
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Electrical and Computer 
Engineering Technical Reports 

Department of Electrical and Computer 
Engineering 

2022 

Outdated Measurements Are Still Useful For Multi-Sensor Linear Outdated Measurements Are Still Useful For Multi-Sensor Linear 

Control Systems With Random Communication Delays Control Systems With Random Communication Delays 

Jia Zhang 

Chih-Chun Wang 

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/ecetr
https://docs.lib.purdue.edu/ecetr
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F760&utm_medium=PDF&utm_campaign=PDFCoverPages


Outdated Measurements Are Still Useful For
 
Multi-Sensor Linear Control Systems With Random
 

Communication Delays
 
Jia Zhang
 

School of ECE, Purdue University
 
Email: zhan2030@purdue.edu
 

Abstract— Linear systems are a widely used model for the 
control tasks of modern cyber physical systems around their 
stationary state(s), e.g., smart grids, remote health applications, 
and autonomous driving systems. Specifically, each sensor first 
compresses its own measurement and then sends it to the con
troller. Due to the inevitable random communication delay, the 
controller needs to decide how to fuse the received information 
to compute the desired control action. Suppose a fusion center 
has received several measurements over time. One common belief 
is that the control decision should be made solely based on the 
latest measurement of each sensor while ignoring the older/stale 
measurements from the same sensor. This work shows that while 
such a strategy is optimal in a single-sensor environment, it 
can be strictly suboptimal for a multi-sensor system. Namely, 
if one properly fuses both the latest and outdated measurements 
from each of the sensors, one can strictly improve the underlying 
control system performance. The numerical evaluation shows that 
even at a very low communication rate of 8 bits per measurement 
per sensor, the proposed scheme achieves a state variance of 
only 5% away from the best possible achievable L2 norm. It is 
15% better than the MMSE fusion scheme using exclusively the 
freshest measurements (while discarding outdated ones). 

Index Terms—Rate-stability tradeoff, random delay, informa
tion fusion, age of information, linear control systems 

I. INTRODUCTION 

With the increasing number of Internet-of-Things appli
cations such as smart grids, remote health applications, and 
autonomous driving systems, multi-sensor linear systems and 
the corresponding control schemes are widely deployed to 
control the system around its stationary system state [1]– 
[3]. With the sensors spread over multiple locations, the 
measurement of each sensor is often compressed first before 
transmission. Upon receiving the measurements, the controller 
then fuses the information and designs the control action(s) in 
a holistic fashion. One common information fusion strategy is 
as follows. Say there are K sensors in the system. The con
troller keeps the most recently received measurement of each 
sensor, one for each sensor, and thus totally K measurements 
(i.e., discards/ignores the older measurements from the same 
sensor(s)). Then the control decision is made solely based on 
these K measurements. This work shows that while such a 
strategy is optimal in a single-sensor environment, it can be 
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strictly suboptimal for a multi-sensor system. Namely, if one 
properly fuses both the latest and outdated measurements from 
each of the K sensors, one can strictly improve the underlying 
control system performance. 

From a more technical perspective, the goal of this work is 
to explore the tradeoff among compression ratio, random com
munication delay, and the multi-sensor control system perfor
mance. Specifically, we first derive an analytical lower bound 
of the L2 state norm for all possible data compression/fusion 
schemes. Then we analyze and design new schemes that 
approach the optimal performance (the aforementioned L2 
lower bound) under any given delay distribution by explicitly 
capitalizing the benefits of outdated measurements. 

A. Contribution 1: The smallest attainable L2 state norm 
av.Dmin 

In a multi-sensor linear control system, the measurement 
of each sensor will experience its own random delay before 
arriving at the controller. It is clear that the longer the (random) 
delay, the worse the underlying control system performance 
due to the increased staleness of the information. Nonetheless, 
the analytical relationship between the multi-sensor random 
delay vector distribution and the achievable control system 
performance remains an open problem. To characterize the 
inherent tradeoff between the two, we use the expected L2 
state norm as the performance metric. For any given delay 
vector distribution, we derive an L2 state norm lower bound, 
denoted by av.Dmin, for all possible schemes while assuming 
the observation noise and state disturbance are both Gaussian 
distributed. Our approach starts by first converting the given 
delay vector distribution to the so-called Age-of-Information 
vector (AoI vector) distribution, a new concept that has 
attracted significant attention in the networking community 
[4]–[6]. The AoI vector distribution is then combined with 
the Riccati solutions of the AoI-aware Kalman Filters (KF) to 
derive the lower bound av.Dmin. 

The investigation of the lower bound av.Dmin is a sub
problem in the general framework of rate-cost tradeoff of 
linear control systems [7]–[9], and see the summaries in [8], 
[9]. Specifically, the rate-cost tradeoff results focus on the 
zero-delay (and/or deterministic delay) scenarios and study 
the tradeoff of compression rate R versus the expected system 
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state cost D [7], [8]. Since our av.Dmin lower bound places 
no constraint on the compression rate R, it can be viewed as 
the smallest D value when the compression rate is allowed to 
be arbitrarily large, i.e., R → ∞. Comparing to the existing 
results on the entire (D, R) tradeoff curve [8], [9], our results 
have a narrower focus on one particular asymptote1 (i.e., R → 
∞) but consider the more general multi-sensor random delay 
vector model than the existing one-sensor zero/deterministic 
delay settings in [8], [11], [12]. 

B. Contribution 2: A data fusion scheme that approaches the 
lower bound av.Dmin 

We propose a new information fusion scheme, CQE, which 
stands for Cumulative Quantized Estimation (CQE) fusion. 
The main idea is to combine cumulatively the entire history 
of asynchronously arriving, randomly delayed measurements 
from multiple sensors. For benchmarking purposes, we consid
ered the MMSE scheme proposed in [13]. Specifically, under 
the setting of deterministic zero delay, [13] devises the optimal 
MMSE scheme that fuses the latest estimation from each of the 
K sensors. We modify the scheme in [13] so that it can handle 
the scenario of necessary data compression plus random delay 
considered herein. But we keep the same feature of optimally 
fusing only the latest estimations. We term such a scheme, 
LQE, which stands for Latest Quantized Estimation (LQE) 
fusion. Our experiment shows that with using the same average 
number of bits per sensor per second, CQE achieves an L2 
state norm 15% smaller than LQE fusion. 

In addition to the superior empirical performance, we also 
prove analytically that under a single sensor setting (i) LQE is 
provably optimal; and (ii) CQE will automatically discard the 
outdated measurements and thus result in the same mechanism 
as the optimal LQE scheme. However, for the multi-sensor set
ting, (iii) LQE is strictly suboptimal; and (iv) CQE fusion will 
intelligently utilize the outdated measurements (together with 
the latest measurements) and outperform the LQE scheme. 

C. Comparison to Existing Results 

Many researchers have studied covariance-based informa
tion fusion for networked control systems, see [14] for a de
tailed summary. Some example algorithms that were proposed 
for delay-free sensor networks are summarized as follows. [15] 
and [16] studied the fusion for two sensors using maximal like
lihood estimation and addressed the effect of cross correlation 
between different sensors to the fusion performance. In [17], a 

1As will be seen in Section V, even with very small R = 8 bits per 
measurement per sensor, our schemes are already within 5% of av.Dmin that 
assumes R → ∞. This is also the reason that in our random delay setting, the 
analysis efforts are devoted to finding the av.Dmin with R → ∞, rather than 
characterizing the entire tradeoff curve (D, R). From the analysis perspective, 
the other asymptote, i.e., Rmin when D → ∞, also sheds important intuition 
of the underlying system. Specifically [8]–[10] showed that for Gaussian linear 
control systems with a system state evolution matrix A: 

Rmin = log2(|λi|). (1) 
eigenvalues of A:|λi|>1 

Since this work focuses on practical applications with small D, the asymptote 
Rmin with D → ∞ is beyond our scope. 

covariance intersection method is proposed for the case where 
the correlations between sensors are unknown. [13] proposed 
a Kalman filter based fusion scheme for zero-delay settings, 
which minimizes the mean square estimation (fusion) error by 
linearly combining the freshest local estimates from sensors at 
the controller. Our LQE scheme is designed as an extension 
of [13] from the zero-delay to the random delay settings. 

[18] considered a scenario where random delays and packet 
losses occur and observations are transmitted from sensors 
to the controller. They proposed a constant-gain estimation 
scheme that stores a few recently arrived observations. In com
parison to their scheme, we assume that the “measurements” 
are generated by some local preprocessing at the sensor while 
[18] assumes the transmission of pure observations (without 
further processing). Sending pre-processed measurement is 
known to achieve superior performance in a single-sensor 
setting [8], [9], though at the cost of additional computation at 
the sensors. This type of local sensors computation/processing 
before transmission is commonly referred to as smart-sensors 
[19] schemes. 

[20] studied a scenario where missing observations and 
bounded random delays occur, and that the systems were 
assumed inherently stable. A fusion method which utilizes 
the latest local information for each sensor was proposed to 
minimize the mean square estimation error. In [21], the authors 
considered sensor networks on unmanned vehicles where each 
sensor observes periodically, and the sensors have different 
observation cycles. The sensors detect the velocity and the 
location of an overtaking vehicle, and the central processor 
generates global estimates of sensors’ local estimates. Three 
sensor-to-global fusion schemes (fusion with memory) are 
implemented for comparison, including adapted Kalman filter, 
covariance intersection, and information matrix fusion. How
ever, they left out discussions for the network phenomena, 
such as quantization and random delays. 

The rest of the paper is organized as following: Section II 
describes the system and problem formulation, and describes 
AoI and Kalman filter, two elements for extensive use in 
later sections. Section III presents a method to convert a 
feedback system with deterministic AoI vector to a non-
delay augmented system and derives the analytical smallest 
achievable L2 state norm. Section IV presents the two newly-
proposed fusion schemes. Section V demonstrates the experi
ment results. Section VI concludes the paper with a summary 
and a future work direction. 

II. PROBLEM FORMULATION 

Consider a discrete time-invariant linear control system 

x(t + 1) = Ax(t) + u(t) + w(t), (2) 
yk(t) = Ckx(t) + vk(t), ∀k ∈ [1,K]. (3) 

where x(t) is an N -dimensional column vector that represents 
the system state at time t; A is the N × N state evolution 
matrix; u(t) is the N -dimensional control action (column) 
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Sensor 1:System plant y1(t) = C1x(t) + v1(t)

y2(t) = C2x(t) + v2(t)
Sensor 2:

Delay 2:

Delay 1:

Controller
u(t)

s1(t)

s2(t)

�1(t)

�2(t)

Fig. 1. linear control system with multi-sensors and random delays 

vector at time t; and w(t) is the N -dimensional state dis
turbance, which is assumed to be i.i.d. Gaussian with zero 
mean and covariance matrix Σw. We assume the system state 
is initialized with x(−1) = 0 and u(−1) = 0, and the goal is 
to design the control action u(t). 

There are K ≥ 1 sensors and the observation yk(t) of 
sensor k ∈ [1,K] is an Mk-dimensional column vector as 
described in (3), in which Ck is an Mk ×N observation matrix; 
and vk(t) is the Mk-dimensional i.i.d. Gaussian observation 
noise with zero mean and Mk × Mk covariance matrix Σvk . 

We assume the overall system {A, [C1
T, C2

T , · · · , CT ]T} isK 
observable; the covariance matrices Σw and Σvk are of full 
rank; and all quantities in (2) and (3) are of real-valued (no 
imaginary part). 

At each time slot t, sensor k generates a binary bit string 
sk(t) based on all its past observations {yk(τ) : τ ≤ t}, i.e., 

sk(t) = fk,t({yk(τ ) : τ ≤ t}) (4) 

where fk,t is the encoding function at time t. We use |sk(t)|
to denote the length of sk(t) and we allow variable length 
encoding, i.e., |sk(t)| may depend on the input {yk(τ) : τ ≤ 
t}. 

The encoded bit string sk(t) is then time-stamped and sent 
to the central controller at time t through a digital, noiseless 
but randomly delayed channel. That is, the string sk(t) sent by 
sensor-k at time t will arrive at the controller at time t+∆k(t). 
We assume the experienced delay ∆k(t) is i.i.d. distributed, 
of integer value, and with bounded support δmax,k for some 
sufficiently large but finite δmax,k. The distribution of ∆k(t) is 
thus determined by its marginal pmf pk,δ = Prob(∆k(t) = δ) 
for all δ ∈ [0, δmax,k]. 

We assume the values of {pk,δ : δ ∈ [0, δmax,k]} is known a 
priori. Note that the i.i.d. delay model allows for out-of-order 
delivery, i.e., the string sk(t1) sent at time t1 < t2 may arrive 
at the controller later than sk(t2) if t1 +∆k(t1) > t2 +∆k(t2). 
Also see Fig. 1 for illustration. 

At time t, the controller computes the control action u(t) 
based on the (delayed) measurements it has received from K 
sensors by time t. That is, 

u(t) = gt({sk(τ ) : k ∈ [1,K], τ +∆k(τ) ≤ t}) (5) 

where gt(·) is the control action function at time t. The u(t) 
is then applied instantaneously to x(t) via (2). For every sum 

compression rate constraint Rsum, we aim to solve/approach 
the following L2 state-norm minimization problem. 

min sup E{x(t)T x(t)} (6) 
{fk,t,gt} t 

KK 
subject to sup E{|sk(t)|} ≤ Rsum (7) 

t 
k=1 

The problem formulation is complete. We conclude this 
section by introducing two existing concepts that would be 
useful when describing our results. 

A. Age of information and its distribution 

The communication delay ∆k(t) of sensor k is defined from 
the sensor’s respective. We now define a new quantity, Θk(t), 
Age of Information (AoI) [9], [22], that describes the freshness 
of measurements at time t from the controller’s perspective. 
That is, 

Θk(t) ≜ t − max {τ : τ +∆k(τ ) ≤ t} (8)
τ 

describes how old is the most recently received measurement 
from sensor k. It is clear that the distribution of the random 
process Θk(t), though being closely related, is quite different 
from the distribution of ∆k(t). For example, while ∆k(t) is 
i.i.d. (i.e., order-0 Markovian), Θk(t) is order-1 Markovian. 
Recall that pk,δ ≜ Prob(∆k(t) = δ). The marginal of Θk(t) 
can then be computed by 

[AoI]
p ≜ Prob(Θk(t) = θ) (9)k,θ 

θ θ−1 δmax,kK K K 
= pk,δ · ( pk,δ) (10) 

δ=0 i=0 δ=i+1 

where the notation p[AoI] emphasizes the pmf is now focusing 
on the AoI Θ, not the delay ∆. More detailed discussion of 
(10) can be found in [9]. 

Because of the cross-channel independence assumption, the 
probability of Θ(⃗ t) ≜ (Θ1(t), Θ2(t), · · · , ΘK (t)) being θ⃗ = 
(θ1, · · · , θK ) is 

KK 
[AoI] [AoI]

p ≜ Prob(⃗ θ) = . (11)Θ(t) = ⃗ p⃗ k,θkθ 
k=1 

B. Kalman filter 

Kalman filter (KF) is a commonly used technique and will 
be used intensively when describing our results in Sections III 
and IV. It is worth noting that KF is derived/defined over the 
simple single-sensor and zero-delay setting. In the sequel we 
summarize its computation in Algorithm II.1. To prepare for 
the discussion in Sections III and IV, Algorithm II.1 considers 
a more general plant model x(t +1) = Ax(t)+ Bu(t)+ w(t) 
where B is the control matrix, with the observation formula
tion unchanged as in (3). 

The physical meaning of matrix Pt is that it is the estimation 
error covariance matrix Pt = E{(x(t) − x̂(t))(x(t) − x̂(t))T}
at time t. 
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Algorithm II.1 Kalman Filter (KF) computation 
1:	 INPUT: Matrices A, B, C, Σw, and Σv; and two se

quences {y(t) : t ≥ 0} and {u(t) : t ≥ 0}. 
2:	 OUTPUT: A sequence of estimation {x̂(t) : t ≥ 0} and 

two sequences of matrices {Pt : t ≥ 0} and {Γt : t ≥ 0}. 
3:	 Initialize x̂(−1) = 0 and u(−1) = 0; and P−1 = 0. 
4: for t = 0 to ∞ do 
5: 

Φt = APt−1A
T +Σw (12) 

)−1Γt = ΦtC
T(CΦtC

T +Σv (13) 
x̂(t) = Ax̂(t − 1) + Bu(t − 1) + ŵ(t − 1) (14) 

ŵ(t − 1) = Γt (y(t) − C(Ax̂(t − 1) + Bu(t − 1))) 
(15) 

Pt = Φt − ΓtCΦt (16) 

6:	 end for 
7:	 Note that we are often interested in the limits P = 

limt→∞ Pt and Γ = limt→∞ Γt, which can be computed 
by solving the Riccati matrix equations or by outputting 
Pt (resp. Γt) for a sufficiently large t. 

III. THE SMALLEST ATTAINABLE L2 STATE NORM 

The goal of this subsection is to find a closed-form ex
pression of the minimum L2 norm in (6) when there is no 
compression rate constraint, i.e., Rsum → ∞. We denote such 
a value by av.Dmin, which will then be used as a benchmark 
when comparing different schemes with finite Rsum. 
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Fig. 3. Delay event 2 for a linear control system with three sensors 

The main idea is as follows. With random delays and 
multiple sensors, the controller may encounter different events, 
depending on the realization of the random delay. In Fig. 3, 
we illustrate two delay events with different arrival patterns. 
A green box indicates an arrived packet, and a blank box (a 
hole) indicates a non-arrived local packet. Because the goal 
is to find the optimal av.Dmin, we assume there is a genie 
that feeds the still missing packets from all sensors that are 
earlier than the latest received packets. Obviously, such a 
genie will improve the performance and thus further lower 
the achievable av.Dmin value. We also assume that each of the 
naturally received packets and the genie-aided packets contains 
the exact, non-quantized observation yk(τ ). 

⃗Note that for each AoI realization Θ = (θ1, · · · , θK ), 
with the addition of the genie who fills the ”holes”, it is 
as if the controller is facing deterministic communication 
delays Prob(∆k(t) = θk, ∀k ∈ [1,K]) = 1. (Note that in 
a deterministic delay setting, the communication delay and 
the AoI values are always identical, and there is no hole in 
the reception pattern since every packet experiences the same 
delay and thus will arrive in the same order as the departure.) 
Our idea is to first compute the smallest attainable L2 norm 

(θ⃗)of this deterministic delay system, which we denote by Dmin. 
Because the AoI value θ⃗ faced by the controller is randomly 
distributed with distribution given by (9)-(11), the optimal 
av.Dmin can thus be computed by further averaging over θ⃗. 
We then have 

Proposition 1. Denote the minimum L2 norm in (6) when 
Rsum → ∞ by av.Dmin. We have K 

[AoI] (θ⃗)
av.Dmin ≜ p · D (17)⃗ min. θ 

{θ⃗} 

(θ⃗)The expression of D is provided in the subsequent Lemma 1. min 

(θ⃗)The rest of this section is dedicated to computing Dmin 

under an arbitrarily given deterministic vector θ⃗. Note that the 
(θ⃗)computation of D assumes deterministic communication min 

delays ∆k(t) = θk with probability one for all k and t. We 
now construct an equivalent, augmented system that ”groups” 
all K deterministically-delayed sensors into a single sensor 
with zero delay. To that end, we first extend the system state 
x(t) to its vector version x̄(t): 

x̄(t) ≜ (x(t)T , x(t − 1)T , · · · , x(t − δmax)
T)T , (18) 

where δmax ≜ maxk δmax,k. 
The corresponding (δmax + 1)N by (δmax + 1)N state 

¯evolution matrix A becomes  	  
¯ A, 0N×((δmax −1)N) 0N×NA ≜	 , (19)

I(δmaxN) 0(δmaxN)×N

where 0a×b is an a-by-b zero matrix and Ia is the a-by
¯a identity matrix. Also define the (control) matrix B and 

corresponding system disturbance w̄(t) as 

B̄ = [IN , 0N×(δmaxN)]
T , (20) 

w̄(t) = (w(t)T 
N ))

T . (21), 01×(δmax

Together we can rewrite (2) to the new augmented equation 

¯ ¯x̄(t + 1) = Ax̄(t) + Bu(t) + w̄(t), (22) 

where w̄(t) is zero-mean Gaussian with covariance  	  
Σw, 0N×(δmaxN)Σ ̄ ≜	 . (23)w 0(δmax N)×((δmax+1)N )

Recall that we assume deterministic delay ∆k(t) = θk = 
Θk(t) for sensor k. Therefore, for time t, the controller can 
at best know the yk(t − θk) value. Since x(t − θk) is the 
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(θk + 1)-th coordinate of x̄(t), we can define the augmented 
¯observation matrix C(θk) of sensor k byk 

(θk )C̄ ≜ [0Mk ×(θk N), Ck, 0Mk ×((δmax −θk )N)], (24)k 

and we then have 
(θk ) (θk )¯y (t) = C x̄(t) + vk(t − θk). (25)k k 

By vertically stacking all K sensors together, we have 

v(θ⃗)¯�K �K 

(⃗ C(⃗ (⃗ȳ θ)(t) = ¯ θ)x̄(t) + v̄ θ)(t), (26) 

where 
(θ1) (θK )C̄(θ⃗) = [( C̄ )T , · · · , (C̄ )T]T .1 K (27) 

And 
(⃗ T T

v̄ θ)(t) = (v1(t − θ1) , · · · , vK (t − θK ) )T (28) 

is zero-mean Gaussian with covariance matrix Σ = 
diag({Σvk : ∀k}), an ( Mk) by ( Mk) matrix with k=1 k=1 

the diagonal sub-matrices being Σvk . Given any θ⃗ vector, 
(22) and (26) jointly convert the corresponding K-sensor, 
deterministic delay model to a single-sensor, zero-delay model. 

¯ C̄(θ⃗)We use A, B̄, , and u(t) as the input to the KF 
(θ⃗)subroutine described in Algorithm II.1. We then use P tox̄

denote the corresponding limiting output matrix P . Finally, 
(θ⃗)we denote the N × N sub-matrix of P in the upper-left x̄

corner as P (θ⃗). We then have the following lemma: 

Lemma 1. The smallest achievable L2 norm of the K-sensor 
deterministic θ⃗-delay model is 

D
(θ⃗) ≜ tr(AP (θ⃗)AT) + tr (Σw) . (29)min 

The proof of Lemma 1 is straightforward since applying 
KF to the augmented single-sensor system in (22) and (26) 
is equivalent to finding the MMSE estimator of the K-sensor 
deterministic θ⃗-delay model. The upper-left corner submatrix 
P (θ⃗) then describes the ”distance” between the MMSE es-

by sk(t ′ ). The performance of such a scheme will match the 
genie-aided scenario described in Sec. III. 

Such a scheme is extremely wasteful from the perspective 
of bandwidth consumption Rsum since each sk(t) carries the 
entire history. It turns out that for the single-sensor setting 
(K = 1), the following simple scheme can achieve the optimal 
performance without sending the entire history. That is, the 
sensor first computes the KF estimator x̂(t) locally using its 
own measurement y(t). Then it sends the quantized version of 
x̂(t) to the controller. Essentially, such a scheme compresses 
the entire history {y(τ) : τ ≤ t} into a single estimate x̂(t). 
Since the goal of the controller is to compute the MMSE 
estimator x̂(t) and use it to design the control action u(t), 
directly sending the quantized version of x̂(t) from the sensor 
attains superior performance with much smaller bandwidth 
consumption than re-sending the entire history {y(τ ) : τ ≤ t}. 
See [9], [23], [24]. 

Motivated by the superior performance of the above scheme 
in a single-sensor setting, in this work, we assume each of 
the K sensors computes a KF estimate x̂k(t) based on its 
own observation yk(t). Then the string sk(t) contains only 
a quantized version of x̂k(t) (not the entire history {yk(τ ) : 

qτ ≤ t}). For ease of exposition, we use x̂ (t) to denote the k

quantized version of the local estimator at sensor k. Our design 
efforts are then placed exclusively on how the controller should 

qfuse all the available information {x̂ (τ ) : k ∈ [1,K], τ +k

∆k(τ ) ≤ t} at time t from all K sensors. 

A. The compression scheme at sensor k 
qFor completeness, we briefly describe how x̂ (t) is generk

ated. Consider a specific sensor k. (All other sensors operate 
similarly.) Define the matrix B = IN , an N -by-N identity 
matrix. For any time t, sensor k uses the matrices A, B, Ck, 
Σw, Σvk , and the past actions {u(τ ) : τ ≤ t − 1} as the input 
to the KF described in Algorithm II.1. We use x̂k(t) to denote 
the output local KF estimate at time t. We then pass x̂k(t) via 
a rotated rectangular lattice quantizer. 

Specifically, define the following generating matrix  √timator and the true system state x(t). This, plus the state γk,1 0 · · · 0 √perturbation w(t), which is not controllable by the action u(t), 
will give the minimum achievable L2 norm of this genie-aided Gk = α · Uk 

system. The complete proof is mitigated to Appendix A. 

 

0 γk,2 · · · 0 
, (30). . . √

0 0 · · · γk,N One contribution of Proposition 1 is to show that under 
random delay model, the minimum achievable L2 where the N -by-N matrix Uk contains the N (column) eigena norm 

av.Dmin can be computed by averaging the deterministic delay 
(θ⃗) [AoI]cases D based on the marginal AoI distribution {p :min k,θ 

k, θ}, not the communication delay distribution {pk,δ : k, δ}. 

IV. ACHIEVABILITY SCHEMES 

With unlimited communication rate Rsum → ∞, the 
av.Dmin described in Proposition 1 and Lemma 1 can be easily 
achieved as follows. That is, for every time t, each sensor k 
puts the entire history of observations {yk(τ) : τ ≤ t} in the 
packet/string sk(t) and sends that string to the controller. As a 
result, whenever the controller receives the latest packet sk(t ′ ), 
it can fill the “hole” by the history {yk(τ) : τ ≤ t ′ } carried 

vectors of the sensor-k estimation error covariance matrix Pk, 
which is the limiting (t → ∞) estimation error covariance for 
the k-th local estimator x̂k(t) computed by Algorithm II.1; 
γk,i is the corresponding i-th eigenvalue of Pk; α is a global 
scaling factor that will later be used to adjust the granularity 
of the quantization lattices for all K sensors simultaneously. 
The lattice points are then generated by 

⃗Πk = {Gk · i : i⃗ ∈ ZN } (31) 

where ⃗i are the integer-valued index vectors. The quantization 
cells are then defined as the Voronoi regions of the lattice 
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points in Πk. Because the eigenvectors of Pk are orthogonal, 
each Voronoi region (each cell) is a hypercube with the rotated 
axes along the eigenvectors and all Voronoi regions (all cells) 
are stacked together. 

We label each cell (i.e., each Voronoi region) by a distinct 
string. Then sensor k would compute and send sk(t) by 

sk(t) = the string corresponding to the cell containing x̂k(t). 
(32) 

To design the cell-to-string mapping, for each cell, we run 
Monte-Carlo simulation offline to find the (simulated) prob
ability that x̂k(t) falls into a given cell. We then order the 
cells in the descending order of these simulated probabilities. 
That is, the first cell is the one with the largest simulated 
probability, and so on so forth. Since our goal is to minimize 
the string length |sk(t)|, the first cell is assigned with the 
empty string ∅. The second and the third cells are assigned 
with 1-bit strings 0 and 1, respectively. The 4-th to the 7-th 
cells are assigned with the 2-bit strings, 00, 01, 10 and 11 
respectively, and so on so forth. It is worth emphasizing that 
the cell-to-string mapping is computed offline. When actually 
running the algorithm, sensor-k computes the estimate x̂k(t) 
using the local observation yk(t) in real time. It then generates 
the string sk(t) using (32) and the pre-computed cell-to-string 
mapping. 

We now describe how the controller interprets/processes 
the received string sk(τ). At time t, the controller has only 
received the strings sk(τ) satisfying τ +∆k(τ ) ≤ t. For each 
received sk(τ), the controller knows which cell it is in, say 
in cellj . The central controller then computes the quantized 

qestimates x̂ (τ) byk


q
x̂ (τ) = E(x̂k(τ)|x̂k(τ ) is in cellj ). (33)k


q
That is, x̂ (τ) is the probabilistic mean of x̂k(t) conditioningk

on x̂k(t) falls in cellj , the one corresponding to the received 
string sk(τ ). Note that the mapping from each cellj to its 
conditional probabilistic mean can be pre-computed offline via 
Monte-Carlo simulation. Then when actually carrying out the 

qalgorithm, the controller can determine x̂ (τ) based on the k

cell index j in the received string sk(τ) and the precomputed 
qmapping from j to x̂ (τ) in (33). k

This concludes the basic quantization scheme used by all 
our fusion algorithms. The rest of this section will describe 

qhow the received {x̂ (τ) : k ∈ [1,K], τ +∆k(τ) ≤ t} can be k

fused to generate the controller action u(t) at time t. 

B. Fusion schemes 

1) LQE with random delays: 
This scheme is an extension of the optimal MMSE fusion 

scheme proposed in [13] to the scenario with random delay. 
For any τ < t, we define 

t−1K 
At−1−s x̂k(t|τ ) ≜ At−τ x̂k(τ ) + u(s) (34) 

s=τ 

as the MMSE estimator for the system state x(t) based on the 
k-th local estimator x̂k(τ ) at time τ . That is, we pass x̂k(τ ) 

through the state evolution equation for t − τ times and also 
take into account the actions exerted during time τ to t − 1. 

For any fixed K-dimensional AoI vector θ⃗ = (θ1, · · · , θK ), 
we will compute K matrices P (θk)(t) and C2 (K-choosek K 

(θk1 ,θk2 )2) matrices P (t), t ≥ 0. Each matrix is of dimension k1,k2 

N -by-N . The physical meanings of these matrices are: 
(θk)P (t) ≜ E{(x(t) − x̂k(t|t − θk))(x(t) − x̂k(t|t − θk))

T}k 
(35) 

is the estimation error covariance if we use the observed 
estimate x̂k(t − θk) to obtain the estimator x̂k(t|t − θk) for 
the current time t. And 

(θk1 ,θk2 )P (t)k1,k2 

≜ E{(x(t) − x̂k1 (t|t − θk1 ))(x(t) − x̂k2 (t|t − θk2 ))
T}

(36) 

is the cross estimation error covariance between two estimators 
x̂k1 (t|t−θk1 ) and x̂k2 (t|t−θk2 ). In the following we describe 

(θk ) (θk1 ,θk2 )how to compute P (t) and P (t), respectively. k k1,k2 

Step 1: We consider the single-sensor-based augmented 
systems. There are K such augmented systems. For each 
k, we consider only sensor k. Specifically, we consider the 

¯augmented system evolution matrix A in (19), the augmented 
¯control matrix B in (20), and the augmented state perturbation 

w̄(t) in (21) with noise covariance in (23). However, we 
only have one sensor and thus the corresponding augmented 

(θk )¯observation matrix is C in (24) and the observation noise k 
covariance is simply Σvk . Note that since there is only one 
sensor k being considered, there is no need for the vertical 
stacking described in (26) to (28). 

Once the single-sensor augmented system is constructed for 
(θk )¯ ¯ ¯the given k value, we use A, B, Σw, C , Σvk as the input to ¯ k 

the single-user zero-delay KF algorithm in Algorithm II.1. We 
(θk ) (θk )¯denote the outputs by P (t) and Γ̄ (t), respectively. Note k k 

(θk )¯that P (t) is of dimension (1 + δmax)N -by-(1 + δmax)Nk 

and Γ̄(θk)(t) is of dimension (1 + δmax)N -by-Mk.k
 
(θk ) (θk)
¯ ¯Step 2: The 2K matrices Γ (t) and C (t) plus the k k 

¯augmented state evolution matrix A and the state perturba
tion covariance matrix Σw will be used to compute 2 · C2 

¯ K 
matrices Prcct,k1,k2 (t) and Φrcct,k1,k2 (t). Both matrices are 
of dimension (1 + δmax)N -by-(1 + δmax)N and each pair 
(Prcct,k1,k2 (t), Φrcct,k1,k2 (t)) is computed by solving the fol
lowing Riccati equations. 

(t) = ¯ (t − 1)ĀT +Σ w, (37)Φrcct,k1,k2 APrcct,k1,k2 ¯

(θk1 ) (θk1 )

Prcct,k1,k2 (t) =(I(δmax+1)N − Γ̄ (t)C̄k1 

)
k1 

· Φrcct,k1,k2 (t) 
(θk2 ) (θk2 ) · (I(δmax +1)N − Γ̄k2 

(t)C̄k2 
)T . (38) 

(θk )¯The computed matrices P (t) and Prcct,k1,k2 (t) satisfyk 
the following lemma. 

(θk )Lemma 2. The N -by-N matrix P (t) defined in (35) isk 
the upper-left corner of the (δmax + 1)N -by-(δmax + 1)N 
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(θk )	 (θk1 ,θk2 )¯matrix P (t). The N -by-N matrix P (t) is thek	 k1,k2 

upper-left corner of the (δmax + 1)N -by-(δmax + 1)N matrix 
Prcct,k1,k2 (t). 

This is basically because the first N dimensions of the 
augmented state vector x̄(t) is the original state vector x(t). 
Considering only the first N dimensional estimation error in 
Prcct,k1,k2 (t) provides the KF estimation error covariance ma
trix of x(t). The complete proof is mitigated to the appendix B. 

(θk ) (θk1 ,θk2 )Step 3: The resulting matrices P (t) and P (t)k k1,k2 

(θ⃗)in Lemma 2 are then put into a KN × KN matrix PLQE(t), 
for which the (k, k)-th block matrix of size N × N equals 

(θk )P (t) of sensor k and the (k1, k2)-th block matrix of size k 
(θk1 ,θk2 )N × N represents P (t) when k1 ̸= k2. We then use k1,k2
 

(θ⃗)

PLQE(t) to generate K different N -by-N weighting matrices 

(θ⃗){W (t), k ∈ [1,K]}:k 

(θ⃗) (θ⃗) (θ⃗)
[W (t)T ,W (t)T , · · · ,W (t)T ]T 

1 2 K 

(θ⃗) (θ⃗)
= (P (t))−1 · e · (e T(P (t))−1 e)−1 , (39)LQE LQE

where e = [IN ×N , · · · , IN×N ]
T is of dimension KN × N 

and consists of K identity matrices of size N × N . Note that 
(θ⃗)the value of each W (t) depends on the entire AoI vector θ⃗k 

(not just θk). We thus put the entire vector θ⃗ to the superscript. 
(θ⃗) (θ⃗)These K weighting matrices (W (t), · · · , W (t)) are saved 1 K 

and will be used later for the online computation. We repeat 
this process for all possible instances of the K-dimensional 
AoI vector θ⃗ = (θ1, · · · , θK ). Notice that in our simulation, 

(θ⃗)the weighting matrices {W (t), k ∈ [1,K]} converge after k 
around t = 30 time slots. Thus for each instance of AoI vector, 

(θ⃗)we records {W (t), k ∈ [1,K]} for t ∈ [1, 30]. For t > 30,k 
(θ⃗) (θ⃗)we use the converged result W (t) = W (30), k ∈ [1,K].k k 

The Online Operation of The LQE Algorithm. During the 
online execution of LQE, the receiver/controller first observes 
the AoI vector θ⃗(t) at the current time t. The θ⃗(t) value is then 
used to retrieve the values of the precomputed weighting ma

(θ⃗) (θ⃗)trices (W (t), · · · ,W (t)). We then run Algorithm IV.1. 1 K 
2) CQE with quantization error reduction: 
In this section, we propose a fusion scheme which takes ad

vantages of both outdated information and the newly received 
quantized local estimates at time t. 

To that end, we first define the following extended state 
vector 

q qx̄p(t) ≜(x(t)T , x̂1(t)
T , · · · , x̂K (t)

T , x̂ (t)T , · · · , x̂ (t)T)T .1 K 
(48) 

It consists of the state vector, the state local estimates and their 
quantized versions. 

The evolution equations for x(t) and x̂k(t) are defined in (2) 
and (14) respectively. We now define the evolution equation 

qfor x̂ (t), which is k


q
x̂	 (t) = x̂k(t) + qk(t), (49)k

Algorithm IV.1 LQE with random delays 

1:	 INPUT: The current AoI vector θ⃗(t) at time t; the corre
(θ⃗) (θ⃗)sponding precomputed matrices (W (t), · · · , W (t))1 K 

where θ⃗ = θ⃗(t); and the quantized local estimates 
qx̂	 (t − θk) received from the k-th sensor. k

q	 q2:	 Generate the prediction x̂ (t|t − θk(t)) based on x̂ (t −k	 k

θk(t)) by 
qx̂	 (t|t − θk(t))k


t−1
K 
= Aθk (t) ˆq	 At−1−τ x	 (t − θk(t)) + u(τ ). (40)k

τ =t−θk (t) 

q3:	 Linearly combine x̂ (t|t − θk(t)), k ∈ [1,K] using the k

precomputed weighting matrices W (θ⃗)(t):k 

KK 
(θ⃗) qx̂LQE(t) = W (t)x̂ (t|t − θk(t)). (41)k k

k=1 

4:	 Set the control action as u(t) = −Ax̂LQE(t) and send it 
to the plant to control the future state value x(t + 1). 

where the quantization noise qk(t) is modelled as an i.i.d. 
Gaussian noise independent to the disturbance w(t), obser
vation noises vk(t), and delays ∆k(t). It has the distribution 
qk(t) ∼ N (0, Σqk ), with the covariance matrix being 

α2 

Σqk = Uk Uk 
T . (50)

12 
Both α and Uk are quantization lattice parameters introduced 
in Section IV-A. 

In order to design the control action u(t), we will first 
generate the MMSE estimate of x̄p(t) based on all received 
information by time t. Then utilize the estimate’s first N 
dimensions, which represents the estimate of x(t), to design 
u(t). 

We first construct the evolution equation of x̄p(t) based on 
qthe individual evolution equations of x(t), x̂k(t) and x̂ (t). It k

is established as a time-varying linear control system, 

¯ ¯ ¯x̄p(t + 1) = Ap(t)x̄p(t) + Bpu(t) + Dp(t)w̄p(t), (51) 

where w̄p(t) is an extended noise vector 

w̄p(t) =(w(t)T , v1(t + 1)T , · · · , vK (t + 1)T , 

q1(t + 1)T , · · · , qK (t + 1)T)T . (52) 

¯ ¯We now construct the system matrices Ap(t), Bp and 
D̄p(t) for the extended system (51). The basic idea is to 
ensure that every N rows in (51) is reducible to the original 
evolution equations of (3), (14) and (49). (51) is a time-
varying system because in the evolution equation of x̂k(t) and 
qx̂	 (t), the Kalman filter gain matrice Γk(t) is time varying. k

In the following elaboration, we use the notation X[n1 :n2] to 
represent row n1 to row n2 of a matrix X . 

Because the first N dimensions of x̄p(t+1) represents x(t+ 
1), the first N rows in (51) represent the evolution equation 
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of x(t), which is given in (3). We thus define Row 1 to Row 
¯ ¯ ¯Algorithm IV.2 CQE with quantization error reduction N of the system matrices Ap(t), Bp and Dp(t) as following:   

1: At time t, the controller updates the K δmax-length buffers Āp(t)[1:N ] = A, 0N ×(2KN) ,	 (53)
qso that each one of them keeps all xk(t)s received from 

B̄p[1:N ] = B,	 (54)that sensor with time stamps t − δmax ≤ τ ≤ t.	   
t,t−δmax−1 ¯	  2: Load the estimate µ¯ (t − δmax − 1) and its esti- Dp(t)[1:N ] = IN×N , 0N×(	 (55)x K .Mi +KN)p i=1 

mation error covariance matrix P t,t−δmax 
¯px

−1(t − δmax − 1) 
We can easily verify that computed at time t − 1. 

3:	 Initialize x̄p(t + 1)[1:N ] 

t,t−δmax−1 ¯ ¯ ¯= Ap Bp[1:N ]u(t) + Dp¯

x̄

x
(t) (56)(t)[1:N ]x̄p (t)[1:N ]w̄p(t) + (t − δmax − 1)µ

p 

t−1,t−δmax −1(t − δmax − 1), (42) is equivalent to (2) by substituting (53), (54) and (55) into = µ 
p 

(56).P t,t−δmax
¯px

−1(t − δmax − 1) 
Then we construct row kN +1 to row (k+1)N of the system 

matrices for k ∈ [1,K]. Each N rows from row kN + 1 to= P t−1,t−δmax
¯px

−1(t − δmax − 1). (43) 
row (k + 1)N	 for k ∈ [1,K] in (56) represent the evolution 4:	 for τ = t − δmax : t do 

t,τ −1 t,τ−1 equation of x̂k(t) for some k. The corresponding N -row block 5: Compute µ (τ) and P (τ):¯ ¯


¯ ¯
x

xx

x

¯ ¯ ¯of Ap(t), Bp and Dp(t) are defined as p p 

t,τ −1 t,τ −1(τ) = Ā(τ − 1)µ (τ − 1)µ
Āp(t)[kN+1:(k+1)N ]

p p 

¯+ Bu(τ − 1),	 (44) 
= [Γk(t + 1)CkA, 0N×(k−1)N , (IN×N − Γk(t + 1)Ck)A,

t,τ −1 t,τ −1 
¯ ¯A(τ − 1)Pxx (τ) = ¯ (τ − 1)Ā(τ − 1)TP 

0N×(2K−k)N ], (57)p p 

¯ ¯D(τ − 1)Σ ̄ D(τ − 1)T 
w (45)+ ¯. Bp[kN+1:(k+1)N ] 

kn,t	 q6: Construct x̄p (τ) by concatenating all received x̂k(τ )s. = B,	 (58) 
t,τ−1 t,τ −1 t,τ −1 

p 

Construct µ (τ) and µ (τ) from µ D̄p
7: (τ). (t)[kN+1:(k+1)N ]kn ukn x̄p¯ ¯

− − −t,τ 1 t,τ 1 t,τ 1 
x

Construct P (τ), P (τ ) and Pkn¯	 ¯

x

x

xp p 

(τ ) from8: = [Γk(t + 1)Ck, 0N×
 k−1 Mi 

, Γk(t + 1),rcct ukn 
p	 p i=1 

t,τ −1P (τ).	  K ], (59)0N×( Mi+KN)i=k+1 
¯

9: Compute µ
xp 

t,τ (τ),ukn for k ∈ [1,K]. ¯p 

t,τ 

x

(τ) By plugging the constructed matrices, (57), (58) and (59), into µ

=µ

ukn 

x

¯

t,τ−1 t,τ −1 t,τ−1 kn,t (51), one can verify that (τ) + P (τ) · P (τ)−1 · (x̄ (τ )¯	 ¯

x

x

p 

ukn rcct kn p
p	 p 

t,τ −1	 x̄p(t + 1)[kN+1:(k+1)N ](τ )).	 (46)knx̄
− µ

p ¯	 ¯
t,τ	 

= Ap(t)[kN +1:(k+1)N ]x̄p(t) + Bp[kN+1:(k+1)N ]u(t) 
Compute P (τ):10: ¯+ Dp(t)[kN+1:(k+1)N ]w̄p(t)	 (60)uknx̄ p 

t,τ is equivalent to (14). P (τ )uknx̄p 

t,τ −1 t,τ −1 t,τ−1	 Row (k + 1)N +1 to row (2k + 1)N in (51) for k ∈ [1,K]
(τ)−1(τ) − P=P (τ) · P · ukn rcct kn qcorrespond to the evolution equation of x̂ (t). We construct k

xx̄ ¯


t,τ −1 ¯ ¯ ¯
P (τ)T .	 (47) these N -row blocks in Ap(t), Bp, and Dp(t) as following rcct 

t,τ	 t,τ t,τ Āp

p	 p 

(t)[(K+k)N+1:(K+k+1)N ]Construct µ (τ) by reunioning µ (τ ) and µ11: (τ ).ukn knx̄
t,τ 

xx̄ ¯

(τ) by initializing it as a (2K + 1)N × 
p p p 

¯= Ap(t)[kN+1:(k+1)N ],	 (61)Construct P12: x

x

¯

(2K + 1)
t,τ 
N zero matrix and filling the N × N blocks B̄p[(K+k)N+1:(K+k+1)N ] 

from P (τ) into their corresponding positions inukn¯

p 

(62)= B, p 
t,τP (τ).	 D̄p(t)[(K+k)N+1:(K+k+1)N ]x̄

13: end for 
p 

xx
t,t−δmax	 = [Γk(t + 1)Ck, 0  k−1 , Γk(t + 1),

) and P t,t−δmax	 N× Mi
¯	 ¯14: Store µ ) for next (t−δmax (t−δmax i=1 
p p  K (63)Mi+(k−1)N), IN×N , 0N×(K−k)N ],time slot estimation.	 0N×( i=k+1 

15: Let x̂CQE(t) = [µt,t 
p 
(t)]1:N . for k ∈ [1,K].x̄

16: Set the control action as u(t) = −Ax̂CQE(t) and send it 
back to the plant for controlling x(t + 1). (63) and (59) are slightly different with (63) having one 

more N × N identity matrix used as the coefficient matrix of 
qk(t). 

Page 8 of 12 



x
x

x

(51) is fully described with (t) being defined and the To adapt the notations of the conditional mean (65) and 

¯

¯
system matrices being constructed. Then we describe how to the estimation error covariance (66) for 

¯
ˆ (66) by ¯ and x̄x

x

w

x

p
ukn,t ) and¯

), we will replace the subscript 
(t − δmaxp

kn,tgenerate the MMSE estimate of (t) based on all arrived in (65) and ¯
q (τ)s by time t. The estimation uses an important property k

x (t − δmaxp pp 
ukn kn respectively. p p 

(t), that is We first initialize the estimate for (t − δmax) at time t.p pabout the sub-components in ¯
q (t)s are jointly Gaussian random vectors k

x ¯
− 1) based on the arrived 

x
The estimation for ¯
information by time t is 

µ¯

¯

x

x

x

p(t − δmax x(t), x̂k(t)s, x̂
qto each other conditioned on all arrived ˆ

This comes from the fact that the extended noises 

x (t)s.k t,t−δmax−1(t − δmax − 1) (69)
p

¯
¯p

w
x

(t) are t−1,t−δmax−1p
(t − δmax − 1)= µi.i.d. Gaussian random vectors, and then the state (t) is a p 

P t,t−δmax
¯px

−1linear combination of Gaussian vectors with the mean shifted (t − δmax − 1) (70) 
by the linear combination of control actions. 

There is a useful subset to define before we start the 
= P t−1,t−δmax 

¯px
−1(t − δmax − 1), 

estimation: because 

X (t, t1) ≜ {ˆ
and k ∈ [1,K]}. (64) By applying a one-time-slot prediction to (69) and (70), we 

xq (τ ), τ +∆k(τ ) ≤ t and τ ≤ t1, where t1 ≤ t X (t, t − δmax − 1) = X (t − 1, t − δmax − 1). (71)k

q have 

x

It consists of the arrived ˆ
< t1 for some t1 < t. This set will be useful when we estimate t,t−δmax−1 

¯
¯
of ¯

x

x
x

(τ)s by time t with time stamps k

(t − δmax) (72)µ
(t ′ ) for some t ′ where t1 < t ′ < t. We denote the estimate p 

p

x
¯ t,t−δmax−1Ap ¯(t − δmax − 1)µ (t − δmax − 1)+(t ′ ) conditioned on X (t, t1) as = 

pp

B̄pu(t − δmax − 1), 

xP t,t−δmax
¯p 

−1(t − δmax) (73) 
′ ) ≜ E{¯¯

The corresponding estimation error covariance matrix is de

xx
′ )|X (t, t1)}. t,t1 (65)(t (tµ pp 

x− 1)P t,t−δmax−1Āp ¯(t − δmax (t − δmax − 1)=noted as p 

Āp(t − δmax − 1)T +Σ w̄

Then we re-organize the predictive information (72) and (73) 

.′ ) ≜E{(¯
(¯ (t 

x

x

′ ) − µ (t ′ ))P t,t1 
¯px (t t,t1 p(t ¯

t,t1 

xp p 

′ ) − µ ′ ))T|X (t, t1)}. (66)(t¯

The controller uses a δmax-length buffer for each sensor to 

xp qxaccording to the arrival pattern of ˆ
t,t−δmax−1 t,t−δmax−1 

)s by time t. p (t − δmaxk

(t − δmax) is separated into µ (t − δmax)µ kn 

x

x̄
≤ τ ≤ t t,t−δmax −1 

¯

x̄
t,t−δmax−1 

pqkeep the arrived ˆ
from sensor k. Only a δmax-length buffer is needed because 

x (τ )s with time stamps t − δmax 
p 

and thatk (t − δmax (t − δmax) )soµ µukn knx̄p p 
kn,t 
px

x

consists of the same state variables appeared in ¯
t,t−δmax−1 
¯

(t−δmax),the delays are assumed to be bounded by δmax, and then no 
and µ (t − δmax) consists of the same state variables qupdates for ˆ

t − δmax − 1. 
x

x

(τ)s with τ ≤ t − δmax − 1 happen after time 

Now we start to estimate ¯

uknk p 
ukn,txappeared in ¯

(67) and (68), we have 
(t − δmax). In the same arrival example for p 

(t) using all arrivals by time t.p

xThe general idea is to generate the MMSE estimate of ¯
for τ ∈ [t − δmax, t] conditioning on X (t, τ) recursively. µ

p(τ ) t,t−δmax−1 t,t−δmax−1(t − δmax (t − δmax) = (µ )[1,4N ],ukn x̄

(t − δmax)[5N+1,6N ]) (74) 

x

x

x

¯

At time t, the controller retrieves the estimation result from t,t−δmax−1 
¯

¯

pp 

µ
t−1,t−δmax−1 ptime t − 1: the conditional mean µ (t − δmax − 1) t,t−δmax−1 t,t−δmax−1p (t − δmax (t − δmax) = (µ )[4N+1,5N ],µ

xand the estimation error covariance matrix P t−1,t−δmax
¯p 

−1(t − kn x̄

(t − δmax)[6N+1,7N ]). (75) 

x̄

t,t−δmax−1 

pp 

x
x

x

x

x

−1) to prepare for the estimation of ¯
qon the arrival pattern of ˆ ) at time t, i.e. ˆ

we consider ¯ ) in two parts: ¯

(t−δmax). Based δmax µp x̄

Based on the arrival pattern of 

pq 
k(t−δmax)(t−δmaxk q −x̂

−1(t − δmax) is re-arranged into three sub
(t δmax)s,for which sensors have arrived and for which sensors have not, k

xP t,t−δmax
¯p 

kn,t ) consists(t−δmax (t−δmaxp p 

xP t,t−δmax
¯p 

−1(t − δmax) intomatrices. We first divide qx
x

of the arrived quantized local estimates ˆ
ukn,t¯p (t − δmax) consists of the (2K + 1)2 

)s, where (t − δmaxk
block matrices of size N × N . Each of these ’kn’ stands for ’known’; and 

state variables x(t − δmax), x̂k(t − δmax)s and not-arrived block matrices represents an estimation error covariance 

x

q (t − δmax)s, which are unknown by time t, with the ’ukn’ matrix of one sensor or a cross estimation error covariance 
k

(2) and ˆ

x̂
stands for ’unknown’. For example, at time t = 3 for a system matrix between two sensors. Then by selecting the sub-

q 

x

q (2) have arrived by t = 3 matrices of size N × N according to their physical meanings, 3

P t,t−δmax
¯

x

x
x

xx 

x 

x
with three sensors, if ˆ

ukn,3but ˆ (2) has not, ¯

¯

¯ (2) = (ˆ (2), ˆ

1 −1kn,3(2) are respectively: q (t − δmax) is divided into three sub-matrices: 

x

x(2) and ¯

(2) = (x(2), x̂1(2), x̂2(2), x̂3(2), ˆ

p p p 

x
P t,t−δmax−1 

ukn (t − δmax) represents the covariance matrix¯ukn,3 
p 

q(2)), (67)2 p

of 
x

the estimation error for the unknown state variables 
¯

kn,3 q q (2)). (68)3 ukn,t t,t−δmax −1− − ¯by time − δmax);(t δmax) (tt,1 µp uknp 
p 
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x

P t,t−δmax−1	 q 
kn (t − δmax) represents the covariance matrix of error covariance matrix of x̂¯ (t − δmax) conditioning on2
p

the estimation error for the arrived quantized local estimates	 X (t, t − δmax). It is thus put into the sixth row and sixth 
column of a N × N -size block in P t,t−δmax 

¯
kn,t t,t−δmax−1by time t, x̄ (t − δmax); the third (t − δmax).(t − δmax) − µ kn¯

−1matrix, denoted as P t,t−δmax
rcct 

xp p 

and the estimation error covariance matrix P t,t−δmax 
x̄

p	 t,t−δmaxWe have finished generating the estimate µ (t−δmax)(t−δmax), represents the cross ¯

p 

xp 

estimation error covariance matrix between the unknown state (t−δmax). 

x

variables and the arrived quantized local estimates by time t. These two pieces of information are then used to estimate 

P t,t−δmax−1 ) 
x̄p(t − δmax + 1) using the same procedure for estimating 

rcct (t − δmax x̄p(t − δmax). 
ukn,t t,t−δmax−1 

(t) and P t,t ¯≜ E{(x̄ t,tThis recursive procedure stops when µ(t − δmax) − µ (t − δmax)) (t) areukn x̄

(t) is then used to design u(t). We summarize 
¯

kn,t t,t−δmax−1 

xp p pp 
t,treached. µ

(t − δmax))
T ¯

the alogirhtm formally in Algorithm IV.2. 
x(x̄ (t − δmax) − µ p

kn¯

|X (t, t − δmax − 1)}. 
xp 
p 

(76) 

V. EXPERIMENT 

We implemented Algorithm IV.1 and Algorithm IV.2 on a 
feedback Gaussian linear control system with random delays in 
Matlab. The system plant is associated with three sensors. The 

1.3 0.5 0 0 0 

A quick example for constructing the three sub-matrices for 
the same setting used in (67) and (68) is: the sub-matrix of size 

−1N ×N on the first row and second column of P t,t−δmax (t−rcct 
δmax) represents the cross estimation error covariance of x(2) 

qand x̂ (2). It is thus the sub-matrix of size N × N on the first 3 0 1.1 0.5 0 0
row and seventh column in P t,t−δmax 

¯px
−1(t − δmax). 1 0 1 0 0 system matrices are A = , C1 =0 0 0.9 0.5 0 ,0 1 0 0 1 0 0 0 1.6 0.5

Using the pieces we have constructed, the controller then 0 0 0 0 1.5 
1 1 0 0 0 1 0 0 0.5 0C2 = , C3 = . The system disturbance 0 1 1 0 0 0 1 1 0 0.8 

w(t) is i.i.d. Gaussian with distribution N (0, IN×N ), and 
ukn,t 
p (t−δmax) conditioninggenerates the MMSE estimate of x̄

on X (t, t − δmax), 
the observation noises vk(t) are also i.i.d., Gaussians with 

t,t−δmax (t − δmax)	 distribution N (0, IMk ×Mk ). The bounded delays are set as µ ukn¯

t,t

p 

−δmax−1	 −1 ∆1(t) ∈ [0, 5], ∆2(t) ∈ [0, 6], and ∆3(t) ∈ [0, 7]. 
x

) + P t,t−δmax 
rcct(t − δmax (t − δmax)·=µ ukn Figure 4 compares the Monte Carlo simulation results for ¯p 

P t,t−δmax−1 kn,t 
kn (t − δmax)

−1(x̄¯

x

x
Algorithm IV.1 (the blue curve) and Algorithm IV.2 (the (t − δmax)p

p red curve) applied on the given system. Figure 5 compares 
t,t−δmax−1 (77)− µ (t − δmax)), the Monte Carlo simulation results of Algorithm IV.2 (the kn¯

red curve) and a modified version of Algorithm IV.2 (the ukn,tand the estimation error covariance matrix of x̄p (t − δmax) green curve), where the quantization effect is ignored, and 
q 

P t,t−δmax	 x̂ (t), k ∈ [1,K] are omitted from x̄p(t), x̂k(t) is set as 
ukn (t − δmax)	 k

¯

x

x

p 

qx̂k(t) = x̂ (t). The orange vertical line in Figure 4 indicates k
p 

=P t,t−δmax−1 
uknx̄

) − P t,t−δmax−1(t − δmax rcct (t − δmax)· av.Dmin. The other vertical lines in Figure 4 and Figure 5 
p 

indicate the analytical smallest achievable L2 norms by each 
particular fusion algorithm being applied. 

P t,t−δmax−1 )−1 · P t,t−δmax−1 
kn (t − δmax rcctx̄

(t − δmax)
T . (78) 

p 

kn,t	 Each Monte Carlo simulation performance curve consists Because the sub-components in x̄p (t−δmax) have arrived 
kn of 20 data points. Each of these points represents a rate-cost by time t, the counterparts for x̄ (t) arep 

data for a particular quantization cell size. From left to right 
t,t−δmax kn,t (79) on each curve, the quantization cell scaling factor α increases(t − δmax (t − δmax) = x̄ ),µ knx

x

¯

P t,t−δmax 
kn¯

p
p 

(t − δmax) = 0,	 (80) 
from 0.01 to 3.75 with equal distance (≈ 0.2 between two 
consecutive values). To obtain one rate-cost data on the curve, p 

P t,t−δmax ) = 0.	 (81) we simulate the system ((2) and (3)) for 35 time slots. For each 
rcct (t − δmax

time slot, this process is repeated 105 times with w(t), vk(t) 
t,t−δmaxBy uniting (77) and (79), we obtain µ (t − δmax). and δk(t) generated randomly. In Figure 4, the vertical line x̄

t,t−δmax 
p 

for av.Dmin, which is the smallest attainable L2 state norm Specifically, each state variable in µ (t − δmax) anduknx

x

¯
t,t−δmax	 

p that no scheme can bypass, is generated based on the result in are input into its defined position in ¯ (t − δmax)µ kn Proposition 1. The other vertical lines indicate the analytical p 
t,t−δmax 

xx ). Then we construct P t,t−δmax 

by first initializing it as a zero matrix of dimension (2K + 
¯	 ¯(t − δmax (t − δmax)µ L2 state norm each algorithm can achieve when negligible p p 

quantization effect exists. They are computed by taking the 
x

P t,t−δmaxThen we split ukn¯ (t − δmax)1)N × (2K + 1)N . average of the converged estimation error covariance matrices 
p 

xP 35,35 
¯p 

(35) of the 105 samples when α = 0.01, then taking 
the upper left sub-matrix of size N × N of it and computing x

into sub-matrices of size N × N and fill these sub-matrices 
into P¯

t,t−δmax (t − δmax). To demonstrate the construction of 
p 

xP t,t−δmax 
¯p 

(t − δmax), we use the same setting as for (67) and the trace. 
(68). The sub-matrix of size N × N on the fifth row and Comparing the results in Figure 4, we see that CQE with 
fifth column in P t,t−δmax ) represents the estimation ukn (t − δmax¯ noise reduction achieves a smaller analytical L2 state norm 

p 
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Fig. 4. Scheme performances for CQE with quantization noise reduction and 
LQE 

(180.9) than LQE does (195.8). The analytical best perfor
mance (180.9) of CQE with noise reduction is also consistent 
with av.Dmin for the intrinsic system. Moreover, comparing 
the two performance curves horizontally on Figure 4, with 
the same number of bits per sensor per time slot, CQE with 
quantization noise reduction achieves a L2 state norm 15% 
smaller than LQE. With decreasing the number of bits per 
sensor per time slot, CQE with quantization noise reduction 
out-performs LQE even more significantly. This result explic
itly implies that the outdated information is useful to improve 
the fusion performance in the multi-sensor scenario. Both the 
performances of Algorithm IV.1 and Algorithm IV.2 decline 
when less average bits are applied for each time slot each 
sensor. As shown in Figure IV.1, av.Dmin is achieved by CQE 
with quantization noise reduction when negligible quantization 
effect is applied. It shows that our analytical result, av.Dmin, 
is tight. 

Figure 5 illustrates the effectiveness of modeling the quan
tization noise as i.i.d. Gaussian noises. By comparing the 
simulation result of CQE without quantization noise reduction 
(the green curve) and the simulation result of CQE with 
quantization noise reduction (the red curve), one can see 
that considering the quantization error improves the fusion 
performance significantly. The assumption of i.i.d. Gaussian 
quantization noise is effective because rectangle lattice quan
tization is applied to the Gaussian distributed quantization 
source x̂k(t). 

VI. CONCLUSIONS 

In this work, we proposed the smallest attainable L2 state 
norm, av.Dmin, for Gaussian linear control systems with 
multiple sensors and bounded random delays. The av.Dmin 

serves as the benchmark for evaluating the performance of any 
achievability scheme. We designed two achievability schemes, 

Fig. 5. Scheme performances for CQE with quantization noise reduction and 
CQE without quantization noise reduction 

where in QLE only the freshest arrivals are used for fusion, and 
in CQE with quantization noise reduction the complete historty 
of arrivals are used. The experiment demonstrates that using 
outdated information in the multi-sensor scenario improves 
the fusion performance significantly compared to using only 
the freshest information. For future work, it is an attractive 
direction to complete the analytical lower bound by deriving 
the rate-stability trade-off curve. 
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APPENDIX 

A. Proof for Lemma 1 

Proof. By definition, we know that 

(⃗	 (θk ){ȳ θ)(τ), τ ∈ [0, t]} = {y (τ), τ ∈ [0, t], k ∈ [1,K]}.k 
(82) 

Thus, we re-write the MMSE estimator of x̄(t) 

(⃗E{x̄(t)|ȳ θ)(τ), τ ∈ [0, t]}
(θk)= E{x̄(t)|y (τ ), τ ∈ [0, t], k ∈ [1,K]}. (83)k 

Because the first N dimensions of x̄(t) is x(t), the first N 
dimensions of (83) give the MMSE estimator of x(t). It is 

(⃗denoted as x̂ θ)(t), 

(⃗ (θk)x̂ θ)(t) ≜ E{x(t)|y (τ ), τ ∈ [0, t], k ∈ [1,K]}. (84)k 

Using the certainty equivalence law, the optimal control 
action is 

(⃗u ∗ (t) = −Ax̂ θ)(t). (85) 

By applying u ∗(t), the average L2 state norm E{∥x(t+1)∥2}
can be bounded from above 

E{∥x(t + 1)∥2} 

= E{∥Ax(t) + u(t) + w(t)∥2} (86) 

= E{∥Ax(t) + u(t)∥2} + tr(Σw) (87) 
(⃗≤ E{∥Ax(t) − Ax̂ θ)(t)∥2} + tr(Σw) (88) 

= tr(AP (θ⃗)(t)AT) + tr(Σw). (89) 

(87) is because of the independence of w(t). After applying 
(85), we have (88). And by re-writing the first term in (88) 
using the KF estimation error covariance matrix P (θ⃗)(t), we 
obtain (89). 

This completes the proof for Lemma 1. 
(θ⃗)Averaging D over all possible AoI vectors, we obtain min 

av.Dmin. 

B. Proof for Lemma 2 

Proof. By definition, we know that 
(θk )P̄ (t)k 

(θk )=E{(x̄(t) − E{x̄(t)|y (τ ), τ ∈ [0, t]})k 
(θk)(x̄(t) − E{x̄(t)|y (τ ), τ ∈ [0, t]})T}. (90)k 

(θk)The first N dimensions of E{x̄(t)|y (τ ), τ ∈ [0, t]} gives k 
E{x(t)|yk(τ), τ ∈ [0, t − θk]}, because 

(θk ){y (τ ), τ ∈ [0, t]} ={yk(τ), τ ∈ [0, t − θk]}. (91)k 

Therefore, considering the estimation error covariance ma
trix of the first N dimensions of x̄(t), which is the N × N 

(θk ) (θk )¯upper-left corner of P (t), gives P (t).k k 
Similarly, by definition we know that 

P̄rcct,k1,k2 (t)
 
(θk1 )
 

=E{(x̄(t) − E{x̄(t)|y (τ), τ ∈ [0, t]})k1 

(θk2 )(x̄(t) − E{x̄(t)|y (τ), τ ∈ [0, t]})T}. (92)k2 

(θk1 )Because the first N dimensions of E{x̄(t)|y (τ), τ ∈k1 

[0, t]} gives 

E{x(t)|yk1 (τ ), τ ∈ [0, t − θk1 ]}, (93) 

(θk2 )and the first N dimensions of E{x̄(t)|y (τ), τ ∈ [0, t]}k2 

gives 

E{x(t)|yk2 (τ ), τ ∈ [0, t − θk2 ]}, (94) 

by considering the cross estimation error covariance matrix of 
the first N dimensions in x̄(t) for sensor k1 and sensor k2, 

(θk1 ,θk2 )we obtain P (t), which is the N × N upper-left corner k1,k2 
¯of Prcct,k1,k2 (t). 
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