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Abstract:	 As a part of our research to optimize the collaborative work and factories of the future, augmenting human 

abilities and skills, and enabling collaborative automation, we have designed a framework which optimizes 

augmented reality (AR) systems in production and manufacturing. This framework consists of protocols and 

modules that control the flow of information delivered to and from workers. The protocol to which most of 

this article is dedicated is a HUB-CI (hub for collaborative intelligence) protocol that prioritizes and selects 

the most relevant information to a worker’s unique characteristics and current activity. Since 2008, different 

types of HUB-CI models have been developed, implemented, and refined by the PRISM Center at Purdue 

University. In general, HUB-CI serves as a cyber-collaborative controller distributed in a system’s control 

points, where material, data, information, and decision flows converge and must be distributed to points of 

use. We call such control points Flow Junctions (FJ). A FJ is defined within this framework and the HUB-CI 

protocol designed for it is evaluated in a simulation model of a manufacturing assembly task. 

INTRODUCTION 

Augmented reality (AR) is one of the technologies 
that can transform production and manufacturing 
industries. It is the augmentation of the real, physical 
world through digital content, where virtual objects 
are superimposed on the real environment (Azuma, 
1997). As a human-machine interaction tool, AR is 
expected to help industries cope with the increasing 
complexity of their human-in-the-loop workflows 
and processes (Ong et al., 2008). These new 
workflows demand the collaboration of workers with 
intelligent systems and machines and adaptation to 
dynamic changes in task structures. The ability of all 
involved agents to collaborate is defined as 
collaborative intelligence (CI) (Devadasan et al., 
2013; Zhong et al., 2015b, 2015a). We optimize CI of 
agents in collaborative workflow by controlling data 
and information flow between them. Therefore, there 
are control points, which we call Flow Junctions (FJ), 
in which data, information, and intelligence 
controllers must be implemented. Such controllers are 
known as HUB-CI (hub for collaborative 
intelligence) (Dusadeerungsikul et al., 2019; Nair et 
al., 2019; Seok & Nof, 2011; Zhong et al., 2013, 
2014; Zhong & Nof, 2013). 

In the context of AR, an FJ is situated between 
experts, software systems, etc. and the AR display of 
the worker. In the normal workflow of production and 
manufacturing, workers interact with machines and 
processes while performing tasks that are designed by 
workflow designers and experts, which require data 
and information exchange. AR serves as a medium 
for this exchange to facilitate interactions and 

augment workers’ performance. Due to the ever-
present access of AR system to a worker’s field of 
view, however, delivering information to the worker 
through AR cannot be unrestricted. The virtual 
objects of AR, which we refer to as AR elements, 
require their own processing time and add an 
additional mental workload on the worker. Therefore, 
we must identify what information to deliver and at 
what time. 

A HUB-CI protocol optimizes the flow of 
information through the FJ between AR and 
workflow. The objective of this article is to develop 
this HUB-CI protocol, i.e., to maximize the added 
value of information sent through FJ to the AR 
display and subsequently to the worker. We aim to 
achieve this objective by answering the following 
research questions: 

▪ RQ1: How can we prioritize information 

based on its relevance to the current state and 

knowledge needs of the worker? 

▪ RQ2: How can we personalize AR for every 

worker based on their attributes, experience, 

and performance? 

▪ RQ2: How can we optimize the timing of 

information flow and knowledge delivery? 

Applications of AR in manufacturing include 

manual assembly, robot programming and 

operations, maintenance, process monitoring, 

training, quality inspection, picking process (de 

Souza Cardoso et al., 2020). The HUB-CI protocol 

can be implemented in all these applications. 

Moreover, we recognize current limitations of AR, 

which are mostly related to hardware as identified by 

mailto:nof}@purdue.edu
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researchers (de Souza Cardoso et al., 2020). 

Therefore, the models that we present in this article 

are aimed at future AR systems in which such 

limitations have been and are being rectified. 
The AR design framework based on the presented 

HUB-CI protocol is flexible and open to expansion. 
It will give researchers and developers a blueprint to 
follow in developing AR systems that adds a new 
dimension to existing workflows rather than a simple 
change in the medium of information exchange, 
which does not justify the cost of implementing an 
AR system. Our research objective addresses this 
shortcoming and aims to enable widespread 
deployment of AR in industry as complementary 
augmentation of human workers (Acemoglu, 1998). 
We acknowledge the necessity of human presence in 
workflows of future factories and have aligned our 
contribution in this article with the goal of optimizing 
such workflows with human workers in mind. The 
human-complementary and worker-augmentation 
aspects of AR are enhanced by addition of HUB-CI 
protocol to the workflow. After answering the 
research questions defined above, we will have AR 
systems that are proactive in assisting workers by 
providing responsive, relevant, and timely 
information, and adaptive to every worker’s unique 
needs. 

AR DESIGN FRAMEWORK 

The presented AR design framework has been 
developed based on the objective and research 
questions defined in Section 1. It is comprised of 
multiple processes, protocols, and modules that work 
together to create a dynamic and adaptable AR 
system for workers of future factories. Our design 
objective (based on research questions defined above) 
is that information must be prioritized based on the 
current activity of workers, their physiological state, 
information that they are currently receiving, and 
their unique attributes. Figure 1 illustrates the design 
framework, and its components of the framework are 
presented in the following subsections. 

2.1 AR Elements 

In this framework, we consider an AR element to be 
an independent, and meaningful expression of a 
single type of information (textual, numerical, 
graphical, animation, auditory instructions, etc.) that 
convey a message to the worker which belongs to one 
message category. Each AR element has a virtual 
object, designed by an AR designer based on the task 
design, and a set of parameters. A manufacturing task 
designer assigns the values of these parameters based 

on empirical data, expert instructions, CAD, etc. The 
parameters of an AR element are as follows. 

Figure 1: AR design framework with HUB-CI protocol. 

2.1.1 Category 

Categories include instructions on how to perform a 
specific task, numerical values or data, process or 
machine status, notifications, warning for safety, 
detected errors, and potential conflicts. The 
categories are identified by a binary array. Assuming 
that there are 𝑘 categories, we represent them as 𝑐𝑡 = 
}𝑐𝑡1, … , 𝑐𝑡𝑘~ where 𝑐𝑡𝑖 ∈ {0,1| represents whether 
the element belongs to the 𝑖th category. We assume 
that in the design of AR elements, an element belongs 
to only one category. 

2.1.2 Activity Relevance Array 

Manufacturing tasks follow a specific structure and 
within that structure we can identify the tasks that the 
worker is expected to perform. Furthermore, we can 
use observations of the activities of workers to label 
activities with finer granularity. The activities can be 
recognized by a human activity recognition module. 
We represent the activity relevance array by 𝑎𝑟 = 
}𝑎𝑟1, … , 𝑎𝑟𝑚~ where 𝑎𝑟𝑖 ∈ }0,1~ is the relevance of 
the AR element to the 𝑖th activity. These values are 
initialized by an expert (e.g., manufacturing task 
designer) and are heuristically updated over time. 



  

    
        
    

      
        

     
      

       
       

        
      

     
    

       
     

      
      

       
    

      
     

     
        

      
       
       

      
       

 

   

        
      

       
      

    
     

       
      

      
       

   

    

       
    

      
       

 
     

     
    

    
    

      
    

   
       

      
    

   
   

    
   

  
 

     
      
      

       
     

    
     

   
     

      
       

  
     

     
    

  

  
  

      
     
    

       
         

      
     

   
      

      
      
        

   
        
    

    
    

     
      

      
       

       

2.1.2 Expected Processing Time 

As mentioned in the introduction, the amount of 
information or number of AR elements presented to 
the worker requires a limit, as they add cognitive 
workload and distraction. This limit can be 
established in a variety of ways, depending on the 
tasks, workflow, AR elements, predictive behaviors, 
and what metrics are accessible. For instance, we can 
use working memory capacity of workers as a limit 
for how much information we deliver to them. 
Working memory is a form of memory that can hold 
a limited amount of information for a short period of 
time to be processed in the prefrontal cortex as control 
center or “central executive”, responsible for 
functions such as decision making and problem 
solving (Chai et al., 2018; Knudsen, 2007). However, 
we would also have to measure and predict how much 
working memory an AR element would require, 
which is easier said than done. 

An alternative metric is time. Workers require 
some time to process the information an AR element 
contains, which can be measured through 
experimentation. On the other hand, there are time 
constraints for completing activities and tasks to keep 
up with deadlines. Therefore, a limited time can be 
allocated for receiving or interacting with AR 
elements within a period, which will be used later as 
a parameter in the optimization problem. We denote 
the time a worker needs to process an AR element as 
𝑡𝑖. 

2.2 Triggered AR Elements 

A subset of the set of AR elements, these are the 
elements that are triggered when they are in the field 
of view and attention of worker; when the workflow 
process reaches a specific stage; or when we wish to 
alert the worker about a change in the environment. 
The triggered elements must compete for the worker’s 
attention, i.e., be activated in the AR system. The 
elements are selected based on their parameters, 
which were described earlier, and a worker’s attribute 
set. The parameters of the triggered AR elements will 
be sent to the Prioritization Protocol. 

2.3 Worker Attribute Set 

In this framework, personalization occurs through the 
information retrieved from a worker’s attribute set, 
which represent the unique skills, experience, and 
other characteristics of the worker. Each set contains: 

1.	 Information Processing Limit: The ability 
and time required to process information 
varies among workers. The factors involved 

are beyond the scope of this article. 
However, we can anticipate that a worker 
may process information quicker or slower 
than the expected processing time measured 
for a specific AR element. Time of 
day/week, fatigue, and other factors can also 
influence this ability of workers. Measuring 
these variables in real-time can give a more 
accurate real-time expectation of workers’ 
information processing capabilities 
(Meijman, 1997). Considering this 
characteristic of workers makes the AR 
system more adaptive. 

2.	 Performance: The performance of every 
worker is measured through their task 
completion and error rates. A worker’s 
performance on a certain task or activity will 
affect the prioritization for the category of 
AR elements. Recall that we assumed there 
are 𝑘 categories of AR elements. The value 
𝑝𝑟𝑖 ∈ }0,1~ represents the relationship 
between the worker’s performance and the 
𝑖th category of AR element for one activity 
or task. All 𝑘 values are contained in vector 
𝑝𝑟 = }𝑝𝑟1, … , 𝑝𝑟𝑘~ . Note that the initial 
values are assigned by an expert (e.g., 
manufacturing task designer) and will be 
updated over time through data collection 
and analysis. 

2.4 Human Activity Recognition & 
Prediction Module 

One of the insights we can gain from the abundant 
data and data collection methods is to allow 
automated systems to understand what a human-in-
the-loop, in this case manufacturing worker, is doing 
now and will be doing in near future. This is known 
as human activity recognition and prediction, which 
has applications in human-robot interactions (HRI), 
human-robot collaboration (HRC), surveillance 
systems, manual workflow analysis, etc. (Bulling et 
al., 2014; Lasota et al., 2017; Li & Fu, 2014). Even 
though human activity recognition and prediction are 
beyond the scope of this article, it is noteworthy that 
they are essential parts of a collaborative human-in-
the-loop system’s CI. Just as workers need to be 
aware of the system’s state including robot activities, 
machine and process status, and workflow 
procedures, by creating mental models and 
anticipating future states, the automated part of the 
systems should also be aware of the worker’s current 
and	 future activities or intentions. Therefore, an 
automated AR system must be aware of its user’s 
state, including activities and intentions. 



      
     

      
      

    
      

      
      

      
          

  

     
        

      
    

      
      

    
      

      
        

  

    
     

 

      

     

    

      

      

     

     

       

      

   

       

       

      

     

   

    

       

 

 

    
  

 

  

       
      
     

      
  

     
       
      

    
       

      
        

       

 

                                                       

 

                                               

 

                                        

  

   
         

     
     

        
     

      
     

         
       

       

 
        

  

 
       
        

     
     

A module in this framework is responsible for 
collecting observation data on the state of workers, 
such as pose, gestures, location in the workspace, 
gaze, and objects they interact with. It will use this 
data and task structure to recognize and predict 
current and future activities of workers (Li & Fu, 
2014). As mentioned before, the implementation of 
this module is beyond the scope of this article, 
therefore, we assume that we already know what a 
worker is doing now and will be doing in next. 

2.5 HUB-CI Protocol  

The HUB-CI protocol of this framework was 
introduced above in Section 1, as the controller of 
data and information. The role of this protocol is to 
select triggered AR elements that are most relevant to 
(1)		worker’s current activity, (2) worker’s unique 
attributes (characteristics), and (3) events in the 
worker’s environment. Therefore, HUB-CI protocol 
consists of two steps: prioritization and optimization. 
It is noteworthy that these objectives can be expanded 
depending on particular requirements of each system. 

2.5.1 Prioritization  

Following the three objectives defined above, HUB-
CI prioritizes the triggered AR elements. The steps 
are as follows. 

1.	 First, HUB-CI must determine the priority of the 

element given its category and the worker’s 

performance, which is 𝑝1 = 𝑐𝑡 × 𝑝𝑟. 
2.	 Then, it receives the current activity of the 

worker from human activity recognition module. 

Assuming that the worker is performing the jth 

activity, HUB-CI will receive a vector ac whose 

𝑗th element is 1 and the rest are 0. We can show 

the 	relevance of an AR element to worker’s 
activity by 𝑝2 = 𝑎𝑐 × 𝑎𝑟. 

3.	 Steps 1 and 2 provide two numerical values 

between 0 and 1. The multiplication of these 

values determines the priority of the AR element. 

The intuition behind it is that both values can 

serve as independent priorities, thus when 

multiplied together serve as relative weights for 

each other. The priority of the 𝑖th triggered AR 

element is 

𝑐𝑡1 𝑝𝑟1 𝑎𝑐1 𝑎𝑟1 

𝑐𝑡2 𝑝𝑟2 𝑎𝑐2 𝑎𝑟2
𝑝𝑖 = ([ ] [ ]) × ([ ] [ ]) = 𝑝𝑖

1𝑝𝑖
2 (1) ⋮ ⋮ ⋮ ⋮ 

𝑐𝑡𝑘 𝑝𝑟𝑘 𝑎𝑐𝑚 𝑎𝑟𝑚 

2.5.1 Optimization  

Using the priorities defined above, we formulate the 
optimization problem as a 0/1 knapsack problem. Our 
objective is to select AR elements that have the 
highest priority (relevance and thus added value). We 
represent the decision variables as a vector 𝑥 = 
}𝑥1, … , 𝑥𝑛~, where 𝑥𝑖 is a binary variable representing 
whether element 𝑖 is selected or not. The priority and 
required processing time of each element are received 
from the prioritization module as 𝑝 = }𝑝1, … , 𝑝𝑛~ and 
𝑡 = }𝑡1, … , 𝑡𝑛~ , where 𝑝𝑖 and 𝑡𝑖 are defined in 
Section 2.5.1 and 2.1.2 respectively. We denote the 
capacity of the knapsack as 𝑡𝑐 , which is defined in 
Section 2.3. Thus, our optimization problem reads 

𝑛 

maximize 
𝑥𝑖 

∑ 𝑝𝑖𝑥𝑖 (2) 
𝑖=1 

𝑛 

subject to ∑ 𝑡𝑖𝑥𝑖 ≤ 𝑡𝑐 (3) 
𝑖=1 

𝑥𝑖 ∈ {0,1|, ∀𝑥𝑖 ∈ 𝑥 

3	 EXPERIMENTS 

We have designed a discrete-event simulation model 
of an assembly task as a proof of concept. In this 
model, there are four workers with different level of 
skills and performance: (1) expert, (2) experienced, 
(3) novice, and (4) trainee. In parallel to the four 
performance levels, we have simulated four levels of 
expressed instructions, which are assumed to be 
designed as AR elements. The simulated assembly 
task consists of two sub-tasks, each of which consists 
of two more sub-tasks, which can be performed by 
four activities. Figure 2 shows this hierarchy. 

Figure 2: hierarchy of the task, sub-tasks, and activities in 

simulation model. 

The simulation loops over events, where an event is 
the completion of an activity by a worker and the 
simultaneous changes that occur in the state of 
environment and worker. During the simulation we 



      
      

       
     

     
      

       
   

 
      

 

   

     
       

         
        

      
      

        
    

   
        

  

    

       
     

    
      

    
    

        
       

      
     

     
      

     
     

      

     
       

      
     

     
       

      
     

      
  

     

      
       
      
      

      
        

      
  

     
     
    

      
         

     
         

        
      

      
    

      
      

    
      

      
     

   
    
   

       
     

      
     
     

 
  
 

 
        

     
        

       
      

        
       

already know the next activity of the worker, but in 
real-world implementation of this framework, the 
next activity is predicted by the human activity 
prediction module. Apart from instructions, these 
changes are also communicated to the worker as 
machine or process status, warnings, and notifications 
by their respective AR elements. Figure 3 shows the 
simulation process. 

Figure 3: simulation process based on discrete events. 

3.1 Simulated Triggered AR Elements 

Each simulated AR element contains: (1) content, (2) 
category, (3) activity relevance array with values 
between 0 and 1, (4) expected processing time, which 
indicates how much time (in seconds) it takes for the 
worker to view the element and understand its 
content. Elements are triggered by either coming into 
worker’s field of view or when the assembly process 
reaches a specific stage or when a change occurs in 
the workspace about which the worker must be 
notified. AR elements simulated in this case study are 
as follows. 

3.1.1 Simulated Instructions 

Each worker performs sixteen activities to complete 
the task. Note that this number could be arbitrarily 
larger, but we selected the minimum representative 
number of iterations that would cover different types 
of changes in the environment, hence different 
categories of AR elements. There are instructions 
expressed for every level of subtask and activity, 
which are shown to the workers based on their 
performance. For instance, an expert worker is 
expected to receive one general instruction about the 
entire task, which will be available until the task is 
completed; while at the other level extreme, a trainee 
will receive instructions expressed per activity. 

In real-world implementation, however, the 
performance level of workers will vary depending on 

the activities they perform. Therefore, we have 
assumed that based on the performance of the 
experienced and novice workers, they need to receive 
more detailed instructions expressed for certain 
activities and implemented it in the simulation. 
Furthermore, if the AR element of an instruction is 
displayed to a worker and would be active across 
multiple events, its processing time will be reduced to 
minimum by the worker’s learning and increasing 
level of experience. 

3.1.2 Status, Warnings, and Notifications 

There are three different categories of AR elements in 
addition to instructions in this simulation. We have 
assumed that in some of the activities the worker is 
operating with a machine (e.g., lathe, collaborative 
robot). The status of the machine is designed as an 
AR element and its relevance to each activity is 
displayed by the designer in the activity relevance 
array. 

Similarly, we have added warnings (alerts) of 
various types including mobile robot path entering 
worker’s workspace, collaborative robot’s motion, 
and faulty part detected. The activity relevance array 
of warnings is filled based on the event in which they 
occur. For instance, a mobile robot is close to the 
worker in event j to j+3, during which the value of its 
relevance is high. Note that this example is only 
applicable to this simulation model; in real-world 
scenario, such warnings are conveyed to the worker 
as soon as they are detected, irrespective of the 
activity or relevance to this worker. 

The third category of AR elements is 
notifications. The difference between notifications 
and warnings is that notifications do not have the 
same urgency. They are designed to help workers 
have a better understanding of the present and future 
states of the process and themselves. The 
notifications that we included in the simulation 
include worker’s physical state (fatigue, heartrate, 
continuous working hours, etc.) and expected task 
completion time. Recall that the relevance of these 
AR elements to the worker’s current activity is 
subjectively determined by the designer and 
heuristically and continuously improved. 

3.1.2 Prioritization, Optimization, and 
Results  

The equation defined in Section 2.5.1 is used to 
determine the priority of the triggered AR elements. 
This step will produce an array of priority values that 
are between 0 and 1. Subsequently, we can extract the 
required processing time of each element and add 
them to another array. As described in Section 2.1.2, 
the capacity used in the optimization problem is the 



      
       

      
    

      
      
      

     
     

  
      

    
     
     

      
          

    
     

      
      
    

      
       

    
       

      
    

     
       

     
        

     
    

       
       

    
 

 

 

 

 
     

   

    

   

   

   

   

    

   

   

 

maximum time we can allow the workers to observe 
or interact with AR elements while keeping up with 
the expected task requirements and their completion 
time. Subsequently, we formulate this selection 
problem as a 0/1 knapsack problem where priority 
and required processing time arrays serve as profit 
and weight, respectively. After solving the 
optimization problem, the selected elements are 
activated (expressed). These steps are repeated for 
every event. 

We have compared this framework and results of 
HUB-CI protocol to a first-come-first-serve (FCFS) 
approach in which given the time constraint, AR 
elements are expressed as soon as they are triggered. 
There is obviously no guarantee that the first element 
to be triggered is the optimal. On the other hand, if we 
activated all the triggered elements, we would be 
giving data and information to workers, that are not 
necessarily relevant to their attribute set, or current 
activity. The results of the first analysis are shown in 
Figure 4, where we compare the added value of this 
framework relative to the FCFS approach. Note that 
the added value is the sum of the values selected from 
the priority array. The improvement of HUB-CI 
protocol on FCFS is statistically significant across all 
worker experiences. Table 1 shows the p-values of t-
test and one-way ANOVA. 
The reader may notice the similarity between the lines 
of added value for HUB-CI for all workers. This 
similarity occurs because the maximum value of any 
instruction’s relevance for all workers is 1, but it does 
not mean that they receive the same instructions. To 
illustrate this, we have calculated the added value of 
the AR elements selected for the trainee when shown 
to other workers. The results of the comparison are 
shown in Figure 5. 

Figure 4: added value of HUB-CI protocol vs. fifty trials of 

FCFS protocol for four types of workers. 

Table 1: p-values of t-test and one-way ANOVA for HUB-

CI results and FCFS average. 

Workers p-value 

t-test One-way ANOVA 

Expert 0.0026 0.0026 

Experienced 0.0032 0.0032 

Novice 0.0024 0.0024 

Trainee 0.0049 0.0049 



 
       

 

  

 

       

     

      

     

     

       

     

       

       

      

         

      

     

     

     

     

     

        

    

 

       

   

     

   

  

     

   

     

       

   

 

     
  

   
  
  

 
        

     
  

 
        
     

    
  

 
          

      
  

     
   

 
        

       
   

 

 
        

  
   

   
      

       
    

   
     

  
     

    
   

 
           

    
   

4 

Figure 5: comparison of added value of trainee’s 

instructions for other workers. 

CONCLUSION & FUTURE 
STEPS 

One of the common criticisms of frameworks such as 

the one presented in this article is their 

implementation in real-world systems. Therefore, we 

would like to acknowledge that this framework, 

particularly HUB-CI protocol, can be implemented in 

any AR system and manufacturing workflow just as 

it was implemented in the simulation model process 

explained in Section 3. Furthermore, it is possible to 

expand and tailor the presented framework according 

to the requirements of each system. 

One of the limitations of this work is the lack of 

access to real-world data and workflows for 

evaluating the framework. Even though we have 

made reasonable assumptions in our experiments, real 

data enforces the robustness of the framework against 

anomalous scenarios, errors, and exceptions. 

Moreover, we would like to implement this 

framework in an AR system designed for production 

and manufacturing tasks. 
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