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ABSTRACT 

Indoor localisation of people and objects has been a focus of research studies for several 

decades because of its great advantage to several applications. Accuracy has always been 

a challenge because of the uncertainty of the employed sensors. Several technologies 

have been proposed and researched, however, accuracy still represents an issue. 

Today, several sensor technologies can be found in indoor environments, some of which 

are economical and powerful, such as Wi-Fi. Meanwhile, Smartphones are typically 

present indoors because of the people that carry them along, while moving about within 

rooms and buildings. Furthermore, vehicles such as mobility scooters can also be present 

indoor to support people with mobility impairments, which may be equipped with low-

cost sensors, such as wheel encoders. 

This thesis investigates the localisation of mobility scooters operating indoor. This 

represents a specific topic as most of today's indoor localisation systems are for 

pedestrians. Furthermore, accurate indoor localisation of those scooters is challenging 

because of the type of motion and specific behaviour.  

The thesis focuses on improving localisation accuracy for mobility scooters and on the 

use of already available indoor sensors. It proposes a combined use of Wi-Fi, Smartphone 

IMU and wheel encoders, which represents a cost-effective energy-efficient solution.  

 A method has been devised and a system has been developed, which has been 

experimented on different environment settings. The outcome of the experiments are 

presented and carefully analysed in the thesis. The outcome of several trials 

demonstrates the potential of the proposed solutions in reducing positional errors 

significantly when compared to the state-of-the-art in the same area. The proposed 

combination demonstrated an error range of 0.35m - 1.35m, which can be acceptable in 

several applications, such as some related to assisted living. 



3 

 

As the proposed system capitalizes on the use of ubiquitous technologies, it opens up to  

a potential quick take up from the market, therefore being of great benefit for the target 

audience. 
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Chapter 1 Introduction  

This chapter introduces the thesis starting with an introduction to  indoor localisation 

including advantages and related challenges. It states the purpose of the research 

including its aim, main objectives and reasons behind the research, objectives of this 

research and its achievements. It also describes the business and technical motivations 

of this research, especially the target audience. Furthermore, it highlights the challenges 

concerning indoor localisation, including the limitations experienced during indoor 

localisation system development. Finally, it briefly summarises all chapters of this thesis 

in a tabular form. 

1.1 Indoor Localisation 

According to D. Zhang et al [1] in 2010, Dempsey defined indoor localisation as “a system 

that can determine the position of something or someone in a physical space such as in a 

hospital, a gymnasium, a school, etc. continuously and in real time”.  

The interest in providing accurate indoor localisation has steadily grown over the years 

because there is potential for indoor localisation to revolutionise the way users navigate 

indoors, similar to how GPS revolutionised how users navigate outdoors. With knowledge 

of this ever-growing interest, researchers and scientist within academia and industry 

have committed over a decade worth of their efforts and resources into resolving this 

indoor localisation challenge. Especially because there is a recognition of the significance 

of indoor localisation as a crucial component of future location-based systems. This 

research area is discussed consistently in comprehensive investigations from  W. D. 

Rencken [2] in 1994 to R. McConville et al [3] in 2018. 

With reference to papers [2][3], it is our prediction that interest in indoor localisation 

would continue to increase as human needs continue to be more technology dependent. 

In particular, the exploitation of the steadily growing wireless communication systems 

such as indoor location detection and tracking systems. These systems have entered the 

world of consumers in several forms, like, health care, assisted-living, industrial, 
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transport, logistics and public safety systems to mention a few. This proliferation has 

encouraged ubiquitous systems.   

The term “ubiquitous” in computing refers to the presence of technology everywhere and 

anywhere. Ubiquitous technology is a hybrid computing concept which involves 

seamlessly high integration of technology and with communication capacity in existing 

environments such that they recede into the background of our everyday lives. Our world 

has become ubiquitous because, technology has become smart enough to automatically 

and proactively predict an address or location of each user, especially in outdoor 

environments. 

The GPS technology has satisfied the outdoor location positioning and navigation with 

the help of the satellite [10]. Software companies such as Google have used such 

technologies to their benefit. There is a wide range of applications dependent on this 

technology such as vehicular navigation, personal navigation/map reading and fleet 

management; to mention a few. As wonderful as GPS technology is, it is only limited to 

outdoor activities and applications. Its inability to be seen indoors is a challenge to 

technologists everywhere.  

Therefore, to mitigate the limitations of GPS, wireless network sensor systems are used 

in many buildings and rooms because they realise the ubiquitous goal for users, internet 

and the environment to be connected constantly to a network. Specifically, it allows the 

development of systems such as smart devices, with real-time location messaging and 

management of seamless location detection experience for users within buildings.  

The advancement of technology in the world today has led to the high proliferation of 

smart devices and the birth of next-generation systems, algorithms, services and 

applications with sensor support focused on improving the quality of life of its users, in 

terms of, health care, security efficiency, home automation, social interaction within 

communities and social platforms. Continued research in indoor positioning using smart 

devices within smart environments has not only activated a shift in the paradigm of 



25 

 

location-based technologies but has also contributed to the expansion of services 

including logistics and navigation.  

So far, scientists have been able to achieve indoor accuracy of about 2 - 3meters using Wi-

Fi technology  [4] on pedestrians and 3m – 5m using wheel encoders [5] on mobile robots 

but it is undeniable that such precision within a care homes or hospitals will be 

inadequate in scenarios where the subject of interest is the location of a mobility scooter 

user in an emergency or in a crowd. 

Indoor localisation is an area of particular interest due to its social-economic relevance 

and implementation in several applications. It is particularly relevant to  individuals such 

as the elderly, people with physical impairment, carers and corporate bodies like service 

providers as it enhances services and users’ quality of life. This , therefore, calls for an 

intelligent system that can better estimate its user’s true location within buildings to 

provide services such as tracing and tracking, security and pattern recognition amongst 

others.   

Some of the challenges indoor localisation technologies pose for our target audience are 

the legality and ethical acceptability. These challenges include unwanted monitoring and 

tracking of mobility scooter users who are vulnerable individuals suffering from either 

physical impairment or old age related sicknesses such as Alzheimer. These challenges 

are mitigated by providing users with  

 Sense of independence and individuality  

 Option to turn off and turn on the system at will.   

Life expectancy since the 1980s till now has steadily increased due to accessibility to 

innovative medical science and technology, unprecedented wealth, better nutrition and 

healthier lifestyles. 

Presently, there are 125 million accounted for people aged 80 years and beyond in the 

world. World Health Organisation (WHO) [22], reveals that the population aged 60 and 

over will total 2 billion by 2020, which is a huge jump from 900 million in 2015. It is 
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predicted that this ageing population will approximately double according to the World 

Health Organisation (WHO) [22], from its current 12% to 22% between 2015 and 2050. 

More than half of the annual population increase will be from India, Pakistan, China, 

Bangladesh, Nigeria and the United States [6]. Their findings also predict that by 2020, 

the populace of over 60’s will outnumber children aged 5 years and younger.  

Improved indoor localisation would be relevant to the ageing population, 60 years and 

older in areas of health care and security. In the united kingdom, the National Health 

Service (NHS) constitution has created special health provisions for persons who fall 

under the Old Age Dependency Ratio (OADR) category, in particular, people with mobility 

impairment [7]. It is estimated that the NHS sees over 1 million patients every 36 hours, 

therefore, it is virtually unfeasible to monitor and assure each patient’s wellbeing [3]. 

Therefore, health care institutions such as care homes, hospitals and assisted living 

environments would benefit from an improved indoor localisation system that provides 

immediate trustworthy positioning of their guests (mobility scooter users), especially in 

instances of emergencies.  

Unfortunately, a solution to accurately track a mobility scooter user in rooms is not in 

existence, to the best of our knowledge. Therefore, a system is proposed to provide more 

accurate indoor positions with an error range of 0.35m – 1.35m for indoor mobility 

scooter users. The system is highly cost-effective because it exploits already existing 

ubiquitous technologies such as Wi-Fi routers, wheel encoders and smartphone with its 

IMU modalities including accelerometer and magnetometer.  

1.2 Business Motivations 

Having discussed the target audience [in section 1], the proposed investigation would 

provide the following benefits for mobility scooter users: 

 High sense of independence for users and peace of mind for caregivers  

 Transmission of the improved estimated true location of users to relevant 

authorities for security and rescue purposes. 
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 Point of interest detection. These include elevators within shopping malls, finding 

specific stores or person of interest etc. 

 Enhancement of user’s efficiency and convenience in accomplishing daily tasks that 

require physical movement. 

It should be pointed out that the exploration not only focuses on the ageing population 

(especially those who fall under the OADR) but particularly individuals who use mobility 

scooters. A very small population of this target audience can afford health care luxuries 

and necessities because a larger majority are either pensioners or health patients aged 

under 65 and over with limited financial resources. However, the smartphone is now a 

ubiquitous technology and in the UK about 64% of senior people own one according to 

statista [8].   

The ubiquitous smartphone is appreciated for its familiarity, ease of use, supporting 

sensors and applications. It offers an excellent platform for localisation, which can 

potentially influence existing localisation methods beyond the popular GPS and ZigBee. 

Smartphones in comparison to platforms such as ZigBee [15] boast of easy user 

understanding thanks to its ubiquitous nature, higher efficiency, accessibility , usability 

and flexibility [8][15]. In particular, statista [8] which, demonstrate the high demand for 

precise indoor localisation Location Based Services (LBS) running on smartphones with 

Android operation systems (OS). This is considerable true because a very large 

percentage of the target users use smartphones with Android OS. 

Typically, indoor positioning systems tend to be quite expensive [9] with costs 

comprising of numerous constituents such as the costs of infrastructure, the technology 

that transmits and receives position information for each test, system set-up and 

maintenance. To ensure cost is inexpensive, it would be beneficial to investigate a system 

that exploits already available and accessible technologies for mobility scooter users 

which include, mobility scooter, a smartphone with IMU modalities and Wi-Fi routers 

which both have no extra incurred costs (such as sensor installation charges), thus 

providing economic advantage.  
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A realisation that not all mobility scooters come with wheel encoders, it would be 

advisable that the proposed system develops its custom inexpensive wheel encoders. 

This is the only incurred cost. This cost can be avoided by purchasing mobility scooters 

with inbuilt wheel encoders.  

It should make great use of available technologies, therefore, challenges like cost, 

inaccessibility and foreignness would not be a source of concern to users and developers. 

With awareness of the need for a cost-effective improved indoor localisation system, and 

the ubiquitous nature of technologies like Wi-Fi routers, smartphone, wheel encoders 

and even mobility scooters, it is safe to predict a high likelihood of users would have a 

long term dependency on our proposed system in the near future because of its several 

advantages to users.   

1.3 Technology Focus 

Indoor localisation gap begs our research to exploit environmental sensors (Wi-Fi 

technology), mobility scooter technology (wheel encoders) and smartphone sensors 

(IMU sensors), as much as possible. It also encourages the combination of the above 

technologies, in a proposed investigation (WTP-HAMS system) to get better indoor 

positions.   

Why Wi-Fi? 

Of all environmental sensors, Wi-Fi is the most ubiquitous because it is present in most 

commercial environments and homes. This ubiquitous technology is beneficial for 

designing wireless systems capable of calculating position estimation in rooms. 

Thriving commercial environments like care homes, hospitals and offices have a 

minimum of seven access points in their buildings at floor level as recommended by 

CICSO  best practice [10]. Each access point signal is accessible by any smartphone within 

range. Exploring the opportunity to use the barest minimum number of routers/Access 
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points (APs) to improve accuracy utilizing the widely used smartphone is still an area of 

keen interest.  

RSSI is a technology propagated from the ubiquitous Wi-Fi technology. Typically 

exploited for tracking and localising indoor target objects. It is , however, unreliable in 

providing accurate positioning of target objects.  

Prevailing relevant representative research by Alex Mariakakis et al [11], tested with one 

router in a commercial environment, where they calculated an error mean of 2.3m using 

adopted dead-reckoning techniques and geometric methods. Other studies, by 

[4][12][13][14][15][16][17], proposed that an increment in the number of propagated 

routers would better the position accuracy. Therefore, K. Chintalapudi [4], proposed to 

use two routers in their own indoor localisation solution, where they implemented EZ 

localisation model and resulted in a median error of 2m and 7m in small and large 

buildings respectively. Then, D. Omkar and P. S. S. Koul [12], proposed to test for position 

accuracy improvement with three routers. They adapted the trilateration method that 

combines RSSI distance measurements from three routers, to result in an error of 

approximately 9m. Since three routers underperformed, J. Yang and Y. Chen [13], 

proposed to experiment with four routers for improved position accuracy. Their study 

reported a result of 29% median error, using regression-based and correlation-based 

approaches. To further investigations in using four routers for indoor localisation, S. 

Boonsriwai and A. Apavatjrut [14], explored multi-trilateration which resulted in a 

promising approximate error of 2.816m. Then, researchers, A. S. Paul and E. a. Wan [15], 

proposed to combine five routers/access points (APs). They adapting sigma point 

Kalman filtering and resulted in an average error of 3.45m. Following the poor 

performance from five routers [15], S. Boonsriwai and A. Apavatjrut  [14], proposed to 

test for position accuracy using multi-trilateration of six routers. The result was an 

approximate average error of 6.641m, which is unsatisfactory compared to the 2.816m 

error from combined four routers. S. Mazuelas et al [16], explored the combination of 

eight routers/access points (APs) which resulted in a mean error o f 3.987m. This system 

will be quite expensive because it would require commercial environments to install 

additional hardware more than the recommended minimum of seven. Later, J. Cheng et 
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al [17], explored the combination of 10 routers, using a decentralised scheme based on 

matrix completion. Their system result was a median absolute error of 1.1m. 

Unfortunately, investigations such as  that from J. Cheng et al [17] are simulated and 

expensive. Therefore, its feasibility and implementation in real-world scenarios are 

unclear. 

It is our deduction that more is not always better. Therefore, in the real world 

environment, we would be testing 3 and 4 routers because they show best position 

estimates in realistic settings wherein a commercial environment, the smartphone can 

get RSSI signal from at least three routers/APs. It is expected that our propos ed WTP-

HAMS (Wi-Fi Timed inertial combined with odometry Pulse in a Hybrid Active Mobility 

Scooter) system would best adopt 4-router combination. 

Why wheel encoders? 

Wheel encoder technology is ubiquitously used by vehicles to compute travelled 

distances. Therefore, we suspect it would be beneficial for calculating travelled distances 

and pose of an indoor vehicle mobility scooter.  

We noticed must indoor localisation practices are predominantly tailored to pedestrians 

[18][19][20][21]. However, this proposed investigation is for users moving in 

translational motion on a mobility scooter. 

To the best of our knowledge, there are no studies for localising mobility scooters, 

however, because of its translational motion similarities with robots, an understanding 

of the principles surrounding robotics kinematics, odometry and motion like in  the paper 

by A. Jha and M. Kumar [19] are recommended.   

A. Jha and M. Kumar [19], discussed how the position accuracy of robots is an issue, 

especially when considering the odometry of a robot to find an accurate pose estimation. 

This is because odometry inevitably suffers from drift, which is an accumulation of errors 

over a period. It is predominantly due to wheel slippage and unequal wheels diameter, 
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amongst other factors. Proposing odometry models, their results showed an accuracy 

error of 3m – 5m when using the robots in-built wheel encoders only and an error of 

33cm - 51cm when combining robots in-built wheel encoders with IMU. 

We propose to adopt odometry models of the robot [19] when calculating relative pose 

estimates of our mobility scooter. This is important because it produces good pose result, 

especially when combined with our proposed IMU combination.   

Why smartphone IMU modalities? 

The smartphone is one technology that is not only ubiquitous but has fast become a vital 

device for users, especially because of its efficiency in the daily lives of users (such as 

communication and outdoor navigation) and its easy accessibility.   

This technology has 512 inbuilt modalities and amongst them is the IMU sensors, which 

is responsible for measuring the direction, rotation and orientation of the smartphone. 

Therefore, the proposed investigation considers using smartphone IMU modalities to 

measure navigation heading of the mobility scooter.  

Representative research by O. Woodman and R. Harle [22] tackled a pedestrian 

localisation problem using IMU (otherwise referred to as inertial measuring units), which 

includes a combination of accelerometer, magnetometer and gyroscope. Their 

investigations resulted in heading estimation accuracy of 75% - 95%. This is an 

impressive result, however, it is for the pedestrian who move in pedestrian motion with 

the mobile device in a vertical orientation. While for robotics [19] combined inbuilt IMU 

with odometry from its wheel encoders will result in the improvement of accuracy error 

from 3m – 5m to 33cm -51cm. 
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1.4 Proposed Investigation 

This study addresses the problem of improving indoor accuracy, in particular with the 

use of cost-effective and energy efficient methods. It specifically includes combining 

ubiquitous technologies such as smartphone IMU modalities accelerometer and 

magnetometer, with inexpensive complementary technologies usually found in indoor 

environments like Wi-Fi routers, and, technologies generally found in automobiles such 

as wheel encoders, to improve indoor localisation for mobility scooter users.  

1.4.1 Aim and Objectives 

This research is aimed at improving indoor positioning accuracy for mobility scooter 

users (such as the elderly and people with mobility impairment) through effective 

combination of sensor data from ubiquitous technologies, within an ecosystem of 

integrated outputs from environmental sensors (Wi-Fi technology), smartphone devices 

(IMU sensors) and vehicle systems (wheel encoders).  

In particular, a server-based smart system combining the results from all mentioned 

technologies for indoor positioning improvement is proposed. This includes the 

objectives of the research, highlighted below –  

 Learn about the environment, smartphone and indoor vehicle sensors and 

how these can be used to localize environment static and dynamic objects.  

 Understand the state of the art of indoor localisation and the different used 

methods.  

 Learn appropriate software tools and hardware specifications to allow me to 

implement and experiment with the relevant sensors and to devise and 

engineer new solutions. 

 Design a new approach that combines environment, smartphone and indoor 

vehicle sensors. Produce development and experimentation plan. 

 Carry out pilot and formal evaluations to assess the potential and advantages 

of the proposed new approach. 
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 Present and analyse evaluation outcomes. This includes learning about related 

statistics. 

 Produce scientific publications based on the developed experimentations and 

results analysis.  

 Write the thesis manuscript. 

These above-mentioned objectives will lead to the conceptual design and development 

of a new system, called: WTP-HAMS (Wi-Fi Timed inertial combined with odometry 

Pulse in a Hybrid Active Mobility Scooter) system which is a unique combination of 

mathematical concepts, techniques and models. It combines position estimates from 

RSSI (Wi-Fi) with relative pose estimates from a proposed novel odometry model 

(combined wheel encoders and IMU sensors) to result in new absolute position with 

reduced errors.  

1.5 Motivation and Challenges  

Why propose WTP-HAMS system? 

WTP-HAMS system would combine the advantages of the following – 

 Wi-Fi – position estimation with room reference  

 Wheel encoders – distance travelled and pose with reference to the mobility 

scooter 

 Smartphone IMU modalities – In particular accelerometer and magnetometer for 

navigation heading  

Unlike robots, conventional mobility scooters are not designed with inbuilt wheel 

encoders and IMU sensors. Therefore, inexpensive wheel encoders were built and a 

smartphone with IMU modalities was employed. Also, the smartphone consolidates all 

data from Wi-Fi, Wheel encoders, and combined accelerometer and magnetometer 

sensors.  
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The proposed system WTP-HAMS offers a complementary combination of RSSI, 

odometry and inertial measurements to reduce position error to an average range of 

0.35m to 1.35m. 

Challenges  

It is not unusual for positioning performance to degenerate when – 

 In the case of the smartphone, its hardware constraint reduces dataset resolution 

by approximately 10%. The age of the Samsung galaxy note 1 and the 

discontinuity of its operating system (OS), support encourages system crash or 

freeze. This ends up influencing timestamp results.  

 In the case of Wi-Fi, the Line of Sight (LOS) between transmitter and receiver is 

affected, and None-Line-of-Sight (NLoS) is present. This factor involves the ability 

of the positioning system to comfortably detect target objects like mobility scooter 

when the positioning scope gets wider. Also, obstructions such as human presence 

or large furniture influence the system’s positioning accuracy.  

 In the case of wheel encoders, the drift in the relative travelled distance is high. 

This significantly negatively influences pose accuracy.   

 In the case for smartphone IMU modalities, 

o Smartphone orientation including vertical orientation and horizontal 

orientation can influence heading navigation results of a translational 

moving mobility scooter. This is important because predominant trials by 

literature have been for pedestrians with a smartphone in a horizontal 

orientation in their pockets. 

o The right IMU combination is a challenge because to better get heading 

navigation, the following combinations should be considered – 

accelerometer and magnetometer  versus gyroscope, accelerometer and 

magnetometer   

Location systems usually scale on two axes: density and geographic scales. Geographic 

scale refers to the area or volume covered (this information is usually provided by a map) 
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while density refers to the number of units detected per unit geographic space per time 

period. Current indoor location systems locate target objects in 2-D space.  

Depending on the number of units gathered in space or expanse of space covered, indoor 

localisation, especially wireless systems can become congested, thus resulting in errors. 

This is true in particular for wireless systems including RSSI (Wi-Fi) and odometry 

(wheel encoders).  

The thesis investigates the proposed WTP-HAMS system which would combine the 

results and errors of RSSI (Wi-Fi) and a proposed novel odometry model (consisting of a 

combination of wheel encoders, accelerometer and magnetometer). The idea is to design 

a more robust system because it takes advantage of the errors the technologies 

demonstrate.  

Our research investigates how WI-FI, IMU sensors and wheel encoders will be beneficial 

for our proposed WTP-HAMS system. Although each of the aforementioned technologies 

has their limitations, they are necessary for accomplishing the aim of this research which 

is indoor position accuracy improvement. It is expected that noisy environments such as 

care homes with a smooth wooden tiled floor will benefit from our proposed WTP-HAMS 

system.   

1.6 Contribution to Knowledge  

Thesis novel contributions to the current state of knowledge are summarised as follows: 

Novelty in application  

 WTP-HAMS system – the unique combination of technologies, techniques and 

models to achieve indoor localisation. This includes the following –  

o Wi-Fi technology – SDRS log-normal shadowing model for distance 

estimation + multi-trilateration for position estimation. 



36 

 

o Smartphone technology (including IMU) – a combination of Magnetic 

angular rate update (MARU) and acceleration gradient update (AGU) of 

MAGYQ filter. 

o Wheel encoder technology on wheels of a mobility scooter – odometry 

model.  

The novelty in mathematical models 

 New drift mitigation model which improves travelled distance by adding a 

deviation error percentage to initial calculated travelled distance.   

 Novel odometry model which provides combines heading navigation (from 

accelerometer and magnetometer) with new travelled distance estimates of the 

new drift mitigation model.  

New unique classification of Hybrid indoor localisation  

 Proposed two categorisation  

o Technology and Technique Hybrid (TTH).     

o Propagation based hybrid system. 

1.7 Thesis Outline 

 This thesis consists of seven chapters detailing four years of investigation into the 

improvement of indoor localisation accuracy and the proposal of WTP-HAMS system.  

A document organisation of this thesis is summarised in Table 1-1 on page 37.  
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Table 1-1 Document organisation 
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Chapter 2 Background Knowledge  

This chapter provides basic knowledge of relevant technologies, methods and techniques  

adopted based on the two categories of location positioning systems, including physical  

localisation and topographical based categories. It discusses examples in detail with the 

results, advantages and limitations of the two aforementioned categories. Furthermore, 

it introduces and describes key mathematical techniques, models and methods  our 

proposed WTP-HAMS system will employ. Then, it lightly reviews state of the art of 

mobility scooter with regards to indoor localisation. Finally, it presents a summary of this 

chapter stating technology, methods, models and algorithms the proposed WTP-HAMS 

system will be employing.   

Overview 

Location localisation is very crucial as it plays a significant role in numerous applications 

such as vehicle navigation, location identification, emergency services, fleet management, 

automated billing, network optimisation, resource management and travel aids which are 

usual location-based service (LBS) applications in this area [23]. Continuous research 

into location localisation, have developed several plausible approaches, methods, 

algorithms and techniques, which aim at finding a target object’s true location/ground 

truth. 

When developing a system that aims at improving indoor position accuracy for both 

stationary and moving target objects, a complete investigation into the background of 

existing localisation technologies, algorithms and techniques applied for outdoor and 

indoor environment must be conducted.  

Location positioning systems can be grouped into several categories, but, prevailing 

understanding provides two best categories, including –  
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 Physical localisation-based category, which groups localisation systems in terms 

of techniques and technologies.  

 Topographical based category, which groups positioning systems in reference to 

their environment, i.e. indoor and outdoor. 

 

2.1 Physical Localisation Based Category  

The physical localisation category refers to a target object’s current location in 

environments such as homes, virtual environments, offices, shopping malls or hospitals.  

This category can be subdivided into three [24], namely, 

 Illustrative localisation 

 Spatial localisation  

 Network localisation systems  

 

Illustrative localisation utilises data such as name, number or identity to describe 

geographical object locations of structures, cities, countries or mountains. In professional 

applications where illustrative localisation is insufficient, spatial localisation is applied as 

it is the point denoted by two-three dimensional coordinates within Euclidean space. 

Network localisation systems fall under the physical location class of localisation that is 

reliant on the topography of a communications network. Network localisation system is  

typical for tracking and locating target objects. It is generally based on address protocol.   

Our proposed system is based on network communication, therefore further discussions 

on network localisation systems are examined.  

2.1.1 Network Localisation Systems 

In recent times, network localisation systems are fast becoming the preferred localisation 

technique due to their capability to provide more refined data in terms of object accuracy. 

Networking systems are evident in many indoor and outdoor localisation solutions. To 
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attain localisation ubiquitous goal, every user and surrounding objects will be connected 

to a network constantly through easily accessible technologies. It should detect and 

manage the position of target objects in real time. 

Investigations display the two categories of network localisation systems, namely,  

 Cellular network systems  

 Sensor network systems  

 

2.1.1.1 Cellular Network 

Over time, cellular networks have evolved rapidly into a comprehensive wireless 

communication infrastructure with almost worldwide coverage [25]. By 2012, a record 

of more than two million base stations (BS) was deployed due to the development of new 

generation cellular networks [26]. It is observed that these new generation cellular 

networks experienced limitations due to a significantly high amount of energy consumed 

when signals are transmitted over wireless channels.  Consequently, cellular networks 

experienced unprecedented data overload as it continues to struggle keeping up with 

other technologies [27]. Major investment in the radio access network and core 

infrastructures is to be provided to accommodate growth.  

Position accuracy in cellular networks is limited by interference exacerbating methods 

and non-line-of-sight propagation (NLoS), thus resulting in the transmission of 

inconsistent data [28]. Traditionally, cellular service areas are divided into cells and each 

cell possesses its infrastructure base station or cellular tower. Several techniques have 

been adopted to track mobile client within the network. A successfully deployed 

technique is the establishment of two-way communication between the mobile client and 

the network. This technique of utilising cellular networks to predict client location 

involves the usage of the mobile network and the network-based positioning determinant 

equipment to locate the location of the mobile device. Cell identification is the most basic 

method of location determination using cellular networks. Cell ID is determined from 

base stations with known locations when the allocation of the connected mobile device 
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to a base station that transmits the strongest field strength is realised. Evidently, studies 

have shown that cell sizes alone are not adequate enough for location localisation but the 

provision of supporting technologies will potentially enhance the mobile location 

accuracy due to its low air interference requirement, its decency on sector size and its  

propensity for hybridization with other techniques. G. Deak et al[29], classifies cellular 

network techniques under either standard or non-standard communication categories.     

 Standard Communication 

Standard communication techniques include triangulation, Time of Arrival (ToA), Time 

Difference of Arrival (TDOA), Enhanced Observed Time Difference (E-OTD) and Angle of 

Arrival (AoA).  

Triangulation [5] technique can be established when the two necessary reference nodes 

are determined. With this method, the location of the target node can be determined by 

the intersection of direction lines. The illustration in Figure 2-1 shows how triangulation 

works in 3D. A and B symbolize reference nodes, after obtaining the angles Ɵ₁ and Ɵ₂, the 

physical target position T can be estimated based on the set coordinates of the reference 

nodes.  

 

Figure 2-1 Triangulation method 
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Time of Arrival (ToA) [30], requires the synchronisation between base stations and 

mobile stations for distance. This standard works by calculating the conversion of time 

taken between bursts sent by the mobile and the base stations, to derive distance. It is 

therefore adopted by triangulation for target object localisation estimate.   

Time Difference of Arrival (TDOA) [30] (see Figure 2-2) technique is very much like the 

ToA. Compared to ToA that only measures the time it takes for one signal to travel from 

emitter to receiver, TDoA method requires each the base stations to simultaneously 

transmit two signals having different frequencies at different times.  

TDoA, like ToA, requires the conversion of the time difference to distance and the 

trilateration of three distances from a base station for target object position estimation.  

Enhanced Observed Time Difference (E-OTD) [30] (see Figure 2-2), is a modification of 

the ToA method and it measures the difference of arrival time of a transmitted signal from 

the synchronization between at least three base stations and a mobile device within a 

network. This particular technique is best suited for outdoor environments as it 

possesses a lag of about 5secs and an accuracy estimation within 50m – 125m. 

 

 

Figure 2-2 E-OTD positioning solution [30]. 
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A developed technique which is not widely adopted because of low accuracy estimation 

is Angle of Arrival (AoA) [31]. AoA requires the use of directive antennae or an array of 

antennas. To reduce the accuracy error of this technique, researchers have hybridized 

the technique by combining it with TDOA distance estimation techniques in its 

application as illustrated in Figure 2-3.  Triangulation is a technique applied to 

complement AoA measurements. This calculation can be used to determine the position 

of the target node as it is based on the measurement of angles. Furthermore, observations 

show that triangulation can be translated to trilateration as the distance between nodes 

can be derived from the bearings between them. All afore-described standards depend 

on various means of triangulation and trilateration of signals from cell sites servicing 

mobile devices/phones within a network [28].   

 

 

Figure 2-3 Graphical illustration of positioning techniques [28] 

 

 



44 

 

In Figure 2-3, M. Yassin and E. Rachid [28] summaries localisation prowess of each 

technique within standard communication mentioned above against the common GPS 

standard.  The performance criteria adopted for positioning comparison are accuracy and 

coverage. Observation in the literature [28] supports the already accepted truth that 

localisation methods are best acceptable when the accuracy error (which is the distance 

between real physical geographical location and estimated location) is lower while its 

coverage is great. 

o Non-standard D2D 

Localisation solutions have progressed from the standard methods mentioned above by 

embracing non-standard methods to improve the localisation accuracy of target objects 

in cellular networks. This non-standard is categorised into three, namely, 

 D2D communication  

 Location detection using pattern matching,  

 Localisation utilising smart antennas  

 

D2D communication 

D2D communication [32][33] in cellular networks, allows a direct communication link 

between two devices without requiring radio signal to travel through the base station 

(BS) or core network. Traditionally, communications are required to travel through the 

BS regardless of devices short proximity. To accomplish D2D communication, a quick 

transfer of large data set is possible between mobile devices over a short range. This 

provides shorter traversal paths and there are advantages in its ultra -low latency in 

communication.  

Short range technology like LTE and Wi-Fi can be employed in the enabling of D2D 

communication [32]. Parameters such as data rates, applications, signal strength, range 

between 1-hop devices and device discovery mechanisms greatly influence calculation 
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outcome. For example, LTE direct provides a range of 500m at rates up to 13.5Mbs while 

Bluetooth provides a range of 240m at a maximum data rate of 50Mbps. 

D2D communication is beneficial in supporting information sharing, coverage extension, 

machine to machine communication, data computation offloading and local data services 

via three data transportation modes, namely unicast, broadcast and multicast. Unicast 

also regarded as one-to-one, is the transmission of information from one source to 

destination. Broadcast referred to one-to-all, is the transportation or offloading of data 

information from one source to all possible destinations. Finally, multicast, which can be 

called one-to-many is the transmission of sent and received data sets or signals from one 

source to multiple destinations.   

 

Figure 2-4 Device-to-device cellular communication [34] 

 

Asides from Wi-Fi being ubiquitous, it can work in unicast, broadcast or multicast 

transportation mode.  This is especially advantageous for our proposed WTP-HAMS 

system because our system works in a unicast environment where power requirement is 

minimised and data rate to the smartphone is maximised.   
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Pattern matching 

Location detection using pattern matching acknowledges the multipath attributes of a 

mobile phone as fingerprints. This non-standard technique tackles problems some 

standard techniques such as AoA and ToA/TDoA might encounter in metropolitan areas 

where multipath is intense. This involves location servers and databases that contain 

actual and estimated location measurements of signals. The client location is estimated 

by comparing the received signals to the signal values saved within the database. This 

method does not rely only on the signal values, it allows other characteristics of the signal 

to be utilized.  

Pattern matching allows for device detection by utilising and applying multipath delay. 

This is illustrated in Table 2-1.     

 

Table 2-1 Pattern matching method collecting multipath characteristics as the “fingerprinting” of 
mobile phones [23] 
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Localisation utilising smart antennas  

This non-standard technique relies on angle-of-arrival (AOA) and direction of arrival 

(DOA) standard communication techniques as the measurement factor. The technique 

offers diverse means to improve the performance of wireless systems. This improvement 

includes higher coverage provision, improved system capacity and sensitivity to non-

ideal activities reduction [34].  

Smart antennas like the adaptive antenna system is a combined network that utilises an 

array of low gain sensor elements and real-time adaptive signal processors  [34][35]. The 

antennas are initially calibrated and programmed for automatic adjustment of 

performance parameters such as beamforming weights and RSSI to enhance positioning. 

An on-line capturing system which consists of three readers and a target is developed by 

C. H. Lim et al[34]. Their system required a PC with a parallel port to control the beam 

former of a 4-element uniform linear array smart antenna. The PC which acts as a server 

within the processing network estimates the client’s location through triangulation 

calculation of consolidated angle and RSS data only (see Table 2-2). Using room 

dimension 8m x 9m (shown in Table 2-3), they conducted simulated experiments with 

their proposed system to result in a 1m range accuracy. 

 

Table 2-2 A triangulation of Wi-Fi routers using AoA of smart antennas [34] 
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Table 2-3 Indoor Wi-Fi Localisation System Utilizing 3 Smart Antennas [34] 

Although this approach displayed a resolution accuracy better than some established 

solutions such as RADAR and RF fingerprinting [34], it is limited due to unavailability of 

the database to store new data and access previously saved data. This implies the system 

will be required to spend more power and time re-calculating previously calculated areas. 

The system is very dependent on cell sizes and is disadvantaged because each reference 

point must be deployed in a permanent direction thus rendering the system impractical 

in dynamic environments.  

In summary, non-standard communication-based systems use combined methods from 

standard communication to achieve its improved indoor localisation. This , therefore, 

produces robust systems that result in better indoor position estimates.  

2.1.1.2 Sensor Network 

Sensor networks are popularly employed by indoor localisation researchers because they 

are beneficial in solving “localisation problem” especially within smart environments 

[35][36][37]. In particular, wireless technologies used for indoor location estimation. It 

is important because, it is an ad hoc network which has relatively small, standardised, 

cooperative, and inexpensive sensors with inexpensive low power processors and 
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wireless networking [35]. Sensor networks have autonomous nodes that are empowered 

with capabilities for calculating, sensing and wireless communication.  

Sensor dependability is becoming a preference by scientists due to the considerable 

amount of location-aware protocols being proposed for networking and ‘ad-hoc’ tracking.  

Although there exist several algorithms and techniques for indoor positioning 

improvement, our document will be focusing on Node localisation methods. This is 

important because it is relevant to the proposed investigation method.    

 Node Localisation Methods 

Sensor networks rely on deployed nodes with known location to transmit to other nodes 

with unknown coordinates at known as reference points) to promote localisation of the 

unknown nodes. This includes nodes that possess unique location aware devices such as 

beacons. 

This method can be analysed in the following categories –  

 Localisation with static beacons 

 Localisation with moving beacon  

 Beacon-free localisation methods  

Localisation with static beacons 

Nodes, like Wi-Fi routers, within a sensor network work with localisation devices like 

smartphones which have Wi-Fi receivers because it calculates and presents location 

information based on data from Wi-Fi.  

Wi-Fi routers can be referred to as a beacon because its location is known. Otherwise, 

nodes like smartphones that are unaware of their location are referred to as unknown 

location. When a localisation system is built using methods like proximity and ranging in 
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the literature [73][74], it is run with the purpose of calculating the unknown’s location 

relative to the coordinate system of the beacons.  

This is further explained in journals [35][36], where it was discussed that an unknown 

node can approximate its location if three or more beacons (also referred to as known 

nodes) are present in a 2D space. The unknown node becomes a beacon after its location 

is known. This new beacon becomes the node through which, new unknowns can 

estimate their location within an indoor environment.  

Although static beacon is advantageous in determining positions, it is however 

challenged with its need for more beacons to compensate the blind spots where signals 

might get lost. Therefore, it begs the need to improve localisation robustness using a 

lesser number of beacons (like Wi-Fi routers).  

Localisation using moving-beacons 

To address the challenge stated in ‘localisation with static beacons’, relevant literature 

work [35] offers a solution to provide a robust localisation system using moving-beacons.   

This system is described to involve the calculating of location estimations via mobile 

observers (also known as moving beacons) moving in an organised from within a global 

coordinate system. The location of each node is estimated by applying a transformation 

method to the range measurements. The expected result is a more robust system that 

effectively localises a moving target object using a smaller amount of reference nodes. 

This is because the practicability and cost-effectiveness of the system are of importance.   

Beacon-free localisation methods  

This is typically implemented in larger networks. In this scheme, the location of every 

node is established through native node-to-node communication. It is recommended that 

this positioning scheme be a fully decentralized solution with all nodes beginning with a 

random initial coordinate task. The nodes then collaborate by means of only local 
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distance estimations to work out a coordinated task. The resultant coordinate task 

possesses both translation and orientation which must be measured appropriately. Using 

reference data from sources such as wheel encoders and smartphone IMU modalities, a 

post-process is required to convert the orientation and translation coordinate task to 

absolute location data.  

2.1.2 Conclusion and Analysis of Physical Localisation 

Based Systems   

Indoor localisation is achievable through different physical localisation-based systems 

that provide position measurements. The dependencies of users to physical localisation -

based systems vary with regards to accessibility, complexity, cost-effectiveness and 

accuracy. 

The physical localisation-based system is categorised into illustrative, spatial and 

network localisation systems. Of all three categories, the network localisation systems 

show more promise, due to its ability to use easily accessible technologies in building 

cost-effective and accurate positioning system. 

Within the network localisation system, it is observed that the sensor network system 

uses communication standards of cellular network systems to operate. This typically 

applies non-standard communication, (such as D2D communication, localisation utilising 

smart antennas and adaptive hybrid systems using data fusion methods) to node 

localisation methods like static beacons, moving beacons and beacon free based sensor 

network systems.  This is important because it calculates for the position of moving 

objects in stationary and moving instances within real environments. 

The proposed WTP- HAMS system is a sensor network which aims to design a less 

complicated, effective and inexpensive localisation system that would provide improved 

position accuracy to its users. In particular, it combines the benefits of the methods to 

achieve the described aim. This is shown in Table 2-4. 
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Table 2-4 Literature works adopted in our proposed WTP-HAMS system 

 

2.2 Topographical Positioning Systems 

Based on literature works [28][40]–[42], it is typical to categorise localisation system into 

that groups based on topography. This includes –  

 Outdoor localisation systems  

 Indoor localisation systems  

2.2.1 Outdoor Localisation Systems and Methods 

Early position localisation systems were originally designed to cater for outdoor 

navigation systems such as aircraft, military and commercial navigation [43]–[45]. This 

is discussed to be important in the paper by H. Balakrishnan, et al [43] because location 

information was very instrumental to early navigators. These navigators used tools such 

as the sextant and quadrant, to calculate angle measurements of different solar bodies to 

the earth’s horizon. Then, these angle measurements were then used as location 

references. This was beneficial because solar bodies are known to travel in predictive 

paths relative to the earth, thus behaving like a group of likely reference points [43]. 
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The twentieth century ushered in a drastic advancement in the quality and accuracy of 

outdoor positioning systems. This includes the Global positioning system (GPS)[46], 

Aircraft Radar [47] and mobile phone localisation [48].  

Global Positioning System (GPS) 

GPS is a popular technology adopted for outdoor tracking such as pedestrian and 

automobile navigation [49]–[51].  

According to the literature work [46], today, a GPS satellite constellation comprises of 

twenty-four satellites that orbit the earth. The constellations follow familiar orbit, thus 

making GPS based location estimation predictable.  

Each satellite uses atomic clocks to synchronise encrypted distinctive bit patterns of the 

transmitted radio signals with time. This is because the atomic clock is a highly reliable, 

low weight and stable technology, which guarantees 1m geo-location accuracy using very 

precise time when measuring radio signals path from the satellite to earth, as well as, the 

distance between the satellite and GPS receiver. The GPS receiver measures the time shift 

between each received signal stream from the different satellites.   

The GPS positioning systems have been greatly developed on, to satisfy outdoor 

environments and today, it is currently used in many smart mobile devices [44]. 

However, GPS performs poorly in an indoor environment because it requires a clear line-

of-sight (LOS) to perform effectively. In particular, the presence of walls and metallic 

objects, reflect, refract and attenuate GPS signals, thus making it unsuitable for indoor 

environments. This is a severe limitation because GPS will produce significantly large 

errors in an indoor environment.  

 



54 

 

Aircraft RADAR 

This technology uses radio frequency (RF) signal to measure vehicle speed, weather 

prediction or aircraft recognition.  

Proposed by E. B. Quist and R. W. Beard [47], the architecture of aircraft RADAR 

technology comprises of a rotating antenna with connected radio receiver and 

transmitter. The radio receives short bursts of radio signals transmitted from radio 

transmitters in vehicles or aircraft. It then considers radio frequency (RF) signal speed 

as it calculates the time difference of each received pulse at different distances with 

respect to the earth. 

Mobile Phone Location Systems for 199 Or 112 

This system was developed by the United Kingdom’s office of communications (OFCOM) 

and regulatory body for telecommunications to enforce mobile phone operators 

successfully provide location information of users dialling 999 or 112.  

In the past, emergency calls tracking were possible using landlines registered to 

addresses but as technology ushered in the era of wireless mobile phones, people evolved 

and position accuracy of users reduced significantly [52].  

In the quest for a more reliable and accurate location detection service, OFCOM has 

encouraged collaboration with communication providers to provide accurate and 

reliable caller location information at no charge to emergency organisations using cell 

identification and zone codes which provides an accuracy of 20 meters [52], which is a 

significantly large estimation area.  

This system will be insufficient in situations where the emergency call is from indoors, 

and time is of the essence. This could potentially endanger  the lives of users, therefore 

systems for indoor localisation is essential.   
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2.2.2 Indoor Localisation Systems 

Wireless systems have witnessed an overwhelming steady growth rate over the recent 

years and indoor localisation systems are not exempt as they are a critical need. This is 

because, these technologies have entered the world of the consumer in several forms  

including industrial, medical, transport system, logistics and public safety, to mention a 

few.  

Generally, indoor localisation is categorised under the following three –  

 Passive indoor localisation  

 Active indoor localisation  

 Hybrid indoor localisation 

The above-mentioned categories above are expatiated on in chapter 3.  

It is the goal of our research to design a system that improves indoor position accuracy, 

therefore, this thesis discusses a proposed WTP-HAMS system which considers wheel 

encoders, Wi-Fi and smartphone IMU modalities including accelerometers, 

magnetometers, and gyroscope (where most relevant IMU sensors in this system are 

accelerometers and magnetometers).  

A background into the considered technologies is discussed below.  

Wheel Encoders  

Wheel encoders are part of the core sensors used in localising wheeled mobile robots. It 

is used to calculate travelled distances for each wheel in the robot. 

The wheeled robot typically has inbuilt wheel encoders for performing localisation tasks.  

It combines outputs from each wheel to deliver direct measurements of the robot poses. 

However, these poses contain position errors because of drift over calculated travelled 

distance.  
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Relevant studies [5][19][53][54][55], discussed an odometry calibration system that 

potentially improves navigation accuracy. The researchers explored the conventional 

odometry model on wheeled mobile robots.  

In the conventional odometry model, the centre if the robot is tracked using calculated 

parameters including left wheel travelled distance, right wheel radius travelled distance 

and wheel separation between the wheels. This performs good pose estimates over short 

distances. However, when longer distances are travelled, the system begins to suffer 

offset or drift as illustrated in Figure 2-5. Seongwoo Jang et al [54], describes drift as the 

cumulative error generated during long-distance travel. 

The paper [5], tackled odometry error by creating an error matrix convenience model to 

achieve an error of 3-5m for a 720m travel path. Still, odometry [5] is observed to suffer 

drift over distances. This makes odometer from wheel encoder data unreliable and 

therefore inefficient in accurately localising robots over prolonged periods of time. 

Further study on odometry using wheel encoders can be found in reference paper by Y. 

Pei and L. Kleeman [55]. 

 

Figure 2-5 Odometry showing pose uncertainty growth in straight line movement [54] 
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Another research by A. Jha and M. Kumar [19], investigated the improvement of robot 

poses by combining the wheel encoders with IR range sensors. An odometry 

mathematical model was proposed using the conventional odometry model to uniquely 

combine kinematic model and Taylor’s series as shown in Equation 1, Equation 2 and 

Equation 3.   

xk+1 = xk + DcCos(∅) 

Equation 1 

yk+1 =  yk + Dc sin(∅) 

Equation 2 

∅k+1 = ∅k + 
Dr − Dl

L
 

Equation 3 

 

Where, 

xk+1 , is the current position from the previous position xk,  

yk+1, is the current position from the previous position yk, 

∅k+1, is the current direction from the previous orientation ∅k, 

Dc, is the distance travelled from the robot’s centre, 

Dr, is the distance travelled by the right wheel, 

Dl, is the distance travelled by the left wheel,  

L, is the length between the two wheels of the robot. 
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Their simulated system was designed to identify the behaviour of the robot as it obeys its 

program and travels to the next position while sensing landmarks around it. Results from 

their simulated experiments showed an error of 33cm. This result is good; however, drift 

is still experienced by the system.   

Our proposed WTP-HAMS system intends to adopt and evolve elements of the proposed 

odometry model [19] for a user-controlled mobility scooter with three wheels. Our 

system proposes to design a cost-effective system that will produce results with errors 

lower than 33cm.  

Wi-Fi  

Wi-Fi-based indoor localisation has fast become an attractive approach of high 

importance due to its ubiquitous nature. It is used to calculate indoor position estimation 

using various measurement techniques such as ToA, AOA and RSS (discussed in 2.1 

above, and illustrated below in Figure 2-6 and Figure 2-7). 

o ToA vs AOA 

Based on a survey conducted by J. Xiao et al [56], it was highlighted that Yamasaki 

achieved 2.4m positioning accuracy at the 67th percentile using ToA from 10 Wi-Fi 

routers. It was their observation that the performance of their system significantly 

degraded under none line of sight (NLOS) conditions.  

Xiong et al ToA [57], exploited the multiple antennas present within Wi-Fi routers 

because it enables fine-grained AoA-based heuristics. It leveraged MIMO techniques with 

16 antennas based on WARP platform to achieve 23cm median accuracy. The MIMO 

technique included intra-router triangulation for differentiating between line-of-sight 

(LOS) and non-line-of-sight (NLOS) path and pseudo spectrum correspondence to 

eliminate multipath reflections.  

This system proved to be expensive and impractical as they are constrained to the 

hardware which demands complicated organisation of 16 antennas within each route r.  
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Figure 2-6 a) Time of arrival approach with trilateration calculation; B) angle of arrival approach 
[58] 

 

 

o RSS  

 

Figure 2-7 Received signal strength [58] 

 

Received signal strength (RSS) is one of the most used signal feature for Wi-Fi-based 

indoor localisation [57][59][60]. It is described by C. Yang and H. R. Shao [58] to be a site 

survey approach to determining indoor position.  

The RSS between transmitter and receiver is used to calculate distance estimation.  

Distance estimation of a beacon and a node is derived through the calibration of 

transmitting power with matching free-space channel model established when 

measuring distance and power at each reference point.  
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Typically, indoor spaces are challenged with path loss shadowing effects in two 

propagation conditions – Line-of-sight (LOS) and None-Line-of-Sight (NLOS). 

In the LOS condition, there is clear unobstructed signal visibility between the beacon and 

the tracked node in an uncongested room. While in None-Line-of-Sight (NLOS), there are 

obstructions between the beacon and tracked node. (Read reference papers [58][61] for 

further information)  

Poor RSS propagation in both LOS and NLOS environment conditions produces 

inaccurate distance measurements. This challenge is tackled by representative research 

[38][39][62][63][64], where log shadowing models are used to predict propagation loss 

for an extensive range of environments. This includes Friis free space model.  This is 

explained further in 2.4.2. 

Position based on Wi-Fi is calculated from a combination of RSS measured distances from 

3 or more routers. According to studies [14][65], this combination is achievable with 

either trilateration or multi-trilateration models. Trilateration is for three routers and 

multi-trilateration is for more than three routers, as the name implies. Further 

explanation Wi-Fi position is in 2.4.5  

It should be known that commercially, RSS indication (RSSI) is employed in the 

estimation of positions [14][38][39][62][63][64][65]. This is because it is used in active 

tracking when the distance is estimated between beacon nodes and tracked nodes. Then, 

combine in either trilateration or multi-trilateration for position calculations. It is the 

general deduction that the system experiences challenges, especially performance 

degradation when in dynamic environments or in instances where there is a large 

distance between transmitting bacon and tracked node.    
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IMU sensors  

Considering the fast growth of technology, modern commercial smartphones now have a 

variety of embedded sensors, including accelerometers, gyroscopes and magnetometers. 

Several indoor localisation systems [56][66][67][68] have exploited these sensors 

because of their low-cost and low power advantages.  

A survey in 2016 by J. Xiao et al [56] discusses a proposed IndoorNav system that uses an 

accelerometer to calculate step detection and, uses gyroscope and magnetometers to 

calculate direction estimation of a tracked user (see Table 2-5). IndoorNav system used 

stride length of the use in its personalised step detection algorithms. Their experiments 

demonstrated a meter level mean accuracy of 1.5m in a testbed of 31m x 5m. The 

advantage of this system by J. Xiao et al [56] is that it does not need additional 

infrastructure. However, it is limited to pedestrian tracking. This similar to other 

representative papers [66][67]. 

 

 

Table 2-5 IndoorNav using inertial sensors and dead-reckoning approach [56] 
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How smartphone IMU works? 

Most smartphones measure their values with regards to the device coordinate system 

demonstrated in Figure 2-8a. It should be noted that the coordinate of smartphones is 

not the same as the earth coordinate system [68]. An instance by R. Henken and M. A. 

Wiering [68], discusses how an increase in gyroscope values when the phone is in a 

particular direction shows an angular velocity of the smartphone but not its absolute 

orientation in the physical world. To make sensory output useful for indoor localisation, 

there is a necessity to create a mapping translation from smartphone to earth’s 

coordinate Figure 2-8b.    

 

Figure 2-8 Converting smartphone coordinate to earth coordinate [68] 

 

The smartphone coordinate system has 𝑥,𝑦 and 𝑧 defined axes relative to its screen. 

Supposed the smartphone is held with its screen facing the user, then its 𝑥 axis will be 

identified as horizontal with positive values towards its right. The 𝑦 axis points vertically 

with positive values identified at the top of the smartphone. Finally, the 𝑧 axis out of the 

smartphone’s screen with positive values when pointing towards the user. For the earth 

coordinate system, 𝑥 axis always points towards the east with its tangent to the ground 

at the present location of the smartphone.  The 𝑦 axis, like the 𝑥 axis, is also tangential to 

ground at present location of the smartphone but it points to the geomagnetic North Pole. 
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Finally, the 𝑧 axis is perpendicular to the plane defined by 𝑥 and 𝑦 axes as it points 

towards the sky. 

Our proposed WTP-HAMS system opts to represent device orientation with quaternions, 

which is similar to methods by R. Henken and M. A. Wiering [68]. The advantage of using 

quaternions has over other methods like matrices and Euler angles are its compactness 

and relatively simple object rotation identification. Furthermore, quaternions are much 

easier to work with as they manage complex numbers effectively.  

Indoor localisation is further discussed in chapter three, state of the Art.  

2.3 Conclusion and Analysis 

Indoor localisation systems are typically designed using wireless technologies such as 

Wi-Fi, cameras, IMU sensors and cellular networks. These systems are discussed in 

sections 2.1 and 2.2 to be categorised into physical localisation or topographical based 

systems. These categories are analysed in conclusion sections 2.1.2 and 2.3, where we 

propose an investigation to design an easy to deploy effective inexpensive localisation 

system that uses everyday ubiquitous technologies that are familiar to the mobility user 

users. These include a smartphone, Wi-Fi and wheel encoders. 
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What is the proposed investigation? 

 

Figure 2-9 Proposed investigation (WTP-HAMS system) based on background knowledge  

 

Our investigation will explore cellular and sensor network systems, in particular, node 

localisation methods that will use non-standard communication methods including D2D 

communication and adaptive hybrid systems data fusion methods (displayed in Figure 

2-9,). This is important because it will benefit from localisation methods including  

 Static beacons for Wi-Fi. 

 Moving beacons for wheel encoders and IMU sensors. 

 Beacon-free for decentralised solutions, node to node and D2D communication, 

and orientation and translations tasks.   

The proposed investigation will plan to combine all the above elements in network 

localisation systems when designing the indoor localisation system with exploited 
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technologies (such as Wi-Fi, smartphone IMU modalities and wheel encoders), to 

improve position accuracy. In particular, the proposed investigation will combine these 

exploited technologies using mathematical models, methods and algorithms (discussed 

in 2.4) including –  

 Inertial sensor fuses complementary fusion of output from smartphone IMU sensors. 

This uses adaptive hybrid system data fusion methods on beacon free localisation, 

which is the IMU sensors within the smartphone. This is discussed in 2.4.1 below 

 Moving average filter reduces noise and high amplitudes of IMU output. This is 

discussed in 2.4.2 below. 

 Full- width half maximum is used to measure the acceleration distribution of a 

tracked node (mobility scooter). This is important for synchronising outputs from 

wheel encoders with IMU sensors in data fusion methods. This is discussed in 2.4.3 

below. 

 RSSI – SDRS log-normal shadowing model employs D2D communication methods to 

facilitate distance calculation between a static beacon (Wi-Fi) and moving tracked 

node (smartphone).  This is discussed in 2.4.4 below. 

 Trilateration and Multi-trilateration for calculating position estimates of the tracked 

node using calculated distances from the static beacons (Wi-Fi routers).  This is 

discussed in 2.4.5 below. 

 Average localisation error model performance evaluation measures the performance 

of trilateration and multi-trilateration algorithm by its average localisation error. 

This is discussed in 2.4.6 below. 

 Euclidean distance error is used to measure the shortest distance between two 

coordinates in a straight line. This is employed to calculate the localisation error 

between ground truth and the estimated position. In particular, for the deviation of 

estimation based on odometry model and combined overall system deviation 

computation from the ground truth. This is discussed in 2.4.7 below. 

 Locating coordinates of the centroid of a shaded area calculates the centre point 

where the error shapes from odometry Euclidean distance error overlap the 

trilateration/multi-trilateration average localisation error. The coordinates of this 
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centre overlap are the new and improved position estimate.  This is discussed in 

2.4.8 below. 

2.4 Mathematical Models, Methods and Algorithms 

2.4.1 Inertial Sensor Fusion Using Complementary Fusion 

The heading navigation is calculated using complementary fusion process suggested by 

W. Zijlstra [69]. In particular the behaviour of the smartphone including orientation and 

rotation. This is important because it calculates if the smartphone is in a horizontal or 

vertical orientation while identifying the directional impact.  

The complementary fusion includes a triple integral of gyroscope, accelerometer and 

magnetometer. The developer [69], originally designed this system to measure head 

rotations of users with improved sensitivity to motion.  

The process in the recommendation by W. Zijlstra [69] uses an accelerometer to calculate 

gravity vector and magnetometer as a compass. This is because the output combination 

of both accelerometer and magnetometer is sufficient for orientation computation of the 

smartphone. To avoid errors from the combination, low pass noise filtering is 

implemented to its sensor data that is provided at regular time intervals (see Figure 

2-10). This is important because it measures the orientation angle averaged over time 

within a consistent timeframe. A major advantage of combining magnetometer with 

accelerometer outputs is the data support over longer period computation. 

The gyroscope in the explanation by W. Zijlstra [69] system calculates angular rotation. 

This was important in their research because the rotation of the user’s head was to be 

considered. However, it is limited by its short response time and its high drift 

susceptibility. This drift is gotten from small amounts of errors that are injected into the 

system process at each iteration. Mitigation of the drift is proposed by W. Zijlstra [69], 

where high pass filtering is applied to the gyroscope sensor data (see Figure 2-10).  Still, 

it is observed that an error build-up resulted in a constant slow rotation of calculated 

orientation.  
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A recommendation by W. Zijlstra [69] to combine filtered outputs of all three IMU sensors 

by replacing the filtered high frequency of combined accelerometer and magnetometer 

outputs with its corresponding gyroscope outputs (see Figure 2-11). The purpose to 

increase head motion sensitivity. However, this is not expected to perform well in 

translational motion.   

The overall requirement for the proposed WTP-HAMS system is to calculate the precise 

orientation of the smartphone and the navigation heading of a mobility scooter moving 

in translational motion. Therefore, an adaptation of the sensor fusion method [69] to only 

integrate values from accelerometer and magnetometers is sufficient. 

 

Figure 2-10 Magnetometer and gyroscope filtration combination 

 

Figure 2-11 Complementary fusion of filtered IMU sensor output 
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2.4.2 Moving Average Filter 

A moving average filter is a form of finite impulse response (FIR) filter frequently 

employed in analysing time series within a time domain. Its filtration procedure includes 

temporal statistics used for calculating a few samples of a signal along its time axis. These 

samples are stored and displayed in a temporal moving window for averaging. This is 

important because it produces output at various points of time [70].  More information 

on moving average filter is further discussed in reference papers [70][71]. 

For our proposed WTP-HAMS system, moving average filter is important to reduce the 

noise in the IMU signal, as well as the high amplitude. In particular, the signal 

smoothening from the beacon free, data fused IMU. 

2.4.3 Full Width at Half Maximum (FWHM) 

FWHM is used in several fields such as image processing, to identify the boundaries of 

objects.  

FWHM is instrumental in probability distributions because it provides the best-case 

approximation to the true governing distribution. In particular, it analytically calculates 

a distribution curve. According to statistic articles [72][73], the analysis of a distribution 

curve of acceleration levels is calculated using FWHM with relation to amplitude like that 

shown in Figure 2-12. Refer to statics papers [72][73] for supporting information.  

 

Figure 2-12 Shows the relationship between the variance σ and FWHM [73] 
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The FWHM shown in Figure 2-13 below is adapted from a paper by M. Galotto and P. Ulloa 

[73], where discussions reveal how Gaussian density is calculated by numerical 

integration. This is because Gaussian density cannot be analytically calculated. Therefore, 

the variable is transformed into a reduced form shown in Equation 4. 

𝑧 =
𝑥 −  𝜇

𝜎
 

Equation 4 

Where,  

𝑧 , distributed reduced Gaussian;  

𝑥, original distribution; 

𝜇, the mean deviation; 

𝜎, standard deviation; 

 

Figure 2-13 Shaded areas of importance contained within the limits μ±1σ, μ±2σ and μ±3σ in a 
Gaussian distribution [73] 

In practical situations, the area of importance is under the shaded Gaussian between the 

integral intervals of 𝜎. This is shown in Figure 2-13 where results of 𝑥 ± 𝜎, means that 

true values have ≈68% probability of being within the limits of 𝑥 − 𝜎 and 𝑥 + 𝜎, ≈96% 

probability of bring within the limits of 𝑥 − 2𝜎 and 𝑥 + 2𝜎, and ≈100% probability of 

being within the limits of 𝑥 − 3𝜎 and 𝑥 + 3𝜎. 
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Examples of researches that implemented FWHM include studies by N. I. C. R. P. H. F. M. 

S. M. Inagaki [74] and Elizabeth G.Armstrong et al [75]. 

Research by N. I. C. R. P. H. F. M. S. M. Inagaki [74], used FWHM to calculate reliable values 

of lattice constraints and crystallite sizes of carbon materials. Their system 

recommended 66.7% probability area of the sensors diffraction profile.  

Elizabeth G.Armstrong et al [75], designed an intelligent tire testing system where it used 

FWHM to analyse the rotation signal width to measure the difference between patch and 

stress distribution within the patch. It is our observation that the research used ≈65% 

probability area of signal distribution in the data analysis of their system. 

Our proposed investigation considers using FWHM on combined IMU signals (with 

moving average filtered IMU amplitudes) to identify the different acceleration levels, 

including initiation, acceleration and deceleration over a travelled distance of the 

mobility scooter with relation to time.  

2.4.4 RSSI – SDRS Log Normal Shadowing Model 

Received signal strength (RSS) is one of the most prevalent power features in the MAC 

layer signatures which is easily propagated from ZigBee, ultra-wideband (UWB), cellular 

networks and Wi-Fi. The major limitation of RSSI technology is its temporal fluctuations 

when propagated in complex indoor environments which produce unreliable coarse -

grained features. RSSI-based ranging is misled by propagated multipath signals within 

multipath-rich indoor environments. To achieve better accuracy, the research by A. Wu 

and Z. Zeng [76] buttresses the necessity for characterizing and modelling of the small-

scale multipath effects.  

RSSI signal can be propagated in three models namely, Log Normal Shadowing Model 

(LNSM), Free Space propagation model and Two-ray ground Model. Unlike the last two 

propagation models, the Log Normal Shadowing Model propagation is a popular signal 

propagation model for Wi-Fi that does not require special requirements for its 



71 

 

application environment [38][39]. However, it has no linear function between RSSI 

values collected from Wi-Fi and distance values between the beacon and tracked node. 

Researchers W. W. L et al [64], studied the popular Log Normal Shadowing Model for Wi-

Fi and evolved it into an adaptable lightweight steepest descent random start (SDRS) 

positioning algorithm, that better calculated for the distance between all beacons and 

tracked node in a stationary instance. In particular, SDRS is important because it creates 

a linear functional relationship between RSSI and distance values (see Equation 5), i.e. 

especially the path-loss log-normal shadowing model and Gaussian random noise 

variables.  

f(𝐊(n)) =  ∑ (iRssij(n) − sj
a + 10ηjlog10 

||𝐊(n) − 𝐊j
a ||

d0

)

2

j ∈Na

 

Equation 5 

Where, 

 𝐊(n), represents the position of the smartphone;  

iRssi(n), represents signal measurement values at location  i;  

sj
a, is the transmitting power of the AP in dBm;  

ηj, signifies path loss exponent; 

𝐊j
a, is the position of the access points (APs);  

d0, represents reference distance between transmitter and receiver.  

The SDRS log-normal shadowing model in the paper by W. W. L et al [64] assumes that 

measurement error indicated as xσ(n), is estimated Gaussian noise. This is important so 
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that the maximum-probable position approximation will correspond to the objective 

function f(𝐊(n))minimum. 

W. W. L et al [64], aimed to solve phase-retrieval limitation and the single particle �̂� , by 

considering a light weight SDRS log-normal shadowing algorithm with multiple initiated 

initial starting points 𝐊L,0in a scenario region where  L = 1,… . , Nstart   is uniformly 

distributed. Nstart  , is the reference point calculated in parallel to NL iterations. (see the 

document by R. A. Iltis and S. Barbara [77] for further discussions on SDRS algorithm). 

Similar to the general Log Normal Shadowing Model, the lightweight SDRS log-normal 

shadowing model [64] uses the global environmental standards in Table 2-6 to calculate 

its path loss exponent. The path loss exponent ηj of the SDRS algorithm is calculated to 

gauge the accuracy of the system. For the indoor environment, the free space dynamic 

shown in Table 2-6 is typically adopted. This is because it allows for indoor localisation 

systems to consider the two major free space variances, including  {LOS ∶  ηj = 2}.  

It should be known that the variance of shadowing can vary depending on the complexity 

of the environment. That is the reason Table 2-6 below shows the value of path loss 

exponent of different environments and building type.  

 

Table 2-6 Path loss exponent based on environmental dynamics [64][77] 

 

The proposed investigation will use lightweight SDRS log-normal shadowing model [64] 

to calculate the distance between the beacon and the tracked node based on the 

relationship between the beacon’s RSSI and distance values. This is because it can be 
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interpreted as a lightweight particle filter where difference start positions correspond 

with an initial selection of particles and the single particle remaining at the completion of 

the algorithm.  

2.4.5 Trilateration and Multi-trilateration  

Trilateration is used by researchers [65] to find the relative location of users through the 

geometric combination measured distances from three Wi-Fi routers. This method finds 

a position from the convergence point of localisation area circles formed by the distances 

between each Wi-Fi router (beacon) and the tracked node. When a similar method is used 

for combining four Wi-Fi routers, it is called multi-trilateration, as described in the 

literature [14].  

The popular measurement propagation for trilateration and multi-trilateration is RSSI. 

This is important because calculated distances between beacon and tracked node based 

on RSSI signals, can be easily combined in the easily adopted algorithms, trilateration and 

multi-trilateration. These algorithms use little computational time and therefore is used 

in live environments.  

 Both trilateration and multi-trilateration is expressed Equation 6 as:  

(𝒙𝒊 − 𝒙𝒓)
𝟐 + (𝒚𝒊 − 𝒚𝒓)

𝟐 = 𝒓𝒊
𝟐 

Equation 6 

Here, 

 𝑥𝑖 ,𝑦𝑖 , represent coordinate of 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 𝑖; 

𝑥𝑟 ,𝑦𝑟 , represents 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛; 

𝒓𝒊
𝟐, is position estimate.  
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Equation 6 is rewritten in the journal [14] as the matrices in Equation 7 and Equation 8 

𝐴𝑋 = 𝑏  

Where 

𝐴 = 2 . [ 

𝑥𝑛 − 𝑥1

⋮
𝑥𝑛 − 𝑥𝑛−1

            

𝑦𝑛 − 𝑦1

 
𝑦𝑛 − 𝑦𝑛−1

] 

Equation 7 

And  

𝑏 =  [  
(𝑟1

2 − 𝑟𝑛
2) −

 
(𝑟𝑛−1

2 − 𝑟𝑛
2) −

(𝑥1
2 − 𝑥𝑛

2)−
⋮

(𝑥𝑛−1
2 − 𝑥𝑛

2) −

(𝑦1
2 − 𝑦𝑛

2)
 

(𝑦𝑛−1
2 − 𝑦𝑛

2)
] 

Equation 8 

The solution in Equation 7 and Equation 8 according to S. Boonsriwai et al [14], is 

resolved through the use of minimum mean square error techniques and the square of 

the Euclidean norm. (refer to study by S. Boonsriwai et al [14] for more information). 

Researches [14][65], that have adopted this technique got results ranging from 2m – 10m 

depending on the propagated area. 

The proposed investigation will consider combining three and four router using 

trilateration and multi-trilateration algorithms respectively. This is important because it 

would get position estimates from the Wi-Fi routers.   

 



75 

 

2.4.6 Average Localisation Error Model (ALE) for 

Performance Evaluation  

It is ideal to measure the localisation error of a system after calculating its position using 

algorithms like trilateration and multi-trilateration. An assumption by L. Cheng et al [78] 

proposed to test the performance of their 2D localisation system with an average 

localisation error model performance evaluator. In simulated experiments, the 

researchers [78] tested the performance of 7 beacons and one tracked mobile node in 

their proposed system which is a no-filter (NF) method. Each of their simulations used N 

number of beacon nodes in the Monte Carlo runs, which is important in calculating the 

performance of their system.  

𝑒𝑟𝑟𝑜𝑟 =  
1

𝑁. 𝑡𝑛
 ∑ ∑ √(�̂�𝑘 − 𝑥𝑘

𝑖 )
2
+ (�̂�𝑘 − 𝑦𝑘

𝑖 )
2

𝑡𝑛

𝑘=1

𝐾

𝑖=1

 

Equation 9 

Where,  

N, is the number of beacon nodes; 

𝑖, is beacon node;  

(�̂�𝑘 , �̂�𝑘), is estimated location at time 𝑘 ; 

 𝑘 = 1,…., 𝑡𝑛.   

(𝑥𝑘
𝑖 , 𝑦𝑘

𝑖 ), is the true location of the mobile node.  

Unlike the simulated experiments in the solution by L. Cheng et al [78], our proposed 

WTP-HAMS system would be measuring the performance of its Wi-Fi component based 

on real values from experiments live environments.  In particular, our proposed 
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investigation will benefit from this ALE performance evaluator, when it would have to 

measure the localisation deviation of the results from trilateration and multi- 

trilateration from true position (also referred to as the ground truth).  

2.4.7 Euclidean Distance Error 

This is the most adopted distance metric which is described to be the shortest distance 

between two coordinates, in the length of a straight line. According to H. Aksu et al  [79], 

Euclidean distance between two topologies can be calculated using the following 

expressions – 

 

𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛(𝑃𝑖 ,𝑃𝑖
′) =  √(𝑥𝑖 − 𝑥𝑖

′)2 + (𝑦𝑖 − 𝑦𝑖
′)2 

Equation 10 

𝜇𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛(𝑇,𝑇 ′) =  
1

𝑁
  ∑ 𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 (𝑃𝑖 ,𝑃𝑖

′)

𝑁

𝑖=1

 

Equation 11 

Here,  

𝑃𝑖, is (𝑥𝑖,𝑦𝑖) the coordinate of the tracked node 𝑖  

𝑃𝑖
′, is (𝑥𝑖

′,𝑦𝑖
′) estimated position of the tracked node 𝑖 

𝑥𝑖 𝑦𝑖, are true coordinates of tracked node 𝑖; 

𝑥𝑖
′ 𝑦𝑖

′, are estimated coordinates of the tracked node; 

𝑁, represents the number of tracked objects within the network; 
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 𝜇𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛(𝑇, 𝑇 ′), represents error caused by the localisation algorithm when accounting 

for the position of the tracked object and its estimate.  

The proposed investigation will use Euclidean distance error to measure the position 

accuracy error between the true position of the mobility scooter and the estimated 

position. This is important to get a distance measurement between the positions.    

2.4.8 Locating Coordinates of Centroid of a Shaded Area 

The centroid of a shaded area is the point where all medians of a shape intersect. For 

triangles, it is the intersection of three medians and for circle, it is the intersection of two 

diameters. The solutions from U. S. River [80], discusses formulas used in the 

computations of centroids and their coordinates. Refer to U. S. River [80] for details. 

 The proposed investigation would need the formulas in the calculations by U. S. River 

[80] when calculating the centroid of the error shapes when it overlaps. This is important 

because the coordinates of the centroid will be the new and improved position estimate 

based on the combination of Wi-Fi, wheel encoders and smartphone IMU modalities.     

2.5 Mobility Scooter 

Why Mobility Scooter? 

It is observed that a wealth of indoor and outdoor localisation investigations conducted 

by scientists focus on pedestrian users. Although indoor localisation is continually being 

developed, it is safe to mention that most investigated systems do not cater to users who 

use mobility scooters. This research, therefore, aims to bridge the aforementioned gap as 

it is an overlooked and neglected market.  

There has not been adequate research accommodating mobility scooters for indoor 

localisation purposes to the best of our knowledge, however, research has been done on 

power wheelchairs such as the SOTA [81][82].  
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J. S. Ju et al [81], proposed an intelligent wheelchair that uses head tilt and mouth shape 

recognition to drive it. In their system, a head tilt of the user calculated navigation 

direction, while the mouth shape of the user stopped the motion of the intelligent 

wheelchair. Although this system by J. S. Ju et al [81] focuses on controlling the motion of 

the intelligent wheelchair, it is our plan that systems similar to it will benefit from our 

proposed investigation. 

Another relevant research was conducted by T. Carlson and Y. Demiris [82], where 

computer-vision based approach was proposed to measure the location of a powered 

wheelchair. Their system used ceiling fixed cameras with adaptive Gaussian threshold to 

result in a position accuracy of 5cm and 2degrees orientation. The limitation  of the 

localisation solution by T. Carlson and Y. Demiris [82] faces is in the necessity for 

additional expensive infrastructure such as fixed cameras. 

Unlike the power wheelchairs that are specialist technologies, mobility scooter is a 

popular three or four-wheeled powered mobility technology typically used by the elderly 

and people with mobility challenges. In particular, for indoor and outdoor environments. 

Mobility scooter technology is different from power wheelchairs because it comes with 

driving controls with speed adjustments, height adjustable comfortable seating, tiller and 

handler bars.  

Our investigation proposal will be to exploit mobility scooter wheel encoders in terms of 

its capability to provide indoor position. It is important in population dense 

environments like public and private health care institutions and residential buildings 

that need indoor localisation technologies to not only detect user’s absolute location 

within a room but to also guide and track users at meter level accuracy. The proposed 

investigation would provide centimetre/meter level indoor localisation for mobility 

scooter users in healthcare, private and public sectors. In particular, a sophisticated level 

of real-time monitoring and security to improve the quality of life. This would invariably 

boost the user’s sense of independence and would reassure trust between medical 

service providers, patients, carers and families. 
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2.6 Overall Summary 

Indoor localisation systems are typically designed using wireless technologies such as 

Wi-Fi, cameras, IMU sensors and cellular networks. These systems are discussed in 

sections 2.1 and 2.2 to be categorised into physical localisation or topographical based 

systems. These categories are analysed in conclusion sections 2.1.2 and 2.3, where we 

propose an investigation to design an easy to deploy effective inexpensive localisation 

system that uses everyday ubiquitous technologies that are familiar to the mobility user 

users. These include a smartphone, Wi-Fi and wheel encoders. 

How will the proposed investigation work? 

 

Figure 2-14 Proposed investigation (WTP-HAMS system) 
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Our investigation will explore cellular and sensor network systems, in particular, node 

localisation methods that will use non-standard communication methods including D2D 

communication and adaptive hybrid systems data fusion methods (shown in Figure 

2-14). This is important because it will benefit from localisation methods including - 

 Static beacons for Wi-Fi. 

 Moving beacons for wheel encoders and IMU sensors. 

 Beacon-free for decentralised solutions, node to node and D2D communication, 

and orientation and translations tasks.   

The proposed investigation will plan to combine all the above elements in network 

localisation systems when designing the indoor localisation system with exploited 

technologies (such as Wi-Fi, smartphone IMU modalities and wheel encoders), to 

improve position accuracy. In particular, the proposed investigation will combine these 

exploited technologies using mathematical models, methods and algorithms (discussed 

in 2.4) including –  

 Moving average filter for smoothing IMU signals.  

 FWHM for synchronising smoothened IMU signals with distance travelled from 

wheel encoders. 

 RSSI-SDRS log-normal shadowing model for distance estimated for Wi-Fi. 

 Trilateration and multi-trilateration for position estimation based on Wi-Fi. 

 ALE for performance evaluation of trilateration and multi-trilateration. 

 Euclidean distance error for calculating position deviation between the estimated 

position and ground truth. 

 Locating coordinates of the centroid of a shaded area used for calculating the 

centre of the errors from combined results of Wi-Fi, smartphone IMU modalities 

and wheel encoders. This is the new improved position.  

We will investigate further the state of the art for localisation system in chapter 3, with 

the inclusion of literate works that employed the technologies, mathematical techniques, 

models and methods mentioned in chapter 2. This will be juxtaposed with other existing 

indoor localisation systems.     
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Chapter 3 State of the Art 

This chapter discusses in in-depth the state of the art of indoor localisation with focus on 

the three main categories, namely passive, active and hybrid localisation methods. We 

present an up to date review and evaluation of most relevant 38 state -of-the-art indoor 

localisation systems in terms of technology, algorithm, key features, experiments, 

methods, robustness, complexity, accuracy, precision, limitations, costs and results. Also, 

we propose a new standardisation for hybrid localisation systems. 

3.1. Overview 

GPS signal has satisfied the outdoor location positioning with a navigation system that 

uses satellite according to the literature [49][83][84]. Software companies such as Google 

have used GPS technologies to their benefit, especially because they have a wide range of 

applications which are GPS dependent. These include vehicular navigation, personal 

navigation/map reading and fleet management to mention a few[85][50]. As wonderful 

as the GPS technology is, it is not sufficient for indoor localisation and therefore is limited 

to outdoor activities and applications [86][87]. Its insufficiency for indoor positioning has 

proven to be a challenge to technologists everywhere [88][89].  

The demand for acute indoor localisation is on a steady rise as access to wireless 

information has become readily available. In particular, the internet of things (IoT) 

including location sensing and radiolocation technologies [49][90][91][92][93] 

[94][95][96].   

Over the last few years, the internet of things (IoT), has gained huge popularity within 

research communities. IoT, which is a continuous wireless internet-based 

communication of interconnected things, has been predicted in the survey by B. 

Alsinglawi [97], that its interconnectivity will extend beyond interactions between 

applications and humans to an exciting realm. Today, IoT has birthed smart technologies 

and smart environments which are now becoming a pervasive necessity in today’s world 
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and is evident in applications in several fields such as e-health, smart homes, assisted 

living, and smart cities among many other services that were once deemed unachievable. 

With the rapid growth of IoT, smart technologies are such as smart sensor nodes are now 

embedded in devices or appliances including Wi-Fi, light switches, refrigerators, 

smartphones, and heating control. This is important in designing technologies such as 

intelligent self-regulator of temperature, smart self-organisation of a timer, surveillance 

in secure environments and especially, indoor localisation in navigation systems.  

Indoor localisation explored by experts are categorised into three, including –  

 Passive localisation  

 Active localisation 

 Hybrid localisation  

Passive localisation [24][98]–[102], are systems that do not require the user to actively 

participate in the localisation process. In particular, the user is not required to physically 

carry an electronic device to achieve localisation. It achieves localisation through which 

the detection, monitoring and analysis of changes of a smart static beacon within a 

measured environment. These include RFID, Wi-Fi, Light, camera, Device-free Passive 

(DfP) technology, Physical Contact, Ultra-wideband (UWB), Computer Vision, and 

Differential Air Pressure. (See Table 3-1 for highlights on the passive localisation systems 

and section 3.2 for further information on passive localisation). 

Active localisation [24][92][100][101][103]–[105], unlike passive localisation, needs the 

tracked user to physically participate with the system. Specifically, active localisation 

systems, demand that the tracked user physically carry a trackable electronic device in 

the localisation process. This is important because the tracked electronic device will 

collect and transfer the necessary data to a server for positioning calculation and analysis. 

Systems that fall under active localisation include Wi-Fi, RFID, GSM, ultrasound, field 

strength system (IMU), Am, FM and TV signals and UWB.  (See Table 3-1 for highlights on 

the active localisation systems and section 3.3 for further information on active 

localisation). 
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Finally, hybrid localisation [106][107][108][109], are localisation systems that combine 

technologies or techniques from both passive and active localisation system. There is no 

standard to this approach therefore, we propose a new unique classification system, 

including  

 Propagation based hybrid localisation  

 Technology and technique (TT) based hybrid localisation. 

The new classifications of hybrid localisation are further discussed in section 3.4. 

Table showing technologies that fall under passive, active or hybrid localisation 

 

Table 3-1 Indoor localisation system and their classifications 
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With knowledge of the rapid growth in this indoor localisation research area, R. Mautz 

[110] stresses that the quantifications of some indoor localisation technologies provided 

10 years ago may no longer be valid today. Therefore, R. Mautz buttressed the necessity 

for an up to date comprehensive literature reviews be developed at least every 3 -5 years 

as an accurate state of the art guide. 

In 2009, Gu et al [40] conducted a survey of indoor positioning systems (IPS) for wireless 

personal networks. They focused on evaluating the security, privacy, cost, robustness, 

complexity and limitations of IPS. Then, Deak et al [24] in 2012, presented an assessment 

of active and passive indoor localisation systems based on wireless technology used, 

accuracy, scalability, algorithm and costs. Two years later, in 2014, Mainetti et al [111] 

published a survey that reviewed state-of-the-art indoor positing systems employed in 

real-world scenarios. In 2015, Yang et al [67] published a paper examining wireless 

indoor localisation using inertial sensors. Their study focused on human mobility 

measurements and mobility enhancement with respect to the accuracy, decreasing 

deployment cost and enriching location context. Finally, a more recent investigation was 

carried out in 2016 by Xiao et al. [56], where they reviewed wireless indoor localisation 

from the perspective of the device with an emphasis on the recent trends such as 

leveraging integrated wireless technology for specific feature extraction to trigger novel 

human-centric localisation. 

Although the survey representatives above have analysed indoor localisation systems 

and techniques, it should, however, be noted that it is challenging to achieve a complete 

objective holistic performance benchmark for indoor localisation systems. Therefore, this 

chapter analyses each indoor localisation state-of-the-art, with key focus on accuracy, 

cost, scalability and energy efficiency. This is because it is a similar structure to papers in 

the resources shown in Table 3-2. 
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Table 3-2 Survey Paper accumulation table 

a. This table is to the best of our knowledge. (Table footnote) 

 

3.2. Passive Indoor Localisation 

Passive indoor localisation is the achievement of target user identification, recognition 

and tracking without active user participation. This mode of localisation does not require 

its users to carry any localisation device. This is because passive localisation applications 

commonly achieve their goals through the exploitation of wireless data networks and 

environmental anomalies.  

There exists a significant amount of research in this area [7][9][18]–[21]. Examples of 

areas beneficial of this category of localisation include security for intruder detection, 

emergency response to alarms and health care, amongst others. Typically, this approach 

appeals to users uninterested in carrying devices.  
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As highlighted in section 3.1 above, passive localisation techniques include Differential 

Air Pressure, Computer Vision, Physical Contact based systems, ultra-wideband (UWB), 

Differential barometer, and Device-free Passive (DfP) technologies.  

3.2.1. Differential Air Pressure 

This technique involves the employment of relative measurement of atmospheric 

pressure, such as the research conducted by S. N. Patel et al [112]. Their research [112] 

proposed a sensing system that perceives human movement through the deployment 

of affordable sensors such as instrument filter and motion sensor. The system depended 

on existing ductwork infrastructure of heating, ventilation, and air conditioning (HVAC) 

systems, which is a single sensing unit with an instrument air filter that performs 

classification functions from one point of the home through its connection to an 

embedded computer. 

S. N. Patel et al [112] carried out experiments in four different homes over a period of 3 

to 4 weeks. Home 1 was a large property with three separate central HVAC units. Home 

2 was a larger property than Home 1, with two separate HVAC units, while Homes 3 and 

4 were smaller apartments with single central HVAC systems.  The HVAC provided a 

convenient single monitoring point for airflow circuit due to its centralised airflow 

source from closed circuits of air circulation within the experimented homes. Using 

instances of clocked thresholds and doorways, human movements influenced th e static 

pressure and displayed results when the HVAC air handler unit was in operation. The 

researchers concluded that their system outperformed other existing systems using 

similar techniques because their system senses and records the pressure changes f rom 

differential sensors attached to the air filter, which then, classifies exact locations of 

certain movements within the investigated building. Their research resulted in an 

accuracy of 75-80% in particular door movement alteration and 65% in user 

movement. Comparing results between the homes, it was deduced that their system 

performed best in the smaller homes without doorways (see results in  Table 3-3).  
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This system is an expensive solution with low user position accuracy. It is observed to 

be an impractical solution because all homes have doors and not all own HVAC units.  

 

Table 3-3 Performance results of our manually-labelled experiments with the HVAC in operation 
[112] 

 

3.2.2. Differential Barometer  

Altitude information accuracy is necessary for some localisation and navigation systems 

such as the examination by J. Parviainen et al [113].  J. Parviainen et al acknowledge that 

satellite navigational systems provide altitude information but are insufficient in 

identifying correct floors or estimating positions within buildings. Therefore, the 

researchers proposed to use barometer sensors to get an indoor position using altitude 

information. The primary purpose of their investigation was to determine relevant error 

sources of referenced barometer-based altitude in indoor navigation. In particular, 

various scenarios where varied disturbances influence pressure reading, the MEMS 

barometer was used to collect data. Then, an analysis containing the influences of 

ventilation, change of speed, car fan and distance to the referenced barometer, estimated 

road profile in terms of the direction of movement and user navigation within tall 

buildings.  

In their experiments, which involved carrying a barometer sensor in hand and travelling 

from floor to floor via an elevator, it was observed that experimental results in differential 

mode demonstrate high accurate altitudes. However, the high sensitivity o f the 
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barometer to temperature produced significant altitude measurement errors ranging 

from tens of centimetres to meters, as shown in Table 3-1. The error was more evident in 

cases where the barometer was moved from inside to outside a house or from room to 

room of a five-floor building with different ventilation conditions. Hence, the research 

recommends that reference barometer reading taken during temperature change  must 

be considered when taking the next reading. This system does not translate to position 

estimation in indoor environments. This is because, J. Parviainen et al, have revealed that 

accurate pressure sensing does not directly translate to position estimation.  

 

Figure 3-1 Indoor walking measurement [113] 

 

Another research that adopted barometer in its positioning system is an indoor 

navigation system (InLite) by Astrium Satellites GmbH [114]. Astrium Satellites GMbH 

recommended InLite to allow positioning of users within large multi-level buildings with 

2 meters accuracy and 5 m degradation depending on multipath effects in certain areas 

of the building. InLite, illustrated in Figure 3-2, is a preinstalled navigation system with 
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major components being a barometer connected to a WLAN datalink modem and 

embedded PC.  

          

Figure 3-2 Astrium Satellites GmbH InLite technology [114] 

 

Testing of the InLite system occurred at an isolated 11m x 66m area of the Ottobrunn 

building in Germany and an unoccupied hotel in Newport Wales.  The experiment 

included, 6 to 8 stationed transmitting stations around a building, user terminals, and a 

control unit to monitor transmitting stations and broadcast information to user receiver 

that includes a barometer (see Figure 3-3 ). This is because the transmitting stations 

broadcast 420 to 460 MHZ range of multi-carrier navigation signals and the new location 

is estimated on receipt of the transmitted signals. The study by A. Schmitz-Peiffer et al 

[114] compares their proposed technology to similar technologies as it attains 2 meters 

accuracy and effectively reduces multipath effects suffered in gigantic multi-level houses 

built with concrete, metal-shielded windows and steel.  
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Figure 3-3 InLite Architecture illustrating 8 base stations, control unit and user reception station 
[114] 

 

A. Schmitz-Peiffer [114], recognised the limitations of their system estimating more 

accurate positioning information. It is expressed that its limitation can be mitigated when 

different error sources are processed for positioning performance such as analysis of the 

near-far effect, analysis of operative distance, extensive investigations and experiments 

to understand error sources and finally, redesign the user receiver system into a more 

portable system. 

Further observed is the bulkiness of the system [114] (shown in Figure 3-2), which we 

speculate might be uncomfortable for some users, especially our target mobility scooter 

users with mobility impairment. Also, it is our opinion that this system is expensive to 

design as the developers have indicated that additional infrastructure is required in its 

design and development. Therefore, making this system unsuitable for our audience.   

3.2.3. Physical Contact Based System 

Technologies based on physical contact rely on proximity sensing for target object 

localisation within buildings. Proximity sensing technologies comprise of capacitive field 

sensors, pressure sensors and touch sensors [41][115].   
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3.1.1.1 Capacitive Field Sensor 

This is a dated technology focused on achieving localisation via exploitation of influences 

created by target node on a generated electric field [21][116][117]. This technology is 

commonly implemented in industrial applications for material detection and finger -

controlled touch-screen devices. Unlike pressure sensing that relies on the weight 

distribution and step of a user, capacitive field sensor technology relies on smart 

materials with integrated electronic components such as sensing mats [116] that 

wirelessly communicate node state with its central system.  

In 2011, due to the high cost of implementing capacitive field sensor for localisation, 

Braun et al. [116] proposed a flexible integrated solution relying on affordable open-

source hardware that actualises indoor localisation and fall detection through wireless 

data transmission from sensing mats strategically placed under floor coverin g via a 

central platform to connected ambient assisted living (AAL) platform. The open-source 

hardware is a firmware which provides a control unit that supports capacitive sensing of 

up to eight sensor elements. This system was limited by its inability to recognise objects 

by their capacitive profile and its difficult scalability [118][116].  

Unlike the expensive, cumbersome to deploy and limited system proposed by Braun et al 

[116] in 2011, more recently, in 2017, Fu et al. [98] proposed an easier to install, low 

maintenance and low power consuming architecture that relies on the deployment of 

manually laid passive wires grid of 20cm spacing underneath any non-conductive floor 

surface to track users that move about the surface. Data analysis of this study included 

the application of low pass filter on sensors and individual weighted average respectively. 

Results from a relatively restricted experimental setup included 12 mobile participants 

walking along predefined reference paths to achieve positioning mean errors of 12.7cm 

(with shoes) and 18cm without shoes. This system was dependent on the flooring 

technology, therefore, localisation using this technology may not be achievable in all 

environments. Furthermore, this system is limited to localising a user at a time as it is yet 

to be tested on multiple users neither has it been implemented in real uncontrolled 

dynamic environments. 
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3.1.1.2 Pressure Sensor  

In comparison to other localisation technologies, pressure sensors are most 

conventional. This technology mandates a laborious task of setting up pressur e-sensitive 

sensors on or beneath the floor surface. Usually, the flooring is required to be flexible and 

also have installation space beneath the floor. Localisation is achieved when the pressure 

generated by a user corresponds with the user’s unique weight and gait [99]. Instances 

of researches that adopted the not computationally heavy approach and provided high 

accuracy are the studies by S. Pirttikangas et al. [119] and Robert J. et al. [120].  Robert J. 

et al. invented a smart floor to identify and track users. Experiments conducted by  R. J. 

Orr and G. D. Abowd [120] included the use of steel plate, data acquisition hardware and 

cells for the measurement of user’s feet ground reaction force (GRF) during walks on a 

programmed measuring tile. An accumulation of 1680 training footstep GRF profiles in a 

ten-dimensional feature space was archived for match identification to nearest-

neighbour in instances of unidentified footsteps. This technology achieved an accuracy of 

93% through the use of smaller tiles. This technology is limited to one user at a time. R. J. 

Orr and G. D. Abowd [120] compared their result of 93% to that of Addelse et al. [121] 

who adopted the use of Markov models (HMM) and achieved an accuracy of 91%. S. 

Pirttikangas et al [119] conducted an experiment in a 100 square meters Electro -

Mechanical Film covered research area at the University of Oulu. The stripes of the 

Electro-Mechanical Film made up a matrix of 30 x 34 with a cell size of 30 cm x 30 cm. 

Each of the 64 stripes emitting a continuous signal of 100Hz sampling rate is streamed to 

a PC for analysis. Although S. Pirttikangas et al. [119] demonstrated the difficulty in 

identifying several users walking within the same environment at the same time  by 

footstep identification from pressure signals using hidden Markov models, it is evident 

from the investigations by Addelse et al [121] that its accuracy is quite high for single 

users.  
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3.1.1.3 Touch Sensor  

Sunhong et al. [122] proposed an algorithm that autonomously approximates the 

positioning of a mobile robot identified as UBIquitousRObot – UBIRO. The localisation 

was achievable based on UBIRO’s dependencies to – A, passive trigonometric functions 

aimed at orientation determination; B, radio-frequency identification (RFID); C, 

Cartesian coordinates of distributed IC tags in a distinctive grid-like pattern on the test 

area floor; D, UBIRO’s external sensors such as odometer and touch sensors . Experiments 

on UBIRO were conducted in a 420cm x 620cm obstacle-free environment with 198 

passive IC tags distributed across the floor. Each tile is spaced in a 34cm x 34cm grid. 

Compared to conventional methods, UBIRO showed high location accuracy and it 

demonstrated a localisation error of 13.3cm at x-axis and 5.7 cm at Y-axis.  

3.2.4. Light  

Jinyuan Zhao et al. [123] described the advantages of employing light technology in 

indoor localisation. Wang et al.  Jinyuan Zhao et al developed light reflections model and 

proposed a system utilising 12 ceiling mounted intensity contro lled LED light sensors and 

12 light fixtures. A LASSO and localised ridge regression algorithms were developed to 

assist in single object position estimation. Experiments conducted in a simulated 

environment of 7 ft. x 12 ft. adequately located different sized objects. It resulted in 

localisation error range of 0.24𝑖𝑛 to 1.39 𝑖𝑛 when localised ridge regression algorithm 

was applied. Real-world controlled experiment in localizing two participants and a chair 

proved system reliability due system high localisation capability. 

3.2.5. Ultra Wideband (UWB) 

The Ultra-wideband (UWB) has demonstrated to be effective in indoor positioning [125]. 

Abdurrahman Alarifi et al. [125] published a comprehensive survey paper analysing the 

recent advances of UWB. UWB is applied in three application areas namely, radar; 

communications and sensors; and positioning and tracking. Relevant research conducted 

by Stefania Bartoletti et al. [126], proposed a mathematical framework to analyse UWB 
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monostatic WSRs. UWB monostatic WSRs is reliant on passive navigation design based 

on estimated time-of-arrival (ToA). This is categorised by network experiments and 

environment propagation. An analysis of Bayesian navigation algorithm based on particle 

filter application and the task of inferring the target node location of the mobility model 

is demonstrated. The researchers developed two models in their case study, speed known 

and direction unknown (SKDU) and speed and direction learning (SDL). The results 

revealed a root mean square error (RMSE) of 1.2 m for SKDU and 1.35 m for SDL.  

3.2.6. Computer Vision 

Mihai Andries et al. [118] recommended a floor pressure-imagery segmenting method to 

track and recognize multiple objects using low-resolution sensors and weight ambiguity 

detection. The method includes floor pressure image processing through the separation  

of blobs comprising objects, content recognition and tracking via inference and 

combinatorial fusion. The research’s objective was to provide an object recognition 

approach which localises and recognises multiple objects simultaneously through 

analysis of load exertion on the floor surface. The researchers [118] employed dynamic 

programming to solve the prevalent computational complexity experienced in  the state 

of the art due to the volume of possibilities in correlating a known object to observations 

made by the researchers.  Conducted experiments included participants with reflectors 

attached to their waists as they carrying out daily life activities in a controlled prototype 

apartment. The system demonstrated a result of 20 cm human localisation error.  

Another example is research accomplished by Yamin Li et al. [127].  Their study proposed 

the building of real environment scenarios in 3D panoramic environments and the 

localisation of a micro aerial vehicle (MAV) without external navigation assistance.  A 

quick 3-D model of the experimental test area of 4m x 3.5m x 3m environment is built 

utilizing speeded up robust feature (SURF) extraction algorithm and iterative closest 

point-based (ICP-based) reconstruction algorithm applied to the multiple RGB-Depth 

(RGD-D) sensors of the visual sensor network (VSN). With the employment of a 

distributive data fusion algorithm, Kalman-consensus filter (KCF), a mean error of 9.3869 

cm and the trajectory of mini MAV were estimated. The system is observed to be limited 
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due to its poor image quality of objects and reduced range identification. Investigation 

showed that objects made of glass or mirror were incapable of reflecting infrared light, 

thus, depth values were illustrated as black outliners. This is due to the unsuccessful 

attempt of retrieving depth values by depth sensors. Further observation showed that 

increased distance from the depth sensors resulted in decreased depth accuracy.  

3.2.7. Device-Free Passive (DfP) 

Kosba et al. [128] addressed the ubiquitous constraint in developing an accurate, robust 

and low-overhead DfP motion recognition solution. The scientists [128] introduced 

RASID system; a robust WLAN DfP motion detection system that enables a wide set of 

applications such as intrusion detection and border protection through the provision of 

software-only solution using already installed wireless networks. System evaluations in 

two experimental testbeds sized 2000ft2 and 1500ft2 both displayed accuracy capability 

of at least 0.93ft. RASID employs a non-parametric statistical anomaly detection 

technique for detection capability. Although this system needs further investigations to 

reduce data collection and training time from about an hour and 15 minutes, it proved to 

outperform some DfP state-of-the-art in terms of robustness and accuracy in 2012.  

In 2015, IEEE published PLAS; a signal eigenvector-based device free passive localisation 

system using array sensor by Jihnoon.H et al. [61].  This system relies on RSS 

fingerprinting technique using multiclass support vector machines (SVMs) with 

dependency on a combination of array signal characteristics with spatial and temporal 

averaging.  The significance of the array sensor is to utilise modifications caused by an 

event in the propagation environment. In a 7m x 7m single room test environment, the 

researchers conducted 4 different experiments using a continuously transmitting single 

band of 2.4 GHz (IEEE802.11g) labelled transmitter (Tx), a four-element antenna array 

labelled receiver (Rx) and three human subjects standing at data collection location for 

10s-30s during training and testing phases. The research explored localisation 

performances of the proposed system in both Line-of-sight (LOS) and non-line-of-sight 

(NLOS) propagation environments measuring signal paths between Tx and Rx and 

further analysed two methods of placing receiver antenna, i.e. in centralised and 
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distributed antenna format.  The methods and algorithms employed by the researchers 

included root-mean-square error (RMSE), MDE, and the cumulative distribution function 

(CDF) versus distance error. The centralised antenna proved to demonstrate improved 

localisation accuracy deviation RMSE of 1.32m and MDE of 0.67m when compared to K-

NN, and RMSE of 0.2m and MDE of 0.17m when compared to Nuzzer.  This system, 

unfortunately, performed poorly in two rooms with dense environments.  

3.2.8. Smart Wiring and Socket 

Tian Zhou et al. [129] introduced E-locas their socket level localisation system that 

achieves indoor human localisation through the usage of existing indoor electric wiring. 

This system estimates human position through injected signal into protected earth line 

of the existing residential power network. It is observed that electromagnetic features 

modified by human within a room can be used to deduce a resident’s location because the 

system treats the human body as an electrical conductor that is affected by EM waves.  

Through the characterisation of ‘change degree’ measurements, the resident’s position 

can be adequately guesstimated. Their system consisted of an injected signal into building 

wiring, a collection of power spectrum surrounding injected signal frequency at different 

sockets, noise filtered RSS peak energy and support vector machine (SVM) classifier 

necessary for location classification.  

Experiments were conducted in an artificially divided space of 1.2m x1.2m grids where 5 

power spectrum analysers which act as receivers are placed in 5 sockets, injectors are 

stationed in corners of the grid room totally 46 cells at the top floor of Tsinghua Rohm 

building, Tsinghua-Berkeley Shenzhen Institute China. Results illustrated an average 

accuracy of 90.76% with RSS peak value of 70MHz. It is also observed that the 

misclassification rate of cells close to injector or receiver is relatively higher in 

comparison to other cells. This is due to the distance of a participant to the near-field 

region of the transmitter. 
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3.2.9. Camera  

In a paper written by Shou Liu et al. [130], a tracking cooling fan using geo-fence and 

camera is proposed to be combined for achieving indoor localisation. The researchers 

presented a personal cooling service that detects an occupant through vision analysis 

within virtual geo-fence bound areas of 5 office cubicles. The tracking fan utilising 

calibrated mapping algorithm to provide a required airspeed based on PMV -SET thermal 

comfort model.  The system uses a three-phase brushless direct current (DC) fan that 

delivers a 32-level speed setting at a power range of 3.8w to 19.3w, especially, within 

speed levels 1-20.  

Shou Liu et al conducted experiments that were heavily dependent on images collected 

by a ceiling mounted Model Exmor RS, Sony cell phone camera with a frame rate of 30 

frames per second and attached IMX135 CMOS sensor possessing a maximum resolution 

of 4224 x 3176 pixels. They employed algorithms considering air flow direction, 

calibrated mapping curves, mean radiant temperature, natural logarithm model of 

average airspeed to calculate occupant-fan distance. A total of 16200 samples at 2s 

sampling interval were collected for the experiment measuring point of airspeeds 26 C, 

27.5 C and 29 C  at different distances 0.55 m/s, 0.64 m/s and 0.78 m/s respectively from 

the fan. For all temperature cases at respective distances, the corresponding thermal 

sensation was observed to be within a comfort zone of (0.5 < PMV < 0.5). 

3.3. Active Indoor Localisation 

Active indoor localisation, unlike passive, predominantly requires the active 

participation of its target object in the localisation process. Technologies adopting this 

method require its users to actively carry trackable electronic devices for transmiss ion 

and data receipt [18][21][24]–[26]. 

This field is of high interest to researchers as it enables user identification in dynamic 

multi-user environments. Solutions adapting this method sometimes exploit ubiquitous 

technologies for management of development cost and infrastructure requirements. 
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Wide-ranging coverage and simple calibration are additional benefits this method 

encourages [131]. Metrics implemented in active indoor localisation include Received 

Signal Strength Indicator (RSSI) [16], Time of Arrival (TOA) [100], Direction of Arrival 

(DoA) [132], Angle of Arrival (AOA) [133], or Time Difference of Arrival (TDOA) [31]. The 

techniques for positioning include Radio Frequency identification (RFID) [134][135], 

Ultra Wide Band (UWB) [136], [137], Global System for Mobile (GSM) [138][139], Ultra 

sonic localisation techniques [140][141], AM, FM and TV signals [142][143][144], 

Bluetooth [104], Field strength systems  [145], and WLAN [106][146].  

3.3.1. Radio Frequency Identification (RFID) 

RFID is a low-cost positioning technique that can be employed in both active and passive 

localisation solutions. It is predominantly utilized by supply chain enterprises for 

inventory tracking and management efficiency.  Compared to passive RFID solutions 

where tracked object need not carry devices, RFID for active localisation presents 

solutions involving the system’s active interaction with the target object through a 

wearable or carried RFID device or tracking tag. 

In 2011, House et al. [134] proposed wearable prototype consisting of a small RFID tag 

reader with drift-sensitive IMU to combat the significant sensor drift limitation exhibited 

by unaided PDR for localisation. All tri-axial measurements from accelerometer, 

gyroscope and magnetometer sensors that make up the 8cm x 4cm single axis system 

IMU are oriented on a board in a co-axial manner. The MCU then samples IMU and RFID 

tags (85mm x 54mm x 1mm) data at 50Hz post initialisation and calibration. Samples 

gotten from IMU are filtered through the examination of the largest singular value of the 

accelerometer variance for footfall detection and samples from RFID are necessary for 

RFID fiducial transformations.  Kalman data filter is applied to the footfalls for updating 

estimates of position, velocity and orientation.   Real environment testing was conducted 

in a four RFID fiducial markers equipped Kelley Engineering centre located on the second 

floor of Oregon State University where a volunteer walked a simple rectangular set path.  

Experimental results captured in a 55m x 20m two-dimensional floor area showed 

1200% improvement in average error rate using the proposed RFID-fused system. This 
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result was non-comparable to previous pedestrian dead reckoning state-of-the-art with 

high vulnerabilities to sensor drift inaccuracies.  

Chai et al. [135] in 2017 designed an RFID tracking method that integrates Kalman filter 

and Multidimensional Support Vector Regression (MSVR). The focus of their study was 

to improve RFID tracking performance within industrial sites through active RFID 

technology. Experiments were conducted in a very dense Liquefied Natural Gas (LNG) 

facility training site. Four intrinsically-safe protected RFID readers alongside a grid of 165 

reference tags are set up and allocated across the test environment with known locations. 

All tags are tested through the measurement of their RSS at different distances; only tags 

with consistent measurements are retained to avoid draining of batteries. In the static 

state where tags are situated at the same position, using the framework in Figure 3-4, The 

study [135] achieved an RMSE of 0.88 m and in real time dynamic state where RFID tags 

are fixed onto a moving trolley, it achieved an RMSE of 1.40m, 0.66m and 0.71m in three 

trajectory testing.  
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Figure 3-4 Framework of developed RFID tracking approach [135] 

  

3.3.2. Ultra Wide Band (UWB) 

Kempke et al. [136] proposed a system called SurePoint, which builds on existing 

commercial UWB hardware through constructive interference and phenomenon 

implementation of different modulation schemes that includes frequency and spatial 

diversity. The system also used a smartphone and a mounted tripoint microcontroller 

module to achieve a 53% decrease in median ranging error. This is because it relied on 
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the capturing of high-fidelity range estimates between nodes through UWB radios and a 

TriPoint module, to provide embedded devices with immediate access to their locations.  

Since UWB radios are assumed to spread RF power across wider bandwidth when 

compared to other narrowband radio such as Wi-Fi 802.15.4 or RFID, the system adopts 

a ranging protocol to exploit frequency and spatial diversity with minimal impact on 

update rate and trilateration flood synchronisation methods.  

Quality evaluation of SurePoint localisation system was done with the inclusion of two 

experiments using nine deployed anchors in two evaluation environments.  

Their first experiment focused on stationary tracking, where 50 positions of a cross 

within the evaluation area were recorded after approximately 15s of standing at each 

position. Each point followed the spacing of the measured floor tiles of the evaluation 

area which is 1 foot apart.  At stationary tracking, SurePoint achieved a median accuracy 

of 0.29m, a median precision of 0.12m and a sub-meter 99th percentile accuracy and 

precision in 3D Euclidian.  

The second experiment focuses on tracking motion where SurePoint proves to track an 

object moving at up to 2.4m/s without quality degradation. In motion, SurePoint could 

find a median error of 0.06m in the 𝑥-axis and Median error of 0.07m in 𝑦-axis but 

defaulted to finding a large multiplication in 𝑧-axis which therefore resulted in a triple 

value of 0.15m of median error in the 𝑧-axis.  

Another research from Kempke et al. [137] proposed Harmonium tag, which is an 

asymmetric localisation system which utilises low-cost, ultra-wideband tags and slightly-

altered narrowband anchors that initiate frequency-stepped band-stitching architecture 

to achieve UWB-based localisation. This approach achieves decimetre level accuracy 

through the usage of small, inexpensive, lightweight and FCC-compliant UWB transmitter 

or tag, fixed infrastructure with pre-set locations and a centralised processor for tag 

location calculation.  
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The Harmonium tag system hardware consists of UWB RF radios, quadrotors, Natural 

Point OptiTrack motion capture system and fixed location infrastructure (otherwise 

referred to as anchors), and free space UWB signal broadcast of a mobile tag. The anchor 

hardware monitors and observes tag transmission of UWB pulses. This system adopted 

the following techniques and methods –  

 TDoA of UWB pulses to estimate tag location and impulse response of the channel 

 ToA for anchor estimation through an examination of the first observable edge. 

 Line-of-sight (LOS) differentiation from subsequent reflecting paths. 

The researchers [137] conducted an experiment in a rectangular room measured 4.6 x 

7.2 x 2.7 m of a commercial building with dense multipath characteristics. It 

demonstrated a Median 14 cm error with a 90th-percentile error of 31 cm and median 

precision of 9 cm through the sub-mm accuracy calibrated Natural Point OptiTrack 

motion capture system [147].  

3.3.3. Cellular Networks 

Otsason et al. [138] proposed an approach involving wide fingerprinting of RSSI readings 

from the strongest 6 GSM cells. They designed a system which included a laptop, 

Sony/Ericsson GM28 GSM modem (cell phone), and Orinoco Gold wireless card. Then, 

they implemented a K-nearest neighbour algorithm to the following comparative studies 

in the structure as follows –  

 Readings from 802.11 access point only;  

 One cell - utilises reading of the single strongest GSM cell;  

 Six-cell - utilises readings of the 6-strongest GSM cells;  

 Chann utilises readings from up to 35 GSM channels.  

The comparative studies in the structure above were conducted in two multi-floor office 

buildings and one private detached house. One of the office buildings is home to Intel 

Research Seattle Lab and the other is part of the department of computer science at the 

University of Toronto. Intel Research Seattle Lab is situated at a busy downtown while 
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the University of Toronto and the private house are situated in Seattle’s commercial mid -

town and quiet residential neighbourhood respectively. Results from this research 

showed Median accuracy range of 3.4m to 11m with 6 strongest GMS cells and 2.5m to 

5.4m with wide fingerprints. It is observed that three out of seven experiments proved 

GSM accuracy with wide fingerprint to underperform when compared to Wi-Fi 

localisation.  

Another research for localisation using GSM was proposed by Varshavsky et al. [139]. The 

research utilises wide signal strength fingerprints from 6 strongest cells and additional 

cells that are strong enough to be detected but are considered too weak to be used for 

efficient communication. This research used Bluetooth, ultrasound, technologies, Sony 

Ericsson GM28 modem, Audiovox SMT 5600 phone, 802.11 technology and infrared 

technologies for the realisation of their localisation system. Fingerprinting technique and 

K-nearest neighbour algorithm are adopted and applied to data collected from the GSM 

cells. Similar experiments were conducted within the same environment and parameters 

as those implemented by Otsason et al [138].  Results from research conducted by 

Varshavsky et al [139] presented an assumed first accurate localisation system that 

accomplished 4m floor median accuracy in large buildings and up-to 60% floor 

identification accuracy with 98% accuracy within 2 floors of tall multi-floor buildings.  

3.3.4. Ultra Sonic Localisation 

In 2015, UgurYayan et al. [140] presented ICKON, a low cost ultrasonic based positioning 

system for indoor navigation of mobile robots with centimetre level accuracy. ICKON 

employs ultrasonic signals for position calculation of the mobile robot within a large 

indoor environment. It consists of ultrasonic transmitters, tracked mobile units, P3 -DX 

mobile robots and LAN for the signal channel. The system utilises ultrasonic transmitters 

that periodically send signals from a known fixed location. The mobile robots act as 

receivers as they calculate their own location through the adoption of TDoA method and 

multi-trilateration algorithm. Least squares method is then applied to the mobile 

ultrasound receiver possessing maximal velocity of 0.2 m/s to achieve centimetre level 

accuracy. The intervals and the sender positions are assumed to be known prior to 
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evaluation. Furthermore, the receiver is assumed to receive signals from all senders 

whilst remaining in the same position. It is observed that this method of position 

estimation would lead to high positioning errors in instances where the receiver moves 

at a velocity higher than 0.2m/s. Unlike the study by UgurYayan et al.[140], other 

ultrasonic systems [148][149][150][151] are recognised to not be suitable in medical 

accommodations or similar environments due to the adverse influence to human health 

caused by systems’ dependency on continuous RF and ultrasonic signal transmission.  

Naoki F. et al. [141] proposed an error correction technique centred on an attenuation 

model using signals in detection circuit and multiple frequencies with directivity models 

from ultrasonic waves in air. Arduino Uno, transmitter units, comparator, ultrasonic 

receivers and a microcontroller are all technologies used in this study. In an experimental 

test area of 80cm x 80cm x 117cm, each transmitter was attached to the top corners of 

the ceilings, pointing towards the centre of the floor and the receivers were stationed at 

each 9x9 grid points at 10cm intervals with a height of 21.5cm pointing towards the 

ceiling. Within the test area, Time of Flight (ToF) algorithm was applied to the 

comparator for ultrasonic wave detection, and, Low Pass Filter was applied to the output 

of the compared signal of the attenuation model. This was important to get an average 

error reduction of 2.52cm. This results in 18% less than Linear which exhibited 

significant errors due to miscalculated 25.0 kHz or 32.7 kHz receiver detection time 

during far ranges from the transmitter. 

3.3.5. AM, FM and TV Signals  

Sungro. Y et al. [142] presented ACMI, an FM-dependent localisation system which does 

not need proactive site profiling. This system builds fingerprint database from the true 

estimation of RSS distribution of commercial FM radio stations only. The investigations 

in investigations by Sungro. Y et al. [142] repurposed Wi-Fi signal propagation model to 

control FM radio features and read FM information from transmission towers as well as 

building the floor plan. Evaluation of the research was from eight different FM stations in 

seven campus locations of dimensions 35m x 85m and 55m x 85m and three downtown 

buildings including two public museums and a shopping mall (through Wi-Fi signalling 
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and Bluetooth of mobile phones – Samsung Galaxy Note 2, LG and Sony smartphones). 

For position estimation, a two-step process; parameter calibration and path matching are 

implemented in the positioning refinement of stored FM RSS fingerprint information in 

the database. The result showed an error of 6 m and 10 m in the seven campus locations 

and downtown buildings respectively. Limitations encountered by S. Yoon et al [142] 

include poor signal attenuation of FM signal in the presence of obstacles; potential model 

implementation difficulty in the 3D environment; the system will potentially fail to 

estimate the true location of target audience if the floor of all measured environment have 

similar structures and insignificant height differences because ACMI [142] identifies 

location through the identification of structural unit indigenous to a particular f loor’s 

floor plan and the single RSS DB created form it. 

In their indoor localisation study, Rahman et al. [143] combined probabilistic and 

deterministic fingerprinting technologies. The study mentions that an advantage AM/FM 

had over Wi-Fi, which was its dedicated bands that prevent interferences from other 

signals in other bands. In two test areas, with dimensions 28m x 12m, Rahman et al. [143] 

implemented Nearest Neighbour, K-Nearest Neighbour and K-Weighted Nearest 

Neighbour to calculate mean distance error of less than 3m. Test area 1, was a ground 

floor with 29 Reference points and 13 Transmission Points, while, test area 2, was the 

first-floor with 22 Reference points and 7 Transmission points. In particular, used for 

both experiments are the strongest reception of 8 Sydney-focussed AM radio 

broadcasting channels at a frequency band of 526.5kHz - 1606.5kHz.  

Due to research [144] that analysed TV-based localisation systems and their limited 

success at leveraging the high bandwidth of TV signals through time-based approaches, 

Eggert [152] adopted the time difference of arrival (TDOA) method on analogue TV 

signals and resulted in indoor positioning errors of up to 300 m. The outcomes were 

bettered by the Rosum system, which employed digital TV (DTV) synchronization signals 

to achieve 23m mean accuracy. It is acknowledged by the researchers [144][153] that 

only fingerprinting investigation relating to DTV signals is implementable in outdoor 

environments only with a median accuracy of130m. 
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3.3.6. Bluetooth 

Teran et al. [104] used low energy Bluetooth technology in designing an IoT based system 

for indoor localisation. Their solution consisted of two major systems: an acquisition 

system, and a central server regulated by a Client-Server paradigm and IoT philosophy. 

The investigation included the adoption of a simple location algorithm derived from LBS 

and Received Signal Strength (RSS) fingerprinting method and K-Nearest Neighbour (K-

NN) classifier to measure Bluetooth beacons.  

The researchers assessed their system in a 25m2  sized room partitioned into 1m x 1m 

grid cells at Pontificia Universidad Javeriana, Bogota, Colombia. They deployed four fixed 

Bluetooth beacons fixed at a height of 30cm and positioned at square corners (0m, 0m), 

(0m, 5 m), (5 m, 0 m), and (5 m, 5 m) of the test area. The results included a correct 

classification of 70.2% and 29.85% incorrect classification thereby resulting in a 

precision of 2m2 . 

3.3.7. Field Strength Systems- IMU  

Research conducted by Hellmers et al. [145], introduced MILPS, which is an indoor 

localisation system based on a combination of artificially generated magnetic fields and 

Inertial Measurement Units (IMU).  They further combined the artificially generated 

magnetic fields and Inertial Measurement Units (IMU) with pressure sensors and 

adaptive filtering methods to estimate altitudes, position and direction of a mobile 

platform.  

MILPS is an infrastructure based system consisting of multiple coils that generate 

artificial magnetic signals which act as reference points. Then, these reference points are 

positioned at strategic locations of the test area for better coverage attainment. This is 

important because it will enable the system to better measure position estimates through 

the implementation of basic sensor fusion principles and Kalman filter based kinematic 

motion model. The MILPS is designed to use a decentralisation synchronisation process 

that applies serial control to the implemented coil and mobile station. This 
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synchronisation process is particularly done through the implementation of Time 

Division Multiple Access (TDMA) scheme. This is because it is reliant on Real-Time Clocks 

(RTCs) and Real-Time Operating System (RIOT-OS).  

The literature conducted two experiments in a 440m2  surface area of Technical 

University of Darmstadt Institute building with 2 installed ramps. This was to identify 

altitude change in 2 thick walled closed rooms. The experimental results demonstrated 

that moving objects can be localised with accuracies of less than 1.5m in the horizontal 

plane and 0.5m in 𝑧- direction.  

3.3.8. WLAN – Wi-Fi 

Wi-Fi is a ubiquitous technology generally exploited by developers for indoor 

localisation. This is discussed in a review by Suining He [106]. Suining investigated the 

latest developments in Wi-Fi-based indoor localisation with importance to efficient 

system deployment and localisation techniques. 

There are various localisation techniques for Wi-Fi, these include a model by Chen et al. 

[146] created to optimise the fusion of Wi-Fi WPL and PDR landmark (shown in Table 

3-4). Chen et al. [146], designed a smartphone based indoor localisation system that used 

Kalman filter to combine Pedestrian Dead Reckoning (PDR) with log-distance path loss 

model. This was important because PDR measured the motion process of the user from 

IMU sensors in the smartphone, and, path loss shadowing model provided relative 

distance estimates between the tracked node (user with a smartphone) and the Wi-Fi 

routers based on RSSI.  

Similar to popular realisation, the researchers [146] observed that RSSI signals of the 

used routers fluctuated due to Wi-Fi signal variations. Traditionally, to tackle RSSI 

fluctuations, RSSI fingerprinting technique is popularly implemented. Although 

fingerprinting is popular, it requires the manual collection and training of huge datasets. 

Also, in cases where the environment is modified, the system would require retraining to 

learn the new environment. Therefore, to overcome the shortcomings of fingerprinting, 
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the researchers adopted and repurposed the successful RFID weighted path loss 

algorithm in a three steps process. 

 First step - distance calculation between the Wi-Fi router and smartphone using 

log-distance path loss model.  

 Second step - weight determination using distance reciprocal.  

 Third step - determination of smartphone location through the summation of 

weighted router locations. 

 

 

Table 3-4 The assumptions for RSS WPL algorithm as proposed by [146]  

 

WPL algorithm was observed by Chen et al. [146] to be a suitable realistic lightweight 

algorithm because it sits on a resource-limited smartphone as opposed to a server. 

Specific parameters such as initial point, step length and walking direction, make a huge 

significance because the adopted PDR technique is reliant on relative information from 

IMU. This, therefore, makes it only suitable for pedestrians walking short ranges as it will 
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drift if employed for long distances. Some calculations co nducted for some PDR 

parameters are highlighted below in Equation12-Equation 14. 

Determining the target object’s initial point 

 

 

Where, 

𝐗 𝐥 , refers to the position at time step 𝐭,  

𝐋𝐭 , refer to step length, 

Ɵ𝐭 , refers to walking direction at time 

step 𝐭. 

Equation12 

The initial point, being one of the most vital parameters necessary for the success of Chen 

et al.s’ [146] proposed indoor localisation is obtainable through the leveraging of 

landmarks as the system holds no prior location information.  

Step detection with step length 

Step detection is obtained from smoothened accelerometer data from periodic vertical 

acceleration pattern of walking users. This can be expressed as,  at
m and calculated as; 

 

 

Where, 

{𝐚𝐭, 𝐭 ∈ 𝟏, … . 𝐊}, refers to vertical acceleration time 

series.  𝐦, refers to ordered smooth function output at 

time step𝐭. 

Equation 13 
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Figure 3-5 Simple threshold method application on a smoothened vertical acceleration pattern for 
step identification 

 

Researchers Chen et al. [146] adopted step length estimation illustrated in Figure 3-5 to 

determine the linear relationship between step length and pedestrian’s height.  

This adopted approach considers the dynamics of step length when a pedestrian is 

walking as calculated in equation 13. 

 

 

Where,  

𝐋, refers to step length 

𝐤, refers to the coefficient. This is usually 

determined by the pedestrian’s gender. 

Equation 14 
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To accommodate variance in step strides, the adopted solution observed by Chen et al.  

[146] provides a relationship between acceleration magnitude and step length. This 

considers the dynamics of step length when a pedestrian is walking in Equation 15. 

Walking direction 

 

 

 

Where, 

𝐋, refers to step length,  

𝛃, refers to adjustable coefficients. This is 

subject dependent. 

𝐚𝐦𝐢𝐧, refers to the minimum acceleration 

magnitude 

𝐚𝐦𝐚𝐱 , refers to the maximum acceleration 

magnitude. 

Equation 15 

 

To estimate walking direction, scientist Chen et al.  [146] adopted Equation 15, combining 

angle and orientation sensor outputs from a gyroscope, magnetometer and 

accelerometer using Kalman filter. This angular acceleration from the gyroscope 

manages the sensitivity and drift of magnetometer and accelerometer respectively.  

Landmarking is introduced to mitigate PDR drift over long ranges and Wi-Fi RSS 

fluctuation. Landmarks provide new starting points for  PDR when the user approaches 

them. Therefore, S. He and S. H. G. Chan [106] proposed the incorporation of Wi-Fi, 
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gyroscope, accelerometer, magnetometer and barometer to determine investigated 

landmarks such as doors, stairs, elevators, turns and escalators.  

Wi-Fi WPL and PDR approaches were combined to compensate for each other’s 

weaknesses. Due to Wi-Fi signal variation, Wi-Fi WPL is not vigorous enough and PDR is 

highly dependent on relative information from IMU. Therefore, its short-range position 

estimation is accurate and its longer range estimations are inaccurate because of drift.  

Their idea was for Wi-Fi WPL to assist in correcting PDR drift while PDR smoothens Wi-

Fi variations in the Wi-Fi WPL.  

Three experiments were conducted in a standard 19.0m x 16.3m research lab and a 

27.5m x 16.4m test bed at the Nanyang Technological University of Hertfordshire campus 

using a handheld Google Nexus 4 smartphone running Android 4.4 operating system. The 

first experiment being Wi-Fi WPL and PDR with landmarks resulted in mean localisation 

errors of 2.877m and 1.7547m respectively. The experimental results showcase an 

average accuracy of 1m. 

Considerations from Active Localisation 

Aside from providing meter level accuracy, investigations by S. He and S. H. G. Chan [106] 

also diagnoses inadequacies of the solution in detecting pedestrians within a multi-floor 

environment. Multi-floor localisation is perceived to be attainable through Wi-Fi WPL 

and PDR landmark combinations. 

Although the solution by S. He and S. H. G. Chan [106] presents an improvement of about 

1m compared to the lightweight multi-trilateration result of 1.5m – 3.1m in 

representative literature [14][65]. Our proposed investigations would adopt the 

combination of Wi-Fi and IMU sensors of a smartphone to estimate the position of our 

tracked mobility scooter. In particular,  
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 For Wi-Fi, RSSI- SDRS log-normal shadowing model [64], which is a proposed 

update of the log-normal distance path loss model used in research by S. He and S. 

H. G. Chan [106].   

 For IMU, we would propose to investigate further how the combination of 

accelerometer, gyroscope and magnetometers will work for mobility scooters. 

We expect the following - 

 Multi-trilateration on the results from the RSSI- SDRS log-normal shadowing 

model [64] will outperform results from log-normal distance path loss model used 

by S. He and S. H. G. Chan [106]. 

 PDR is best for pedestrian motion and therefore will be inadequate for 

translational motion. 

3.4. Hybrid System 

Hybrid systems are a combination of techniques, technologies or propagation adapted in 

both passive and active systems for localisation attainment. A huge variety of localisation 

systems are of the hybrid variety as they involved the combination of technologies f or 

position estimation.  

According to A. Correa et al [107], there exist no definite standards for hybrid positioning 

systems. This is due to a large number of viable IPS combinations need for the 

development of a hybrid system. After careful analysis of over 150 literature works, 

section 3.4, proposes classifications for hybrid localisation systems. These include –  

 Propagation based hybrid system only  

 Technology and Technique (TT) based hybrid system.  

See below for relevant literature examples representing the above classifications.  
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3.4.1. Propagation Based Hybrid System 

Propagation based hybrid system is a localisation system that combines different 

technologies that have similar propagation techniques. For example , RSSI can be 

propagated from two different technologies such as Wi-Fi and Zigbee. This is important 

for systems that adopt this approach because it provides data compensation in weakness 

or NLoS instances.    

Representative state-of-the-art demonstrating this standard is the research conducted by 

Daniel et al. in 2017 [108]. The researchers [108] exploited ZigBee and Wi-Fi technologies 

and combined their propagated RSSI using a simple token ring network. These 

technologies were selected because, both technologies propagate RSSI, and, Wi-Fi is a 

ubiquitous IEEE 802.11 standardised technology while ZigBee is a cost-effective low 

power wireless communication technology, standardised under the IEEE 802.15.4.  

This combination is important because the node RSSI pair communication of both Wi-Fi 

and ZigBee would not depend on LOS for estimation, it will, however, measure a response 

directly relational to entity breaking its link path. It, therefore, removes interferences 

from contesting Wi-Fi signals in urban areas. In particular, through the deployment of top 

Zigbee 802.15.4 standard channel and new frame control measures in the Wi-Fi’s white 

space.  

Daniel et al. configured a token ring DFL node consisting of MRF24J40 radio and 

PIC32MX440F256H paired microcontrollers running in a Mesh with slaves. They 

conducted evaluations in a static environment using nominal post-processing of RSSI 

results, utilizing K-Nearest Neighbour, and Euclidian Distance for variance mean 

computation. It was revealed by Daniel et al. that their system provided an accuracy of 

80% for DFL in a 3m x 3m quadrant, 95% for Active tracking in a 2m x 2m area, and 98% 

in coupled Active tracking utilizing DFL measurements. 

It was their observation their system performed poorly in NLoS conditions. In particular, 

large RSSI variations were noticed in a histogram plot of 1500 RSSI sample values. 
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3.4.2. Technology and Technique (TT) Based Hybrid 

System 

TT based hybrid systems are localisation systems that estimate position through the 

combination of different technologies and techniques. This is important because 

limitations of one individual technology are mitigated with another complementary 

technology. For example the proposal by Alatise et al. [109] to combine IMU and camera 

vision. This is because of the advantages of IMU sensors (discussed in 3.3.7 3.2.9) and 

camera vision (discussed in 3.2.9). 

Alatise et al. [109] proposed to estimate the pose of a four-wheeled mobile robot using a 

fusion of the inbuilt IMU sensors (6-DoF)  and single mounted LS-Y201-2MP LinkSprite’s 

new generation high-resolution serial port camera module for the vision. This is because 

the researchers determined that improved pose estimation of a robot required more than 

one sensor and a blend of object recognition and feature matching methods.  

The assessments of their system, included, object recognition of camer a captured images 

and random sample consensus (RANSAC) algorithms. This is because RANSAC differs 

from traditional methods in that it approximately calculates the constraints of a 

mathematical model from a set of obtained data employing an iterative technique. 

The literature showed experiments in a test area of 4m x 5.2m, where, IMU and camera 

recorded maximum error values of 0.145m in position and 0.95° in the orientation.  

Our proposed investigation would fall under TT based hybrid systems. This is because  it 

would combine different technologies including Wi-Fi, IMU and wheel encoders to 

improve indoor position accuracy. Although each technology is different, it is expected 

that these technologies would complement each other.  
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3.5. Summary and Analysis  

The scope of this review is limited to indoor localisation. This chapter examined different 

indoor localisation systems, algorithms and techniques designed by researchers with 

emphasis on trade-offs observed amongst them.  

State-of-the-art indoor localisation systems offered in the literature is categorised into 

passive, active and hybrid localisation systems. 

Passive indoor localisation appeal to users as it does not require users to carry a device. 

This, therefore, enhances convenience for users as they are not r equired to carry 

additional devices on their person. It is observed that the majority of indoor localisation 

solutions within this category provide accuracies of tens of centimetres to meters.  In 

most cases they are predominantly cost-effective for users, however, a good majority are 

non-scalable, bulky, expensive, and, complex to set up and implement. Thus, becoming a 

less appealing approach to solving indoor localisation problem. This is emphasized in 

Table 3-5.    

Active indoor localisation is more popularly employed by scientists in attaining the 

improved position. This has demonstrated an accuracy achievement from centimetre 

level accuracy [141] to 5.4 m [139] accuracy.  Unlike passive indoor localisation, active 

indoor localisation requires users to carry traceable trans-receiving devices to determine 

location. This requirement formally posed as an inconvenience to users, especially in 

cases where carried devices were bulky. Most solutions under active localisation were 

observed to be popularly expensive. Today, active indoor localisation has beco me more 

appealing to researchers and users because of the opportunity to exploit user dependent 

everyday technology such as a smartphone. Thus, significantly reducing the cost. These 

are highlighted in Table 3-5.    

The examination of hybrid indoor localisation uncovered the ambiguity of its 

characterisations.  There were no standards or categorisation for this type of indoor 

localisation. This research uncovered and presented two identifiable hybrid localisation 
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classifications, which include Propagation based hybrid system only and Technology and 

Technique (TT) based hybrid system. Both classifications can be a permutation of passive 

and active positioning technology and localisation combinations. The former, 

Propagation based hybrid system only, is observed as different technologies with similar 

propagation techniques exploited to attain an improved position. The representative 

paper [109] demonstrated high accuracy of 95%. However, the representative of this 

classification is neither robust nor scalable as both Wi-Fi and ZigBee need to be at most 5 

meters apart for adequate communication. ZigBee is unlike Wi-Fi, is not ubiquitous, so, 

commercial development will become expensive in mass production situations.  

Technology and Technique (TT) based hybrid system, combines different positioning 

technologies and techniques to get an improved position. Representative literature [110] 

of Technology and Technique (TT) based hybrid system demonstrated a high accuracy of 

0.145 m.  Although it showed high accuracy, it is identified that this solution is intended 

for localising robots with inbuilt IMU sensors. The solution required the addition of a 

high-resolution camera. Due to the non-ubiquity of camera technology, the solution is 

considered to be expensive. These are highlighted in Table 3-5.    

As a majority of the indoor localisation systems are limited in one or more key areas such 

as accuracy, scalability, energy efficiency and cost, the research encourages the 

development of WTP-HAMS system which favours mentioned key areas.  

Our proposed investigation would employ Technology and Technique (TT) based hybrid 

system in the designing of a novel WTP-HAMS system, which includes Wi-Fi, smartphone 

IMU modalities and wheel encoders. This is important because the exploited technologies 

are ubiquitous, thus significantly reducing the cost of the system development. The 

proposed system would be scalable and easy to use by the users because of the familiar 

technologies exploited. 

Furthermore, it is our observation that a majority of the SOTA is designed for pedestrian 

users moving in pedestrian motion, and, it is our suspicion that SOTA solution would not 

be suitable for mobility scooter users moving in translational motion. This is an 
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overlooked and neglected gap, thus the proposal to design the novel WTP-HAMS system 

that would reduce position errors and provide better accuracy for mobility scooter users.  
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Table 3-5 Analysis of state-of-the-art 
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Chapter 4 Proposed Investigation 

This chapter introduces the proposed investigation, which is the design and development 

of a novel WTP-HAMS system. This includes the aims and objectives of the study, the 

working scheme and conceptual flow of the proposed investigation. It also describes the  

research development plan, including the milestones that will be undertaken in the 

realisation of the developing the proposed WTP-HAMS system. This chapter also includes 

a summary and analysis. Finally, it clearly describes our contribution to knowledge.   

4.1. Research Question 

It would be very beneficial to the use of different available cost-effective sensors for 

mobility scooter indoor localisation if they could lead to sufficiently accurate pose 

estimation. It is believed there is potential to achieve this. Therefore the thesis research 

question is: 

Is it possible to improve indoor vehicle position and orientation estimates by combining 

Wi-Fi, smartphone IMU and wheel encoders, so that this can be effectively exploited for 

scooter navigation?  

4.2. Core Idea and Motivation  

For a more accurate inexpensive indoor positioning system to accomplished, ubiquitous 

technologies need to be exploited. A positioning accuracy improvement system using a 

combination of Wi-Fi, wheel encoders, accelerometer and magnetometer is proposed and 

discussed in this chapter as it applies to the techniques, mathematical models and system 

description of WTP-HAMS.  

The main idea is the exploit the errors experienced by two ubiquitous technologies used 

in indoor localisation to attain improved positioning. Wi-Fi provides positioning 

information, but its imprecision is high and therefore insufficient in determining precise 

location detection. To improve this imprecision, complementary position estimation 
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technology is introduced. This introduced technology is the wheel encoders. Though the 

wheel encoders provide better position accuracy, it is susceptible to drift. To mitigate 

drift in the distance and angular updates, a unique drift mitigation model is designed to 

manage errors experienced in distance and combined with fused accelerometer and 

magnetometer sensors to provide more accurate heading estimates. This combinatio n 

provides better results because the fused accelerometer & magnetometer sensors 

produce accurate world direction with reference to the global system. This contributes to 

qualitatively improve the position of the already estimated wheel encoder. However, the 

position is with reference to the mobility scooter reference system and therefore needs 

to be positioned with a reference system of the room. The Wi-Fi, therefore, is 

advantageous as it provides a position with the room as the reference system. Therefore, 

combining Wi-Fi RSSI estimates with the novel odometry model provides improved 

position accuracy according to the measured room reference system.    

The tracked object in this study is a mobility scooter with a smartphone (SP) mounted on 

its arm. SP collects data from all exploited technologies.    

This research aims at designing the WTP-HAMS system which is an innovative 

positioning system using a complementary combination of Wi-Fi, wheel encoders, 

accelerometer and magnetometer, to improve location accuracy of mobility scooter users 

within rooms. WTP-HAMS contains a unique combination of techniques that aim at 

significantly reducing resultant position errors. The combined techniques are grouped 

under RSSI derived position estimates and odometry pose position outcomes. WTP-

HAMS uniquely leverages error shapes experienced by RSSI and Odometry to determine 

improved new position as demonstrated in the working scheme of Figure 4-1.  Compared 

to SOTA that shows an error of 1.5m – 3.1m from Wi-Fi and 33cm error from odometry, 

WTP-HAMS system demonstrates better accuracy with an error range of 0.35m – 1.35m. 

Our system adopts a similar assumption [19][14], to track an object travelling in a 

straight line with 50 experiments. A working scheme of WTP-HAMS system is illustrated 

below. 
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Figure 4-1 WTP-HAMS working scheme 
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Position Estimation using RSSI 

Wi-Fi is a ubiquitous technology which emits received signal strength indicator (RSSI) 

for propagation for use in indoor localisation systems. The exploitation of RSSI for indoor 

localisation is a continuously developing area of intense study [16][154]–[157]. 

Employed indoor localisation methods are reliant on the propagation environment, as it 

influences positioning results thereby causing significant localisation errors.  

It is proposed that the WTP-HAMS system employs Wi-Fi to estimate the position 

between the APs and the Mobility Scooter relative to the room. As shown in Figure 4-1, 

this is proposed to be achieved by first estimating W1 and then W2.  

W1 is estimated using the SDRS path-loss shadowing propagation model [64][77] 

represented by Equation 5 on page 68. This model is chosen because it takes 

environmental dynamics into account as it causes noise reduction to propagated RSSI and 

converts its values into relative distances constrained to the routers’ positions within a 

room. 

Although W1 provides relative distances between routers and reference points, it fails to 

provide position estimates of the mobility scooter. Therefore, WTP-HAMS system adopts 

multi-trilateration algorithm [14] (Equation 6 on page 73) to combine the estimated 

distances (W1) and the known APs positions (relative to the room’s reference frame) 

resulting in one position for the mobile scooter relative to the room’s reference frame. 

This is referenced as W2.  

The error associated with W2 can be estimated using Equation 9 on page 75 which 

performs the distance of the position error between true position and estimated position. 

This measures the performance of W2 by average localisation error as proposed in the 

paper by L. Cheng et al [78]. The distance of the error from ground truth acts as the radius 

of the circle encompassing estimated position from the ground truth.  
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Though the outcome of W2 is relative position estimate, its positioning accuracy is low 

due to relative distance W1 inaccuracies the SDRS path-loss shadowing propagation 

model experiences when interferences such as shadowing, and path-loss are present.  

The outcome display limitation of RSSI as it provides inaccurate Mobility Scooter position 

with large average error ranging between 2 and 3 meters. Furthermore, there is no 

navigational information.  

Pose Estimation using Proposed Novel Odometry Model  

WTP-HAMS system then introduces wheel encoder technology by using complementary 

odometry modelling to better ascertain position.  In particular, odometry is capable of 

providing pose estimates based on navigation trajectory as it refers to the mobility 

scooter which can be very precise provided its covered travelled distance is accurate.  

Traditionally, odometry models are used in localising mobile robots in an indoor 

environment [19]. Odometry is performed using travelled distance output from inbuilt 

wheel encoders of the mobile robots to derive pose estimates x, y and th eta.  These are 

derivatives are expressed in Equation 1, Equation 2 and Equation 3 (from page 57) to 

ensure Equation 16, Equation 17 and Equation 18 to be true.  
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Equation 1, Equation 2 and Equation 3 are translated working components O1, O2 and 

O3 of the working scheme illustrated in Figure 4-1. This is expressed in Equation 16, 

Equation 17 and Equation 18 on page 127.  

O1 = Dc = (Dr+Dl) / 2 

Equation 16 

𝐎𝟐 =  Equation 3 

Equation 17 

O3 = Equation 1 and Equation 2 

Equation 18 

Unfortunately, odometry suffers from drift when the robot travels over a period of time. 

This, therefore, encouraged researchers [158] to propose the integration of standard 

odometry with IMU sensors and camera. The results from this study lead to an error of 

51cm when the odometer is used alone, 33 cm when the odometer is combined with IMU; 

and a position error between 1cm and 10cm when camera vision is added.  

Although the method is promising, it is evident that without cameras there is poor 

accuracy. Nonetheless, the author is interested in experimenting without a camera 

because the aim is to experiment in a natural not prepared environment while the camera 

would bring an extra environment setup cost. 

Therefore, WTP-HAMS employs wheel encoders to get the distance travelled O1 and 

relative direction O2 both are relative to the mobile scooter reference frame.  
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Proposing New Drift Mitigation Model 

The relative position O3 is expected to include a positional error due to drift in distance 

and heading accumulated while the scooter is in motion. To improve the drift issue would 

then be relevant to determine better odometry based position. Suffered drift is the 

accumulation of errors in the travelled distance over time, thus a drift mitigation 

technique is proposed in this study. In particular, it is recommended to use Equation 19 

and to run a set of trials to estimate Errx%. 

The proposed drift mitigation model adds calculated percentage deviation of estimated 

travelled distance.  

DistR = 𝐷𝑐
𝑚  +  Errx%  

Equation 19 

DistR, is new improved distance with reduced error, 𝐷𝑐
𝑚 represents the maximum 

estimated travelled distance and Errx%  is the estimated drift (which is a percentage 

error of the travelled distance). Errx% is derived from the percentage of the difference 

between actual distance value and the estimated distance value of the maximum value 

with the highest reoccurrence. The maximum value is the best fit in the study due to 

outcomes derived by experimentation described in chapter 6. 

This is a simple but effective way to provide a more robust and reliable system for 

deriving better travel distance estimate, which is uncommon in literature works.   

Proposing To Estimate Better Navigation Heading 

The neo 4 mobility scooter used in this research has aligned wheels with anti-slippage 

and anti-tip puncture-proof solid tyres. Its solid tyres are advantageous particularly 

because they do not require pressure monitoring or inflation. Nevertheless, slippage is 

expected to occur if the depth of the tyre tread is below 0.5mm. However, our employed 
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mobility scooter has a tyre tread above 0.5mm and will be tested in a representative 

environment with smooth wooden floors and none slippage events.   

The neo 4 is a tricycle drive employs a single driven front wheel and two passive rear 

wheels. It is a fairly common AGV application because of their inherent simplicity.  In most 

cases, the rare wheels are used for heading determination. However, it is inclined to 

causing loss of traction and high error in heading estimates because of the tracked 

vehicle’s centre of gravity is shifted from the front wheels. Based on our comprehension 

from the report written by L.Feng et al [159], it is our conclusion that the error associated 

with this vehicle is systematic error caused by encoder resolution echo and the average 

of the actual wheel difference from nominal wheel diameter. This systematic error is in 

heading estimates are prevalent and will derail the mobility scooter over distance and 

time. Therefore, to mitigate this heading error and correct bias, WTP-HAMS system then 

proposes a combination of accelerometer and magnetometer sensors using an adopted 

combination of Magnetic angular rate update (MARU) and acceleration gradient update 

(AGU) of MAGYQ filter in the study by V. Renaudin and C. Combettes [160]. Accelerometer 

and magnetometer sensor fusion produces the orientation and heading of the mobility 

scooter through the monitoring of smartphone’s behaviour. This behaviour is derived 

from the influences on the orientation angles. These orientation angles are based on the 

accelerometer and magnetometer output. The accelerometer and magnetometer 

technologies are represented as AM1. Outcomes from the technologies within AM1 are 

fused together to provide true heading estimation of the mobility scooter with respect to 

the globe. This fusion outcome is represented as AM2, which identifies variations of 

smartphone behaviour and heading. Variations between two successive epochs in the 

smartphone body frame with regards to navigation frame are determined and expressed 

as: 

(𝑓𝑖𝑒𝑙𝑑𝑏(t))q = 𝑞𝜔(𝑡) ⊗ (𝑓𝑖𝑒𝑙𝑑𝑏(t+ T))
q
 ⊗  𝑞

𝜔
(𝑡) 

Equation 20 
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Where, (𝑓𝑖𝑒𝑙𝑑𝑏(t))q are acceleration and magnetic field with respect to navigation and 

rotation to frame 𝑏 where 𝑞 refers to the unit quaternion which can be rewritten as  𝑞 =

 (
cos∅
sin ∅𝑢

); 𝑢 is unit vector and ∅ ∈ |−𝜋, 𝜋|.  

𝑞𝜔 =  𝑓(𝜔𝑛𝑏
𝑏 ) =  

[
 
 
 
 
 cos (

||𝜔𝑛𝑏
𝑏 ||

2
 𝑇𝑠)

sin (
||𝜔𝑛𝑏

𝑏 ||

2
 𝑇𝑠) 

𝜔𝑛𝑏
𝑏

||𝜔𝑛𝑏
𝑏 ||]

 
 
 
 
 

, and 𝜔𝑛𝑏
𝑏  is the angular rate of the body frame 

with respect to navigation frame and assumption is that the latter is constant over period 

𝑡 to 𝑡 +  𝑇𝑠 . 

In the dynamic state when the field senses consistency in navigation frame, WTP-HAMS 

system proposes a novel odometry model which updates its directional information with 

adopted MARU and AGU [160] to mitigate drift and provide improved positioning 

information as it analyses the navigational frame of the SP. This model substitutes O2 

with AM2 to present an improved position.  To achieve this, a distinctive filter-Sync 

processing stage is required, to smoothen signal and synchronise it to acceleration, 

change and deceleration of the mobility scooter. This consists of  the following below:  

a) Frequency spectrum smoothing of AM2 waveform using moving average filtration 

(described in 2.4.3). This will be referred to as SS1. The moving average filtration also 

categorised as a low pass filter produces smoothed curves representing processed 

signals. It mitigates noise experienced by the waveforms as it uses average signal 

range which in turn reduces high magnitudes of the signal.   

b) The synchronisation of frequency to O1 using FWHM. This will be referred to as SS2. 

FWHM analytically calculates for precise distribution of acceleration levels level 

within the distribution curve of SS1. This must be taken into account in the 

identification of acceleration, change and deceleration of the mobility scooter over 

time.  
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Proposing a Novel Odometry Model for Improved Pose Estimation 

WTP-HAMS system then proposes the combination of SS2 with improved travelled 

distance estimates DistR  using odometry model from Equation 1, Equation 2 and 

Equation 3 to introduce unique odometry model identified as AMO1. This provides 

significantly improved pose estimates of the mobility scooter. The combination is 

expressed in Equation 21, Equation 22, as: 

xt+1 = xt + DistRCos((𝑓𝑖𝑒𝑙𝑑𝑏(t))q𝑧) 

Equation 21 

yt+1 = yt + DistR sin((𝑓𝑖𝑒𝑙𝑑𝑏(t))q𝑧) 

Equation 22 

Where,  𝑥𝑡+1 and yt+1 represents position estimate on 𝑥 and 𝑦 axis; xt is the previous 

position; (𝑓𝑖𝑒𝑙𝑑𝑏(t))q𝑧    represents heading estimates with respect to time; t is time. 

AMO1 provides improved pose estimates with a relative position which elevates tracking 

of the mobility scooter from its frame to the global frame as it travels within the room.   

WTP-HAMS assumes the current state of the mobility scooter to be represented as 

𝑀(𝑥t+1,𝑦t+1,(𝑓𝑖𝑒𝑙𝑑𝑏(t))q)  with (𝑓𝑖𝑒𝑙𝑑𝑏(t))q casting a triangular shaped error 

|

𝐿𝑥 𝐿𝑦 (𝑓𝑖𝑒𝑙𝑑𝑏(t))q

𝐽𝑥 𝐽𝑦 (𝑓𝑖𝑒𝑙𝑑𝑏(t))qt+1

𝐹𝑥 𝐹𝑦 (𝑓𝑖𝑒𝑙𝑑𝑏(t))qt+1

  | from current position estimate 𝐿(𝑥,𝑦,(𝑓𝑖𝑒𝑙𝑑𝑏(t))q). Estimated 

heading error at positions 𝐽(𝑥,𝑦,(𝑓𝑖𝑒𝑙𝑑𝑏(t))qt+1
) and 𝐹(𝑥,𝑦,(𝑓𝑖𝑒𝑙𝑑𝑏(t))qt+1

)  are approximated at 

distances 𝐿𝐽,̅̅̅̅  𝐿𝐹̅̅̅̅  𝑎𝑛𝑑 𝐽𝐹̅̅ ̅. The expansion of this error is mitigated using high sampling 

frequency 𝑇′
𝑠

. This expressed in Equation 23 as: 
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∆𝒆𝒓𝒓  =  𝑀(𝑥t+1,𝑦t+1,(𝑓𝑖𝑒𝑙𝑑𝑏(t))q) .𝑇
′
𝑠

 

Equation 23 

Where, ∆𝒆𝒓𝒓  represents triangular error shape from the current state,  𝑇 ′
𝑠

 is high sampling 

frequency of 1.0f / 1000000000.0f. 

 

Proposal to Combine Errors from RSSI and Novel Odometry Model 

for Better Position Estimation 

Although AMO1 provides improved pose estimates of the mobility scooter  frame with 

heading reference to the globe, it ignores the measured environment. To improve indoor 

localisation accuracy, the environment needs to be accounted for in the process. WTP-

HAMS system, therefore, employs the room reference advantage provided by Wi-Fi in W2 

for combination with global reference advantage of AMO1. WTP-HAMS system proposes 

to combine circular error shape in W2 and triangular error shape in AMO1 to get 

improved position area estimate with room reference system and direction relative to 

the global system.  

To find the area of improved position estimate, a verification of error shapes intersection 

or overlap occurrence need be established.  Adopting the check recommendation solution 

[161], WTP-HAMS assumes that the error triangle of AMO1 is non-degenerate and 

therefore, lets 𝑐𝑥 +  𝑠𝑦 = 𝑎  be the normal form of equation for a line consisting of two 

edges 𝐿𝐹 of error triangle ∆𝐿𝐽𝐹. Here,  𝑓(𝑥,𝑦) =  𝑐𝑥 +  𝑠𝑦 − 𝑎 is the signed distance of the 

point  (𝑥, 𝑦) to line 𝐿𝐹̅̅ ̅̅ . Third vertex 𝐽 of ∆𝐿𝐽𝐹 is represented as (𝑠, 𝑘) outside line 𝐿𝐹̅̅̅̅ . Also 

anticipated by WTP-HAMS system is the centre 𝑂 of W2 circle error represented as (𝑐, 𝑢) 

with radius 𝑟. First check is for edges 𝐿𝐹 of ∆𝐿𝐽𝐹 where circle centre 𝑂 = (𝑐, 𝑢) is on 

opposing side of vertex  𝐽 = (𝑠, 𝑘). This is expressed in Equation 24  
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𝑓(𝑐, 𝑢) . 𝑓(𝑠, 𝑘) < 0  

Equation 24 

The check is successful if edges 𝐿𝐹 does not exist. This indicates that the centre of the 

circle is within or on the triangle as indicated in Figure 4-2 

 

Figure 4-2 triangular error from AMO1 is within circular error shape from W2 

 

Supposing error triangle edge is discovered, then a comparison of the perpendicular 

distance 𝑝 = |𝑓(𝑐, 𝑢) | from the centre of the error circle 𝑂 to line 𝐿𝐹̅̅̅̅  to radius 𝑟 is 

conducted. If  𝑝 > 𝑟 , then the check fails as it indicates that the error circle and error 

triangles do not intersect. This is shown in Figure 4-3 

 

Figure 4-3 Test comparing the distance between triangle error from AMO1 and circular error from 
W2 to determine true error overlap or intersection occurrence 

 



134 

 

Next check is for distances from the error circle centre 𝑂 = (𝑐 ,𝑢) to error triangle 

vertices 𝐿,𝐹 , using Equation 25 and Equation 26.  

𝑑𝐿 = 𝑑𝑖𝑠𝑡  (𝑂 ,𝐿) 

Equation 25 

𝑑𝐹 = 𝑑𝑖𝑠𝑡 (𝑂 ,𝐹) 

Equation 26 

If  𝑑𝐿 ,𝑑𝐹 ≤ 𝑟  then the test is a success as it shows a vertex of the error triangle is within 

the circle. See Figure 4-4. 

 

Figure 4-4 Check for vertices of error triangle AMO1 intersecting/overlapping error circle W2 

 

Last of the check is an evaluation comparing  two projected distances along the line 𝐿𝐹̅̅̅̅  

with the length of edge 𝐿𝐹 using Equation 27 and Equation 28. 
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𝑘𝐿 = √𝑑𝐿
2 − 𝑝2 < 𝑑𝑖𝑠𝑡 (𝐿 ,𝐹) 

Equation 27 

𝑘𝐹 = √𝑑𝐹
2 − 𝑝2  < 𝑑𝑖𝑠𝑡  (𝐿 ,𝐹) 

Equation 28 

If inequalities in Equation 27 and Equation 28 are true, then the check is a success as it 

verifies that circle and triangle intersect along edge  𝐿𝐹. This is demonstrated in Figure 

4-5 

 

Figure 4-5 Check to verify error circle intersects error triangle along vertices LF 
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Figure 4-6 improved position accuracy from error shape intersection with the new position 
estimation 

 

The checks show how error shapes experienced in W2 and AMO1 intersect or overlap 

within the room to provide new position area. The convergence area of triangle error 

shape in AMO1 and circle error shape in W2 is the new position area R1.  

Centroid coordinate of shaded R1 the assumed new position RP1 when equations from 

the physics article [80][162] are used. RP1 is an improved position estimate with 

significantly reduced errors. New position RP1 from combined W2 and AMO1 show 

significant accuracy improvements when compared to independent results in W2, AMO1 

and SOTA. This improvement is the core aim of this research as it produces our WTP-

HAMS system which secures better position estimates RP1 through the exploitation of 

error shapes formed by W2 and AMO1 respectively.       

4.3. WTP-HAMS System Elements Functionality  

This study is targeted at users with mobility impairment with a need for mobility scooters 

in environments such as care homes or modern shopping malls that are careful to cater 

to the disabled. Care homes are different from other workplaces due to its unique position 
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to be a workplace and also home to residences.  It is therefore imperative that residen ts 

are treated with the utmost dignity and, health and safety of everyone are effectively 

managed. The Health and Safety Executive (HSE) and local authorities discussed recently 

in their regulations guide [163] to have investigated worker and resident incidences over 

time and have concluded on new safety standards for the management of health and 

safety. The HSE regulates homes with nursing whiles local authorities run care homes in 

England. Amongst their standard is the management slips, trips and falls of everyone 

especially residences by controlling environmental factors particularly floors and 

obstacles. ‘Stop Falling’ report from The Age [164] highlights that: 

 In every minute about six people over the age of 65 suffer a fall.  

 A fall which can cause serious injuries with high possibilities of leading to death is 

suffered by more than one in three (3.4 million) people over 65 every year.  

 There is a rise in reported incidences of fractures from resulted falling every year, 

with at least 310,000 incidences of reported each year.    

Choice of floor type in care homes is extremely critical when managing slips, trips and 

falls of residences. The floor surface recommended for care homes must have tread 

safety, slip resistance, low-level gloss and, dust free and easy cleaning capabilities. Even 

wooden floor tiles [165] best satisfy the recommendations and are amongst the most 

used floor types in care homes such as the case studies by A. W. Safety [166]. This is 

because they are more resistance, hygienic and easy to clean. This floor type also creates 

an inviting ambience in the rooms. The standard [163], advices that all floors should be 

clear of obstacles.     

Therefore, this study considers wooden floor tiles similar to those used in care homes 

when localizing mobility scooters with anti-slip tyres.   

Explained in 4.2, the proposed WTP-HAMS system combines results from exploited 

technologies (including Wi-Fi, accelerometer, magnetometer and wheel encoders) with 

existing and new techniques and models to significantly reduce positioning errors in an 

indoor environment with wooden floor tiles. Due to special recommendations by HSE 

[163] to use floor types which better manage slip, trips and falls like wooden floor tiles 
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[165], our indoor localisation research limits its scope to the following environmental 

and technological conditions including: 

 Obstacle-free communal room with wooden anti-slip floor tiles.  

 Four Wi-Fi routers / Access points (APs) fixed at known locations.  

 One Neo4 mobility scooter [167] with solid puncture proof, non-marking anti-tip 

tyres.  

 One Smartphone with accelerometer, magnetometer and Wi-Fi modalities.  

 Two wheel encoders secured to the two rare wheels of the mobility scooter.  

 The known start point of mobility scooter. 

In an instance where the user on the mobility scooter travels from a known position to a 

new unknown position, proposed WTP-HAMS system calculates for the unknown 

position using a detailed conceptual flow illustrated in Figure 4-7. Mobility scooter used 

in this study is the Neo 4 with three anti-tips solid tyres. It has a turning radius of 110cm 

and a maximum travelling range of up to 10Km at 12 Amps and up to 21km at 18Amp 

depending on the conditions of use.  

In a test environment with four fixed routers/APs, the Neo4 mobility scooter travels in 

translational motion from a known position to an unknown new position with two 

mounted wheel encoders and a smartphone. The smartphone is the device which collects, 

calculates and transfers received information from all connected technologies including 

four Wi-Fi routers/APs, accelerometer, magnetometer and two wheel encoders. 

According to the working scheme in Figure 4-1, each exploited technology is critical in 

providing Relative position derivation using RSSI and Pose estimation with relative 

position using Odometry, whose outcome and error shapes are combined to find new 

position estimates with reduced errors. An expansion of the working scheme is shown in 

Figure 4-7 below, where discussed algorithms techniques and models from 4.2 are 

designed into the WTP-HAMS system. (See Figure 4-8 Figure 4-9 and Figure 4-10 for 

associated algorithms, formulas and models from Figure 4-7) 
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Figure 4-7 Flow chart displaying the WTP-HAMS system combining estimated relative positions 
and pose to improve position accuracy 
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Figure 4-8 Associated formula or models for relative position based on the flow chart in Figure 4-8 
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Figure 4-9 Associated formula or models for pose estimation based on  the flow chart in Figure 4 
8 
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Figure 4-10 Associated formula or models for estimated absolute position based on the flow chart 
in Figure 4 8 
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In this study, Relative position derivation using RSSI exploits RSSI propagated from four 

Wi-Fi routers/APs. SDRS path-loss shadowing model Equation 5 is applied to RSSI 

emitted from each router to produce W1 which is relative distances without position 

estimates. To generate position estimates W2 (also referred to as radiolocation) with 

RSSI, multi-trilateration Equation 6 is employed to combine W1 from all four 

routers/APs. Generated radiolocation W2 in this instance, is the relative position of the 

mobility scooter with localisation errors from the ground truth. WTP-HAMS system 

stores best-estimated position BEW2 in a database; this is the centre 𝑂 of the error circle 

as shown in Figure 4-2. The localisation error EErW2 is derived when Equation 9 is 

adapted to estimate the error position between BEW2 and ground truth. An error circle 

BrW2 is formed around BEW2 and EErW2 when the Euclidean distance from Equation 10 

between EErW2 and BEW2 is calculated. This Euclidean distance is radius 𝑟 of the error 

circle formed. The difference between EErW2 and BEW2, show the position inaccuracies 

of Wi-Fi, therefore proving limitations of RSSI when determining accurate positions. 

WTP-HAMS system proposes to improve the position accuracy of Wi-Fi by combining 

BrW2 with the second model, pose estimation with unique odometry.  

Pose estimation with relative position using Odometry commences by permitting the 

smart Phone to collect real-time data outputs O1 (travelled distance) and O2 (heading 

estimates from wheel encoders) from the two wheel encoders and, SS2 (improved 

heading estimate) from filtered outputs of fused accelerometer and magnetometer. O1 

and O2 are collected because of their necessity when calculating odometry of a moving 

mobility scooter. Calculated odometry of the mobility scooter is achieved when O1 and 

O2 are combined in odometry model (Equation 1Equation 2 Equation 3) to result in 

position estimation output O3.  This outcome O3 demonstrates systematic error in 

heading caused by drift in travelled distance O1.  

WTP-HAMS system introduces a new drift mitigation model using Equation 19 to get a 

better distance travelled estimates DistR , identified as DO1. Although DO1 demonstrates 

favourable travelled distance outcomes with reduced drift when compared to O1, it does 

not adequately compensate for directional errors O2 experiences. Therefore, a 
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combination of DO1 and O2 using Equation 1Equation 2 Equation 3 still exhibits 

significant position errors due to angular heading errors of O2 over distance and time.   

The heading errors O2 exhibits are mitigated with the introduction of AM1, whose fusion 

result is AM2 using Equation 20.  Moving average and FWHM will then be applied to AM2 

to result in SS2 which proffers a better navigational/heading estimation of the 

smartphone mounted on the mobility scooter. It uses a high sampling rate to manage the 

growth of the probable heading error. The superiority of combined DO1 and SS2 when 

compared to a combination O1 and O2 encourages our research to propose the 

substitution of O1 with DO1 and O2 with AM2 in a novel odometry model demonstrated 

in Equation 21 and Equation 22. The novel odometry model combines DO1 with SS2 to 

result improved posed estimates AMO1 of the mobility scooter. This result has reduced 

error probabilities. The combination of DO1 and SS2 in the proposed odometry model is 

achievable only after a special filter-sync process discussed in 4.2 is introduced by WTP-

HAMS system. Introduced filter-Sync processing includes moving average filter and 

FWHM which smoothens and synchronizes SS2 frequency spectrum with DO1 in respect 

to time. This converts the frame of the mobility scooter to obey global truths of 

navigation.  

Heading Error Reduction Process 

1. The mobility scooter moves from an initial position to a new position. 

2. The wheel encoders calculate an estimated travelled distance (O1) and save it in an 

online database.  

3. The synced accelerometer and magnetometer (AMO1) outputs heading estimates. 

4. The heading estimates will demonstrate an error rate that diverges in triangular form 

from start point towards the motion direction of the mobility scooter.  

5.  A high frequency of 0.33f will be applied to the error rate. 

6. The applied high frequency will reset the measurement of the error rate to the centre 

of the triangular error. This is important because it readjusts the heading error to be 

closer to the ground truth. 
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The heading error reduction process is illustrated in Figure 4-11. 

 

Figure 4-11  Heading error reduction in WTP-HAMS odometry showing triangular error shapes 
experienced in AMO1 

 

The best-estimated pose of the mobility scooter is saved in a database as BEAMO1 with 

its correspondent error EErAMO.  BEAMO1 and EErAMO are represented as BrAMO1 in 

Figure 4-7.  

The shape formed from EErAMO when BEAMO1 is identified a triangular error shape 

controlled from growing too large by the high sampling rate of AM2.  This is shown in 

Figure 4-11. 

Stipulated from Figure 4-1 and Figure 4-7, the novel odometry model will show better 

pose estimates but its reference frame is the mobility scooter with world frame. For the 

tracked mobility scooter to be located in the test room, WTP-HAMS system proposes 

combining BrAMO1 with BrW2, which has the advantage of the room reference frame. 
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The combination of the AMO1’s triangular error shapes BrAMO1 and W2’s circular error 

shape BrW2 results in an improved position area R1. R1 is the area of convergence for 

both error shapes when instances expressed in Equation 24 - Equation 28 are obeyed.  

Then, the centroid of overlap is calculated using equations from solutions presented by 

U. S. River [80][162]. This resultant centroid will be the new and improved estimated 

position. 

Localisation errors of WTP-HAMS system are determined using Equation 10 and 

Equation 11 to calculate Euclidean distance error between ground-truth and R1.  WTP-

HAMS system achieves its reduced position error goal under the following circumstances 

- If 𝑹𝟏 <  2m− 3m, then WTP-HAMS system has improved RSSI based position 

estimates of SOTA [14]; If 𝑹𝟏 ≤  33cm, then WTP-HAMS system has improved position 

accuracy of SOTA containing odometry combined with IMU in solution by A. Faralli et al 

[158] and RSSI in study conducted by S. Boonsriwai et al [14].  

4.4. Analysis of Proposed Technology Solution  

We identified a gap in the market, where typically, indoor localisation systems are 

designed for localising either pedestrians or robots. This neglected market has been on a 

steady rise as the high mortality rate [6][138][168] of people have increased and some 

older people are now using mobility scooters [167]. Therefore, we proposed an 

investigation that will localise elderly and mobility impaired mobility scooter users using 

familiar technologies such as smartphone [8]. It is our expectation that these tech-savvy 

users would appreciate and benefit from our proposed investigation. 

Our proposed investigation is our methodology, which is the design of a novel WTP-

HAMS system. WTP-HAMS system is a TT based hybrid system that uniquely combines 

the following – 
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 Technologies –  

o Wi-Fi – which is advantageous due to its capability to provide position estimates 

with reference to room. Our investigation will consider and compare the 

following– 

 LOS versus NLoS for RSSI signal propagation environment. 

 Three versus four Wi-Fi routers for better position estimates. 

o Smartphone IMU modalities – this will be beneficial because it will provide heading 

estimation with reference to the globe. This investigation will consider the 

following –  

 Navigation heading estimation – with two comparison 

 Combined accelerometer and magnetometer  

 Combined  gyroscope, accelerometer and magnetometer  

 Smartphone pose with a comparison of orientation versus vertical phone 

orientation.  

 Wheel encoders – this will be beneficial in estimating mobility scooter pose with 

reference to the frame.  This investigation will compare  

 Tradition distance travelled versus our proposed new drift mitigation model 

 Traditional odometry model to our proposed novel odometry model 

 

 Techniques –  

o For Wi-Fi –  

 SDRS log-normal shadowing model in Equation 5 for relative distance estimation 

between a Wi-Fi router and smartphone. This is important because it reduces 

errors in the propagated signals. In particular, errors caused by interferences 

such as shadowing and multipath.   

 Multi-trilateration in Equation 6 for RSSI based position estimation.  This is 

considered over fingerprinting because multi-trilateration is lightweight and its 

latency period is significantly low. According to S. Boonsriwai et al [14], 

fingerprinting latency is about 2-3 seconds.  
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o For smartphone IMU modalities  

 Complementary fusion in Equation 20 for estimating navigation heading. This is 

important because the direction will improve the pose and position of the 

mobility scooter.  

o For wheel encoders  

 Traditional travelled distances versus our proposed new drift mitigation model 

(in Equation 19). This will be important in improving travelled distances by 

adding a measured   

 Traditional odometry (in Equation 1, Equation 2 and Equation 3) versus our 

proposed novel odometry model (in Equation 21Equation 22). This will be 

important in improving the pose estimation of mobility scooter.  

 

 Novel methods –  

o Centroid calculation of error overlap from Multi-trilateration (in Equation 

27Equation 28 and error (in Equation 23)  from our proposed novel odometry 

model using Equation 21Equation 22 based on check for overlap and centre using 

Equation 27Equation 28.  

The unique combination of technologies, techniques and novel models, would aim to 

improve indoor localisation accuracy in real environments. In particular, the design of 

the proposed investigation will cover key elements including, accuracy, cost, energy 

efficiency and scalability.   

Accuracy 

This is a critical feature for all indoor localisation systems because it is important to 

localise users to centimetre or low meter level. This is beneficial especially in emergency 

situations where the life of the user is threatened and emergency services are trying to 

locate said, users. 

In order to improve position accuracy, we propose to combine position estimates from 

Wi-Fi (W2) and combined wheel encoders and smartphone IMU modalities, specifically 
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accelerometer and magnetometer (AMO1). To be precise, we combined, W2 from multi-

trilateration with AMO1 from the proposed novel odometry model that includes a 

combination of a proposed new drift mitigation model and navigation heading. To 

buttress further on the proposed novel odometry model, we expect wheel encoders will 

suffer drift that would cause significant errors, and that Wi-Fi will fail at providing 

navigation heading, therefore, we will opt to design a system that will provide users will 

better pose estimates by mitigating distance travelled errors using a proposed new drift 

mitigation model, as well as, get navigation heading from complementary fusion of 

accelerometer and magnetometer, to correct heading drift over travelled distance.   

Before the improved position estimate R1 will be derived, it is the plan to get the error 

shapes formed from the deviation between the position estimates (W2 and AMO1), and 

the ground truth. The idea is that the centre point at which both error shapes of W2 and 

AMO1 overlap will be the new improved position estimate R1. This is because it is our 

expectation that R1 will be better than results W2 or AMO1. Further expectation is that, 

will complement each other by improving the position of each other such that AMO1 will 

improve results of W2 and W2 will improve results of AMO1. 

We predict that our proposed investigation will outperform literature works on Wi-Fi by 

providing results within the error range of 0.35m – 1.35m. This is compared to literature 

works, that provide an error range of 1.5m – 3.1m  for Wi-Fi [14][80][146]. If the average 

mean μ of the estimated error range 0.35m – 1.35m is 0.865, then it is our expectation 

that our proposed system will outperform SOTA by approximately 189%.   

The proposed system would provide a range of capabilities especially in the pose 

estimate improvement of indoor vehicles moving in translational motion on a smooth 

wooden tiled floor.  
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Cost 

This is another critical element research consider when designing a loca lisation system. 

A majority of existing systems in the literature are either expensive to develop or costly 

for users. This is especially in situations where additional infrastructure is needed, e.g. 

[137][109][110]. (See Table 3-5) 

Our proposed system will be very cost effective for developers and users. This is possible 

because only ubiquitous, easy to access technologies will be exploited. These technologies 

include Wi-Fi, smartphone IMU modalities and wheel encoders. For developers, there will 

be no need to buy additional infrastructure in the development of our proposed system.  

It is assumed that the users of our proposed system, will be mobility scooter users who 

own at least one smartphone and are in environments with Wi-Fi routers. This, therefore, 

will demonstrate that the user will not have to spend anything to use our WTP-HAMS 

system.   

Energy efficiency  

It is important that energy consumption is better managed, especially in our proposed 

system that includes a smartphone. This is because the battery life of the smartphone 

needs to be conserved for the user. Some literature overlook this important element in 

their design (see Table 3-5).  

We propose to design a system that will do the following –  

 Pause in background, when not in use,   

 Give user complete control to initiate and terminate scan at will, instead of 

continuously scanning and listening for Wi-Fi, wheel encoders and smartphone 

IMU signals in an online state (further discussed in 5.1.1.1). This is important 

because it prevents the battery from getting drained quickly. 



151 

 

 

In addition to the list above, the system would conserve energy by processing the 

proposed mathematical computations and models in an offline server (further disc ussed 

in 5.1.1.3). Our methodology will be a lightweight solution that will conserve the battery 

life of the user’s smartphone.   

4.5. Research Development Plan  

The development of this research is divided into 6 phases as illustrated in Table 4-1, 

where it would take 1394days (see Figure 4-12) to completely analyse the state-of-the-

art, propose, design and develop an in indoor localisation system that would better 

address indoor localisation challenges. In particular, accuracy, cost and energy efficiency.  
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Table 4-1 Overview of the research development plan 
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Each phase is further described below -  

Phase 1  

 SOTA 

o Over 180 literature works are examined to fully understand the  key 

challenges in this area. These included technology and technique 

limitations. 

o Identifying the difference between Indoor and outdoor localisation 

o In-depth analysis of Indoor localisation solutions  

o Identifying, designing and proposing a new classification system for hybrid 

localisation. This is because a standard does not exist to identify systems 

that fall under this type of localisation. (Discussed in Chapter 3) 

o Identifying, designing and proposing of a methodology based on SOTA. in 

particular, the proposed hybrid indoor localisation classification 

Phase 2 

 Designing the methodology, i.e. the novel WTP-HAMS system 

o Planning the methodology 

o Proposal and design of the novel application which includes the unique 

combination of Wi-Fi, smartphone IMU modalities and wheel encoders. 

(also discussed in Chapter 4) 

o  Proposal and design of novel mathematical models which includes the new 

drift mitigation model and novel odometry model (also discussed in 

Chapter 4). 

Phase 3 

 Design the implementation of the methodology, including software and hardware 

development of the proposed WTP-HAMS system (discussed in Chapter 5) 

o Designing software for the proposed WTP-HAMS system 
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 Smartphone API for Samsung galaxy note 1 to receive data from 

transmitting sensors, including Wi-Fi routers, wheel encoders and 

smartphone IMU sensors.  

 Mathematical computational processes in Matlab for the received 

data from the smartphone. 

 Mbed data transmission to the smartphone 

o Designing and developing the hardware for the proposed WTP-HAMS 

system 

 Designing the wheel encoders  

 Purchasing components for the wheel encoder development 

 3D printed wheel encoder case 

Phase 4  

 Experiments assessing the methodology (discussed in Chapter 6) 

o Design, plan and strategy of the experiments  

o Implementation and pilot study in room 1 based on methodo logy. In 

particular Wi-Fi. 

o Extensive studies and trials of proposed Novel WTP-HAMS System in room 

2. In particular focused study and comprehensive study 

Phase 5 

 Results and analysis (also discussed in Chapter 6) 

o Focus study  

o Comprehensive study 

 

Phase 6 

 Thesis writing  
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Figure 4-12  Research development plan with timelines
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Chapter 5 System Implementation 

This chapter discusses the software and hardware design, development and 

implementation of the proposed investigation. It describes the system requirement 

and proposes a system architecture that will operate in online and offline phases. 

These phases will include proposed mathematical models and concepts discussed 

in the methodology in Chapter 4.  

5.1. WTP-HAMS System overview  

The proposed investigation will comprise of the combination of Wi-Fi, wheel 

encoders, accelerometer and magnetometer as described in chapter 4. This system 

will implement a combination of SOTA adapted algorithms and models such as SDRS 

path-loss shadowing model [64][77], multi-trilateration [14], moving average filter 

[73], FWHM odometry model [70], and error overlap area model using shape 

intersection and overlap formula [161] with complementary innovative models 

including new drift mitigation model for improved travelled distance and novel 

odometry model to significantly reduce position errors.  

The proposed WTP-HAMS system will be combining two models, relative position 

derivation using RSSI technique and pose with relative position using innovative 

odometry model to significantly reduced position error. To do this following is 

required: 

 Neo 4 mobility scooter as a target object for localisation. It is an inexpensive 

mobility scooter preferred by users.     

 Smartphone (SP) for interfacing between user and technology as well as having 

its inbuilt modalities exploited for indoor localisation purposes. Samsung galaxy 

note 1 is SP of choice due to its inexpensiveness, availability and easy usability 

by the elderly.  
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 The navigational heading of the mobility scooter from the fusion of inbuilt IMU 

modalities within SP. In particular, gyroscope, accelerometer and magnetometer 

sensors are considered.  

 Estimate position with room reference using combined RSSI propagated from 

four and three Wi-Fi routers.   

 Estimate travelled distance from the new drift mitigation model. This is 

calculations that will be done on raw distance travelled values from two wheel 

encoders mounted on both rare wheels of the mobility scooter. 

 Improved pose estimates using the proposed novel odometry model, which 

combination of estimated relative travelled distance and directional or heading 

information in WTP-HAMS system unique odometry model.  

 

5.2. WTP-HAMS System requirements 

WTP-HAMS is an infrastructure reliant system, which consists of internal and 

external technologies. Internal technologies refer to relevant modalities of a 

smartphone (SP) which include accelerometer, magnetometer and Wi-Fi sensors 

while external technology describes the two wheel encoders mounted on two rare 

wheels of a mobility scooter. Both categories are further expatiated on in appendix 

A.  

In our research, there are critical power and communication requirement 

expectations for the technologies used. Each explored technology operates 

independently and therefore requires specific data transmission protocol to 

communicate with the API on the SP that handles computation. The API displayed 

in Figure 5-1 provides WTP-HAMS system with synchronised data from all utilised 

internal and external technologies with respect to time. This, therefore, enables all 

technologies to function as a single unit when it transfers collected data for further 

analysis.   
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Figure 5-1 WTP-HAM API on SP displaying data extracted from internal and external 
technologies 

 

Smart Phone Implementation for the Proposed Investigation  

For experimental purposes, Samsung Galaxy Android smartphone is exploited 

because of its super AMOLED capacitive touch screen with physical dimensions of 

146.9 x 83 x 9.7 mm (5.78 x 3.27 x 0.38 in) and a large screen with a resolution of 

1280 x 800 pixels (~285 ppi pixel density). Similar to most smartphones, the 

Samsung Galaxy is a very portable ubiquitous device renowned for its elderly 

friendly features. This technology has 1061 components, however, WTP-HAMS 

system will be using only three of its modalities which include Wi-Fi, accelerometer 

and magnetometer sensors to achieve improved indoor localisation. 

Implementations of the aforementioned modalities are further expatiated on in 

Section 5.3.1.   
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Wheel Encoder Design and Development for the Proposed 

Investigation  

The mobility scooter also referred to as MS possesses two low costing wheel 

encoders mounted on both rare wheels. Both wheel encoders are external 

technologies built with inexpensive MBED that require additional circuitry and MCU 

to communicate with the API on the SP when achieving O1, O2, and O3.  

 

Figure 5-2 Developed wheel encoder components necessary for distance estimation 

 

Each wheel encoder composes of three core components - an MBED, one reed switch 

and a magnet displayed in Figure 5-2. These three core components work together 

to capture the distance travelled when each wheel rotates as it travels along a path.  

MBED is the preferred MCU for this investigation due to its, cost-effectiveness and 

operating system’s programmable capabilities. MBED microcontroller unit (MCU) 

consumes low energy due to its inbuilt Bluetooth Low Energy (BLE) short-range 

feature for low power applications. BLE of the MBED communicates with the SP’s 

inbuilt 3.0 high-speed Bluetooth module which is supported by 802.11 Wi-Fi radio 

for producing data speed of 24Mbps. The wheel encoders employ Bluetooth 
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communication protocol shown in Figure 5-3 to achieve maximum communication 

range of 10 meters at 2.5mW input power with a data rate of 3Mbps. In accordance 

with mbed online [37], higher BLE signal strength is obtained at shorter distances. 

MBED Schematic and Data Transmission To SP For Wheel Encoder 

 

 

Figure 5-3 Wheel encoder system communication flow to SP 

 

At Start in Figure 5-3, MBED in the indigenously designed wheel encoder is initiated 

when power is provided via its inbuilt USB connector. The wheel encoder’s circuitry 

power source is an MBED USB connected external battery pack with the power of at 

most 2.5mW and current 10000mAh. This battery pack has a daily life span of at 

least eight hours when MBED firmware is running. Maximum power consumption 

of the MBED MCU is 300mA with a regulator of 3.3v. For the MCU to be operational, 

it requires an input voltage of about 3.3V – 9v as illustrated in Figure 5-4.  The 
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current from the battery pack provides substantial power required for the wheel 

encoder to function for at least eight hours.  

 

Figure 5-4 Wheel encoder circuit schematic 

 

When each wheel rotates, interrupt is initialised to capture triggered ticks when the 

magnet on the tyre frame passes the reed switch connected to the encased MBED. 

This encased embed is placed opposite the tyre frame such as Figure 5-5. Due to 

specifications of the mobility scooter implemented in this research, each recorded 

tick is a complete rotation equivalent to 60cm distance travelled, this is further 

discussed in section 5.3.1.  

 

Figure 5-5 wheel encoder mounted onto the wheels of the mobility scooter 
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On each successfully received interrupt, a tick is transmitted to SP API via the 

Bluetooth communication protocol between SP and MBED as illustrated in Figure 

5-6. If the interrupt is unsuccessful, MBED will show no changes in the SP API over 

Bluetooth protocol, therefore, will enforce a measurement repeat.    

 

Figure 5-6 Bluetooth communication protocol between wheel encoder and SP 

 

MBED reliant wheel encoders are much cheaper when compared to off -the-shelf 

wheel encoders. Asides its expensiveness, off-the-shelf wheel encoders have 

programming limitations unlike wheel encoders built for WTP-HAMS system 

provide controlled accessible data with can be synchronised with outputs from the 

internal technologies of the SP, as shown in Figure 5-6. Another advantage of 

building a wheel encoder for WTP-HAMS system is the possibility it provides to 

synchronise all data with relation to time. Time in the implementation of this study 

is UNIX timestamp which tracks time as running total of seconds. This employed 

timestamp selection has zero dependencies on time zones as it calculates the 

number of seconds between data collection date and Unix Epoch. Additionally, 

according to an article [169], Unix timestamp is advantageous in tracking and 

sorting information in dynamic and distributed application on the client side and 

online.    
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In summary, all relevant internal and external technologies explored in this study 

provide adequate data needed for WTP-HAMS system to achieve its purpose. Each 

technology is special because of its ubiquity, cost-effectiveness and 

programmability.  

5.3. System Architecture  

 

 

Figure 5-7 Proposed WTP-HAMS system Architecture  
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WTP-HAMS system architecture in Figure 5-7, best illustrates the system process 

flow as each technology perform their respective roles (as further expressed in 

Figure 4-7 and Appendix 1 in appendix A) to achieve better indoor localisation 

accuracy.  The illustrated WTP-HAMS system architecture shows a categorisation of 

its system processes into physical layer and neural layer.  

The physical layer refers to the infrastructures which include the internal and 

external technologies explained in 5.2. The internal and external technologies 

consist of wheel encoder, Wi-Fi routers and SP modalities which operate in real-

time. This operation falls within the online phase of WTP-HAMS systems processes, 

which is further discussed in 5.1.1.1. Within the physical layer, Wi-Fi sensing 

receiving modality of SP propagates network signals transmitted from four Wi-Fi 

routers/APs when API scan instance is initiated. The purpose of this signal 

propagation is to provide data necessary for calculating estimated relative position 

W2 from the working scheme in Figure 4-1 and its detailed counterpart in Figure 

4-7. Also within the physical layer, wheel revolutions ticks measured by the wheel 

encoder is pushed to the API sitting on the SP via the Bluetooth communication 

protocol. Its objective is to provide distance travelled output required to calculate 

relative position O3 described in working scheme in Figure 4-1 and its detailed 

counterpart in Figure 4-7. A final feature of the physical layer is the smartphone 

(SP) that accommodates its inbuilt accelerometer and magnetometer sensors. Data 

output from accelerometer and magnetometer are retrieved and combined within 

SP using a complementary fusion filter further explained in section 5.1.1.1. This is 

important because, it produces AM2, which is critical to our proposed investigation 

as it proposes to be an asset for improving our odometry model which will provide 

better pose estimates.  Parallel to data push processes of Wi-Fi and wheel encoder 

outputs, SP retrieves outputs from its inbuilt IMU sensors (gyroscope, 

accelerometer and magnetometer) and displays on its API. SP is very essential in 

organising all data output from necessary exploited technologies as a single unit 

with reference to a similar UNIX time.     
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The neutral layer contains online and offline databases for data storage, server for 

data transfer and communication, WTP-HAMS localisation model for methodology 

implementation, computation and data analysis, and map matching for 

synchronising results with the floor plan of a measured room.  Live data packets 

collected from participating technologies by SP at the physical layer and pushed to 

the online database sitting on the local host via HTTP server in real time. Real data 

is fundamental in this study because it proves the feasibility of this study to actualise 

improved indoor localisation with our proposed WTP-HAMS system in real-world 

scenarios.  

 

Figure 5-8 SP to the online database communication flow 

 

SP pushes collected data to an online database through HTTP server as illustrated 

in Figure 5-8, when participating sensors are initialised by API within the SP is 

triggered. The communication flow between SP and server is created in three 

phases, including the initialise phase, read phase and post phase. The initialise 

phase prompts SP to initialise all sensors. On success, the read phase is executed. All 
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samples from all initialised sensors are read and pushed to the server on success. 

This populates the online database with real data sets with respect to real time. 

Collected real data is transferred from the online database to an offline database in 

MATLAB where algorithms and mathematical models of the proposed WTP-HAMS 

system are implemented. MATLAB is selected because of its high mathematical, 

computational and analytic prowess. Within the offline environment, the proposed 

localisation model further analyses the real data. Here, executable algorithms within 

Figure 4-7 excluding AM2 is performed to produce W1, W2, O2, O3, AMO1 and R1. 

These derivatives are stored in the offline database for map matching with a test 

environment floor plan. The mathematical algorithms and models in Figure 4-7 to 

produce W1, W2, O2, O3, AMO1 and R1 are calculated in section 5.1.1.3, where the 

goal of WTP-HAMS system is to generate improved absolute positions estimates 

with reduced errors when R1 is realised in the offline phase using MATLAB. (See 

appendices A and B for offline and online screenshots). 

5.3.1. WTP-HAMS system phase implementation  

Implementation of the physical and neutral layers illustrated in Figure 5-7 are 

processed in two phases as indicated in 5.3. These phases include online phase and 

offline phase.  

The online phase is the active application which is necessary for system training, 

data retrieval via server and light computation. While the offline phase is designed 

in MATLAB for the computation of mathematical models and algorithms on the data 

collected from the online phase. The localisation results are produced at the offline 

phase using real data from the online phase. Both phases are discussed further in 

5.1.1.1 and 5.1.1.3 with the development and implementation breakdown of all 

necessary computation and data churning processes. Each phase is unique as they 

contain are core components necessary for determining absolute position estimate 

R1.   



167 

 

5.1.1.1 Online Phase  

In this phase, real data is retrieved from participating sensors during live testing 

and saved in an online database. In particular, Wi-Fi, wheel encoders and 

smartphone IMU modalities. This phase happens when the API of the smartphone 

(SP) interfaces between the three technologies and the online database through a 

server. All three associated technologies are set as members of Wi-Fi and sensor 

managers within the SP, which we have titles as WiFiManager and 

SensorManager.WiFiManager governs Wi-Fi property data retrieval while 

SensorManager oversees data retrieval from wheel encoders and smartphone IMU 

modalities.  

The API on SP is manually managed by the user. This is important because, SP 

battery life will be conserved and performance can be controlled, especially when 

retrieving data. Therefore, quick battery drainage will be prevented, because, when 

not in use, its foreground activity will be paused in SP background when API process 

is terminated.   

The API, when triggered, initiates all the connected sensors, retrieves data from 

them and pushes all collected data to offline phase described in 5.1.1.3, where 

necessary models and algorithms are executed for position accuracy computation.  

The online phase comprises of the following elements– 

 SP API design and launch 

 SP API environment set up 

 Determining pitch, azimuth and roll of smartphone IMU modalities 

comprising of accelerometer, magnetometer and gyroscope 

Each of these elements is discussed in the subsections below in detail. 
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SP API Design and Launch  

SP API has three executable instances for application activity control, these include 

START, STOP and RESUME.  

On START, a new array list of scanned samples is registered when either Single Scan 

or mSCANButton button is selected. The Single Scan registers sensor datasets from 

a set 5 seconds scan while mSCANButton listens and collects data over periods 

longer than 5 seconds. The Single Scan terminates its process automatically after 5 

seconds scan duration, while the mSCANButton process is terminated by the user 

only when mStopButton is initialised. STOP terminates processes initiated by the 

mSCANButton and Single Scan buttons while still allowing SP API to actively listen 

to all connected sensors in the background. RESUME restores sensor listeners, 

especially when the SP API is launched. 

SP API Environment Set Up  

The executable instances START, STOP and RESUME reside in SP API environment. 

This environment is built to sniff and listen to received signals from connected 

sensors in the online phase. The application is set up with the required members to 

implement listeners which include SensorEventListeners and 

RadioGroup.OnCheckedChangeListener using a SensorFusion Activity. 

SensorEventListeners responds to modification in data received when a new sensor 

data is encapsulated from the four technologies measured in the SP. 

RadioGroup.OnCheckedChangeListener responds to selected options amongst the 

sensor alternatives attached to the radio group displaced on the SP interface. Both 

listeners contain two key listening parameters including WiFiManager and 

sensorManager which are initialised when start instance is triggered by a start 

button on the SP application interface. Each measured parameters are displayed as 

a string on the API.  
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 WiFiManager  

WiFiManager accommodates world Wi-Fi channel standards by using 

802.11a/h/j/n/ac/ax applied in all countries. This is because its channel bandwidth 

ranges from 10 MHz to 80 MHz frequency with the best-preferred frequency resting 

at 5 GHz. 

After listeners are initialised, WiFiManager checks and registers unique channel 

frequencies with its distinctive received measured properties including BSSID, RSSI, 

SSID and frequency of each router as illustrated in Figure 5-9. 

 

Figure 5-9 Wi-Fi state in loop from the beginning to the size of each scanned result 

 

Unique channel frequency assurance is necessary to ensure measured signals are 

not travelling on the same channel. Therefore, it is important that each router or 

Access Points (APs) is allowed to function effectively without interferences from the 

neighbouring router or Access Points (APs). Therefore, WiFiManager ensures that 

each Wi-Fi data from each channel frequency within APs is mapped with its 

distinctive properties. This is the initial step to mitigating Wi-Fi performance 

challenges, especially RSSI interferences.  

WiFiManager scans and updates Wi-Fi data every 1.5 seconds after identifying 

available router or Access Points (APs). 1.5 seconds is the most suitable sampling 

rate as it gives SP enough time to acknowledge relevant Wi-Fi signals available. 

Collecting Wi-Fi properties is necessary because it provides data essential for 
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calculating estimated relative position using RSSI in the offline phase discussed in 

section 5.1.1.3. 

 SensorManager 

The SensorManager listens and pushes data from accelerometer, magnetometer, 

gyroscope and wheel encoders to accomplish the following –   

 Orientation angle calculation of SP using accelerometer and magnetometer 

sensor AM1 output fusion.  

 Rotation vector output from a filtered gyroscope to compare with 

orientation angle output of fused accelerometer and magnetometer AM1.   

 Travelled distance calculations on collected ticks from mobility scooter 

mounted wheel encoders when magnet interrupts the MBED MCU connected 

reed switch on wheel rotation.  

SensorManager refreshes and pushes scanned results from the accelerometer, 

magnetometer and gyroscope in every 30 milliseconds using code snippet in Figure 

5-10. This high sampling rate improves orientation angle estimates by managing 

heading uncertainties. It should be noted that the signal quality is dependent on 

sampling frequency and the rate at which the filtration method is called per second.  

 

Figure 5-10 High-frequency rates for SensorManager governing data retrieval from the 
accelerometer, magnetometer and gyroscope sensor 
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Determining Pitch, Azimuth and Roll of Smartphone IMU 

Modalities Comprising Of Accelerometer, Magnetometer and 

Gyroscope 

Pitch (x), azimuth (y) and roll (z) from datasets recovered from the accelerometer, 

magnetometer and gyroscope sensors are collected and displayed on SP interface 

using Figure 5-11, before being pushed to the online database. To determine 

relevant pitch (x), azimuth (y) and roll (z) of the SP, the three exploited technologies 

implement AccMagOrientation matrix demonstrated in Figure 5-11 and 

gyroOrientation matrix shown in Figure 5-12 to determine best for heading 

estimation. 

 

Figure 5-11  display organisation of pitch (x), azimuth (y) and roll (z) of accelerometer, 
magnetometer and gyroscope post matrix implementation 

 

First technology explored is the gyroscope sensor where it is observed to 

experience drift. To improve gyroscope drift, gyroOrientation matrix must 

overwrite initial gyroscope measurements. This, therefore, presents a rotation 

vector of SP as it rotates around its axis. This rotation vector is mandated to 

calculate the angular speed of SP orientation. Consequently recognising the 

behaviour of SP. Although output from implemented gyroOrientation matrix has 

reduced drift, it is insufficient for getting heading estimates. This is because as it 

only considers the rotation of SP without recognising direction SP is moving in.  
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Figure 5-12 gyroOrientation matrix calculating SP behaviour 

 

The second explored technology include fused accelerometer and magnetometer 

sensor outputs. Output AM2, from the fusion of accelerometer and magnetometer 

sensors, occurs when AccMagOrientation matrix in Figure 5-13 is implemented. 

This achieves rotation angles which deliver absolute orientation of the SP. For 

example, instances where SP is lying flat on a surface or held up in hand, the filter 

coefficient of the signal quality for AM2 returns stabilised x, y, and z output from 

negative-to-positive states. Compared to gyroscope output, this combination is 

advantageous in better determining SP orientation instances and also calculating 

heading angles to find direction SP when in motion. This output offers directional 

information which is combined with outputs from wheel encoders when 

determining pose with relative position estimates.  

 

Figure 5-13 orientation calculation from accelerometer/magnetometer fusion 

 

A complementary fusion of gyroOrientation output with AM2 is considered in this 

study.  The intention is to improve SP orientation and rotation output through 

increased sensitivity of SP to gravitational influences which is achieved via the 

application of a sensor fusion illustrated in Figure 5-14.  However, this is expected 
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to be ineffective due to system sensitivity which will invoke unwanted values. Thus, 

verifying that AM2 is sufficient for providing more precise heading estimates.    

 

Figure 5-14 Fusing all IMU sensors 

 

Distance Travelled Computation from Wheel Encoder  

For wheel encoders, sensorManager identifies and converts rotation counts of the 

wheels to distance travelled estimates when mobility is in motion. This is 

mandatory when calculating pose estimates respect to relative travelled distance 

estimates. Here, distance travelled by the left and right wheels of the mobility 

scooter is calculated using Equation 29 to result in Figure 5-15.  

Circumference of the wheel = 2πr  (where ‘r’ is in cm) 

Equation 29 

 

Where 2πr is the equation for calculating the outer circular circumference of the 

wheel and r is the radius of the outer the wheel in cm.  

 

Figure 5-15 travel distance of each wheel over time 
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In this instance, complete wheel rotation is equivalent to 60cm travelled distance 

which is also the circumference of the wheels. Distance travelled is calculated using 

a 9.6cm radius of the wheel’s circumference. If speed is distance over time of each 

wheel revolution, it is assumed that it will take the mobility scooter 1 second for the 

wheel to complete one revolution equivalent to 60cm of ground.  In a larger area, 

cm-level calculations will be tedious for the system and therefore would be required 

to calculate for the speed in m/hour as shown in Equation 16: 

N x 0.60 x 3600/1000 (1 hour = 3600 secs; 1km = 1000m) 

= N x 2.16 or N x 2.2 

 Equation 16 

Where N represents the varying number of revolutions per second and 2.2 is 

constant. 

5.1.1.2 Online process cycle completion 

The output from WiFiManager and SensorManager are converted into a JSON array. 

The JSON array is saved in the online database with unique identification names and 

timestamps using code snippet in Figure 5-16 and Figure 5-17.  

 

Figure 5-16 WiFiManager JSON array transfer to the database 
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Figure 5-17 SensorManager JSON array transfer to the database 

 

5.1.1.3 Offline Phase  

Offline phase handles mathematical calculations and algorithm applied to data 

received from the technologies at the online phase to derive the absolute position 

of the mobility scooter. The implementation of these models and algorithms are 

crucial in defining mathematical processes necessary in achieving W1, W2, O2, O3, 

AMO1 and R2 (see Figure 4-7) with respect to time.  

A JSON array containing datasets from sensorManager and WiFiManager is 

transferred to an offline database designed in MATLAB. An extracted JSON array is 

arranged in a struct with correspondence to UNIX timestamp reference. This is 

because a timestamp is used to calculate absolute time for when data was collected 

by both members of SensorManager and WiFiManager. Absolute time is obtained 

when the difference between the current time and the first time is calculated using 

Figure 5-18. This is essential because it acts as the reference for each data point 

received over distance.  
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Figure 5-18 Calculating for absolute time 

 

Still, within the offline phase, MATLAB performs the following models and 

algorithms to achieve the overall purpose of this study - 

a) Adopted SDRS log-normal shadowing model [38][39] (Equation 5) on RSSI 

propagated from Wi-Fi to produce W1 

b) Multi-trilateration algorithms [14]  (Equation 6) applied on W1 get W2, which is 

estimated relative position using RSSI  

c) New drift mitigation model (Equation 19) proposed by WTP-HAMS system is 

used on estimated travelled distances received from the wheel encoders to get 

improved travelled distance estimates DO1. 

d) Odometry model [19] (Equation 1, Equation 2 and Equation 3) is applied on O1 

to get O2 to get relative position estimates O3 of the mobility scooter 

e) Novel WTP-HAMS odometry model (Equation 21Equation 22) combining DO1 

from wheel encoders with SS2 from fused accelerometer and magnetometer 

(Equation 20) to get improved pose estimates with relative positions AMO1.   

f) Novel WTP-HAMS localisation system which uses geometric error shapes 

formed by combined BrAMO1 and BrW2 (Equation 25Equation 26) to find 

improved absolute position R1.  This is true when error shapes of W2 and AMO1 

intersect or overlap (Equation 27Equation 28).   

All the calculation performances are grouped into three sections, namely, estimated 

relative position using RSSI, which is satisfied when performances a and b are 

fulfilled; pose estimation with relative position using odometry, that is achieved 

when c, d and e are performed; and estimated absolute position with reduced error, 

which is obtained when f is executed.  These are further discussed below. 
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Estimated Relative Position Using RSSI 

Relative position estimates using RSSI needs SDRS log-normal shadowing model 

[38][39] (Equation 5) and multi-trilateration [14] (Equation 6) algorithms to be 

implemented sequentially. Equation 4 is applied to RSSI collected from measured 

APs to obtain W1. This thesis demonstrates how W1 is derived from three and four 

routers/APs present in a test environment. Identifying the locations of these 

routers/APs is important in creating outline boundary needed for effective mapping 

of estimated distances from the ground truth. Each router/APs is identifiable in the 

offline phase by its unique mac address as shown in Figure 5-19.  

 

Figure 5-19 Mac addresses identifying unique APs for RSSI propagation 

 

The mac addresses in Figure 5-19 belong to the five identifiable Wi-Fi router/APs 

present in a test room. Identifying Mac addresses of relevant routers/APs filters 

RSSI readings from other measured but unnecessary routers. RSSI from relevant 

APs are measured signal power with a certain degree of noise caused by shadowing 

effects. SDRS log-normal shadowing model filters noise experienced in each RSSI 

while, also calculating for distance estimates relative to relevant APs.  

In our investigation, the Gaussian variance of -36 dBm is used when considering 

noise experiences within RSSI. In this study, conversion of power to relative 

distance estimates W1, is resulted when Gaussian variance 36 dBm is combined 

with free space exponent of 2.2 based on environment dynamics and RSS power at 

1m as shown in code snippet Figure 5-20.  
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Figure 5-20 SDRS log-normal shadowing model to get relative RSSI distance 

 

It is expected that W1 will be meter level distance estimates relative to the room, 

however, it does not provide position estimate. Therefore, multi-trilateration 

(Equation 6) is adapted to combine all distance estimates from relevant 

routers/APs to get relative position estimates W2. Multi-trilateration (Equation 6) 

code snippet shown in Figure 5-21 is written to calculate for relative position 

estimate W2 using W1 calculated from each RSSI of relevant routers/APs. 

 

Figure 5-21 multi-trilateration computation for four APs/router 

 

Here in Figure 5-21, b represents the beacon matrix that considers x,y coordinates 

of each router; BeaconN is the number of routers; [x,y] represent x, y coordinates of 

the mobility scooter using RSSI; and Q is the algorithm calculating the point at which 

all estimated distances from the APs meet.  

The convergent point for all distance estimates is W2 with errors. In our 

investigation, an average for x, y value per W2 from over 100 iterations is selected 

as best relative position estimation BEW2 with its corresponding average error 



179 

 

estimate EErW2 calculated and saved in the offline database. EErW2 is radius 

highlighting estimated variation between BEW2 and ground truth to form a circle 

BrW2 that concludes relative position estimation using RSSI. 

Pose Estimation with Relative Position Using Odometry  

Pose estimation with relative position is calculated using estimated distance 

travelled approximations saved within the extracted JSON array read by MATLAB. 

It is established by researches [19][170] that drift sets in as the mobility scooter 

travels longer distances, therefore, our proposed WTP-HAMS system proposes new 

drift mitigation model (Equation 23) be implemented on the received travelled 

distance approximates to determine new O1. New O1 in this study represents 

improved travelled distance estimates that are calculated using received travelled 

distance approximates from each wheel.  

First off, Equation 1, Equation 2 and Equation 3 are implemented to calculate the 

pose of the mobility scooter formula from research by A. Jha and M. Kumar [19]. It 

is important to understand drift from the wheel encoders. However, because it is 

expected that drift will be experienced, the proposed new drift mitigation model 

(Equation 19) is implemented on the D_C  (O1), where a maximum percentage error 

is added to its overall travelled distance. This reduces the drift distance travelled. 

However, the heading errors will persist because the traditional odometry 

(Equation 1, Equation 2 and Equation 3) is dependent on travelled distances of both 

wheels described in the code snippet below in Figure 5-22.  

 

Figure 5-22 distance travelled computation based on SOTA 
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Where D_L  is the distance travelled by the left wheel; D_R  is the distance travelled 

by the right wheel; D_C  is the distance travelled by the centre of the scooter. 

The drift experiences in the heading navigation is expected to cause significant pose 

and positioning errors, therefore, the AM1 of the smartphone IMU modalities is 

proposed to offer heading navigation solution.  This is because AM1 reduces 

directional errors O2 provides by producing better accurate heading estimates.   

To implement the proposed novel odometry model that will improve pose 

estimation, O2 is substituted with the improved AccMagOrientation (AM2) 

(Equation 24) from the online phase. This is accelerometer and magnetometer 

fusion, which is selected because it considers the orientation of the smartphone as 

well as provides heading navigation angles. (See code snippet in Figure 5-23). 

 

Figure 5-23 identifying AM2 with respect to the globe 

 

However, the frequency spectrum of AM1 is inconsistent with multiple peaks. To 

smoothen this frequency spectrum, moving average filter of 2, 20 and 50 span s are 

considered, and, 50 spans are selected. This is because 50 spans produce most 

useable dataset. This is identified as SS1. 

The smoothened signal (SS1) is then set to identify and synchronise with the 

initiation, acceleration and deceleration of the mobility scooter through the 

employment of FWHM (Equation 4). The resultant is SS2, which produces better 

accurate directional information with significantly reduced heading error.  SS2 is 

vital in our investigations as it presents better navigation heading.  
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Then, the pose estimation with relative position is calculated for, by combining the 

results from the new drift mitigation model (O1) with AM2 in a proposed novel 

odometry model (Equation 21Equation 22). This is important because, it produces 

AMO1, which is the combination that will get the relative pose and position estimate 

with significantly reduced errors. The implementation is shown in the code snippet 

in Figure 5-24.  

 

Figure 5-24 Odometry model for position estimation with error 

 

Similar to estimated relative position using RSSI, best-estimated pose with relative 

position (BEAMO1) from AMO1 and estimated errors (EErAMO1) are saved in the 

database, after Equation 26 is implemented. It should be noted that BEAMO1 is 

obtained from an average of 1000 relative position samples of collected data while 

EErAMO1 is the variation from the true position when Equation 26 is applied. Both 

EErAMO1 and BEAMO1 when united in Equation 23 form error triangles between 

the true position and BEAMO1. This combination to form error triangles is identified 

as BrAMO1.  

Estimate Absolute Position R1 with Reduced Error 

The purpose of this investigation, which is the improvement of indoor localisation, 

is achieved when new absolute position R1 is originated. In particular, this is the 

centroid of the calculated position area estimate from Equation 27Equation 28. This 

is true because the centroid is in the shaded area where BrW2 (Equation 25) and 

BrAMO1 (Equation 26) overlap. Especially, when the system implements Equation 

27 and Equation 28 to confirm an overlap has occurred.  It should be known, that, 
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the shaded area is the improved estimation position area with reduced error and its 

centre is the new position R1 with significantly reduced error.  

The position error of R1 is then compared with ground truth using Equation 10 and 

Equation 11. This is important to measure the improvement of the proposed WTP-

HAMS system. In particular, validate our proposed investigation that plans to 

provide better accuracy when compared to SOTA.  

5.4. Summary and Analysis 

The proposed investigation presents a lightweight system that implements several 

mathematical models in an innovative technique to achieve indoor position 

accuracy improvement. This is because; it is an innovative combination of position 

estimation from RSSI and pose estimation with relative position using the proposed 

novel odometry model, to get the centroid R1. Importantly, the centroid R1 is an 

improved absolute position area with reduced position error. 

Position estimation using RSSI is obtained from the processing the Wi-Fi signals 

collected by the API of the smartphone in the online phase. This system then pushes 

the signals to an online database via a server. This online database , consequently, 

pushes the data to an offline MATLAB database where calculations are performed. 

The first performed calculation is Equation 5 where the signal strength of the Wi-Fi 

is translated into distance measurements. The second performance is Equation 6, 

where the distance measurements from the considered 3 and 4 routers, are 

combined to estimate position BEW2. This calculation takes less than a second. It is 

an advantage to our system because; its latency is low, especially when compared 

to 2-3seconds latency from fingerprinting methods adopted by SOTA [14]. The 

position error EErW2 gotten when Equation 9 is implemented, makes forming the 

error shapes achievable. In particular, the circle formed around the estimated 

position and ground truth. This may also be influenced by LOS or NLoS instances. 

RSSI position estimation is important because it provides a room reference frame.  
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Pose estimation using the proposed novel odometry model is the combination of 

proposed new drift mitigation model on travelled distance from wheel encoders and 

navigation heading from combined IMU sensors, in particular, accelerometer and 

magnetometer. These technologies (wheel encoders and smartphone IMU sensors) 

send data packets to the smartphone concurrently with the exploited Wi-Fi routers. 

This system then pushes the data alongside RSSI signals to an online database via a 

server. This online database, consequently, pushes the received data to an offline 

MATLAB database where calculations are performed. In particular, the proposed 

new drift mitigation model and novel odometry model.  

The first performed is the traditional odometry model from Equation 1, Equation 2 

and Equation 3, where it was expected that drift would occur. In particular, in the 

distance travelled based on Equation 29. Therefore, a new drift mitigation model 

(Equation 19) was proposed. This was important because it would correct distance 

travelled errors. However, it defaulted in correcting heading errors. Therefore, a 

novel odometry model (Equation 21Equation 22) was proposed to get AMO1. In 

particular, it included the combination of distance-travelled estimates with reduced 

drift and heading navigation AM1 from smartphone IMU sensors. This was 

important because the combination of AM1 is AM2 when Equation 20 is applied, 

provides better navigation heading values, as well as, provides the orientation of the 

smartphone. In particular, it provides better navigation heading when compared to 

direction estimates O2 from traditional odometry based on the original travelled 

distance estimates. Although AM2 presents better navigation heading, it needs to be 

synchronised with the drift reduced travelled-distance estimates. Therefore, a 

unique FWHM process in Equation 4 is implemented to smoothen out the multiple 

peaks of AM2. FWHM synchronises the waveform of AM2 synchronised with the 

drift reduced travelled-distance estimates, by identifying points of initialisation, 

acceleration and deceleration over drift corrected travel distance of the mobility 

scooter and time. After the synchronisation is complete, then the estimated values 

from SS2 and drift corrected distance travelled can be combined in the proposed 

novel odometry model. The expectation is that the proposed novel odometry model 

will significantly outperform the traditional odometry model. To check the 
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expectation, position error EErAMO1 of the estimated pose with relative position 

BEAMO1 from ground truth is calculated using Equation 23. Here, it is expected that 

the error shape will be triangular, especially because of the high sampling rate of 

0.33f. This proposed novel odometry is important because it is expected to correct 

the errors of RSSI.      

Finally, a check is carried out find if error shapes triangle from EErAMO1 of BEAMO1 

and circle from BEW2 of EErW2 overlap. If both circular and triangular error shapes 

overlap, then a centroid R1 is calculated and is the new estimated position. This is 

illustrated in Figure 4-6, where the improved position area, which is the shaded 

overlap area, shows the new position estimate R1, which is the centre of the shaded 

area.    

It is our proposal that a series of studies be carried out to test our methodology, 

including the proposed software and hardware system implementation. In 

particular, the following will be investigated –  

 The influence of LOS and NLoS on RSSI  

 Which provides better position estimates for Wi-Fi, a combination of 3 

routers or 4 routers 

 Comparing navigation heading results from two configurations of 

smartphone IMU modalities  

o Accelerometer, gyroscope and magnetometer  

o Accelerometer and magnetometer  

 Determining if smartphone orientation will impact results, in particular, 

horizontal versus vertical orientation 

 Finding out where the smartphone will be best placed with consideration to 

the following  

o In hand  

o On mobility scooter 

o On mobility floor 
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 Examining how best our proposed new drift mitigation model improves 

travelled-distance.  

 Investigating the proposed novel odometry, especially in the improvement 

of pose estimation of the tracked mobility scooter user.   

 A comprehensive study that combines all the results from RSSI and novel 

odometry model. This is important to demonstrate how our proposed WTP-

HAMS system improves position accuracy.  



186 

 

Chapter 6 Experimentation 

This chapter aims at designing and evaluating studies to test the proposed WTP-

HAMS system described in the methodology in chapter 4. Also contained in this 

chapter, are specific studies of each technology exploited by our proposed WTP-

HAMS system.  The exploited technologies include Wi-Fi, wheel encoders and 

smartphone IMU modalities – accelerometer and magnetometer sensors. The major 

reasons for our experimentations are to measure the accuracy of the proposed 

WTP-HAMS system.  

Because of the extension of the experimentation described in this chapter, the 

content of the presented section is outlined below: 

Section 6.1 presents a design overview of our studies in terms of experimental 

strategy and implementation of our methodology. It also presents an overview 

containing the advantages and limitations of the exploited technologies in our 

methodology. 

Section 6.2 breaks down the experimental strategy for a focused and comprehensive 

study with supporting illustrations. It includes plans for five sub-studies under Wi-

Fi, smartphone IMU modalities and wheel encoders.  

Section 6.3 details the strategies and conditions for conducting studies on Wi-Fi and 

its purpose in our proposed system. Its studies are grouped into first and second 

studies which respectively includes the comparison of LOS vs NLoS and 3 vs 4 

routers for position estimation using multi-trilateration. 

Section 6.4 in-depth study and strategy discussion for smartphone IMU modalities 

and its particular benefit in our proposed methodology. This is grouped into third 

and fourth studies which respectively includes identifying best navigation heading 

and smartphone pose for our system.  
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Section 6.5 plans and examines a strategy for a detailed study of wheel encoders and 

its specific advantage in our proposed system. We allocated it to a fifth study which 

includes relative pose accuracy. 

Section 6.6 develops a strategy to examine a comprehensive study of our proposed 

system using outcomes from previous sections 6.3 - 6.5. 

Section 6.7 the plans and strategies of the studies discussed and recommended in 

6.3 - 6.6 are implemented in this section. 

Section 6.7.4 this section includes our results discussions and summary of the 

experiments of our proposed WTP-HAMS system. It also compares our results to 

relevant literature works.   

Section 7.3 this concludes our chapter with personal and technical lessons learnt 

when carrying our studies.  
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6.1. Design  

In order to design the proposed system experimentation and to best address the 

advantages and limitation of each relevant sensor, it is proposed to analys e the 

different characteristics of each sensor. Figure 6-1illustrates the main advantages 

and limitations based on the state of the art. 

 

Figure 6-1 Purpose for experimenting on Wi-Fi, smartphone modalities including IMU 
sensors - accelerometer, magnetometer and wheel encoder based on evaluations by the 
State-of-The-Art (SOTA) 
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We will begin the experiments with a design, which includes  

 Experimental strategy – this is the planning stage to strategize on how our 

experiments will be carried out. It includes -  

o Focused study – studies the individual technologies proposed in our 

methodology and how they will be implemented in our experiments. It 

includes studies for Wi-Fi, smartphone IMU modalities and wheel encoders. 

They are grouped into Pilot test phase and Main test phase.  

o Comprehensive study – studies the validity and viability of our proposed 

methodology, especially in indoor position improvement.  

 Experimental implementation includes the experimental setup, procedure, 

results and analysis of all the studies carried out in the focused and 

comprehensive studies.  

 

6.2. Experimental Strategy  

After identifying the purpose of our experiments, we designed a strategic approach 

to assess our proposed WTP-HAMS system. The is important to evaluate our 

methodology, in particular, a focused study evaluating each technology on its own, 

to get insight on how best to run a more comprehensive test. This is illustrated in 

Appendix 2. 

It is proposed that we carry out a focused study and a comprehensive test.  

6.2.1. Focused study  

The focused study individually assesses Wi-Fi, smartphone modalities – IMU 

sensors and wheel encoders. This is important to build our proposed comprehensive 

test.  

Our experimental strategy for the focused study is to group our studies into two 

phases, namely, pilot test phase and main test phase.  
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Pilot Test Phase  

The pilot test phase examines the signal quality of Wi-Fi in a small-congested room. 

It includes the use of a smartphone to collect all sensor data from the one Wi-Fi 

router. The purpose is to conduct a first study, which aims at understanding the 

effects of the line of sight (LOS) and None Line of Sight (NLOS) of routers in a 

controlled environment (room 1).  

This is critical because the outcomes from the pilot test phase will determine the 

instance our subsequent tests we will adopt when conducting position experiments 

using multi-trilateration of 3 and 4 routers in the main test phase. This is highlighted 

in 6.1 and expatiated on in sections 6.3.1 and 6.7.2. 

Main Test Phase  

The main test phase studies the independent advantages of Wi-Fi, Smartphone IMU 

modalities and wheel encoders (shown in Appendix 2) in a medium sized 

representative environment (room 2) with a smooth wooden titled floor. This is 

important because it provides an effective understanding and adequate 

measurement of position, direction and pose of our implemented smartphone and 

mobility scooter in room 2.  

It is critical we divide the main test phase into four studies, where one of this study 

is based on results from the first study in the pilot test phase. Therefore, we opted 

to continue the study count from the second study. 

The studies in the main test phase include –  

Second study – two core tests are carried out to determine the best router number 

and configuration best needed to get position estimate in room 2. The router  

number and configuration we will consider for testing best position estimation with 

Wi-Fi are three-router configuration (config 1) versus four routers configuration 

(config 2).  
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This study is highlighted in Appendix 2 (Appendix B) and expatiated on in sections 

6.3.2 and 6.7.2. 

Third study – we experiment for navigation heading using two major tests, including 

our proposal to combine accelerometer and magnetometer sensors and SOTA 

recommendation to combine gyroscope, accelerometer and magnetometer sensors. 

This is important for us to compare both studies and find out the most accurate 

combination sufficient for our system. 

This is highlighted in Appendix 2 (Appendix B) and expatiated on in sections 6.4.1 

and 6.7.2.  

Fourth study – we investigate for the best suitable smartphone pose in our system 

by testing two smartphone orientations including vertical and horizontal 

orientations. This is critical in choosing the most efficient and conducive orientation 

for the user. In addition, it is very important we identify the best orientation because 

it influences the result of the third study. Therefore, it is expected that the best 

orientation in our fourth study will positively influence the third study when getting 

the best heading navigation.    

This is highlighted in Appendix 2 (Appendix B) and expatiated on in sections 6.4.1 

and 6.7.2. 

Fifth study – in this study, we examine results from our proposed new drift 

mitigation model and combine it with results from third and fourth studies. This 

combination is necessary for the testing of our proposed odometry model. Most 

importantly for the derivation of improved relative position estimates.    

This is highlighted in Appendix 2 (Appendix B) and expatiated on in sections 6.5.1 

and 6.7.2. 
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6.2.2. Comprehensive study  

This study involves experiments using the proposed methodology, which is our 

WTP-HAMS system. Technological and environmental conditions and instances will 

be recommended for testing based on outcomes from first – fifth studies. It is 

important to validate our proposal that WTP-HAMS system will improve position 

accuracy. 

This is highlighted in Appendix 2 (Appendix B) and expatiated on in sections 6.6 and 

6.7.3. 

6.3. Wi-Fi  

Wi-Fi is selected for experimentation as relevant papers referred to in chapters 2 

and 3 including a Wi-Fi sensing survey [59], discuss advantages of Wi-Fi in its 

ubiquity, cost-effectiveness, non-invasiveness and technology deployment ease. It 

is evaluated based on papers discussed in chapters 2 and 3, with emphasis on 

representative paper by S. Boonsriwai et al and  S. He et al [14][106], where it is 

examined and reported that the granularity of position estimation may be limited 

to room level due to signal order from stationed Wi-Fi APs. This confines position 

reading within the measured area like room and therefore, making room the global 

reference. S. Boonsriwai et al[14], investigated the calculation of a user’s relative 

position to Wi-Fi APs using multi-trilateration methods. It is our understanding 

from the investigation of journals and conferences on Wi-Fi-based indoor 

localisation that though calculated positions are relative to Wi-Fi APs/routers at 

fixed positions, its position measurement is within a room absolute to the global 

frame. Therefore, position estimates from Wi-Fi can be regarded as absolute if the 

room with fixed Wi-Fi APs/routers is assumed to be the global reference frame for 

the tracked object. With consideration to the above, the experimentation will look 

into studying the following:  (1) LOS versus NLoS; (2) Position accuracy based on 

multi-trilateration. 
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6.3.1. First Study: LOS versus NLOS 

Several literature works [29][62][59][171][14][172][173] evaluate Wi-Fi with a 

demonstration on how distance inaccuracies are affected in cases of None -Line-Of-

Sight (NLoS) and clear Line-Of-Sight (LOS). In representative paper S. Boonsriwai 

et al [14], LOS shows an error of approximately 4.236m and 2.816m when three and 

four routers are considered respectively while NLoS show error of 5.690m and 

6.156m when three and four routers are considered respectively in an area with 

wall partitions and poor signal propagation. It should be noted that NLoS influence 

is highly dependent on the number of obstacles between the device and APs, this is 

not indicated by the literature works mentioned above.  

It is proposed that we follow the approach seen in the Literature with testing out 

both LOS and NLoS. This is important because the system performance depends on 

many elements (among them: environment configuration, and human 

interference), and therefore the outcome of SOTA experiments do not necessarily 

apply to all environments. We expect LOS will perform better and therefore we will 

rely on it and run more focused trials with LOS only, but we wish to start with a first 

step which is the first Study that includes LOS versus NLoS.  

The first study includes a small-congested environment and one router only. 

 A small-congested environment (room 1) is proposed because it allows for 

testing with LOS and NLoS situations. In particular, the situation of NLoS will 

mainly arise by people moving around. It is expected NLoS will perform 

worse, and it will be of particular interest to measure the deviation from LOS 

and possibly get indications about how the Wi-Fi behaviour will change 

based on specific arising situations, e.g. how people ’s movements (and still 

positions) will affect distance estimation.  

 One router only is proposed because this setup is deemed representative and 

no relevant observations are expected from using more routers. 
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Furthermore, the one router only situation is deemed leading to a neater 

outcome. 

 

6.3.2. Second Study: Position Accuracy Based On Multi-

Trilateration  

One of Wi-Fi limitations argued in representative papers [14][174] is position 

accuracy of multi-trilateration. This position inaccuracy is influenced by the 

conditions discussed in the first study, and especially the number of routers/APs. 

Literature works, particularly S. Boonsriwai et al [14] examined the influence on 

position accuracy when one to nine number of Wi-Fi routers/APs are involved. It is 

their remark that the number of routers affects positioning process performance. 

Their findings show that an increase in the number of routers to 5 or 6 provide a 

higher possibility for position inaccuracy due to the selection of low-quality signals 

during the ranging calculation. In other words, poor signals from the router will 

negatively affect the calculation. Their recommendation is that best position 

approximation is achievable when the number of routers is 3 or 4.  

It is proposed we obey the recommendation by SOTA with testing for both 3 and 4 

routers/APs. This is critical because the performance of WTP-HAMS system is 

dependent on the following elements like room size, environment configuration, 

router position and conditions in the first study. Therefore, the outcome of SOTA 

experiments does not necessarily apply to all environments. It is our expectation 

that the 4 router combination will produce better results. Therefore further focused 

trials for the experiment are planned, which will rely on 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒𝑟𝑠 = 4. 

However, before experimenting with 4 routers, we propose to also test with 3 

routers. This test is included in the experiment’s second study. 
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 The second study includes a medium sized uncongested environment and, three to 

four routers only. 

 A medium sized uncongested environment (room 2) is proposed because it 

allows for better testing of situations for three routers/APs and four 

routers/APs. Particularly, three routers/APs will not be best suitable due to 

signal propagation influence caused by room size. It is expected that four 

router/APs will perform better, and it will be of particular interest to 

measure the deviation of from three routers/AP. The purpose is to get 

indications about how three and four routers/APs will influence position 

estimation accuracy in our environment based on smartphone position in 

the instance where the smartphone is on the arm of the mobility scooter. 

 Three routers/APs is proposed for the initial trial because it is the standard 

for trilateration and therefore needs to be investigated in our environment.  

 Four routers/APs is proposed for the next trial because this setup is expected 

to provide better position accuracy in our test environment. 

 

6.4. Smartphone IMU Modalities  

Smartphone IMU modalities (accelerometer, magnetometer and gyroscope 

sensors) are chosen for experimentation because we have observed a trend by 

SOTA [64][145][109][158][175], that it is best for estimating heading. This is 

discussed in chapters 2 and 3. With consideration to the above, the experimentation 

will look into studying the following:  

 Navigation Heading 

 Smartphone Pose 
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6.4.1. Third Study: Navigation Heading 

The representative papers mentioned above, experiment with IMU sensors to 

demonstrate how heading can be estimated on tracked pedestrians.  This is of 

particular interest to us because SOTA investigates IMU influences on pedestrian 

motion, but our system is focused on transitional motion.  

It is our proposal that we test out heading estimation of the smartphone when 

mobility scooter is moving in translational motion. This is important because the 

performance of our system is dependent on the combination of two out of thr ee IMU 

sensor combination, and therefore the outcome of SOTA experiments do not 

essentially apply to translational motion. We expect accelerometer only will not be 

sufficient for measuring distance in translational motion and gyroscope drift will 

greatly influence our system, therefore we wish to investigate this aspect through a 

third study that includes accelerometer, magnetometer and gyroscope. 

The third study includes a smartphone and smooth wooden tiled floor. 

 A smartphone is proposed because it is ubiquitous and therefore less 

expensive. In addition, it contains critical sensors (accelerometer, 

magnetometer and gyroscope sensors) needed for system testing. It is our 

expectation that configuration one which is, the combination of 

accelerometer and magnetometer, will outperform configuration two that is, 

combined accelerometer, magnetometer and gyroscope. Therefore, it is our 

interest that we measure the noise level of the two configurations.  

 A smooth wooden floor is chosen because it allows better testing for 

waveform patterns from IMU sensors when in translational motion. 

Furthermore, this flooring type is recommended for the target audience by 

regulatory bodies in SOTA [163] [164].   
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6.4.2. Fourth Study: Smartphone Pose  

Representative papers [171] [176] experiment with smartphones because of its 

inbuilt IMU and ability to allow all connected systems to be referenced in a timely 

manner.  It is their observation that poor time synchronisation will cause drift, 

therefore, time synchronisation is recommended to mitigate it.  

Furthermore, it is recommendation [171] [176] that the smartphone is set up in a 

vertical orientation in their experimentation. It is of interest to us because SOTA 

investigates phone frame to navigational frame impact on only pedestrian motion 

when the user has phone placed vertically in a pocket or phone holder in a car, but 

our system is focused on that of transitional motion.  

It is our proposal that we follow SOTA approach in experimenting with smartphone 

time synchronisation and phone orientation. This is vital because our proposed 

WTP-HAMS system relies on elements including UNIX time and smartphone 

orientation. We expect the UNIX time will provide global time-frame. Also, we 

expect horizontal orientation will perform better and therefore perform focused 

trials with a horizontal orientation. We commenced with the fourth study, which 

includes vertical and horizontal orientations.  

Fourth study includes a UNIX time timestamp and smartphone orientations  

 UNIX timestamp is proposed because it allows for global tracking and sorting 

of dated information from connected sensors within a dynamic system. 

Particularly useful situations where the system is tested in different time 

zones.  It is our expectation dates will remain true to the country’s time zone. 

 The smartphone orientation is proposed to test vertical and horizontal 

orientations. Particular situations, which may arise, are sensor readings 

from axes with reference to smartphone frame and translational motion.  It 

is our opinion that horizontal orientation, (representing the smartphone 

placed horizontally on the mobility scooter arm), is more practical as user 
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will need both hands to steer the mobility scooter and this configuration is 

also considered more stable (while if the phone is held vertically it could 

greatly be influenced by hand’s movements). Furthermore, holding the 

smartphone vertically may call for a vertical holder to be designed.  It is 

proposed to test with both the orientations to assess heading direction 

accuracy in translational motion.  

Particularly, we test to know the influence of the orientations will have on 

our system based on the following instances - 

o In the user's hand  

o Mobility scooter arm 

o Mobility scooter floor   

 

6.5. Wheel Encoders 

Wheel encoders are selected for experimentation because representative papers 

[19] [177] in SOTA discuss its advantage in measuring travelled distances of tracked 

objects moving in translational motion. This is discussed in chapters 2 and 3. From 

investigations of journals and conferences on indoor localisation based on wheel 

encoders, calculate for poses relative to the mobility scooter frame. This therefore 

makes the mobility scooter the reference frame. With consideration to the above, 

the experimentation will look into studying the following: (1) Relative Pose 

Accuracy. 

6.5.1. Fifth Study: Relative Pose Accuracy  

One of the major limitations of wheel encoders discussed in representative papers 

[19] [65][178] , is drift relative to distance travelled. Representative paper [5] show 

an odometry based pose error of 3m – 5m. Pose error is caused by an accumulated 

error in travelled distance from both wheels.   
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Therefore, it is our proposal we compare traditional SOTA approach with our 

proposed novel odometry model, to assess drift experienced by our system in our 

test environment. This is important because our system relies on the number of 

encoders, size of wheels, driving path and type of floor surface. It is our expectation 

that our proposed novel odometry model will perform better than traditional 

methods from representative papers. This test is therefore commenced with the 

fifth study which includes distance travelled with our proposed drift mitigation 

model and pose error correction.  

Fifth study includes a wooden tiled floor, two wheel encoders, straight driving path, 

our proposed new drift mitigation model and conditions from phase 4  

 A wooden tiled floor is proposed because it is recommended by the 

recommended body in literature papers [163] [164]. It is particularly 

relevant to the target audience and therefore of exact interest to us that 

experiments be done with wooden tiled floor.  

 Two wheel encoders are proposed because they are sufficient for many 

applications and could easily be modified into three or four-wheeled devices. 

If this modification is required, the additional redundant wheel may be 

added. Two wheel encoders are advantageous to our experiment because the 

pivot point of the turning radius is the rare axel.    

 The straight driving path is proposed to follow the assumption from SOTA 

[178], [19] to measure the equal travelled distance of each measured wheel. 

This is deemed adequate to lead to a tidier outcome. 

 Our proposed new drift mitigation model is proposed to correct travelled 

distance error caused by drift. This is important to improve the pose of the 

mobility scooter. 

 Conditions from the fourth study are proposed because it allows for 

improved pose measurement situation. Particularly, in situations where our 

proposed novel odometry model is applied. It expected that the combinations 

from the fourth study with the fifth study would have better pose with 

heading estimates true to the global frame.    
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6.6. Comprehensive Study 

It is important that the limitations of each technology critical to our methodology be 

studied. This includes Wi-Fi, wheel encoders, and smartphone modalities – 

accelerometer and magnetometer. Particularly within our test environment which 

is the representative standard for our target audience. It is expected that the 

limitations discussed for each technology will negatively affect position accuracy, 

therefore, sets of conducted studies, summarised in illustrated in Table 6-1, 

ascertain the best configuration for our experiments.   

 

Table 6-1 Critical elements of the evaluation methods and setup 

 

First and second studies in Table 6-1 are focused on Wi-Fi, where it is proposed that 

we follow the literature approach and test for LOS and NLoS and Position accuracy 

based on multi-trilateration. Discussed above, this is important because the 

performance of the system is dependent on the number of routers, room size and 

room configuration. Outcomes from the first and second studies are vital for 

decisions made in our Comprehensive study. Our decision for Comprehensive 

studying includes 4 routers, a medium room and LOS. This is further discussed in 

the Comprehensive study paragraph below.   

Third and fourth studies in Table 6-1 are concentrated on smartphone IMU 

modalities, where it is proposed that we follow SOTA approach in testing Navigation 
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heading and Smartphone pose. This is important because the performance of the 

system is dependent on smartphone orientation, IMU sensor combination, motion 

type, time synchronisation and floor type. Outcomes from third and fourth studies 

are critical for choices made in our Comprehensive study. Our decision for 

Comprehensive studying includes smooth wooden tiled floor, horizontal 

smartphone orientation, UNIX timestamp and combination of accelerometer and 

magnetometer. This is further discussed in the Comprehensive study paragraph 

below.   

Fifth study in Table 6-1 is centred on wheel encoders, where it is proposed that we 

follow the state-of-the-art approach in investigating Relative pose accuracy. This is 

important because the performance of the system is dependent on a mobility 

scooter, number of wheel encoders, driving path and floor type. Outcomes from the 

fifth study are vital for decisions made in our Comprehensive study. Our decision for 

Comprehensive studying includes two wheel encoders, straight paths and smooth 

wooden tiled floor. This is further discussed in the Comprehensive study paragraph 

below.   

Based on the outcomes from the first – fifth study, it is proposed we configure a 

Comprehensive study. This is important because our system relies on 2 wheel 

encoders mounted on a mobility scooter, moving along the surface of a smooth 

wooden floor in translational motion along a straight path, within a medium sized 

room with 4 routers and LOS. In particular, UNIX timestamp is used to synchronise 

all data including combined accelerometer and magnetometer of a smartphone. 

Critical elements of the Comprehensive study is shown in Table 6-2.    
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Table 6-2 Critical elements for Comprehensive study 

 

It is our plan to map out our medium sized room and design a grid. This is important 

for managing room boundaries. With an assumption that both wheels travel at equal 

distances, sets of 50 iterations are carried out in two states – stationary and moving. 

We expect our system will be sufficient for estimating better position accuracy, and 

therefore, results are analysed using statistical and graphical evaluation methods.  
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6.7. Experiment Implementation and Results 

Analysis 

In this section, we discuss how we implemented our experiment design. Our 

experiments were performed in two phases namely: Pilot test phase and Main test 

phase.  

6.7.1. Pilot Test Phase 

Pilot test phase investigates the performance of Wi-Fi related elements in the first 

study including testing for LOS and NLoS in a small sized room with one router. In 

particular, experimental setup, and implementation procedure are important to this 

phase. Results are critical for the main test. This is important because it determines 

LOS is best suitable for our system. This is discussed in 6.5.1.1. below. 

Experimental Set Up 

Investigations are conducted in a 480cm x 322cm room (room 1) with 1 router/APs 

at the University of Hertfordshire. Where we use one Samsung Galaxy Note 1 

smartphone to collect RSSI signals from the one router at fifteen reference points 

(RP) as illustrated in Figure 6-2. The purpose is to investigate the dynamics of RSSI 

profiles in small-congested space in LOS and NLoS instances. 
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Figure 6-2 To scale representation of the test environment (room 1) for testing LOS and 
NLoS 

 

It was expected the smartphone would pick up signals from nearby routers; 

therefore, it was important that we designed a system that will identify relevant 

router only based on its mac address. In our case, our smartphone picked up signals 

from over 23 different mac addresses. 

We tested for performance of LOS and NLoS for our one identified router, and then 

analysed its influence on relative distance when Equation 5 is applied. This is 

discussed in the experimental procedure section. 
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Procedure  

This section includes implementation procedure for LOS and NLoS in 480cm x 

322cm room with 1 router/APs.  

First, we designed an android application that listens and collects Wi-Fi signals from 

our one router only. Then, we calibrate the RSSI signal reading of the phone using 

the closest and furthest distance from the router. This is important to train the 

system on the difference between signal at the strongest point and at the weakest 

point. This is done in the online phase discussed in chapter 5. 

Next, we placed the smartphone at the reference positions and collected readings 

with LOS and NLoS instances for one minute. Each reading collects an average of 4 

RSSI signal data output per reference point per iteration. In our experiments, the 

average of the signal data output is used as final signal information to be processed.  

The final signal is input into Equation 5 and calculated in our offline phase. This is 

important because it results in relative distances between router and smartphone 

in both LOS and NLoS instances. 

In LOS instance, smartphone collected Wi-Fi signal data with a clear line of sight 

between it and the router. The RSSI data signal is collected at RPs 3 – 9, 13 and 15.  

In NLoS instance, smartphone collected Wi-Fi signal data with interferences such as 

computer monitors, CPU and humans, between it and the router. The RSSI data 

signal is collected at RPs 1- 2, 10-12 and 14. Then, further investigations are 

conducted on NLOS instance RP 1 – 2 and 10 – 12 without interferences.   

The results of the implementation for LOS and NLoS are discussed in the results and 

analysis section below. 
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Results and Analysis  

The experiment was done to check the effects of LOS and NLoS of Wi-Fi signals on 

relative distance in a small-congested room with RP 1-15. Table 6-3 presents 

relative distance results gotten from RSSI after Equation 5 is applied. 

We observed that LOS performed better than NLoS. This is in-line with our 

expectations during the design of the trials. Compared to LOS, the deviation of RSSI 

derived distance from the true distance is significant for NLoS. The true distance is 

measured between RP and router using a traditional measuring tape. 

RSSI Derived Distance and Actual Distance Comparison Table  

 

Table 6-3 Distance accuracy deviation between true distance and relative RSSI distance 
estimates 
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Figure 6-3 graphical analysis of dataset showing deviation of the estimated distance from the 
ground truth.  

 

At RP 8, results are best because the smartphone is 0.023 m away from the router, 

in particular, in LOS instance with no interferences.  

Results were worse at RP 1 when the smartphone was 4.8m away from the router. 

The poor result is because of the interference caused by a CPU blocking the line of 

sight. We expected an error from NLoS but this result is quite significant.   

Human interferences are investigated at RP 2, with the smartphone 1.8m away from 

the router. One person constantly moved in-between RP 2and the router. Thought 

the results are not as high as that of RP1, it is quite significant.   

Our observations from the trial show that best results are gotten in LOS when the 

signal is strong and noise is almost non-existent.  Table 6-4  

Furthermore, it also proves that material in congested rooms significantly affects 

RSSI quality during propagation. The following below is true in this instance:  
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A1. Strong signal -  noise = High RSSI & high LQI RP 7, 8, 9 and 13 

A2. Weak signal + noise presence

  

= Low RSSI & low LQI RP 1, 2, 11 and 14 

A3. Strong signal in a noisy 

environment 

= High RSSI & low LQI RP  3, 4, 5, 6, 12 and 15 

A4. Strong noise  = High RSSI & low LQI RP 1, 2, 10 and 14 

Table 6-4 LOS and NLoS influences based on RSSI and its LQI 

 

A1 is the best result with small errors. This was observed to be true when SP was in 

LOS at less than a meter away from one router.  

A3 showed good outcomes with moderate errors. This was observed when SP was 

in LOS at distances within 1m – 5m from the router.  

A2 and A4 displayed worse results with high errors. This was observed when SP was 

in NLoS at distances within 1m – 5m from the router. Most importantly, errors from 

less than 2m distances was caused by human interferences and inanimate objects 

like CPU and monitors. Therefore, NLoS introduces too many uncontrollable errors 

and therefore not suitable in the experimentation of our system noise as it is will 

affect the position accuracy of our system.  

It is our observation that best results are from instances that fell within A1 and A3. 

Therefore, our system will include only instances of A1 and A3 for Wi-Fi. 
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6.7.2. Main test phase  

Main test phase tries out the designs from the third, fourth and fifth studies, plus the 

Comprehensive study. This test is performed with focus on the following: 

 A medium sized environment (room 2) 

 3 versus 4 routers for best position accuracy using results study 1 in focus test 

phase specifically LOS in conditions A1 and A3. 

 A mobility scooter with two wheel encoders travelling in translational motion 

on a smooth wooden floor.  

 Smartphone orientation and IMU combination of accelerometer, gyroscope and 

magnetometer versus our proposed accelerometer and magnetometer 

The purpose of this main test is to investigate better position estimation using LOS 

in A1 and A3 conditions, navigation heading, smartphone pose, relative pose 

accuracy and position accuracy of our proposed WTP-HAMS system. It is our 

expectation that our proposed WTP-HAMS system will outperform representative 

literature works mentioned in 6.3, 6.4 and 6.5.  

In particular, experimental setup, and procedure are critical in this phase. The 

outcomes are important for the experimentation of the system. This is important 

because the system relies on the design in the Comprehensive study. This is 

discussed below. 

Experimental Set Up  

Experiments were conducted in a medium-sized hall located within the University 

of Hertfordshire which is measured at 10.07m x 9m. The test environment is divided 

into a grid of 8 x 3 with 24 reference points (see Figure 6-4).  
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Figure 6-4 schematic map of the experimental site (room 2) and reference point 
distribution 

 

Table 6-5 representation table of the schematic map in Figure 6.2-3 

Here, we use one Samsung Galaxy Note 1 smartphone to collect the following: 

 RSSI signals from 3 and 4 routers  

 Distance travelled from two wheel encoders  

 IMU sensor data 



211 

 

The reason for using one smartphone is to guarantee consistency and consolidation 

of datasets. For our system, the following are expected: 

I. For position accuracy based on multi-trilateration, in instances of A1 and A3 

our recommended 4 routers will outperform 3 routers  

II. For navigation heading, accelerometer combined with magnetometer will 

outperform SOTA in 6.4.1 which combines accelerometer with 

magnetometer and gyroscope   

III. For smartphone pose, horizontal will outperform vertical used in literature 

work mentioned in 6.4.2 

IV. For the relative pose, our proposed odometry model will outperform SOTA 

in 6.5.1 which uses traditional odometry  

V. For improved position accuracy, our proposed WTP-HAMS system will 

outperform results from literature works mentioned in 6.3, 6.4 and 6.5  

We will test the performances of I – IV listed above, and, combine their results. We 

combined the results from I – IV because we need them to experiment with our 

proposed WTP-HAMS system, which is highlighted as V in the above. These are 

discussed in the implementation section below. 

Procedure  

This section contains experimental implementations for the above I – V expectations 

in the 10.07m x 9m medium-sized hall (room 2).  

We tested the conditions and expectations in the five studies described in the 

strategy and planning stages.  

Second study tested and compared position accuracy based on multi-trilateration 

from combined 3 and 4 routers.   

Third study investigated for navigation heading using a combination of smartphone 

IMU modalities that includes accelerometer, magnetometer and gyroscopes.  



212 

 

Fourth study tried out horizontal and vertical orientations of the smartphone to 

prove smartphone orientation best for our system is horizontal orientation.   

Fifth study assesses relative pose accuracy of our proposed odometry model, which 

includes our new drift mitigation model and results in the fourth study, which is the 

combination of accelerometer and magnetometer for navigation heading. These 

stages are further expatiated on below.  

 Second Study - Position Accuracy Based on Multi-Trilateration  

This stage follows recommendations from the pilot test phase by experimenting in 

A1 and A3 conditions. We compared position results from testing two -router 

configuration including config 1 for three routers and config 2 for four routers. The 

purpose is to prove 4 routers combined is better than 3 routers combined when 

finding position accuracy based on multi-trilateration.  

Config 1 – Three Routers  

In our test room, three known routers AP2, AP3 and AP4 from Figure 6-4 are 

selected. This is important because it is an appropriate representation of the SOTA. 

We then proceeded to collect Wi-Fi data from RP1 – RP8 in a stationary state. The 

collected data was sent to the offline phase for multi-trilateration implementation.  

We carried out at least 50 iterations at each reference point (RP) using a sampling 

rate of 1.5 seconds. In particular reference point 1 (RP1), because it did not have a 

close router within its range. Also, it served as best position comparable to that of 

four routers.   

 

 

Results and Analysis of Config 1 – Three Routers 



213 

 

We considered the minimum, average and maximum values of the 50 iterations in 

our multi-trilateration calculations. It was our observation that the minimum values 

provided the best results.  

 

Table 6-6 Comparison table comparing true position to estimated relative position using 
three routers at RP1 

 

The position outcome at RP1 using three routers is [-2, -33.72] at x and y coordinates 

as indicated in Table 6-5. Taking into account the ground truth of RP1 position, we 

calculated a position error is 9m using Euclidean distance between ground truth 

and estimated position. This result was similar when we conducted the same tests 

in the other 7 reference points.  

 

Figure 6-5 Graphical illustration showing deviation of estimated position from the true 
position in the test room with three routers/APs  

It is our belief that this significant error occurred because signal data was 

insufficient. This was due to unavailability of close enough routers to correct the 
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other signals.  Although we ensured room 2 was in LOS condition, we speculate that 

the signal loss of routers AP2 and AP3 negatively influenced our results. Therefore, 

it is our observation that the errors are because of LOS between routers AP2 and 

AP3, and the smartphone fall within the instance A2 (weak signal + noise presence) 

at when collecting reading at RP1.  

Config 2 – Four Routers  

In our test room, we used four known routers AP1, AP2, AP3 and AP4 from Figure 

6-4 for our set up. This is important because it validates how 4 router  combination 

is best for our system. Similar to config 1, we conducted at least 50 iterations at 1.5 

seconds and collected Wi-Fi data from RP1 – RP8 in a stationary state.  

All collected data was sent to the offline phase for multi-trilateration 

implementation in Matlab (see section 5.1.1.3 in chapter 5).   

When running the collected RSSI data through the multi-trilateration processes in 

Matlab, we tested the following for all samples from the 50 iterations per reference 

point: average, maximum values and minimum values.  

Results and Analysis of Config 2 – Four Routers  

First, we tested with the average, which resulted in a position error o f 16.5m. Then, 

we tested with maximum values; this resulted in an error of 50.3m. Finally, we 

tested with minimum values, whose outcome was 0.5228m. These are shown in 

Table 6-7. 

 

Table 6-7 Comparison table for RSSI min, average and max outcomes 
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Both average and maximum outcomes performed very poorly and therefore not 

suitable for our system. It is our recommendation that the average of the recurring 

minimum RSSI values be considered as its results have fewer errors. 

 

Table 6-8 Comparison table comparing true position to estimated relative position using four 
routers at RP1 

 

Position accuracy result using minimum RSSI values from four routers is [1, -3] at 

𝑥, 𝑦 coordinates as indicated in Table 6-8. Taking into account the true RP position, 

we calculated a position error of 0.5228m with respect to the Euclidean distance 

between true position and estimated position.  

 

Figure 6-6 Graphical illustration showing deviation of estimated position from the true 
position in the test room with four routers/APs 
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This test proved our expectations to be true because four routers outperformed 

three routers in the same test environment shown in Figure 6-4.  

Comparing our outcome from four routers to that of three routers, it is our 

observation that at RP1, AP1 which falls within A1 (strong – noise) and it 

compensated for the lost signals from AP2, AP3 and AP4 which falls within A3 

(strong signal in noisy environment) instance based on results from the first study.  

When compared to three-router configuration, our suggested four-router 

combination is best for our system because it ensured better position outcomes 

with Wi-Fi.  

 Fourth Study - Smartphone Orientation   

At this stage, we test to find the best orientation of the smartphone used in our 

experiments. This is important to our system because we want to design a practical 

system for the users. We considered two orientations including horizontal and 

vertical.  

In horizontal orientation, we tested the smartphone orientation on two parts of the 

mobility scooter this included – the arm and the floor of the mobility scooter. It was 

expected that the arm would perform better because of its practicality.  

In vertical orientation, the smartphone was held perpendicular to the ground with 

the screen directly facing the user. This was expected to perform poorly because of 

its impracticality.  

Results and analysis of Fourth Study - Smartphone Orientation 

In vertical orientation, with the smartphone in the user’s hand, we observed that it 

was impractical and dangerous for the user to efficiently and successfully drive the 
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mobility scooter with just one hand. This is important because the safety of the user 

is critical, and, the uncontrollable jerking of the user’s hand will negatively influence 

our results when calculating navigation heading in  below.   

In horizontal orientation, the arm and the floor of the mobility scooter were tested.    

For the arm, the smartphone was placed on the arm of the mobility scooter in a 

horizontal orientation. This presented a much safer option when compared to 

holding the smartphone while driving. It was observed to play a critical role in 

supporting the calculation of navigation heading in . In particular, the padding on 

the arm cushioned vibrations experienced by the mobility scooter as it travelled 

across reference points.  

For the floor, the smartphone was placed on the floor of the mobility scooter in the 

horizontal orientation.  This presented itself to be an impractical and uncomfortable 

solution because the smartphone rested between the user’s feet and will require the 

user to fully turn their head downwards to view smartphone screen when in motion. 

Also, the floor position was observed to have high errors because of the negative 

influences on the sensors, this was caused by user’s voluntary and involuntary foot 

movements and vibrations from the mobility scooter in motion.  

It is our recommendation that we place the smartphone on the arm of the mobility 

scooter when carrying out further experiments, especially navigation heading in the 

third study.  

 Third Study – Navigation Heading  

At this stage, we place the smartphone on the arm of our mobility scooter while we 

evaluated our proposed combination of accelerometer and magnetometer sensors. 

We compared our proposed combination with the SOTA recommendation of 

combin00ing accelerometer, gyroscope and magnetometer sensors. This was 

important because we are calculating for navigation heading of a smartphone 

placed on the mobility scooter travelling on a smooth wooden floor.  
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We already expect that accelerometer only, magnetometer only and gyroscope only 

will be insufficient for heading navigation. This is because of the following –  

 Accelerometer only calculates for acceleration and rotation of the phone  

 Gyroscope only calculates for rotation of the phone  

 Magnetometer only calculates for direction  

During our experiment, the smartphone was placed in horizontal orientation on the 

handle of the mobility scooter with its screen facing upwards. This is important 

because it was the most practical position to place the phone in real life situations.  

We experimented for noise analysis of each IMU sensor using our android 

application discussed in 5.1.1.1. The application measured sensor values form the 

Samsung Galaxy note 1 inbuilt IMU sensors (accelerometer, gyroscope and 

magnetometer) every 30ms for exactly four minutes in stationary and moving 

instances. 

In stationary instance, we collected over 4000 datasets from one iteration with the 

mobility scooter staying in just one RP over a period of four minutes. It should be 

known that at least 50 iterations were carried out at each RP.  

In moving instance, we collected over 5000 datasets from one iteration with the 

mobility scooter moving from one RP to another over a period of four minutes. 

Similar to stationary instance, at least 50 iterations were carried out for each travel 

between RPs. 

Results and analysis of the Third study – Navigation Heading 

This was important to analyse data noise from each IMU sensor in stationary and 

moving instances. Also, it was critical we compare outcomes from combining all 

three IMU sensors with our proposed magnetometer and accelerometer 

combination for heading navigation.  
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Stationary Instance for Each IMU Sensor 

As expected, IMU sensors are quite accurate when in a stationary instance. The 

magnetometer measures values related directly to the orientation of the 

smartphone, but the accelerometer and gyroscope do not receive input. However, 

the z-axis of the accelerometer is influenced because of its gravity component. This 

is a response to its inertial frame as indicated in the representative graph Figure 

6-7. 

 

Figure 6-7 Accelerometer measurements indicating inactivity when SP is stationary 

Moving Instance for Magnetometer, Accelerometer and 

Gyroscope  

In this test, the mobility scooter travelled 1.98m from RP1 to RP8. We evaluated 

results from magnetometer, gyroscope and accelerometer  sensors. Magnetometer 

only was not considered in the experiments because it is expected it will analyse 

reference direction towards gravity. However, it was our observations that data 

values from the gyroscope and accelerometer sensors contained too much noise.  

Gyroscope Only 
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Gyroscopes are known to suffer from drift (see chapter 2); therefore, we tested the 

system with drift eliminated gyroscope outputs in Figure 6-8. The results show how 

SP rotates about its axis but does not provide enough information to determine 

heading direction. Instead, the results are observed to be unsatisfactory as they 

exhibited an output frequency spectrum with significantly increased amplitudes 

and noise.  

 

Figure 6-8 gyroscope (G) and drift eliminated gyroscope (GD) output frequency spectrum 
with high amplitude and noise 

 

 

Accelerometer Only 

Accelerometer sensors only are expected to show cyclical changes in pedestrians as 

true peaks are used in SOTA calculations. However, our experiments showed a 

frequency spectrum with multiple high amplitudes and noisy vibrations 

smartphones experienced during moving instance. Although this outcome was 

unsatisfactory, we were able to observe that it identified the axis the smartphone 

was orientated towards.   
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Figure 6-9 Accelerometer output frequency spectrum with high amplitude and noise 

 

Therefore, it is our proposal that the advantage of accelerometer in identifying 

smartphone orientation be combined with the advantage of magnetometer in 

measuring direction.  

Combining Accelerometer with Magnetometer 

Accelerometer identifies the orientation of SP in relation to SP frame and 

magnetometer provides orientation in relation to earth magnetic fields. The 

combination of both sensors aligns the behaviour of SP on the mobility scooter as it 

travels in different directions in relation to the earth’s magnetic field. Results of our 

experiments are promising as it shows 95% accuracy with 5% error caused by 

vibrations influencing SP orientation. The results show electromagnetic influences 

on the Y-axis of SP (indicated as AMY) as the mobility scooter at 90°.  
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Figure 6-10 Frequency spectrum of  fused accelerometer and magnetometer sensors 
demonstrating travel over time 

 

The frequency spectrum of our fusion (demonstrated in Figure 6-10) is more 

favourable when compared to output from accelerometer only or gyroscope only in 

Figure 6-9 and Figure 6-8 respectively. It is our observation that the proposed 

combination of accelerometer with magnetometer drastically reduced noise and 

amplitude levels experienced in accelerometer. Thereby producing more accurate 

heading information of our SP mounted horizontally on a mobility scooter travelling 

at 90°. 

We compared the SOTA combination of all IMU sensors with our proposed 

combination of accelerometer with magnetometer only in our test environment. 

Although we expect that the SOTA integration with gyroscope sensor value will not 

favour our system, we still tried it out to result in Figure 6-11. 
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Figure 6-11 Sensor fusion outcome on x and y-axis of the smartphone (SP) 

 

The results from the combination of all IMU sensor value are indicated as SFX and 

SFY in our experiments. It is our observation that the output datasets are  

impracticable as they exhibit hypersensitivity of the system. This hypersensitivity 

induces errors and therefore, is not best for our system.  

Compared to SFY, GDY, AY and GY, our proposed AMY performed better because it 

exhibited significantly reduced amplitudes and noise in the frequency wavelengths. 

This is important because it provided more accuracy heading values. This is shown 

in the comparison displays Figure 6-12.  

 

Figure 6-12 Accelerometer and magnetometer combination (AMY) is best for deriving 
heading direction in our system 
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 Fifth Study - Relative Pose Accuracy  

Two wheel encoders are designed and installed on both wheels of the mobility 

scooter. Our test begins with the mobility scooter at an initial position set as [0, 0] 

at the 𝑥 and 𝑦 corner of the room. We then proceeded to calculate for travel 

distances using the tick counts of both wheels as they rotated past both wheel 

encoders when the mobility scooter travelled from the corner of the room in a 

straight line to reference points.  

In our test, the measured diameter of the wheels is 60cm, which is equivalent to one 

complete rotation when a tick is read by the wheel encoder sensors.  

In this study, we tested four situations – 

 Calculating travelled distance from the wheel encoders  

 Calculating relative pose from SOTA using two wheel encoders 

 Improving travelled distance of SOTA using our proposed new drift 

mitigation model  

 Using our novel odometry model to get improved relative pose accuracy 

The above test situations are grouped as APA centred test and APA main test, where,   

APA centred test centred tests on travelled distances from the wheel encoders and 

implementation of relative pose computation from literature.  

APA main test focused on trials using our proposed new drift mitigation model and 

novel odometry model. This was important to improve travelled distance and 

relative pose accuracy.   
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APA Centred Test – Travelled Distance and Relative Pose 

According to Literature   

We carried out at least 50 iterations of the mobility scooter travelling between each 

reference points (RP) and from the start point to end point using a sampling rate of 

30ms. At the start point, the travelled distance was set to be 0 cm. Travelled distance 

is observed to be accurate when mobility scooter travels in a straight line for a short 

period of time. However, drift sets in when mobility scooter starts to travel for 

longer periods of time.  

It was our observation that error set in when the mobility scooter moved from the 

start point and increased steadily as the mobility scooter travelled across the 

smooth wooden tiled floor to the endpoint.  

Results and analysis of Fifth study - APA centred test 

We considered the reoccurring minimum and maximum distance estimates and 

observed that for a total travelled distance of 10.07m, there was a 2.87m error with 

7.2m as its minimum distance travelled and an error of 1.07m with 9m maximum 

distance travelled. These are shown in Table 6-9 

 

Table 6-9 minimum and maximum travelled distance from the start point to endpoint 
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We observed consistency in the values for min and max distance travelled estimates.  

When all travelled distance outcomes including min and max values were used in 

Equation 1, Equation 2 and Equation 3 from literature, to calculate the relative pose 

of the mobility scooter, there was high position inaccuracy. This was due to the 

steady growing drift.  

As expected, we observed that the system demonstrated a moving average drift of 

19% percentage error when considering lower estimated travel distance values 

from the start point, 6.32% percentage error when considering higher estimated 

travel distance values from start point and 12.8% percentage error when 

considering the average of estimated travel distance values from the start point. 

This is shown in Table 6-10 

 

Table 6-10 Comparing percentage error of drift for travelled distance considering the 
minimum, maximum and average values 

 

The moving average of the maximum percentage error is significantly lower than 

that of the minimum percentage error and average percentage error.  

This shows that maximum values perform best and will be best appropriate in our 

proposed new drift mitigation model and novel odometry model.  
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APA Main Test – Our Proposed New Drift Mitigation Model  

We tested out our proposed new drift mitigation model and novel odometer model 

using outcomes for maximum reoccurring values. Our designed simple drift 

mitigation model in Equation 19 is applied. In our test, we measured a distance eDx 

by driving the mobility scooter from one reference point to another. This was 

important to get the new estimated travelled distance.   

Then, we added the new estimated travelled distance to our maximum percentage 

error Errx%. This was important to produce improved distance estimates DistR.    

Results and analysis of APA main test – our proposed new drift 

mitigation model 

The results from using the new drift mitigation model displayed a 5% maximum 

improvement in the drift with the observation that in a travelled distance of 10.07m, 

the new estimates from minimum is 7.49m and 9.1m from the maximum. These are 

displayed in Table 6-11. 

 

Table 6-11 Results showing improved travelled distance using our drift mitigation model for  
minimum, maximum and average travelled distance estimates 

 

We detected that our new drift model presented more accurate result close to actual 

distance when maximum values were considered. This was essential in providing a 
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controlled robust model, which effectively improves the system through drift 

mitigation, and estimates better travelled distances, especially in instances where 

distances travelled are larger. 

APA Main Test – Novel Odometry Model    

We tested for improved relative pose accuracy of the mobility scooter using our 

proposed novel odometry model, which included the combination of maximum 

travelled distance from our proposed drift mitigation model on wheel encoder 

outputs with results from our proposed combined accelerometer and 

magnetometer sensors of the smartphone. This is achieved using Equation 

21Equation 22.  

This is important for the following - 

 For new drift mitigation model to get initial and subsequent distances closer 

to ground truth for the mobility scooter 

 For proposed combined accelerometer and magnetometer outputs (AMY) to 

provide orientation and navigation heading for smartphone and mobility 

scooter. 

When we tested, we observed that navigation heading results from the combined 

accelerometer and magnetometer outputs contained a small amount of noise. We 

considered applying moving average filter using Matlab default of 2 spans, and our 

suggestion of 20 and 50 spans. 
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Results and Analysis of APA Main Test – Novel Odometry 

Model    

 

Figure 6-13 FWHM applied to AMY frequency spectrum identifying acceleration, change and 
deceleration 

 

Matlab 2 span and 20 spans were unsuitable for our test because it displayed 

multiple peaks which make the frequency spectrum difficult to use by FWHM as 

shown in Figure 6-13.   

We chose to reduce the noise by smoothening the frequency spectrum by 50 spans 

moving average filter. This was selected because it retained the resolution of the 

system while averaging every 50 samples to result in 50% noise and amplitude 

reduction. This provided better results for FWHM to work with as demonstrated in 

Figure 6-13. 

FWHM is important because it synchronises new maximum travelled distance 

estimates  DistR with AMY to enable the system to identify acceleration, change and 

deceleration of the heading navigation over a new travelled distance  DistR.  
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Then we calculated for relative pose using our proposed novel odometry model 

which combines  DistR and AMY. 

 

Figure 6-14 Relative pose accuracy using our proposed novel odometry model 

 

We observed that the high sampling rates of AMY corrected our heading navigation 

error by resetting the system to read from a new position for 30ms only. Each 

sample session is completed before commencing with a new session. 

The result of applying our proposed novel odometry model is a cumulative error of 

4% between reference points. Compared to literature by J. Zolghadr and Y. Cai [176] 

that results 33cm and 51cm pose error, our tests demonstrate an average error of 

9cm which is an improved relative pose. 

 Comprehensive Study - System Assessment Of Methodology 

(Proposed WTP- HAMS System) 

We proposed to combine the results and error shapes based on results from config 

2 – four routers in the first study with results from APA main test – novel odometry 

model in the fifth study. 

Here, we tested the whole system using 50 iterations between each reference 

points. In a live environment, we placed the smartphone on the arm of the mobility 

scooter and travelled between the reference points. The smartphone collected and 
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consolidated data gotten from smartphone modalities including accelerometer and 

magnetometer, Wi-Fi and two wheel encoders. These are done in an online phase, 

discussed in section 5.1.1.1. 

The system proceeds to implement the following considerations and results from 

the previous five studies when conducting the comprehensive study.   

 First study – LOS in A1 (strong signal - noise) and A3 (strong signal in a noisy 

environment) instances  

 Second study – config 2 (four routers) for better absolute position 

 Third study –AMY for navigation heading  

 Fourth study – horizontal orientation  

 Fifth study – proposed novel odometry model for improved relative pose 

accuracy 

All the collected data and calculations are done in Matlab during the offline phase 

discussed in section 5.1.1.3. 

The system assessment includes the combination of all the stages, especially the 

combination of the error shapes from second and fifth studies. The second study uses 

config 2 (four routers) to cast a circular error shape and the fifth study uses the 

proposed novel odometry model to result in a triangular error shape in our 

experiments. We used Matlab to calculate the centroid of the error overlap, which 

is the new absolute position (see Figure 6-15). 

Results and Analysis of Comprehensive Study 

The result from our proposed WTP-HAMS system in room 2 is a new and improved 

absolute position of 1.35 at x and -2 at y with an average error range of 0.35m – 

1.35m (illustrated in Figure 6-15). 
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Figure 6-15 Proposed WTP-HAMS system showing improved localisation for the mobility 
scooter with a mounted smartphone in horizontal orientation with LOS in room 2 

 

Table 6-12 Descriptive table for Figure 6-15 
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Using on our comprehensive study, we compared the results of WTP-HAMS system 

to the results in our second - fifth studies as shown in Table 6-13.   

 

Table 6-13 Results of all proposed studies to achieve improved position accuracy using our 
proposed WTP-HAMS system 

 

In the instance of LOS in room 2, our proposed WTP-HAMS system performs better 

than the other five studies. This is because it results in position estimation closest 

to the ground truth.  

Comparing Results of Comprehensive Study with Second Study 

Only 

We observed that our WTP-HAMS system improved the results of the second study 

by about 96.2%.  Comparing results from our proposed WTP-HAMS system to the 

second study, we calculated an error range of 0.35m -1.35m in our comprehensive 

study using our proposed WTP-HAMS system, while for the second study we 

calculated an error of 9m using config 1 of three routers and an error of 0.5228m 

error using config 2. As expected, config 2 outperformed config 1. This is because 
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config 2 has a sufficient number of routers to mitigate errors caused by signal loss, 

noise or poor propagation. 

Although results from config 2 outperform config 1, it is still limited in its LOS 

instances of A1 (strong signal - noise) and A3 (strong signal in a noisy environment). 

Therefore, it can have bigger errors if applied in environments in A2 (weak signal + 

noise presence) and A4 (strong noise) instance.  

Considering the best error result 0.35m of our proposed WTP-HAMS system, we 

calculated an error difference of 8.65m using config 1 and 0.1728m using config 2.  

Considering the worst error result 1.35m of our proposed WTP-HAMS system, we 

calculated an error difference of 7.65m using config 1 and 0.8275m using config 2.  

Analysing the error differences between the best and worst error results it is our 

recommendation that four routers combination is best. 

Comparing Results of Comprehensive Study with Fifth Study 

Only 

As previously discussed, the fifth study combines results from third and fourth 

studies to result in a 4% error when in motion state and APA main test – novel 

odometry model is used.  

The error in the fifth study is smaller than that from the second study.  It is observed 

to demonstrate more accurate results because of the 95% accuracy of heading 

navigation that proposed the combination of accelerometer and magnetometer, and 

also, the 9.20% error simple drift mitigation model we proposed mitigates for every 

10.07m travelled.  

As expected our proposed novel odometry model with 4% error outperformed 

SOTA whose error was 33cm – 51cm. We suspect referenced literature work had 

small error because they experimented in areas with small dimensions.   
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The result from our proposed novel odometry model in the fifth study is very 

promising and it is used to correct the results from config 2 in the second study. This 

correction happens when results including error shapes of both second and fifth 

studies overlap in our proposed system.   

Our proposed WTP-HAMS system has an error range if 0.35m – 1.35m, which from 

our observations is better than the 4% error the proposed novel odometry model 

results. Analysing the results from the proposed novel odometry model, we 

calculated the WTP-HAMS system’s improvement on it by 25%.   

6.7.3. Summary of Comprehensive Study Findings 

In conclusion, position results from the second study only and fifth study only do not 

provide high accuracy when compared the results from our comprehensive study 

(our proposed WTP-HAMS system). Our proposed WTP-HAMS system 

outperformed the second and fifth studies in position accuracy.  

We observed that our WTP-HAMS system not only provided better position 

accuracy, it also improved results of the second study by about 96.2% and, also 

improved results of the fifth study by about 25% (as shown in Table 6-14).  

 

Table 6-14 WTP-HAMS system improvement on RSSI and odometry 
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6.7.4. Overall Results and Analysis 

We assessed the methodology of our WTP-HAMS system and validated its feasibility 

in live environments.  

Comparing our results to that of representative literature (shown in Table 6-15), it 

is evident that our system performs better.  

 

Table 6-15 Comparing WTP-HAMS to literature works 
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For our system to perform effectively and result in a low position error of 0.35m – 

1.35m, it must adhere to the descriptions shown in Table 6-15 above. In particular,  

 The combination of four routers in LOS instance under conditions A1 (strong 

signal - noise) and A3 (strong signal in a noisy environment). This is important 

to get good position estimates with an error of 0.5228m. 

 The combination of accelerometer and magnetometer outputs of a smartphone 

in a horizontal orientation. This provided a high heading navigation accuracy of 

95%. 

 Proposed simple new drift mitigation model, which improved drift in distance 

by 5% when error percentage Errx% is added to raw travelled distance 

estimates. In our case, we added maximum Errx% to result DistR . 

 Proposed novel odometry model, which combined  DistR with the outcome from 

heading navigation to result in a 4% position error. 

 

  



238 

 

Chapter 7 Conclusion and Future Work 

The chapter summaries our proposed investigations. In particular, our proposed 

novel WTP-HAMS system, which combines techniques from literature with 

proposed novel techniques to improve indoor position accuracy in representative 

environments used in care homes. It highlights improvements to standard 

techniques with details on the investigational test and corresponding results. This 

chapter presents the conclusion and feasible future research directions. Contained 

in this chapter a summary of the content of each chapter, briefly describing the novel 

contributions. Furthermore, this chapter outlines the deductions made from 

obtained results, justifying experimentations conducted. Finally, it expresses views 

on further work and future direction of this research.   

7.1. Thesis Summary 

Efficient, cost-effective and accurate indoor localisation is an area of high demand. 

Some of the key motivations and fundamental to its development are health care, 

security, navigation and assisted living for elderly persons and persons with 

mobility impairment who use mobility scooters. The research in this thesis aspires 

to target these motivations by exploiting ubiquitous technology, improving current 

methodologies in RSSI and odometry based localisation, and combining both 

improved methodologies. The goal is to provide a convenient and scalable approach 

to indoor localisation. Chapter 1 concisely defines the problem domain, which 

supports the research drive to enhance the current state of the indoor localisation, 

facilitating the combination of technologies – Wi-Fi, wheel encoders and 

accelerometer and magnetometer to improve position accuracy error.   

Chapter 2 provides background knowledge to on localisation as it discusses current 

technologies, techniques and methods adopted for localisation purposes. It 

described the categorisation of localisation, their objectives and propagation 

methods. This chapter discusses communication protocols as it introduces indoor 

localisation and various filtration algorithms and models adopted for the  research. 
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The chapter discusses the technologies and techniques used for this research. The 

chapter defines the terminologies used throughout the thesis  

Chapter 3 expands on the indoor localisation. It emphasises on the current state of 

the art for indoor localisation, describing emerging architectures, complementary 

technologies and protocols relating to sensor combination for indoor localisation. It 

explains the challenges faced when identifying tracked objects to precision. The gap 

in catering to the target audience is demonstrated in the chapter. It demonstrates 

how state of the art implement methods, technologies and techniques discussed in 

chapter 2 to achieve indoor localisation. The chapter presents original 

categorisations as it analyses the most recent relevant state-of-the-art systems, 

methodologies and techniques that exhibit high localisation accuracy results. It goes 

on to define indoor localisation challenges within each category and also identify 

the advantages of the new category. This chapter discusses the most relevant 

technologies and techniques used for this research.     

Chapter 4 presents a comprehensive description of our methodology, which is a 

proposed novel TT based hybrid localisation solution, WTP-HAMS system designed 

for this research. The emphasis is on the accuracy, cost-effectiveness, scalability and 

robustness of indoor localisation. The chapter commences by outlining the 

objectives of the WTP-HAMS and its technology requirements in terms of power 

usage, measurement properties and data transmission. It goes on to discuss the 

hardware and software components necessary for realising the object of this 

research. The drive for cost-effectiveness encouraged the exploration of ubiquitous 

technologies. The necessity for accuracy, scalability and robustness encouraged a 

novel system involving an innovative combination of existing techniques with one 

original model and one original technique. Existing techniques include SDRS path -

loss shadowing model, triangulation, accelerometer and magnetometer fusion 

model, odometry. The existing techniques determine relative distances, positions 

and direction while the original model is the drift mitigation model to improve 

relative travelled distance and the original technique is the combination of 

accelerometer and magnetometer fusion model, and odometry to improve pose 
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with relative position. Therefore, this chapter proposed a new drift mitigation 

model, a novel odometry model and a unique system that combines RSSI outputs 

with the estimates from the proposed novel odometer model to get new position 

estimates. These are thoroughly described with equations and diagrams. It then 

summaries our unique contribution to knowledge. Finally, the design of our 

research development plan.  

Chapter 5 explains the implementation of techniques and methods described in 

chapters 2 and 3 as it is used in developing the novel WTP-HAMS that is discussed 

in chapter 4. This chapter expatiates on WTP-HAMS system as it discussed the 

combination of techniques in the system architecture and conceptual flow. This is 

thoroughly defined with the use of flow charts justifying the use of certain 

techniques and models based on the overall system performance. It explains the 

system behaviour and development process with respect to technologies used. In 

particular, Wi-Fi, wheel encoders, accelerometer and magnetometer. It includes the 

designing and development of the implemented mathematical models need to 

achieve estimated relative position using RSSI, pose estimation with relative 

position using odometry and improved estimated absolute position. All supported 

features of WTP-HAMS are described in this chapter with respect to functionalities, 

modes of operation and expected outcomes at online and offline phases. 

Chapter 6 presents an in-depth description of studies conducted to achieve the 

overall aim of the research, which is a reduced position accuracy error. The chapter 

analysis the purposed system, WTP-HAMS as it is examined in two test 

environments – small-congested room and medium sized room. In particular, it 

discusses focused and comprehensive studies, which were important in identifying 

the right conditions required for our proposed WTP-HAMS system to achieve its 

improved position accuracy. It evaluates and analyses the outcomes of each study, 

especially in the two test environments. Also, limitations of the SOTA is tested and 

mitigation models are proposed to address the limitations. These include,  

 Position errors larger for 3 routers as opposed the 4 routers.  
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 Proposed new drift mitigation model to produce better-travelled distance 

estimates   

 Proposed novel odometry model to produce better pose estimates, as 

opposed to traditional odometry model 

 Unique error combination that considers the centroid of error overlap from 

position estimate from RSSI and Proposed novel odometry model to be the 

new position  

The chapter then makes another assessment that justifies WTP-HAMS system.  This 

is the trails of the proposed system in room 2 with expected outcomes. Finally, the 

chapter analyses each study as it discusses and compares the position improvement 

of our proposed investigation to the state of the art. This is important because, the 

objective for proposing WTP-HAMS system is to achieve a cost-effective, accurate 

positioning system that consumes low power due to its lightweight computation 

process. Furthermore, the proposed WTP-HAMS system demonstrates how 

odometer can improve RSSI positioning estimate.    

7.2. Outcomes  

WTP-HAMS is a cost-effective novel system that exploits a combination of 

ubiquitous technologies including four Wi-Fi routers/APs, two wheel encoders 

mounted on the two rare wheels of a mobility scooter and smartphone modalities 

such as accelerometer and magnetometer to reduce position get improved position 

accuracy in a room.  

Wi-Fi is advantageous due to its capability of providing position estimates with 

reference to room. This research combines four Wi-Fi routers/APs instead of three 

Wi-Fi routers/APs because it gives better position estimates with smaller error 

radiuses. Although the combination of four routers/APs estimates favourable 

positioning information, its outcome was insufficient because of its high position 

errors caused by signal shadowing effects and NLOS respectively. Signal shadowing 

effect is mitigated in the SDRS log-normal shadowing model [64] and NLOS is better 
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managed with the good placement of the smartphone in clear visibility from the 

router. Still, Wi-Fi is insufficient; therefore, complementary technologies including 

two wheel encoders, and, fused accelerometer and magnetometer technologies are 

employed to improve position accuracy.  

The ubiquity of Wi-Fi, accelerometer and wheel encoders has encouraged 

researchers to exploit the technologies for indoor localisation purposes. These 

technologies are popular in localising target objects within a building. Although Wi-

Fi is popular, state of the art exploration of the technology demonstrates the 

limitations in Chapters 2 and 3. These limitations stem from Wi-Fi high sensitivity 

to interferences. Discussed in chapter 3, are studies aiming to mitigate Wi-Fi 

sensitivity by introducing additional filtration and predictive elements that require 

complex computations. Unlike the state of the art that employs Kalman filtering on 

estimated positions derived by triangulating estimated distances of three routers to 

achieve 2m – 3m error, our proposed WTPHAMS system employs multi-

trilateration of four routers to get accuracy error of 0.5228m, which is better SOTA 

as shown in Table 7-1. 
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Table 7-1 In-depth comparison of the SOTA to our proposed WTP-HAMS system 
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The outcome shown in Table 7-1 is discussed and demonstrated in Chapter 6. When 

compared to the state of the art, Chapter 6 shows the adaptation of multi-

trilateration is best for our proposed system WTP-HAMS. This is because it uses 

fewer filtration elements on Wi-Fi and short latency of less than 1 second to perform 

its calculations.  

The accelerometer is another popular technology investigated for indoor 

localisation. Chapter 3 displays how accelerometers play major roles in localising 

pedestrians and monitoring vibrations majorly. This is corroborated in chapter 6 

where accelerometer only output proved insufficient for localising a mobility 

scooter travelling in translational motion on a smooth surface. This did not deter 

the research; instead, it encouraged the repurposing of the accelerometer for 

determining the orientation of the smartphone in chapters 4-6. Especially when 

combined with direction form magnetometer. Development is taken a step further 

in chapters 4-5 where accelerometers are combined with a magnetometer to 

achieve navigational information in chapter 6.   

Wheel encoders are popularly used in robotics for localising robots through 

odometry.  This is discussed in chapters 2-3 as it shows the benefits of wheel 

encoders in building robot control systems. Drift is a constant occurrence with 

wheel encoders and studies have attempted mitigating this using complex 

mathematical prediction models such as extended Kalman filter. The proposed 

investigations use wheel encoders to get travelled distances. Unlike the prediction 

model needed in robotics, the proposed system does not need to predict the next 

position of the mobility scooter because it is manually controlled by the user and 

users are unpredictable. However, drift is still experienced in the distance travelled 

and the direction of travel. Our proposed WTP-HAMS system mitigates for distance-

travelled drift by proposing and implementing a new drift mitigation model that 

improved the outcome of travelled distance by about 9%.  

The heading was calculated from the distance-travelled as demonstrated in 

chapters 2 and 6.  However, its results were riddled with a systematic drift caused 
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by accumulated travelled distance errors affecting heading. It showed an 

exponential relative heading error increase as the mobility scooter travelled over 

distance. Therefore, we proposed to replace the heading estimates from the 

travelled distance, with, combined accelerometer and magnetometer sensors. This 

is because combined accelerometer and magnetometer sensors of the smartphone, 

give better navigation heading estimates. This navigation heading was then 

combined with the distance travelled in a proposed novel odometry model to result 

in improved pose estimates of the mobility scooter with an average error of 9cm, 

which is better than results shown in SOTA Table 7-1. This is achievable because of 

the high sampling rate of the data from combined accelerometer and magnetometer 

sensors. In particular, it reduced the possibility of relative growing error, thus, 

providing improved heading error. The outcome demonstrates our proposed 

system better controls drift and provide good accuracy when the following 

necessary factors exist: 

 Environmental factors such as wooden floor tiles that reduce the probability of 

slippage and tips. 

 Infrastructural conditions such as thread free anti-tip tyres of the mobility 

scooter buffer the inconsistencies mobility scooter might feel when in motion 

 Computational factors in Equation 21 and Equation 22 that combine estimates 

of improved distance travelled with fused accelerometer and magnetometer 

outputs to provide better pose estimates.  

These are discussed in chapters 4-6. 

The proposed WTP-HAMS system is thoroughly studied, assessed and validated in 

chapter 6. This is because it combines the improved outcomes of Wi-Fi, wheel 

encoders, accelerometer and magnetometer sensors to produce improved absolute 

position estimates with reduced errors. Analyses of the outcomes show 

commendable improvements of an error range of 0.35m – 1.35m when compared 

to state of the art shown in Table 7-1. This improvement is achieved through the 

exploitation of error shapes exhibited by the outcomes. The error shape of RSSI 

constrains the error from odometry from going beyond the error boundaries. While 
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the combination of errors show how odometry improves RSSI based localisation.  

These are discussed and demonstrated in chapter 6. 

The proposed WTP-HAMS system will be valuable when localising mobility scooters 

users in commercial buildings like care homes with the recommend wooden tiled 

floors and four Wi-Fi routers that can be assessable for users who use smartphones. 

Although the application seems very specific, it is possible that the system can be 

used in other health care environments. These are discussed in chapters 1 and 2.  

7.3. Lessons Learned 

The assessments of the aforementioned studies implemented for validating our 

proposed WTP-HAMS system enabled us to closely observe and evaluate all 

deployed technologies in our representative test environments. All though studies 

did not cover everything pertaining to the technologies, it focused on their key 

advantages to our system. Therefore, based on the analysis of our results and the 

experience gained from the studies, we can safely draw some conclusions. These 

conclusions are grouped into   

 Personal lessons 

 Technical lessons 

 

7.3.1. Technical Lessons  

Indoor Localisation Challenges Still Persists  

Despite continuous investigations in this area, indoor localisation challenge 

persists. Our investigations show that in indoor environments, there is no 

technology or combination of technologies that have successfully recreated the 

outdoor GPS experience of 95% confidence and 3m accuracy.  
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Although our system WTP-HAMS resulted with an error range of 0.35m – 1.35m, it 

should be known that result is from areas with specific parameters including 4 

routers, 2 wheel encoders on a mobility scooter moving in translational motion on 

a straight path, a smartphone with accelerometer and magnetometer sensors, and 

an uncluttered medium sized room with smooth wooden tiled floors.  

Our WTP-HAMS system achievement of 0.35m -1.35m range error is a subset of 

existing localisation solutions that offer 1.5m -3.1m accuracy. Although we believe 

our error range is sufficient for localising a 2ft 31 inches long mobility scooter in a 

medium sized room, our achievement is a step closer to realising the ideal indoor 

localisation vision, which is no error with a high confidence level.  

We see that employed technologies in our proposed WTP-HAMS system do not 

provide the same localisation error even though reading and testing is don e at the 

same point. Significant accuracy variations from each employed technology raise 

concerns about the error consistency of our system.  

Error Is Not Always Bad  

In our findings, we have discovered that error is not always bad. From our studies, 

outcomes especially the errors from second and fifth studies were critical in 

achieving our overall objective of the research, which is, proposing and designing 

our WTP-HAMS system to improve indoor position accuracy.  

We identified that error can be an advantage, especially in our instance where the 

error shapes the employed technologies or techniques cast are very different. Our 

realisation of the clear and constant distinction between the error shape of the 

second study and that of the fifth study made our testing the more provoking. 

Specifically, the second study error shape is circular and the fifth study error shape 

is triangular. The difference in the shapes made it so much easier to calculate the 

centroid (new position) when both error shapes overlap.  
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We have learnt that dependent on the system and the type of error shapes it casts, 

errors can be an advantage. 

Better Accuracy from Individual Technologies Equals 

Improved Localisation Accuracy 

We observed the more accurate study, which is fifth study (proposed odometry 

model combining results from wheel encoders and fused accelerometer and 

magnetometer sensor outputs) significantly improved the results of the less 

accurate study, which is the second study (position estimation using multi-

trilateration of 4 routers).  

Although the fifth study used technologies known to provide more accurate results, 

it was still prone to growing errors that influenced output. The combination of the 

fifth study with our second study subsequently corrected position results in our fifth 

study. 

We learned that the more accurate the technology is the more accurate our position 

estimation will be using our WTP-HAMS system.  

Environment Influences Results  

Literature works have already demonstrated how localisation accuracy can be 

negatively impacted due to the presence of large objects and human presence for 

Wi-Fi, and vibrations from wheel encoders due to floor roughness. Generally, indoor 

localisation evaluation is done in a static environment. 

Therefore, for Wi-Fi, we evaluated our environment in the first study by modifying 

our room 1 in two settings: NLoS instance with objects and human presence and 

LOS instance with no objects and no human presence. We learned that NLoS can 

experience error up to 3.87m (see Table 6-3) and LOS can experience an error of up 

to 1m. Although both errors are high, NLoS is considerably worse than LOS. Though 
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we implemented and tested in LOS instance, it should be known that the increase in 

position accuracy error is heavily reliant on implementation and environmental 

conditions. 

Technology Configuration Influences Accuracy   

We learned from literature works that technology or technology combination is 

very important as it affects position accuracy.  

Therefore, our system required the following technology configuration - 4 Wi-Fi 

routers in LOS instance, 2 wheel encoders and a combination of accelerometer and 

magnetometer of a smartphone (see Table 6-2).  

For Wi-Fi in LOS instance, when we modified the Wi-Fi number from 3 routers to 4 

routers in the same test room, there was an improvement in position accuracy by 

about 94%.  

For wheel encoders, distance travelled of a mobility scooter is best calculated for 

when using outputs from two wheel encoders mounted on either side of the rare 

wheels. The front wheel was not included because we deduced that a wheel encoder 

output from it could negatively influence position results especially when our 

proposed novel odometry model (Equation 21 and Equation 22) is implemented. 

For smartphone IMU modalities – accelerometer and magnetometer sensors, we 

learned that the orientation of the smartphone greatly influences the heading 

navigation computation. We quickly identified axis with more positive heading 

responses when in a horizontal orientation.  Also, we learnt very quickly based on 

results from literature and our WTP-HAMS system, that the way IMU works for 

pedestrians differ greatly from a translational moving mobility scooter on a smooth 

wooden tiled floor. Importantly, for pedestrians, the multiple peaks are translated 

as a human moving point while for motion in translation a single peak is best to 

translate to initiation, acceleration, steady movement and deceleration. 
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The smartphone was the most inexpensive and easily accessible technology that 

could synchronise all dataset from exploited technologies to time.  

Each technology plays a major role; therefore, it is important they are all considered 

when designing our WTP-HAMS system. 

Indoor Localisation Does Not Have to Be Expensive or Complex 

One of our key objectives was to find an inexpensive means of achieving indoor 

localisation. Therefore, we used already existing technologies such as Wi-Fi and 

smartphone with its modalities. This is already easily accessible and ubiquitous in 

today’s society.  

We designed and developed inexpensive custom wheel encoders for our trials 

because our mobility scooter needed a distance travel counter. Development cost 

us £18.14 excluding the cost of a 3D printer.  

We carefully evaluated the cost implications for a user who uses a mobility scooter 

with inbuilt odometer and a smartphone in an environment like ours (i.e. smooth 

wooden tiled floor room with 4 routers), it is our conclusion that it will be 

practically inexpensive to use.   

7.3.2. Personal Lessons  

Writing Early  

We learnt how critical it was to document every detail of the research including 

ideas, plans, strategy, studies, results consisting of successful test and limitations. 

Early documentation of our proposed research methodology, plans, ideas and 

processes using visual representations such as flow diagrams, tables and graphs 

helped clarify our objectives.   
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Our thesis development included two years of progression development reports 

(which included thorough comprehensive literature reviews, background 

knowledge and design of our proposed methodology) and two  additional years of 

more experiments and progression updates (which included a development and 

refinement of our proposed methodology, testing and analyses of results from all 

studies used for achieving our methodology). 

An important lesson to take home is not to leave the writing to the last minute, as 

important information will be omitted. 

7.4. Future Directions 

Though error mitigation is described in Section 7.2., it hints at the possible area for 

further explorations on the drift mitigation model and absolute position estimation 

model. The system relies on the theory that errors exhibited from Wi-Fi can be 

improved by odometry outcomes. This odometry is a combination of outcomes from 

wheel encoders, accelerometer and magnetometer. Numerous investigations 

suggest that directional information from accelerometer and magnetometer 

combination is better than that from wheel encoders.  It further examines the drift 

experiences of the wheel encoders when measuring travelled distance with 

employed drift mitigation model. Though drift is mitigated, it is not eradicated 

completely. However, we tested out smooth wooden floor surfaces only to get a pose 

error of 9cm. Therefore, we suggest that our proposed novel odometry model be 

further explored on rough surfaces and uneven floors. The reason will be to 

investigate the robustness and scalability of our proposed novel odometry model in 

different environments. This will likely present a sturdier system that might not 

require Wi-Fi to constrain or improve it. In addition, it creates the opportunity to 

tackle the mitigation of drift that will be evident because of larger distances or 

rougher surfaces.  

Already, we have demonstrated that combing the resulted improved distance 

estimate with heading information from accelerometer and magnetometer would 
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generate better pose estimates. Another area of exploration is the further 

development of the drift mitigation model itself. Currently, the system manually 

adds to the percentage error to the estimated travelled distance to improve 

travelled distance error. It will be interesting to explore the potentials for the 

system to intuitively add or subtract the percentage errors to travelled distance 

estimate for a more scalable system resulting in new improved travelled distance 

estimate.  

Another possible advancement to the research is achieving real-time indoor 

positioning to mobility scooter user when in motion within commercial buildings. 

This can be achieved with the transfer of the current offline phase described in 

Chapters 4 and 5 to an online environment that updates data in real time as it 

calculates for new absolute positions. It is our speculation that this might slow down 

the system; however, it will be of benefit to users to see their current location on 

their smartphone in real time.  This is important because it will enhance the 

practicality of our system.  

Also, it has to be considered that the high quantity of data that would be obtained 

over several kilometres will require complex compression and data formatting 

algorithms to shrink stored data. It is important that these algorithms must 

maintain sufficient information to calculate a new absolute position estimate of the 

mobility scooter. However, this is a big data challenge and beyond the scope of this 

research.   

Final future work in the possibility of creating an error model designed a 

repurposed speaker recognition normalisation system. We believe, that this model 

store new estimated position as true position as it checks against saved false data to 

inform the user of their current location in real time. The challenge is in aligning the 

trained model with the test model. We believe this will provide a lightweight 

alternative to existing fingerprinting methods. This challenge, however, is beyond 

the scope of this research. 
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