Purdue University

Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

8-23-2022

A General Stable Approach to Modeling and Coupling Multilayered Systems with Various Types of Layers

Guochenhao Song Purdue University, song520@pudue.eduj

Zhuang Mo Purdue University, mo26@purdue.edu

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

Song, Guochenhao; Mo, Zhuang; and Bolton, J Stuart, "A General Stable Approach to Modeling and Coupling Multilayered Systems with Various Types of Layers" (2022). *Publications of the Ray W. Herrick Laboratories.* Paper 256.

https://docs.lib.purdue.edu/herrick/256

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

A general stable approach to modeling and coupling multilayered systems with various types of layers

<u>Guochenhao Song</u> and Zhuang Mo and J. Stuart Bolton Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN, USA

Presentation Available at Herrick e-Pubs: <u>https://docs.lib.purdue.edu/herrick</u>

Agenda

- Motivation & Literature
- Methodology
- Example Results
- Conclusions

Motivation & Literature

Motivation

Stacks of activated carbon are known to be poro-elastic (Mo *et al.,* 2021)

σ [Rayls/m]	ϕ	$lpha_\infty$	$ ho_b$ [kg/m³]
1.5×10^{6}	0.92	1.3	24
Е - Ра	η	ν	θ
6000	0.004	0.27	0°

Previously-proposed methods

£

	Variables	General method?	Effort to redesign the system	Stability
Arbitrary coefficient method (ACM) [2,3]	Amplitude of waves	\checkmark	Time- consuming	Unstable
Global transfer matrix method (GTM) [4,5]	State vector	\checkmark	Easy	Unstable
Xue <i>et al.</i> 's method [6]	State vector	x	Easy	Unstable
Dazel <i>et al.</i> 's method [7]	Information vector	\checkmark	Easy	Stable

Methodology

Overview of the stabilized TMM

Similar to Xue *et al.*'s approach [6]

Overview of the stabilized TMM

Similar to Xue et al.'s approach [6]

Matrix representation – transfer matrix

Matrix representation – transfer matrix

Matrix representation – boundary conditions

General expression:

10

Matrix representation – boundary conditions

General expression:

More specifically, interface between a poro-elastic layer (i^+) and a fluid layer (i^-):

Overview of the stabilized TMM

Similar to Xue *et al.*'s approach [6]

Model and couple the layered system

12

Model and couple the layered system

Boundary conditions at interfaces:

 $[B_{1^+}]V_{1^+} = [B_{1^-}]V_{1^-},$

 $[B_{2^+}][T_1]^{-1}V_{1^-} = [B_{2^-}]V_{2^-},$

$$[B_{3^+}][T_2]^{-1}V_{2^-} = [B_{3^-}]V_{3^-},$$
...

 $[B_{n^+}][T_{n-1}]^{-1}V_{n-1^-} = [B_{n^-}]V_{n^-},$

 $[B_{n+1^+}][T_n]^{-1}V_{n^-} = [B_{n+1^-}]V_{n+1^-}.$

Overview of the stabilized TMM

Similar to Xue *et al.*'s approach [6]

Decompose of the transfer matrix

In the traditional TMM:

When there is a significant disparity between the magnitudes of the waves: i.e.,

- at higher frequencies
- for a thick layer
- for extreme parameter values

The most attenuated wave's contribution can be masked by numerical errors.

Instability occurs when inverting the global matrix

Decompose of the transfer matrix

In the traditional TMM:

When there is a significant disparity between the magnitudes of the waves: i.e.,

- at higher frequencies
- for a thick layer
- for extreme parameter values

Instability occurs when inverting the global matrix

Decomposition – extract wave attenuation terms

$$[\mathbf{\Lambda}] = [\mathbf{\Phi}] [\mathbf{\Lambda}] [\mathbf{\Phi}]^{-1}$$

E.g., for a solid layer:
With wave attenuation terms
$$[\mathbf{\Lambda}^{s}] = \begin{bmatrix} e^{jk_{13}d} & 0 & 0 & 0\\ 0 & e^{-jk_{13}d} & 0 & 0\\ 0 & 0 & e^{jk_{33}d} & 0\\ 0 & 0 & 0 & e^{-jk_{33}d} \end{bmatrix}$$

Reformulate the equation

Reformulate the equation

Overview of the stabilized TMM

2-by-2 transfer matrix that relates V_{1+} and V_{n+1-}

Given equation system:

$$[A] \begin{bmatrix} \mathbf{V}_{1^{+}} \\ \mathbf{V}_{1^{-}} \\ \cdots \\ \mathbf{V}_{n-1^{-}} \\ \mathbf{V}_{n^{-}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \cdots \\ 0 \\ [B_{n+1^{-}}] \end{bmatrix} \mathbf{V}_{n+1^{-}}.$$

2-by-2 transfer matrix that relates V_{1+} and V_{n+1-} **Given equation system:** State vector $V_{1^+} = \begin{bmatrix} p \\ v_z \end{bmatrix}_1 \begin{bmatrix} B_{1^+} \end{bmatrix}_1^+$ $\begin{bmatrix} V_{1^+} \\ V_{1^-} \\ \vdots \\ V_{n^-} \end{bmatrix} = \begin{bmatrix} A \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \begin{bmatrix} B_{n^+1^-} \end{bmatrix} \end{bmatrix} V_{n^+1^-}.$ Air $V_{1^{-}} = [T_1]V_{2^{+}}$ $V_{n^{-}} = [T_n]V_{n+1^{+}}$ $= \begin{bmatrix} \begin{bmatrix} A_{1,1}^{*} \end{bmatrix} & \begin{bmatrix} A_{1,2}^{*} \end{bmatrix} & \cdots & \begin{bmatrix} A_{1,n-1}^{*} \end{bmatrix} & \begin{bmatrix} A_{1,n}^{*} \end{bmatrix} \\ \begin{bmatrix} A_{2,1}^{*} \end{bmatrix} & \begin{bmatrix} A_{2,2}^{*} \end{bmatrix} & \cdots & \begin{bmatrix} A_{2,n-1}^{*} \end{bmatrix} & \begin{bmatrix} A_{2,n}^{*} \end{bmatrix} \\ \cdots & \cdots & \cdots & \cdots \\ \begin{bmatrix} A_{n-1,1}^{*} \end{bmatrix} & \begin{bmatrix} A_{n-1,2}^{*} \end{bmatrix} & \cdots & \begin{bmatrix} A_{n-1,n-1}^{*} \end{bmatrix} & \begin{bmatrix} A_{n-1,n}^{*} \end{bmatrix} \\ \begin{bmatrix} A_{n,1}^{*} \end{bmatrix} & \begin{bmatrix} A_{n,2}^{*} \end{bmatrix} & \cdots & \begin{bmatrix} A_{n,n-1}^{*} \end{bmatrix} & \begin{bmatrix} A_{n,n}^{*} \end{bmatrix}$ Air / rigid State vector $V_{n+1^-} = \begin{bmatrix} p \\ v_Z \end{bmatrix}_{n+1^-} \begin{bmatrix} B_{n+1^-} \end{bmatrix} \begin{bmatrix} n+1^+ \\ n+1^- \end{bmatrix}$ backing

18

2-by-2 transfer matrix that relates V_{1+} and V_{n+1-}

Given equation system:

 $\begin{bmatrix} \mathbf{V}_{1^{+}} \\ \mathbf{V}_{1^{-}} \\ \cdots \\ \mathbf{V}_{n-1^{-}} \\ \mathbf{V}_{n^{-}} \end{bmatrix} = [A]^{-1} \begin{bmatrix} 0 \\ 0 \\ \cdots \\ 0 \\ [B_{n+1^{-}}] \end{bmatrix} \mathbf{V}_{n+1^{-}}.$ $[A]^{-1} = \begin{bmatrix} [I] & [0] & \cdots & [0] & [0] \\ [0] & [\Phi_1] & \cdots & [0] & [0] \\ \cdots & \cdots & \cdots & \cdots \\ [0] & [0] & \cdots & [\Phi_{n-1}] & [0] \\ [0] & [0] & \cdots & [0] & [0] \end{bmatrix} [A_1]^{-1},$ $\begin{bmatrix} \mathbf{0} \end{bmatrix} \cdots \begin{bmatrix} \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{\Phi}_n \end{bmatrix}$ $= \begin{bmatrix} \begin{bmatrix} A_{1,1}^{*} & \begin{bmatrix} A_{1,2}^{*} & \cdots & \begin{bmatrix} A_{1,n-1}^{*} & \begin{bmatrix} A_{1,n}^{*} \\ A_{2,1}^{*} & \begin{bmatrix} A_{2,2}^{*} & \cdots & \begin{bmatrix} A_{2,n-1}^{*} & \begin{bmatrix} A_{2,n}^{*} \\ \vdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \begin{bmatrix} A_{n-1,1}^{*} & \begin{bmatrix} A_{n-1,2}^{*} & \cdots & \begin{bmatrix} A_{n-1,n-1}^{*} & \begin{bmatrix} A_{n-1,n}^{*} \\ A_{n,1}^{*} & \begin{bmatrix} A_{n,2}^{*} & \cdots & \begin{bmatrix} A_{n,n-1}^{*} & \begin{bmatrix} A_{n,n}^{*} \end{bmatrix} \end{bmatrix}.$

$$V_{1^{+}} = \begin{bmatrix} A_{1,n}^{*} \end{bmatrix} \begin{bmatrix} B_{n+1^{-}} \end{bmatrix} V_{n+1^{-}},$$
$$[T]_{2\times 2} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} = \begin{bmatrix} A_{1,n}^{*} \end{bmatrix} \begin{bmatrix} B_{n+1^{-}} \end{bmatrix}.$$

Overview of the stabilized TMM

Similar to Xue *et al.*'s approach [6]

Solve for acoustic properties [6,8,9]

With
$$V_{1^+} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} V_{n+1^-}$$
:

Layered system fixed on a rigid wall:

•
$$R = \frac{T_{11} \cos \theta / (T_{21} \rho_0 c) - 1}{T_{11} \cos \theta / (T_{21} \rho_0 c) + 1}$$
.

Layered systems with fluid on both sides:

•
$$T = \frac{2e^{jk_Z d}}{T_{11} + T_{12} \cos \theta / \rho_0 c + T_{21} \rho_0 c / \cos \theta + T_{22}},$$

•
$$R = \frac{T_{11} + T_{12} \cos \theta / \rho_0 c - T_{21} \rho_0 c / \cos \theta - T_{22}}{T_{11} + T_{12} \cos \theta / \rho_0 c + T_{21} \rho_0 c / \cos \theta + T_{22}},$$

•
$$\alpha = 1 - |R|^2$$
,

•
$$TL = 20 \log_{10} \frac{1}{|T|}$$
.

Example results

Conclusions

- A <u>stable</u>, <u>general</u>, <u>robust</u>, and <u>straightforward</u> approach (stabilized TMM) is proposed to model and couple of multi-layered systems consisting of various layer types.
- This approach models the layered system as a <u>two-by-two transfer matrix</u>. Therefore, it can be <u>conveniently connected to other systems</u> with the same dimension and makes the <u>redesign of complicated systems</u> much easier.
- As a modelling tool, this approach makes up for the deficiency of the traditional methods and makes it possible to <u>model and couple thick layers of materials (e.g., granular</u> <u>materials</u>) in a layered system over a wide frequency range.

References

[1] Z. Mo, G. Song, J. S. Bolton, S. Lee, T. Shi, Y. Seo, Predicting acoustic performance of high surface area particle stacks with a poro-elastic model, in: INTER-NOISE and NOISE-CON Congress and Conference Proceed- ings, Vol. 263, Institute of Noise Control Engineering, 2021, pp. 3523–3529. doi:10.3397/IN-2021-2437. URL https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1256&context=herrick

[2] J. S. Bolton, N.-M. Shiau, Y. Kang, Sound transmission through multi- panel structures lined with elastic porous materials, Journal of Sound and Vibration 191 (3) (1996) 317–347. doi:10.1006/jsvi.1996.0125.

[3] J. S. Bolton, N.-M. Shiau, Oblique incidence sound transmission through multi-panel structures lined with elastic porous materials, in: 11th Aeroa- coustics Conference, 1987, p. 2660. doi:10.2514/6.1987-2660.

[4] B. Brouard, D. Lafarge, J.-F. Allard, A general method of modelling sound propagation in layered media, Journal of Sound and Vibration 183 (1) (1995) 129–142. doi:10.1006/jsvi.1995.0243.

[5] J. Allard, N. Atalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e, John Wiley & Sons, 2009.

[6] Y. Xue, J. S. Bolton, Y. Liu, Modeling and coupling of acoustical lay- ered systems that consist of elements having different transfer matrix dimensions, Journal of Applied Physics 126 (16) (2019) 165102. doi: 10.1063/1.5108635.

[7] O. Dazel, J. P. Groby, B. Brouard, C. Potel, A stable method to model the acoustic response of multilayered structures, Journal of Applied Physics 113 (8) (2013) 083506. doi:10.1063/1.4790629.

References

[8] B. H. Song, J. S. Bolton, A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials, The Journal of the Acoustical Society of America 107 (3) (2000) 1131–1152. doi:10.1121/1.428404.

[9] ASTM E2611-19, Standard test method for normal incidence determina- tion of porous material acoustical properties based on the transfer matrix method (2019). doi:10.1520/E2611-19.

[10] Biot, M. A., 1956, "Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid II. Higher Frequency Range," Journal of the Acoustical Society of America, 28(2), pp. 179–191.

Thanks