏 𝐕𝟐"
𝐕𝟏!

𝐕𝟐"
[𝐓𝟏]

State vector 𝐕𝟏" =
𝑝
𝑣' 6 10

12

22
20

Air

Air/rigid
backing

𝐕𝟐!

𝐕𝟑"

𝑛2
𝑛0

𝐕𝒏!

𝐕𝒏0𝟏"

State vector 𝐕𝒏0𝟏! =
𝑝
𝑣' 906

𝐕𝐧! = 𝐓9 𝐕𝐧0𝟏" [𝐓𝐧]

𝑛 + 12
𝑛 + 10

𝐕𝟐! = 𝐓𝟐 𝐕𝟑"

𝐕𝟑!

𝐕𝒏"

…

[𝐓𝟐]

32
30

…

[𝐁𝟏"]

[𝐁𝟐"]

[𝐁𝟑"]

[𝐁𝒏"]

[𝐁𝒏0𝟏"]

[𝐁𝟏!]

[𝐁𝟐!]

[𝐁𝟑!]

[𝐁𝒏!]

[𝐁𝒏0𝟏!]
12

⋯

𝑩𝟏" 𝑽𝟏" = 𝑩𝟏! 𝑽𝟏!,

𝑩𝟐" 𝑻𝟏 2𝟏𝑽𝟏! = 𝑩𝟐! 𝑽𝟐!,

𝑩𝒏" 𝑻𝒏2𝟏 2𝟏𝑽𝒏2𝟏! = 𝑩𝒏! 𝑽𝒏!,

𝑩𝒏0𝟏" 𝑻𝒏 2𝟏𝑽𝒏! = 𝑩𝒏0𝟏! 𝑽𝒏0𝟏!.

Boundary conditions at interfaces:

𝑩𝟑" 𝑻𝟐 2𝟏𝑽𝟐! = 𝑩𝟑! 𝑽𝟑!,

𝑽𝟐!

𝑽𝟑!

𝑽𝒏$𝟏!

𝑽𝒏!

[ ] 
■-- ·---------+ [ ] 

[ ] 

[ ] 

• ·---------+ [ ] '-------,[] --------' 

- --~c:L ·---------+ [ ] [ ] 

------~■·=-i 1 

, 

[ ] 

[ ] 

[ ] 

[ ] 

[ 

[ ] ·---------+ [ ] [ ] [ ] 



Model and couple the layered system

13

𝑩6" − 𝑩6! ⋯ 0 0
0 𝑩%" 𝑻6 26 ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 𝑩𝒏" 𝑻𝒏26 26 − 𝑩𝒏!
0 0 ⋯ 0 𝑩𝒏06" 𝑻𝒏 26

𝑽6"
𝑽6!
⋯
𝑽𝒏26!
𝑽𝒏!

=

0
0
⋯
0
𝑩𝒏06!

𝑽𝒏06! .

Matrix form equation system:

⋯

𝑩𝟏" 𝑽𝟏" = 𝑩𝟏! 𝑽𝟏!,

𝑩𝟐" 𝑻𝟏 2𝟏𝑽𝟏! = 𝑩𝟐! 𝑽𝟐!,

𝑩𝒏" 𝑻𝒏2𝟏 2𝟏𝑽𝒏2𝟏! = 𝑩𝒏! 𝑽𝒏!,

𝑩𝒏0𝟏" 𝑻𝒏 2𝟏𝑽𝒏! = 𝑩𝒏0𝟏! 𝑽𝒏0𝟏!.

Boundary conditions at interfaces:

𝑩𝟑" 𝑻𝟐 2𝟏𝑽𝟐! = 𝑩𝟑! 𝑽𝟑!,

Global Matrix [𝑨]



Transfer matrix
of each layer

Boundary conditions
at each interface

Overview of the stabilized TMM

14

Layered structure
Air

Air/ rigid backing

Construct
equation system

in matrix form

Invert and solve for the
overall 2-by-2 transfer
matrix of the system

Stably predict the
acoustic properties

Model and couple
the system

Similar to GTM [3,4]

Similar to Xue et al.’s approach [6]

Follow [8,9] Reformulate
equation system

Increase
stabilityDecompose the transfer matrix

Similar to Dazel et al.’s approach [7]

t 
I 
I 
I 

~\flhLTr i t~... . 
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Decompose of the transfer matrix

15

In the traditional TMM:

When there is a significant disparity
between the magnitudes of the 
waves: i.e.,
• at higher frequencies
• for a thick layer
• for extreme parameter values 

The most attenuated wave’s
contribution can be masked
by numerical errors. Instability occurs when

inverting the global matrix
.... 
,.... 

~\flhLTr i t ~ ... 
inter.noise 
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Decompose of the transfer matrix

15

In the traditional TMM:

When there is a significant disparity
between the magnitudes of the 
waves: i.e.,
• at higher frequencies
• for a thick layer
• for extreme parameter values 

The most attenuated wave’s
contribution can be masked
by numerical errors. Instability occurs when

inverting the global matrix

Decomposition – extract wave attenuation terms

𝑻 = 𝚽 𝚲 𝚽 "𝟏

With wave attenuation terms

E.g., for a solid layer:

𝜦𝒔 =
𝑒;<#$= 0 0 0
0 𝑒2;<#$= 0 0
0 0 𝑒;<$$= 0
0 0 0 𝑒2;<$$=

.... 
,.... 

[ ] [ ][ ][ ] 

[ ] 

~\flhLTr i t ~... . 
inter.noise 
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Reformulate the equation

16

Equation system: 
𝑩6" − 𝑩6! ⋯ 0 0
0 𝑩%" 𝑻6 26 ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 𝑩𝒏" 𝑻𝒏26 26 − 𝑩𝒏!
0 0 ⋯ 0 𝑩𝒏06" 𝑻𝒏 26

𝑽6"
𝑽6!
⋯
𝑽𝒏26!
𝑽𝒏!

=

0
0
⋯
0
𝑩𝒏06!

𝑽𝒏06! .

[ ] [ ] 
[ ] [ ][ ] 

[ ] 

[ ] 

[ ] 

[ ] 

[ ] 

[ ] 
[ ] 
[ ] 

[ ] [ ] [ ] 
[ ] [ ][ ] [ ] 

~,,,,.,Tr 1 t ~ ._ . 
inter.noise 
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Reformulate the equation

16

Equation system: 
𝑩6" − 𝑩6! ⋯ 0 0
0 𝑩%" 𝑻6 26 ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 𝑩𝒏" 𝑻𝒏26 26 − 𝑩𝒏!
0 0 ⋯ 0 𝑩𝒏06" 𝑻𝒏 26

𝑽6"
𝑽6!
⋯
𝑽𝒏26!
𝑽𝒏!

=

0
0
⋯
0
𝑩𝒏06!

𝑽𝒏06! .

𝑩&! − 𝑩&" 𝚽& ⋯ 0 0
0 𝑩'! 𝚽& 𝚲& (& ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ 𝑩𝒏! 𝚽𝒏(& 𝚲𝒏(& (& − 𝑩𝒏" 𝚽𝒏
0 0 ⋯ 0 𝑩𝒏$&! 𝚽𝒏 𝚲𝒏 (&

𝑰 𝟎 ⋯ 𝟎 𝟎
𝟎 𝚽𝟏

(𝟏 ⋯ 𝟎 𝟎
⋯ ⋯ ⋯ ⋯ ⋯
𝟎 𝟎 ⋯ 𝚽𝒏(𝟏

(𝟏 𝟎
𝟎 𝟎 ⋯ 𝟎 𝚽𝒏

(𝟏

Global Matrix [𝑨]

[𝑨𝟏] No significant numerical errors

Reformulate



Transfer matrix
of each layer

Boundary conditions
at each interface

Overview of the stabilized TMM
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Layered structure
Air

Air/ rigid backing

Construct
equation system

in matrix form

Reformulate
equation system

Stably predict the
acoustic properties

Model and couple
the system

Increase
stabilityDecompose the transfer matrix

Similar to GTM [3,4]

Similar to Dazel et al.’s approach [7]

Follow [8,9] Invert and solve for the
overall 2-by-2 transfer
matrix of the system

Similar to Xue et al.’s approach [6]

t 
I 
I 
I 

~\flhLTr i t~... . 
inter.noise 
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2-by-2 transfer matrix that relates 𝑽!& and 𝑽𝒏#!'

18

Given equation system: 

𝑨

𝑽6"
𝑽6!
⋯
𝑽𝒏26!
𝑽𝒏!

=

0
0
⋯
0
𝑩𝒏06!

𝑽𝒏06! .

𝑛 + 12
𝑛 + 10

𝑽𝒏! = 𝑻𝒏 𝑽𝒏0𝟏"

Air / rigid
backing

State vector 𝑽𝒏0𝟏! =
𝑝
𝑣' >06

𝑛2
𝑛0

𝑽𝒏!

𝑽𝒏0𝟏"
[𝑻𝒏]

𝑽𝒏"

……

[𝑩𝒏"]

[𝑩𝒏0𝟏"]

[𝑩𝒏!]

[𝑩𝒏0𝟏!]

𝑧
𝑥

𝑽𝟏! = 𝑻𝟏 𝑽𝟐"
𝑽𝟏!

𝑽𝟐"
[𝑻𝟏]

State vector 𝑽𝟏" =
𝑝
𝑣' 6 10

12

22
20

Air

𝑽𝟐!

[𝑩𝟏"]

[𝑩𝟐"]

[𝑩𝟏!]

[𝑩𝟐!]
𝑽𝟏! = 𝑻 1×1 𝑽𝒏!𝟏"

[ ] 
[ ] 

[ ] 

[ I 

[ ] 

[ ] 

~\flhLTr i t~... . 
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2-by-2 transfer matrix that relates 𝑽!& and 𝑽𝒏#!'
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Given equation system: 

𝑨

𝑽6"
𝑽6!
⋯
𝑽𝒏26!
𝑽𝒏!

=

0
0
⋯
0
𝑩𝒏06!

𝑽𝒏06! .

𝑨 (& =

𝑰 𝟎 ⋯ 𝟎 𝟎
𝟎 𝚽𝟏 ⋯ 𝟎 𝟎
⋯ ⋯ ⋯ ⋯ ⋯
𝟎 𝟎 ⋯ 𝚽𝒏(𝟏 𝟎
𝟎 𝟎 ⋯ 𝟎 𝚽𝒏

𝑨𝟏 (𝟏,

=

𝑨𝟏,𝟏∗ 𝑨𝟏,𝟐∗ ⋯ 𝑨𝟏,𝒏(𝟏∗ 𝑨𝟏,𝒏∗

𝑨𝟐,𝟏∗ 𝑨𝟐,𝟐∗ ⋯ 𝑨𝟐,𝒏(𝟏∗ 𝑨𝟐,𝒏∗
⋯ ⋯ ⋯ ⋯ ⋯

𝑨𝒏(𝟏,𝟏∗ 𝑨𝒏(𝟏,𝟐∗ ⋯ 𝑨𝒏(𝟏,𝒏(𝟏∗ 𝑨𝒏(𝟏,𝒏∗

𝑨𝒏,𝟏∗ 𝑨𝒏,𝟐∗ ⋯ 𝑨𝒏,𝒏(𝟏∗ 𝑨𝒏,𝒏∗

.𝑛 + 12
𝑛 + 10

𝑽𝒏! = 𝑻𝒏 𝑽𝒏0𝟏"

Air / rigid
backing

State vector 𝑽𝒏0𝟏! =
𝑝
𝑣' >06

𝑛2
𝑛0

𝑽𝒏!

𝑽𝒏0𝟏"
[𝑻𝒏]

𝑽𝒏"

……

[𝑩𝒏"]

[𝑩𝒏0𝟏"]

[𝑩𝒏!]

[𝑩𝒏0𝟏!]

𝑧
𝑥

𝑽𝟏! = 𝑻𝟏 𝑽𝟐"
𝑽𝟏!

𝑽𝟐"
[𝑻𝟏]

State vector 𝑽𝟏" =
𝑝
𝑣' 6 10

12

22
20

Air

𝑽𝟐!

[𝑩𝟏"]

[𝑩𝟐"]

[𝑩𝟏!]

[𝑩𝟐!]
𝑽𝟏! = 𝑻 1×1 𝑽𝒏!𝟏"

𝑽6"
𝑽6!
⋯
𝑽𝒏26!
𝑽𝒏!

= 𝑨 26

0
0
⋯
0
𝑩𝒏06!

𝑽𝒏06! .

[ ] 
[ ] 

[ ] 
[ ] 

[ ] [ ] [ ] 
[ ] [ ] [ ] 

[ ] 
[ ] [ ] [ 
[ ] [ ] [ ] 

[ I 
[ ] [ ] 
[ ] [ ] 

[ ] [ ] [ ] 
[ ] [ ] 

[ ] 
[ ] 

] [ ] 
[ ] 

[ 
[ 

[ 
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2-by-2 transfer matrix that relates 𝑽!& and 𝑽𝒏#!'
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𝑽𝟏! = 𝑨7,𝒏∗ 𝑩𝒏!7" 𝑽𝒏!𝟏" ,

𝑻 1×1 =
𝑇77 𝑇71
𝑇17 𝑇11

= 𝑨7,𝒏∗ 𝑩𝒏!7" .

Given equation system: 
𝑽6"
𝑽6!
⋯
𝑽𝒏26!
𝑽𝒏!

= 𝑨 26

0
0
⋯
0
𝑩𝒏06!

𝑽𝒏06! .

𝑨 (& =

𝑰 𝟎 ⋯ 𝟎 𝟎
𝟎 𝚽𝟏 ⋯ 𝟎 𝟎
⋯ ⋯ ⋯ ⋯ ⋯
𝟎 𝟎 ⋯ 𝚽𝒏(𝟏 𝟎
𝟎 𝟎 ⋯ 𝟎 𝚽𝒏

𝑨𝟏 (𝟏,

=

𝑨𝟏,𝟏∗ 𝑨𝟏,𝟐∗ ⋯ 𝑨𝟏,𝒏(𝟏∗ 𝑨𝟏,𝒏∗

𝑨𝟐,𝟏∗ 𝑨𝟐,𝟐∗ ⋯ 𝑨𝟐,𝒏(𝟏∗ 𝑨𝟐,𝒏∗
⋯ ⋯ ⋯ ⋯ ⋯

𝑨𝒏(𝟏,𝟏∗ 𝑨𝒏(𝟏,𝟐∗ ⋯ 𝑨𝒏(𝟏,𝒏(𝟏∗ 𝑨𝒏(𝟏,𝒏∗

𝑨𝒏,𝟏∗ 𝑨𝒏,𝟐∗ ⋯ 𝑨𝒏,𝒏(𝟏∗ 𝑨𝒏,𝒏∗
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Transfer matrix
of each layer

Boundary conditions
at each interface

Overview of the stabilized TMM
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Layered structure
Air

Air/ rigid backing

Construct
equation system

in matrix form

Reformulate
equation system

Invert and solve for the
overall 2-by-2 transfer
matrix of the system

Model and couple
the system

Increase
stabilityDecompose the transfer matrix

Similar to GTM [3,4]

Similar to Dazel et al.’s approach [7]

Similar to Xue et al.’s approach [6]

Stably predict the
acoustic properties

Follow [8,9]

t 
I 
I 
I 
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Solve for acoustic properties [6,8,9]

21

• 𝑇 = %?%&'(

)##0)#) @AB C/E*F0))# E*F/ @AB C0)))
,

• 𝑅 = )##0)#) @AB C/E*F2))# E*F/ @AB C2)))
)##0)#) @AB C/E*F0))# E*F/ @AB C0)))

,

• 𝛼 = 1 − 𝑅 %,

• 𝑇𝐿 = 20 log6G
6
)
.

• 𝑅 = )## @AB C/())# E*F)26
)## @AB C/())# E*F)06

.

With 𝑽𝟏! =
𝑇77 𝑇71
𝑇17 𝑇11

𝑽𝒏!𝟏" :
Layered systems with fluid on both sides:

Layered system fixed on a rigid wall:

Air half-space

Rigid wall
𝑧 = 𝑑

𝑧 = 0
Poro-elastic layer

𝜃 = 50∘

10 cm

Example 1:

Poro-elastic layer

Air half-space

𝜃 = 50∘

Solid layer

Air half-space

10 cm

10 cm

Example 2:



Example results
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Example 1

23

Air half-space

Rigid wall
𝑧 = 𝑑

𝑧 = 0
Poro-elastic layer

𝜃 = 50∘
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Parameters for poro-elastic layer 

𝜎 – Rayls/m 4×10+
𝜙 0.4
𝛼, 1.75
Λ – m 9.3×10(+
Λ′ – m 2.0×10(-
𝜌& – kg/m3 120
𝐸 - Pa 4×10.
𝜂 0.2
𝜈 0.3
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Example 2
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Poro-elastic layer

Air half-space

𝜃 = 50∘

Solid layer

Air half-space

10 cm

10 cm

Poro-elastic layer Solid layer 
𝜌/ – kg/m3 1000
𝐸 - Pa 1×10-
𝜂 0.5
𝜈 0.4

𝜎 – Rayls/m 4×10+
𝜙 0.4
𝛼, 1.75
Λ – m 9.3×10(+
Λ′ – m 2.0×10(-
𝜌& – kg/m3 120
𝐸 - Pa 4×10.
𝜂 0.2
𝜈 0.3
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Example 3
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Poro-elastic layer Stiff panel
𝜌/ – kg/m3 2700
𝐸0 - Pa 7.0×10&0
𝜂1 0.003
𝜈1 0.33

𝜎 – Rayls/m 4×10+
𝜙 0.4
𝛼, 1.75
Λ – m 9.3×10(+
Λ′ – m 2.0×10(-
𝜌& – kg/m3 120
𝐸 - Pa 4×10.
𝜂 0.2
𝜈 0.3

Poro-elastic layer
Air half-space

10 cm

𝜃 = 50∘

3 mm Al

Air half-space

Poro-elastic layer 10 cm
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Conclusions

• A stable, general, robust, and straightforward approach (stabilized TMM) is proposed to
model and couple of multi-layered systems consisting of various layer types.

• This approach models the layered system as a two-by-two transfer matrix. Therefore, it 
can be conveniently connected to other systems with the same dimension and makes the 
redesign of complicated systems much easier. 

• As a modelling tool, this approach makes up for the deficiency of the traditional methods 
and makes it possible to model and couple thick layers of materials (e.g., granular 
materials) in a layered system over a wide frequency range.
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