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Abstract 

 
An increase in energy demand in buildings continues to give rise to air pollution with a consequent impact on 

human health. To curb this trend, energy efficiency assessment plays a crucial role in helping to understand the 

energy in buildings and to recommend strategies to improve efficiency. Unfortunately, many existing approaches 

to assessing the energy efficiency of buildings are failing to do it accurately. Hence, the recommended energy 

efficiency strategies thereafter are failing to achieve the expected result. One approach in recent times uses data-

driven predictive analytics techniques like machine learning (ML) algorithms to assess a building’s energy 

efficiency towards improving its performance. However, as many ML algorithms exist, the selection of the right 

one is important for a successful assessment. Unfortunately, many of the existing works in this regard have simply 

adopted an ML algorithm without a justified rationale which may result in poor selection of the good performing 

ML algorithm. Therefore, in this study, a premise to compare the performance of ML algorithms for the 

assessment of energy efficiency of buildings was proposed. First, consolidated energy efficiency ratings of 

buildings from different data sources are used to develop predictive models using several ML algorithms. 

Thereafter, identification of best performing model was done by comparing evaluation metrics like RMSE, R-

Squared, and Adjusted R-Squared. From the comparison, Extra Trees predictive model came top with RMSE, R-

Squared, and Adjusted R-Squared of 2.79, 93%, and 93% respectively. This approach helps in the initial selection 

of suitable and better-performing ML algorithms. 
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1 Introduction 

 
More than 40% of carbon emissions are attributed to the consumption of energy in buildings [1]. According to 

Penistone [2], this high energy demand is due to the increasing number of building dwellers with corresponding 

population growth and growing appetite for energy-consuming appliances. Unfortunately, energy-related carbon 

emissions give rise to indoor and outdoor air pollution with corresponding negative impacts on human health. For 

example, Rural Affairs Committee [3] reports that in the UK, a considerable number of deaths are caused by poor 

air quality from carbon emissions. As such, in recent times several collaborations, policies, and strategies have 

been introduced by many developed countries to meet this goal. Among these policies are the EU's nearly-zero 

energy building proposal, requiring buildings from 2021 to have high energy performance. Another is the 

introduction of the issuance of energy certificates to promote energy efficiency awareness [4]. 

One strategy of enhancing the energy performance of buildings is improving their energy efficiency. 

Oliver and Peters [5] state that energy efficiency strategies alone have the potential to save 23.6 metric tons of 

carbon dioxide per year by 2030. However, despite the interventions by the government and other bodies at 

improving energy performance, many reports [6]–[10] indicate insufficient progress. As such, there is an urgent 

need to introduce new strategies or complement existing ones if building energy performance goals are to be met 

timely. A crucial step in improving energy efficiency is its assessment. In the light of this, a contemporary trend 

in research has emerged in which data-driven predictive analytics approaches are used to assess the energy 

efficiency of buildings towards making better decisions and choices in improving energy performance [11]. The 

predictive analysis utilizes Artificial Intelligence (AI)/ Machine Learning (ML) which has been widely adopted 

across other industries with records of tremendous successes [12], [13]. For example, it has been successfully 

employed in the healthcare industry for precise diagnosis and to make the best choice of treatment course from 



several alternatives. Likewise, in the transportation sector, it seats at the center of decisions for autonomous 

driving. 

AI is a collection of state-of-the-art technologies that permit machines or any computer programme to 

sense, comprehend, act, and learn [14]. ML on the other hand is a branch of AI that allows computers to learn by 

a direct route from examples, data and experience. ML approaches to replace the traditional methods of 

programming that relied on hardcoded step by step rules [15]. This is done by giving the system a huge amount 

of data to learn from as a task, leaving it to decide how best to achieve the task in form of the desired output. 

Several ML algorithms such as Genetic Algorithm (GA), Artificial Neural Networks (ANN), Linear Regression 

(LR), Logistic Regression, Nearest-Neighbour Mapping, Decision Trees (DT), K-Means Clustering, Random 

Forests, Support Vector Machines, Principal Component Analysis, Singular Value Decomposition, among many 

others exist for implementation. Many research like [11], [16], [17] have already attempted the use of ML 

algorithms for predicting the energy efficiency of buildings.   

The choice of which ML algorithm to use depends on several factors like ease of use, accuracy, the 

structure of the dataset, training time, among others. Likewise, outcomes and performances of different ML 

algorithms vary even when used against the same dataset due to several factors. The main influencing factors 

being the nature of the underlying ML algorithm, characteristics of the dataset regarding its size, resolution and 

data type, and the number of selected features. For example, Sha [18] comparative study of the performance of 

several ML algorithms in predicting cooling and consumption in buildings observed significant performance 

degradation from changing dataset resolution of training data from one (1) hour to six (6) minutes. In general, the 

LR algorithm which inherently only supports linear model is likely to perform better than DT when the feature 

set is many on a small dataset. Similarly, DT which employs non-parametric methods is likely to outperform ANN 

when the large training dataset is made up of categorical values data type. Therefore, considering the dilemma 

vis-a-vis the performance of ML algorithms, choosing a suitable ML algorithm is a tough and crucial decision 

towards its successful. 

Unfortunately, many of the existing studies [11], [16], [17] have arbitrarily utilized or simply adopted 

various ML algorithms from previous research without rationale, resulting in poor performance, bad selection of 

good performing models or unenhanced generalizability of models developed from these ML algorithms across 

other regions. As a result, these studies have produced a knowledge vacuum that must be filled. Hence the need 

for a comparative study that will consolidate and evaluate the application of several ML algorithms in developing 

predictive models for assessing the energy efficiency of buildings. Thus, this study, therefore, aims to compare 

and evaluate the application of commonly employed ML algorithms used to develop models for assessing the 

energy efficiency of buildings. The following objectives will be: 

 

1. Consolidate energy efficiency ratings of domestic and non-domestic buildings from different data 

sources into one database to establish the most applicable factors affecting the energy efficiency of 

buildings. 

2. Utilize established factors in objective 1 as independent variables for all ML algorithms to develop 

predictive models. 

3. Compare the performance of all ML algorithms against their respective predictive models. 

 

The contribution of this study is therefore to fill the gap in the lack of a rationale in the selection of 

suitable ML algorithms for assessing the energy efficiency of buildings. For this work, due to availability and 

ease of access, energy data from the UK is utilized. Consequently, this is novel because the thorough review of 

the existing body of knowledge indicated that this is the first-time robust ML methods are employed to predict 

the energy efficiency of buildings in the UK. The same approach can be utilized for energy data from other 

countries. The outcome of our study will help in the initial choice of suitable ML for further predictive analysis. 

Furthermore, it will help to guide the decision of building construction managers, building dwellers, government 

bodies, and other concerned stakeholders in implementing strategies and employing measures for buildings energy 

performance improvement towards reduced carbon emissions and improved air quality. 

 

 

2 Related Work 

 
This section examines the aim, methodology, result, and analysis of the most recent related vast body of literature 

by numerous authors from across the world in the subject of energy consumption and optimization in buildings, 

as indicated in Table 1, using various or combined individual ML Algorithms.



 
Table 1. Survey of related literature 

 

Author ML Model Methodology Result 

Mazzeo [19] Artificial Neural Network (ANN) with 

Gargon Algorithm 

ANN for flexible power system design to forecast energy 

performance of an energy community. In the approach, 

ANN is applied to large data set with dimensionless input 

variables to estimate energy performance indicators and 

grid indicator factors for the energy community. 

The optimized ANN with 20 neurons produced 

the highest prediction accuracy with a global R 

of 0.9958 and P of 0.0004 in comparison with 

lower neurons.  

Abediniangerabi, 

Makhmalbaf and 

Shahandashti [20]  

Deep Learning Models, Gradient 

Boosting Machine, Random Forest, 

Generalized Linear Regression 

ML models for the prediction of the energy performance 

of building façade system. The façade system considered 

are fiber reinforced concrete and conventional panels for 

making decisions to support energy efficient building 

vis-a-vis energy savings during early design stages. The 

accuracy of the result obtained was compared with other 

common prediction models.  

The Deep Learning models in comparison to 

others had the best accuracy with MAE of 1.59 

and RMSE of 3.48. 

Maltais and 

Gosselin [21]  

Artificial Neural Networks (ANN) with 

optimized parameters 

ANN for the prediction of domestic hot water usage. The 

approach attempts to improve the accuracy of prediction 

of load demands from domestic water heating systems 

for the purpose of improving energy efficiency. 

The ANN models which were tested with data 

from a 40-unit residential condominium of 

varying family sizes yielded good results with 

R2 of 0.88 but produced uncertainties for 

families with smaller water heating systems. 

Alishahi, Nik-Bakht 

and Ouf [22]  

  

Poisson Regression Poisson Regression to study occupancy behavior in 

building using WIFI count data. The method attempts to 

provide an alternative approach as opposed to using 

sensor information from devices (like heat and 

ventilation systems) to obtain and integrate occupancy 

information to adapt to building operation for the 

purpose of increasing energy savings.  

The system was validated using data obtained 

from an academic building in Canada. It 

produced a good prediction pattern with R2 of 

0.98 during the week and 0.81 during weekends. 



Sha, Moujahed and 

Qi [18]  

Gradient Tree Boosting (GTB), Linear 

Regression, Rid Regression, Elastic Net 

(ELN), Multilayer Perceptron MLP), 

Recurrent Neural Network (RNN), Long 

Short-Term Memory (LSTM), 

Convolutional Neural Network (CNN) 

ML for predicting cooling loads and energy consumption 

in buildings. The work aimed at developing an approach 

for controlling and evaluating the performance of 

mechanical ventilators for reducing building cooling 

loads. 

Data obtained from Building Automation 

System (BAS) from a high-rise building in 

Canada was applied to the ML models 

developed of which GTB produced the best 

accuracy with RMSE of 12.3%, 12.4% and 

12.7% in 1 hour, 30 minutes and 6 minutes, 

respectively. 

Mulero-Palencia, 

Álvarez-Díaz and 

Andrés-Chicote [23] 

Decision Tree Developed a tool for prototype diagnosis during design 

stage of building renovation. The system which is aimed 

at reducing emissions during building renovation helps to 

make critical decision and select better renovation 

alternatives. 

The tool developed was tested using renovation 

buildings for different countries. The result 

obtained varied from country to country as the 

building state and government regulations were 

different from country to country. 

Yigit [24] 

  

Evolutionary Algorithm (EA), Gradient 

Boosting Machine (GBM) 

ML to develop an energy simulation tool for optimized 

thermal design in residential buildings. The tool attempts 

to shorten the time required in optimization simulation so 

that simulation for larger buildings can be done faster. 

GBM was used as a surrogate model and DEAP, an 

evolutionary algorithm was used for optimization. 

The surrogate model on test yielded R2 of 0.992 

on cross-validation and 0.991 on testing. The 

result helps to make decision in selecting an 

alternative optimal energy design approach. 

Alduailij  [25] 

  

Linear Regression, Dynamic Regression, 

ARIMA Time Series, Exponential 

Smoothing Time Series, Artificial 

Neural Network, Deep Neural Network 

ML is used to detect consumption peaks in buildings. 

The system uses historic load demand curves to provides 

potential insights for making decisions towards energy 

saving, efficient use of appliances, and identification of 

demand response possibilities. 

Data energy and weather data obtained from five 

(5) government buildings collected over 1 week 

uninterrupted were applied to the ML models. 

ARIMA yielded the highest accuracy of 98.91%.  



Szul, Tabor and 

Pancerz [26] 

BORUTA on Rough Set Theory (RST) ML for features selection to forecast the heating energy 

demand rate of a building. The works aim to emphasize 

the need for care in the selection of model features. It 

also aims at providing insight for developing diverse 

approaches to improving energy efficiency in buildings. 

The model which was tested using data from 

109 multi-family buildings produced a 

satisfactory result with R2 between 0.81 and 

0.85. 14 features were selected by the BORUTA 

algorithm and a further decrease in the number 

of features selected yielded no significant 

difference, hence confirming the feature 

selection. 

Amasyali and El-

Gohary [27] 

Classification and Regression trees 

(CART), Ensemble Bagging trees 

(EBT), Artificial Neural Networks 

(ANN), and Deep Neural Networks 

(DNN) 

ML for predicting energy consumption patterns in 

buildings while including occupancy behavior. The 

approach takes into consideration occupancy patterns to 

attain better accuracy in predicting energy consumption 

for the purpose of identifying potentials for energy 

savings. 

A simulation of the model on EnergyPlus using 

3 months of energy, building, weather, 

occupancy data with reliable performance and 

high accuracy emphasized the importance of the 

occupancy variable in the prediction algorithm.  

Seyrfar [28] Back-Propagation Neural Network 

(BPNN), Extreme Gradient Boosting 

(XGBoost), Random Forest (RF) 

Combines energy, demographic, and socio-economic 

data to predict energy consumption in buildings. The 

approach aims at attaining higher accuracy and identify 

consumption patterns toward implementing energy 

efficiency measures and reducing carbon emission. 

The ML models were simulated using data 

obtained from the United States (US) Consensus 

Bureau of which XGBoost had better 

performance with 68% accuracy. 



3 Research Methodology 
 

To consolidate energy efficiency ratings of domestic and non-domestic buildings as an approach to data collection, 

this study uses open data from the department of the energy performance of buildings data: England and Wales. 

Energy Performance Certificates (EPCs) for domestic and non-domestic buildings built, sold, or rented since 2008 

were used. These data contain information on the energy efficiency ratings of domestic and non-domestic 

buildings during the energy assessment process. More precisely, this study uses all datasets from every 

constituency under the city of London local authority, consisting of property types: flat, bungalow, maisonette, 

house, and park-home; property total floor area ranging from one meter squared and hundred and ten meters 

squared; and finally with current EPC rating from A to G, (where A is very efficient, and G is the least efficient) 

lodged between April 2018 and April 2021. Table 2 describes the major features of this dataset used in this study. 

 

 
Table 2. Dataset description 

 

Feature ID Features Feature Type 

F1 Energy consumption Independent variable 

F2 CO2 Emissions Independent variable 

F3 Lightning cost Independent variable 

F4 Heating cost Independent variable 

F5 Hot water cost Independent variable 

F6 Total floor area Independent variable 

F7 Floor level Independent variable 

F8 CO2 emissions per floor area Independent variable 

F9 Number of habitable rooms Independent variable 

F10 Number of heated rooms Independent variable 

F11 Hot water energy efficiency  Independent variable 

F12 Hot water environmental efficiency Independent variable 

F13 Windows energy efficiency Independent variable 

F14 Windows environmental efficiency  Independent variable 

F15 Walls energy efficiency Independent variable 

F16 Walls environmental efficiency Independent variable 

F17 Main heat energy efficiency  Independent variable 

F18 Main heat environmental efficiency Independent variable 

F19 Lighting energy efficiency  Independent variable 

F20 Lighting environmental efficiency Independent variable 

F21 Energy efficiency of buildings   Dependent variable 

  

 
The raw dataset was extracted and downloaded as a comma-separated values file. To achieve the second 

objective of this study, this raw dataset was pre-processed into a clean dataset and analyzed by carrying out data 

imputation and outlier detection. Scaling and encoding feature engineering techniques were implemented to 

enable the selection of features or independent variables (see Table 2) to increase the predictive power 

(hyperparameter optimization) of the ML algorithms. The resulting clean and pre-processed dataset was split 

randomly into two in a ratio of 60% to 40% of the training dataset and testing dataset, respectively. Several ML 

algorithms were imported into a running instance of Jupiter Notebook using Scikit-learn - an integral Python 

programming language module with a broad spectrum of state-of-the-art algorithms for supervised and 

unsupervised medium-scale problems [29]. 

Since these ML algorithms fit independent variables (features) to a known dependent variable (target), 

supervised modeling taxonomy was undoubtedly chosen in this study. Additionally, because the target contains 

numerical data, regression analysis was used. Regression analysis is a type of predictive modeling approach that 

examines the connection between a target and feature(s) [30]. This is especially useful as it can express the degree 

to which one or more features have an influence on a target during ML predictions. There are a variety of 

regression algorithms that can be used to develop predictive models when experimenting with regression analysis. 

Which one to employ primarily depends on three factors – number of features, type of target, and shape of the 

regression line.  Therefore, to mitigate any form of bias, we rather employed all regression algorithms that are 

available in scikit-learn version 0.23.1 at the time of this study for experimentations without any constraints on 

the previously mentioned factors. In concrete, a total of 42 regression algorithms available in this version was 

employed to develop the individual models using the training dataset (60% of the total dataset). This resulted in 



42 developed regression models. Afterward, the unseen test dataset (40% of the total dataset) was used to evaluate 

the performance of these models that were developed. As the 42 models are all regressors, stratified k-fold, a 

variant of k-fold that returns stratified folds containing about the same proportion of target class as the initial 

dataset was used for cross-validation, where k=10, in order to avoid individual model overfitting on the dataset. 

Finally, Root Mean Square Error (RMSE), Coefficient of Determination (R-Squared) Adjusted Coefficient of 

Determination (Adjusted R-Squared) modeling evaluation metrics were employed to measure the several model 

performances on the testing dataset as shown in Fig. 1. 

 

 

 
Fig. 1. ML Prediction Architecture 

 

 

4 Analysis and Results 

 
An initial investigation on the data through Exploratory Data Analysis (EDA) showed that the data is a two - 

dimensional array with 826 rows and 21 columns where the 1st to the 20th columns (F1 – F20 factor IDs) represent 

the features/independent variables and the 21st column (F21) represent the target/dependent variable. Outliers and 

missing values were detected and dropped thus resulting in a final 772 rows and 21 columns. Category columns 

F11 – F20 (see Table 2) were encoded into 1 (Very Poor), 2 (Poor), 3 (Average), 4 (Good), and 5 (Very Good). 

Furthermore, as a final transformation on the dataset, One-hot encoding (k-1 variant) a categorical encoding 

technique was used to transform all categorical datasets into a set of binary results (0 or 1). As most ML algorithms 

assume that any given dataset is normally distributed, with zero mean and unit variance, this study used the 

standardization feature scaling method to meet this requirement [29], [31]. This method involves subtracting the 

mean from each feature observation and dividing by the standard deviation as shown in the equation below: 

𝑋′ =  
𝑋 − �̅�

𝜎
                                              (1) 

Where 𝑋′ represents the standardized value; 𝑋 a given feature observation; �̅� the mean and 𝜎 the standard 

deviation. Hence our resulting feature scaled dataset has its variance at 1, centered its mean at 0, and with a varying 

min-max value. Ultimately, a multivariate filter-based feature selection method called Spearman’s rank 

correlation coefficient was implemented to evaluate the entire feature space, and eliminate obsolete, 

redundant, and noisy features, boost model accuracy, improve model interpretability, lower computational 

complexity and enhance generalizability. This Spearman's correlation coefficient is a non-parametric test 

used to determine the degree of connection between two or more features with a monotonic function, 

indicating a growing or decreasing relationship. The calculated strength between the features using 

Spearman's correlation coefficient fluctuates between +1 and 1, which happens when one feature is a perfect 

monotone function of the other. Thereafter, the dataset was split using the “train_test_split” function of Scikit-

learn at a ratio of 60:40 for training and testing, respectively.  

Consequently, after the described pre-processing, encoding, and standardization steps were 

implemented, the resulting training dataset (60% of the entire dataset) was utilized to train individual models in 

this study by fitting 42 ML algorithms (all regression algorithms available in scikit-learn version 0.23.1) to their 

respective models using their respective Scikit-learn libraries (see Table 3). This resulted in 42 developed models. 

Afterward, we used the test dataset (40% of the entire dataset) to evaluate the performance of these models that 

were developed. To mitigate the potential of these models' overfitting on the test dataset, a stratified10-fold cross-



validation resampling technique was used to evaluate the performance of all the ML models developed using the 

42 ML algorithms employed. The main parameters for each model used for hyperparameter optimization are alpha 

and lambda of values 100 and 10 respectively. These parameters were chosen to control the learning process as a 

way to apply regularization on each model for the bias-variance trade-off (low bias and low variance).  The 

outcome of these assessments implemented on the test dataset is given as performance evaluation metrics for all 

models developed in this study (see Table 3). More precisely, it reveals the RMSE, R-Squared, and Adjusted R-

Squared computed using the stratified10-fold cross-validation for the ML algorithms. 

 

RMSE (see Equation 2) represents the standard deviation of the differences between the model predictions and 

the true values (training data). The closer the RSME value is to 0 the better the model. 

 

RMSE =  √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

𝑛

𝑖=1

                                 (2) 

 

R-Squared (see Equation 3) on the other hand represents the proportion of variance of target (dependent variable) 

that has been explained by the independent variables in the model. Its values range between 0 and 1 where 1 

represent a perfect model and 0 a poor model.  

 

R − Squared = 1 −   
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 −  �̅�)2𝑛
𝑖=1

                                           (3) 

 

Adjusted R-Squared (see Equation 4) is a modified and better version of R-Squared that considers the number 

of predictors (independent variables) in a given model. 

 

R − Squared𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 1 −  [
(1 −  𝑅2)(𝑛 − 1)

𝑛 − 𝑘 − 1
]                       (4) 



 

Table 3. Algorithms, Models and Their Respective Performance Evaluation Metrics Implemented on the Test Dataset. 

 

 

S/N 

 

Algorithms 

 

Model 

Performance Evaluation Metrics 

Adjusted R-Squared R-Squared RMSE 

1 Extra-trees ExtraTreesRegressor 0.93 0.93 2.79 

2 Gradient boosting GradientBoostingRegressor 0.91 0.92 3.05 

3 Extreme gradient boosting XGBRegressor 0.91 0.92 3.07 

4 Histogram-based gradient boosting HistGradientBoostingRegressor 0.91 0.91 3.15 

5 Transformed target TransformedTargetRegressor 0.90 0.91 3.16 

6 Ordinary least square linear regression LinearRegression 0.90 0.91 3.16 

7 Linear least squares (with l2 regularization) Ridge 0.90 0.91 3.18 

8 Lasso linear model (with iterative fitting along a 

regularization path) 

LassoCV 0.90 0.91 3.19 

9 Bayesian ridge regression BayesianRidge 0.90 0.91 3.19 

10 Light Gradient Boosted Machine LGBMRegressor 0.90 0.91 3.19 

11 Elastic Net model (with iterative fitting along a 

regularization path) 

ElasticNetCV 0.90 0.91 3.22 

12 Generalized Linear Model (with a Poisson distribution) PoissonRegressor 0.90 0.91 3.26 

13 Ridge regression (with built-in cross-validation) RidgeCV 0.90 0.90 3.27 

14 Stochastic Gradient Descent SGDRegressor 0.90 0.90 3.28 

15 Random Forest RandomForestRegressor 0.88 0.89 3.49 

16 Huber Linear regression model HuberRegressor 0.88 0.89 3.59 

17 Lasso Lars Information Criterion LassoLarsIC 0.87 0.88 3.65 

18 Least Angle Regression model (cross-validated (CV)) LarsCV 0.87 0.88 3.72 

19 Orthogonal Matching Pursuit model (OMP-CV) OrthogonalMatchingPursuitCV 0.86 0.87 3.83 

20 Linear Support Vector Regression LinearSVR 0.86 0.87 3.87 

21 Lasso Lars (CV) LassoLarsCV 0.85 0.86 3.97 

22 AdaBoost AdaBoostRegressor 0.85 0.86 4.02 



23 Bagging BaggingRegressor 0.84 0.85 4.07 

24 RANdom SAmple Consensus RANSACRegressor 0.84 0.85 4.12 

25 Lasso linear model Lasso 0.81 0.82 4.47 

26 Decision Tree DecisionTreeRegressor 0.79 0.80 4.70 

27 Linear regression (with combined L1 and L2 priors as 

regularizer) 

ElasticNet 0.79 0.80 4.74 

28 K-Nearest Neighbors KNeighborsRegressor 0.78 0.80 4.76 

29 Generalized Linear Model (with a Gamma distribution) GammaRegressor 0.78 0.79 4.81 

30 Generalized Linear Model GeneralizedLinearRegressor 0.77 0.78 4.94 

31 Generalized Linear Model (with a Tweedie distribution) TweedieRegressor 0.77 0.78 4.94 

32 Least Angle Regression model Lars 0.73 0.75 5.29 

33 Passive Aggressive Machine PassiveAggressiveRegressor 0.71 0.73 5.53 

34 Extremely Randomized Tree ExtraTreeRegressor 0.71 0.73 5.53 

35 Epsilon-Support Vector Machine SVR 0.70 0.72 5.59 

36 Orthogonal Matching Pursuit model (OMP) OrthogonalMatchingPursuit 0.67 0.70 5.84 

37 Nu Support Vector Machine NuSVR 0.67 0.69 5.86 

38 Dummy Estimator DummyRegressor -0.07 -0.00 10.59 

39 Lasso Lars LassoLars -0.07 -0.00 10.59 

40 Multi-layer Perceptron MLPRegressor -0.89 -0.77 14.08 

41 Gaussian Process GaussianProcessRegressor -12.3 -11.43 37.33 

42 Kernel ridge regression KernelRidge -44.25 -41.31 68.86 



 

 
Fig. 2. Predictive Models by RSME 

 

 

 
Fig. 3. Predictive Models by Adjusted R-Squared 

 

 

5 Discussion of Results 

 
Comparatively, looking through Table 3 and Fig. 3, Extra-trees predictive model came out as the top performant 

model having achieved an Adjusted R-Squared and R-Squared 0.93, and 0.93 respectively higher than the rest of 

the models. This implies a high correlation between the independent variable (F1 to F20) and the dependent 

variable F21. Also, Extra-trees’s RSME value of 2.79 is the closest value to 0.00 (see Fig. 2), thus still making it 

the best performant model. This is an excellent performance level that is tending towards perfection and 

unachieved in any previous study, well justifying the need for trailing multiple algorithms when developing 

forecasting/predictive models. It was discovered that Dummy Estimator, Lasso Lars, Multi-layer Perceptron, 

Gaussian Process, and Kernel ridge regression models had Adjusted R-Squared and R-Squared values less than 

0, hence are referred to as worst models in their descending order in this study. More so, these predictive models 

all had RSME values greater than other predictive models (see Fig. 2) and tending above value 0.00, well 

justifying them as worst models and therefore should be the least considered for predicting energy efficiency of a 

building. As Random Forest is built upon Decision Tree, it is no surprise based on the results of this study that 



Random Forest was a better model than Decision Tree having achieved an Adjusted R-Squared and R-Squared 

0.88, and 0.89 respectively better than Decision Tree. 

Surprisingly, this study’s top four performant predictive models (Extra-trees, Gradient boosting, Extreme 

gradient boosting, and Histogram-based gradient boosting) are all ensemble methods, which are machine learning 

methods that involve the use of multiple algorithms where the cumulative outcome from them is almost always 

greater in terms of predictive accuracy relative to the use of a single algorithm as they integrate decisions from 

different algorithms to maximize their overall performances [32]. Extra-trees belongs to the family of bagging 

ensemble method where multiple models of the same algorithm are used, however with different subsets of data 

selected randomly [33]. Gradient boosting, Extreme gradient boosting, and Histogram-based gradient boosting, 

on the other hand, belongs to the family of boosting ensemble method which is known as a repetitive technique 

that adapts the weight of the observation to the last grading. If an observation has been falsely categorized, the 

weight of this observation would be raised and conversely [34]. Thus, this study also proved these assertions. 

Also, interestingly, Multi-layer Perceptron, a class of feedforward artificial neural network (ANN) and one of the 

well-known and widely used algorithms by researchers were found among the four non-performing algorithms 

assessed in this study as the least models to consider for forecasting building energy efficiency. This is arguably 

due to the fact that although neural networks have been shown to approximate every continuously differentiable 

function, there is no assurance that a given network would ever learn this approximation given a specific weights 

initialization since, for example, the independent variables and the dependent variable used in this study are mostly 

continuous variables (see section 4). Thus, making their weight matrices susceptible to initial randomization. 

Furthermore, in this study, only 20 features from a list of non-exhaustive features were used in the 

assessment of the energy efficiency of buildings. There are other existing works considering lesser or more 

features and even other sets of features. For example, Abediniangerabi, Makhmalbaf and Shahandashti [20] 

considered only six (6) feature classes which included weather and occupancy data asides from heating and 

cooling data. Feature selection and data representation play a key role in enhancing the performance of ML 

algorithms and it is being widely explored in representation learning. Similarly, in many cases, the choice of 

features is dependent on the available dataset obtained directly or computed from sensor data installed in 

buildings. However, since sensor installation and integration come with a cost, there is usually a trade-off between 

the number of sensors installed in buildings and the number of classes of data to be obtained. It will be of interest 

to have additional features like the comfort level indicator of building dwellers since building energy efficiency 

can only be sustained in a long term within the limits of these comfort levels. Unfortunately, in many buildings, 

this kind of data is difficult to obtain directly and accurately from sensors because of the ever-dynamic behavior 

of building occupants. There are several literatures exploring the use of long-term data from building appliances 

to obtain accurate results in this regard. However, in this study, it can be argued that this data (comfort level 

indicator) is indirectly encoded in some of the already selected 20-features. Give for instance, a building dweller 

will adjust operations of heating and cooling appliances to meet needs until at least comfort levels are met. While 

this argument may seem rational, it will still be important to carry-out comparative studies to evaluate how this 

feature or other features not included in this study impacts the performance of ML algorithms. 

 

 

6 Conclusion and Recommendations 

 

The rise in carbon emissions from the caused increase in energy demand from buildings is a major concern as it 

has continued to cause poor air quality with a consequent negative impact on human health across the globe. More 

so, efforts at curbing this trend have yielded insufficient results hence necessitating the need for more effective 

strategies. One of such contemporary strategies employs data-driven predictive analytics techniques to assess 

building energy efficiency to better explain contributing factors influencing its performance. In this approach that 

employs ML, the choice of ML algorithm is crucial to obtaining a good result. However, many existing research 

randomly selects a ML algorithm without justification. 

In this study, therefore, a premise to compare the performance of machine learning algorithms for 

assessing the energy efficiency of buildings was proposed. To begin, this study consolidates energy efficiency 

ratings of domestic and non-domestic buildings from different data sources into one database as an approach to 

its quantitative data. The dataset in turn was used to train several ML (43 in number) algorithms to develop 

predictive models and evaluation metrics were computed. From the comparison of metrics for the different ML 

algorithms, the Extra Trees predictive model came out top having achieved an RMSE, R-Squared, and Adjusted 

R-Squared of 2.79, 93%, and 93% respectively. 

Thus, this study highly recommends the need for initial predictive analysis for the selection of good 

performing model and better still the use of ensemble methods in predicting the energy efficiency of buildings. 

For example, from the result obtained, a choice of Extra Trees predictive model is justified being the best 

performing algorithm amongst others considered and as such may be further explored for even better result and 

implementation. Overall, the result from a study of this kind helps to build construction managers, building 



dwellers, government bodies, and other stakeholders to make better decisions towards improving the energy 

performance of buildings. However, while the proposed contemporary method of analysis is assumed to be 

applicable in assessing energy efficiency of buildings within the sector, the unique data transformation employed 

in this study may not, as typical of any data driven model, be transferable to the data from other regions. 

Furthermore, to obtain improved outcomes, asides including more features in the selection, representation learning 

can be employed for features extraction. Similarly, future studies should be targeted at extending the algorithms 

or optimizing already considered one. 
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