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1 Introduction

Over the past decade, the scattering equations have proven to be fundamental to the
study of scattering amplitudes. They find their origins in twistor string theory where novel
formulae for the complete tree-level S-matrix of N = 4 supersymmetric Yang-Mills (SYM)
theory [1–3] and N = 8 supersymmetric gravity [4–6] were derived. These formulae consist
of integrals over the moduli space of curves from the n-punctured Riemann sphere to the
relevant kinematic space (either twistor space or momentum space) and were later subsumed
by the Cachazo-He-Yuan (CHY) formalism [7–9]. In this latter setting, further simplification
comes from the fact that amplitudes are expressed as integrals directly over the moduli
space of the n-punctured Riemann sphere. These moduli space integrals fully localize to
the solutions of a set of algebraic equations, called the scattering equations, which connect
points in the kinematic space to points in the moduli space. Moreover, the scattering
equations are relevant to the scattering of massless particles in arbitrary dimensions [8] and
their application extends to a broad range of quantum field theories [10, 11]. Theories which
share the same kinematic space have the same scattering equations, making them relatively
universal, and the resulting scattering amplitudes differ due to the different integrands in
the CHY formulae.

There is however an important caveat when studying the scattering equations: since
they are coupled algebraic equations, they are difficult to solve and the explicit form of their
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Figure 1. The scattering equations connect the CHY formalism to the framework of positive
geometries. The canonical form of the positive geometry in the kinematic space is given by the
pushforward through the scattering equations of the canonical form of the positive geometry in the
moduli space.

solutions are known only for very simple examples. This poses a non-trivial obstacle for
analytically evaluating CHY integral formulae, since such an evaluation amounts to summing
the CHY integrand multiplied by some Jacobian factor over all solutions to the scattering
equations. One approach is to solve the scattering equations numerically using high-
precision floating-point algebra and to rationally reconstruct the analytic expressions [12].
Nevertheless, it is possible to circumvent the problem of solving the scattering equations by
using the powerful machinery of computational algebraic geometry to evaluate amplitudes
without ever needing to explicitly solve the scattering equations. This relies on the theory
of Gröbner bases which has already been successfully applied in the context of scattering
equations in [13–16]. In particular, two methods have been explored: one involving
companion matrices [13] and the other involving the global duality of residues [16].

In a parallel development, scattering amplitudes for a subset of theories in the CHY
family have also been described in the framework of positive geometries [17–21]. In this
positive geometry approach, amplitudes are encoded by a canonical rational differential
form associated to some positive region in the kinematic space. This positive region can
be understood as the image of a positive region in the real slice of the CHY moduli space
through the scattering equations [18, 20]; the latter positive region also defines a positive
geometry. Remarkably, the canonical form in the kinematic space can then be obtained as
the pushforward through the scattering equations of the canonical form in the CHY moduli
space [18, 20]. This connection between the CHY formalism and the framework of positive
geometries, mediated by the scattering equations, is depicted in figure 1.

It is therefore natural to ask if the commutative algebra methods mentioned above can
be used to compute the pushforward of rational differential forms since the pushforward
is also defined by summing over solutions to the scattering equations. In this paper we
answer the question in the affirmative and explore methods for calculating pushforwards
based on computational algebraic geometry. We derive expressions for the rational function
prefactors of pushforwards which are directly amenable to the two previously named
methods which have been developed for summing rational functions over solutions to the
scattering equations. For the method that exploits the global duality of residues, we show
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that important simplifications occur when calculating the pushforward of top-dimensional
rational differential forms. Moreover, we give a new formula for computing pushforwards
as a sum over permutations which uses companion matrices and their derivatives with
respect to kinematic parameters, and we provide an efficient algorithm for computing these
derivatives numerically.

We note that the methods developed in this paper are not limited to the scattering
equations, but can be applied more generally to the computation of canonical forms via
morphisms between positive geometries [22]. For example, the amplituhedron is a positive
geometry which describes tree-level amplitudes in maximally supersymmetric Yang-Mills
theory expressed in terms of momentum-twistor variables [17]. It is defined as the image of
the positive Grassmannian via a linear map [17]. In this case, the amplituhedron canonical
form can be computed as a sum over pushforwards of the canonical forms of certain cells
(obtained by solving the BCFW recursion relation [23]) of the positive Grassmannian via
this linear map, and each pushforward can be computed using the aforementioned methods.

The paper is organised as follows. We begin by establishing notation and recalling
a few facts from commutative algebra which will be relevant for this paper in section 2.
Sections 3 and 4 focus on the method of companion matrices. More specifically, in section 3
we generalize the method used for summing functions over solutions to the scattering
equations to the case of differential forms. In section 4 we present a new formula for
calculating pushforwards using derivatives of companion matrices and we provide an
efficient algorithm for finding these derivatives numerically. Thereafter, in section 5 we
discuss how pushforwards can be calculated by leveraging the global duality of residues and
we extend the methods previously developed for functions. We discuss the computational
efficiency of our methods in section 6 and we consider some non-trivial applications of our
methods to tree-level amplitudes in section 7. We end the paper with Conclusions and
outlook (section 8) and we collect some important theorems in appendix A.

2 Mathematical preliminaries

Ideals and varieties. Throughout this paper we use the language of commutative algebra
to describe the scattering equations. We focus on the theory of ideals in polynomial rings
with rational function coefficients, and use the standard theory of Gröbner basis and its
applications to elimination theory. In the following we will assume that the reader is familiar
with basic notions related to Gröbner bases which can be found e.g. in [24].

To start with, let C(a)[z] := C(a1, . . . , am)[z1, . . . , zn] be the ring of polynomials in
z = (z1, . . . , zn) whose coefficients are rational functions in a = (a1, . . . , am) with coefficients
in C, and suppose n ≤ m. We will refer to z as z-variables and a as a-variables. Since any
polynomial f ∈ C(a)[z] is a function of z-variables as well as a function of a-variables we
will sometimes write f(z;a) to emphasise this dual dependence while at other times we will
simply write f(z). Moreover, given a point a ∈ Cm at which all of the coefficients of f are
analytic, we will use the notation f(•;a) to denote the polynomial in C[z] := C[z1, . . . , zn]
defined by f(•;a) : Cn → C, z 7→ f(z;a).
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In the context of the scattering equations, the z-variables are interpreted as coordinates
in a chart in Cn of some moduli space (i.e. the positions of punctures on the Riemann
sphere) and the a-variables as coordinates in a chart in Cm of some kinematic space (e.g.
the space of Mandelstam variables for n particles). The scattering equations are then a
system of equations which implicitly define a map from the moduli space to the kinematic
space. Importantly, the scattering equations can always be expressed in polynomial form as
a set of polynomials f1, . . . , fn ∈ C(a)[z] and therefore they define an ideal

I := 〈f1, . . . , fn〉 ⊆ C(a)[z] . (2.1)

In order to elucidate the properties of this ideal, let us distinguish a few special subsets of
a-variables. Firstly, let A ⊆ Cm denote the subset of a-variables for which all the coefficients
of f1, . . . , fn are analytic. For each a ∈ A, we define the ideal

I(a) := 〈f1(•;a), . . . , fn(•;a)〉 ⊆ C[z] . (2.2)

We further define the following two subsets of A.

• We define Azero to be the subset of A for which I(a) is a zero-dimensional ideal, i.e.
the complex affine variety

V(I(a)) := {ξ = (ξ1, . . . , ξn) ∈ Cn | ∀f∈I : f(ξ) = 0} ⊆ Cn , (2.3)

has finite cardinality.

• We define Arad to be the subset of A for which I(a) is a radical ideal by which we
mean that I(a) =

√
I(a) where√
I(a) :=

{
r ∈ C[z] | ∃n∈Z>0 : rn ∈ I(a)

}
⊆ C[z] . (2.4)

We will assume that Agen := Azero ∩ Arad is non-empty; we will refer to points a ∈ Agen
as being generic a-variables and we will refer to I as being a generically zero-dimensional
radical ideal. Indeed, it is well-known that the original Cachazo-He-Yuan (CHY) scattering
equations have finitely many solutions [7, 9, 25], and hence define a zero-dimensional ideal.
Moreover, we will assume that the complex affine variety for I

V(I) :=
{
ξ = (ξ1, . . . ξn) ∈ C(a)n | ∀f∈I : f(ξ) = 0

}
⊆ C(a)n , (2.5)

is well-defined for generic a-variables and that it contains d distinct points. We will
enumerate these points by {ξ(α)}dα=1. Here C(a) := C(a1, . . . , am) while C(a) denotes the
algebraic closure of C(a). Importantly, the common zeros of f1, . . . , fn given by V(I) are
functions of a-variables.

Notation. To streamline our presentation in the next sections, we collect the following
definitions and notation (see [24] for a more detailed introduction to Gröbner bases). We
denote monomials in z1, . . . , zn as zα = zα1

1 zα2
2 · · · zαnn . A monomial ordering ≺ on C(a)[z]

is a total well-ordering on the monomials in z that is compatible with multiplication: if
zα � zβ, then zα+γ � zβ+γ for all γ ∈ Zn≥0. For a given polynomial in I, its leading term
is the monomial which is largest with respect to �. We will give a brief introduction to
three useful monomial orders. Throughout, we define z1 � z2 � . . . � zn.
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• Lexicographic (lex) ordering: zα �lex z
β if the leftmost non-zero entry of α − β is

positive.

• Graded lexicographic (grlex) ordering: zα �grlex z
β if ∑n

i=1 αi >
∑n
i=1 βi, and if∑n

i=1 αi = ∑n
i=1 βi, then zα �grlex z

β if the leftmost non-zero entry of α − β is
positive.

• Graded reverse lexicographic (grevlex) ordering: zα �grevlex z
β if ∑n

i=1 αi >
∑n
i=1 βi,

and if∑n
i=1 αi = ∑n

i=1 βi, then zα �grevlex z
β if the rightmost non-zero entry of α−β

is negative.

In this paper, we will need to use several monomial orderings for different parts of the
discussions. In general, the reader may assume that the choice of monomial ordering is
irrelevant, unless we explicitly specify otherwise.

Given some monomial ordering ≺ on C(a)[z], we denote by G≺(I) the unique reduced
Gröbner basis of I with respect to ≺. A Gröbner basis G≺(I) is defined as a collection of
polynomials G≺(I) = {g1, . . . , gt} ⊆ I such that for every (non-zero) f ∈ I the leading
term of f is divisible by the leading term of some gi ∈ G≺(I). Moreover G≺(I) generates
the ideal: I = 〈g1, . . . , gt〉. For brevity, we will often write G instead of G≺(I). Since I is a
zero-dimensional ideal, the quotient ring Q = C(a)[z]/I is a finite-dimensional vector space
over C(a) of dimension dim(Q) = |V(I)| = d. We denote by B≺(I), or simply B, the set of
all monomials zα = zα1

1 · · · zαnn ∈ C(a)[z] for α = (α1, . . . , αn) ∈ Zn≥0 which are indivisible
by any of the leading terms of polynomials in G. The set B forms a basis for Q because
every polynomial in C(a)[z] can be written as a C(a)-linear combination of monomials in B
modulo I via the division algorithm with respect to G. We call B the standard (monomial)
basis for Q and we label its elements by B = {eα}dα=1. Given a polynomial f ∈ C(a)[z], we
denote the normal form of f , i.e. the remainder of f on division by G, by fG = ∑d

α=1 fαeα
where the coefficients fα ∈ C(a) are rational functions in a-variables with coefficients in C.

Throughout this paper, we will use [n] to denote the set {1, 2, . . . , n} and
([n]
p

)
to denote

the set of all p-element subsets of [n]. Importantly, if I = {i1, . . . , ip} ∈
([n]
p

)
then we always

assume that i1 < i2 < . . . < ip.

Pullbacks. In this paper we are interested in the operation of pushing forward differential
forms. The pushforward is defined in terms of multiple pullback operations, so we will
introduce the latter operation first.

Suppose we have a map φ : Cm → Cn;a 7→ z = φ(a) = (φ1(a), . . . , φn(a)) from
a-variables to z-variables (i.e. from a chart of some kinematic space to a chart of some
moduli space). Without loss of generality, let

ω = ω(z)
∧
i∈I

dzi = ω(z) dzi1 ∧ · · · ∧ dzip , (2.6)

be a p-form in z-variables (with p ≤ n) for some choice of indices I = {i1, . . . , ip} ∈
([n]
p

)
.

Here ω ∈ C(z) and we refer to ω as a rational p-form. Then the pullback of ω through φ,
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Figure 2. The map ψ : Cn → Cm takes z to a = ψ(z).

denoted by φ∗ω, is defined as the evaluation of ω on z = φ(a):

φ∗ω := ω
∣∣
z=φ(a) = ω (φ(a))

∧
i∈I

dφi(a) = ω(φ(a))
∑

J∈([m]
p )

∣∣∣∣∂φ∂a
∣∣∣∣I
J

∧
j∈J

daj , (2.7)

where ∂φ/∂a is the Jacobian matrix of partial derivatives ∂φi/∂aj and
∣∣ · · · ∣∣I

J
denotes the

minor of ( · · · ) specified by the rows in I and the columns in J . The pullback operation
extends by linearity to arbitrary rational differential forms.

One can also define the pullback of ω through an ideal that implicitly defines such a
map φ. To this end, let I ⊆ C(a)[z] be a generically zero-dimensional radical ideal and
suppose that the corresponding complex affine variety V(I) generically contains a single
point. Then the Shape Lemma [26] ensures that on the support of generic a-variables, the
Gröbner basis for I with respect to lex ordering takes a particularly convenient form:

Glex(I) = {z1 − φ1(a), . . . , zn − φn(a)} , (2.8)

where φ1, . . . , φn ∈ C(a) are analytic on Agen and they are constant functions with respect
to z-variables. In this case

V(I) = {φ = (φ1, . . . , φn) ∈ C(a)n} , (2.9)

and the pullback of ω through I, denoted by I∗ω, is given by

I∗ω := φ∗ω . (2.10)

Pushforwards. We can also push our rational p-form ω given in (2.6) forward through
a map defined in the direction opposite to φ. We define the pushforward as in [22], but
we do not restrict ourselves to top-forms. Let ψ : Cn → Cm; z 7→ a = ψ(z) be a map
from z-variables to a-variables (i.e. from a chart of some moduli space to a chart of some
kinematic space) as depicted in figure 2. We assume that ψ is a meromorphic map of degree
d, by which we mean that (in general) a point a ∈ Cm has d preimages

ψ−1 ({a}) =
{
z(α)

}d
α=1

, (2.11)

– 6 –
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Figure 3. Around the point a ∈ Cm, the map ψ : Cn → Cm has d local inverse maps
ξ(α) := ψ

∣∣−1
Uα

: Vα → Uα which take a to z(α) := ξ(α)(a).

where z(α) ∈ Cn. For each α = 1, . . . , d, there exists an open neighbourhood Uα ⊆ Cn

containing z(α) and an open neighbourhood Vα ⊆ Cm containing a such that we can define
the local inverse map ξ(α) := ψ

∣∣−1
Uα

: Vα → Uα where z(α) = ξ(α)(a). These local inverse
maps are depicted in figure 3. We then define the pushforward of ω through ψ, denoted by
ψ∗ω as the sum over all pullbacks of ω through ξ(α):

ψ∗ω :=
d∑

α=1
ξ(α)∗ω . (2.12)

As was the case for the pullback, the definition of the pushforward extends by linearity to
arbitrary rational differential forms.

In this paper, we are especially interested in computing the pushforward of rational
differential forms through the common zeroes of a set of polynomial equations, i.e. through
an ideal. Given a generically zero-dimensional radical ideal I = 〈f1, . . . , fn〉 ∈ C(a)[z], we
define the pushforward of ω through I, denoted by I∗ω, via

I∗ω :=
∑

ξ∈V(I)
ξ∗ω , (2.13)

where the complex affine variety V(I) = {ξ(α)}dα=1 generically consists of d maps in C(a)n

as shown in figure 4. Comparing formulae (2.13) and (2.10), we notice that a pullback
through an ideal can be thought of as a special case of a pushforward through an ideal,
where the relevant variety contains just one point. To evaluate (2.13) directly requires one
to explicitly determine all points ξ ∈ V(I) and, in general, this is impossible to do in closed
form. Thus, the question we want to consider is this: can we compute the pushforward of ω
through the common zeroes of f1, . . . , fn without explicitly determining these common zeros?

There is a closely related problem which concerns summing a rational function r ∈ C(z),
as opposed to a rational differential form, over all points ξ ∈ V(I). Interpreting r as a
0-form, we see that this is equivalent to calculating the pushforward of r through I as defined
in (2.13). This simpler problem has been studied in the scattering amplitude literature,
and there are two particular solutions known to the authors which (we will show) can be
applied to rational differential forms. The first approach uses the machinery of companion
matrices [13–15], and the second uses the global duality of residues [16].

– 7 –
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Figure 4. The variety V(I) = {ξ(α)}dα=1 generically consists of d maps in C(a)n which take a
to ξ(α)(a).

To address the problem at hand, we derive a formula for the rational function coeffi-
cients of the pushforward which is amenable to the above methods. Using the chain-rule
dξi = ∂ξi/∂aj daj , one can rewrite (2.13) as

I∗ω =
∑

J∈([m]
p )

 ∑
ξ∈V(I)

ω(ξ)
∣∣∣∣∂ξ∂a

∣∣∣∣I
J

 ∧
j∈J

daj , (2.14)

where ∂ξ/∂a is the Jacobian matrix of partial derivatives ∂ξi/∂aj ∈ C(a). The minor
in (2.14) can be rewritten in a more convenient manner using the following observation.
By definition, f`(ξ(a);a) = 0 for each point ξ ∈ V(I), each ` ∈ [n], and each a ∈ Agen.
Consequently, for each j ∈ [m]

0 = df`
daj

= ∂f`
∂aj

+ ∂f`
∂zi

∂ξi
∂aj

=⇒ ∂f`
∂zi

∂ξi
∂aj

= −∂f`
∂aj

, (2.15)

where function of z-variables are evaluated on z = ξ(a). From (2.15) it follows that∣∣∣∣∂ξ∂a
∣∣∣∣I
J

= (−1)p
∣∣∣∣[∂f∂z (ξ)

]−1∂f

∂a
(ξ)
∣∣∣∣I
J

, (2.16)

where ∂f/∂z is the Jacobian matrix of partial derivatives ∂f`/∂zi ∈ C(a)[z] and ∂f/∂a
is the Jacobian matrix of partial derivatives ∂f`/∂aj ∈ C(a)[z]. Whenever a ∈ Agen, the
Jacobian matrix ∂f/∂z (ξ(a);a) is invertible, and therefore for the remainder of this paper
we will restrict our attention to generic a-variables. Using (2.16) we can rewrite (2.14) as

I∗ω =
∑

J∈([m]
p )
I∗ωIJ

∧
j∈J

daj , (2.17)

where

I∗ωIJ :=
∑

ξ∈V(I)
ωIJ(ξ) , (2.18)

and

ωIJ(z;a) := (−1)p ω(z)
∣∣∣∣[∂f∂z

]−1∂f

∂a

∣∣∣∣I
J

∈ C(a)(z) . (2.19)

– 8 –
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Then, we have reduced the problem of calculating the pushforward of ω through V(I) to
the problem of summing the rational functions ωIJ over all points ξ ∈ V(I). In the next
sections, we present three methods for computing (2.18) without needing to determine V(I).
However, before proceeding to these methods, let us consider the following example in order
to clarify some of the above discussions.

Example 1. Consider the zero-dimensional ideal

I = 〈f1, f2〉 = 〈a1z1 + a2z2, a3z
2
2 − 1〉 ∈ C(a1, a2, a3)[z1, z2] . (2.20)

In this case, the corresponding complex affine variety is easily calculated to be

V(I) =
{(

a2
a1
√
a3
,− 1
√
a3

)
,

(
− a2
a1
√
a3
,

1
√
a3

)}
. (2.21)

Clearly Azero =
{
(a1, a2, a3) ∈ C3 : a1 6= 0 and a3 6= 0

}
which is precisely the set of a-

variables for which the points in V(I) are well-defined and distinct. Suppose we wish to
compute the push-forward of

ω = d log z1 ∧ d log z1 = ω(z) dz1 ∧ dz2 , where ω(z) = 1
z1z2

. (2.22)

Direct computation via (2.13) yields

I∗ω = da1 ∧ da3
a1a3

− da2 ∧ da3
a2a3

. (2.23)

This result can be also be obtained via (2.17). The Jacobian matrices are

∂f

∂z
=
(
a1 a2
0 2a3z2

)
,

∂f

∂a
=
(
z1 z2 0
0 0 z2

2

)
. (2.24)

Notice that ∂f/∂z is invertible only on Azero. The coefficients ω{j1,j2} := ω
{1,2}
{j1,j2}, calculated

according to (2.19), are given by

ω{1,2} = 0 , ω{1,3} = 1
2a1a3

, ω{2,3} = z2
2a1a3z1

. (2.25)

Then summing (2.25) over all points ξ ∈ V(I) yields

I∗ω{1,2} = 0 , I∗ω{1,3} = 1
a1a3

, I∗ω{2,3} = − 1
a2a3

, (2.26)

in agreement with (2.23).

Example 1 highlights two interesting implications of (2.18):

• If
∣∣∂f/∂a∣∣IJ = 0, then ωIJ = 0 and hence I∗ωIJ = 0 for any rational differential form ω.

In this case, the vanishing of ωIJ and I∗ωIJ is a consequence of the scattering equations
themselves, and is independent of the rational differential form being pushed forward.

• If ωIJ is a constant with respect to z1, . . . , zn, then I∗ωIJ = dωIJ where d = |V(I)|.
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3 Pushforwards via companion matrices

In this section we introduce the machinery of companion matrices [26] and show how they
can be used to compute (2.18) without needing to determine V(I). This method has
already appeared in the scattering amplitudes literature [13] (see also [14, 15]) where it was
used to compute scattering amplitudes from moduli space integrals on the support of the
scattering equations.

Recall that for generic a-variables, I = 〈f1, . . . , fn〉 ⊆ C(a)[z] is a zero-dimensional
ideal and Q = C(a)[z]/I is a d-dimensional vector space over C(a). For each i ∈ [n],
multiplication by zi induces an endomorphism of Q

Timeszi : Q→ Q, f 7→ zif , (3.1)

which can be represented by a matrix Ti ∈ Matd(C(a)) in the standard basis B = {eα}dα=1.
The components of (Ti)αβ are defined via

(Ti)αβeβ := zieα
G . (3.2)

We call Ti the ith companion matrix of I. By definition, the companion matrices of I
mutually commute and, hence, generate a commutative subalgebra of Matd(C(a)) isomorphic
to Q:

C(a)[T1, . . . , Tn] ∼= Q, Ti 7→ zi . (3.3)

The utility of companion matrices is expressed through Stickelberger’s Theorem [26] which
asserts that the complex affine variety V(I) is precisely the set of vectors λ = (λ1, . . . , λn)
of simultaneous eigenvalues of the companion matrices of I:

V(I) =
{
λ ∈ C(a)n | ∃

v∈C(a)
d
\{0}
∀i∈[n] : Ti · v = λi v

}
. (3.4)

It is a known fact that the companion matrices of I can be simultaneously diagonalized if
and only if I is a radical ideal [26], and the latter is true precisely for generic a-variables as
per the definition of Agen.

To see how companion matrices can be used to evaluate (2.18), note the following.
Let r ∈ C(a)[z] be any rational function. Since the companion matrices of I mutually
commute, the evaluation of r on T = (T1, . . . , Tn) is well-defined. Moreover, since they are
simultaneously diagonalizable, r(T ) is similar to a diagonal matrix whose diagonal entries
are given by {r(ξ) : ξ ∈ V(I)}. Therefore

I∗r :=
∑

ξ∈V(I)
r(ξ) = Tr [r(T )] . (3.5)

Then, provided we can determine the companion matrices, the evaluation of (2.18) is
reduced to a simple linear algebra calculation via (3.5). This result is demonstrated in the
following example.
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Example 2. Recall that in example 1 we showed that the coefficients defined in (2.19)
and (2.18) are given by

ω{1,2} = 0 , ω{1,3} = 1
2a1a3

, ω{2,3} = z2
2a1a3z1

,

and

I∗ω{1,2} = 0 , I∗ω{1,3} = 1
a1a3

, I∗ω{2,3} = − 1
a2a3

,

respectively. Let us re-compute these pushforward coefficients using (3.5). Without loss of
generality, assume grevlex-order where z1 � z2. The Gröbner basis for I is

G =
{
z1 + a2

a1
z2, z

2
2 −

1
a3

}
, (3.6)

and the standard basis for Q is B = {z2, 1}. The companion matrices of I are

T1 =
(

0 − a2
a1a3

−a2
a1

0

)
, T2 =

(
0 1
a3

1 0

)
. (3.7)

Applying (3.5) one obtains

I∗ω{1,2} = Tr[ω{1,2}(T1, T2)] = 0 , (3.8)

I∗ω{1,3} = Tr[ω{1,3}(T1, T2)] = 1
2a1a3

Tr[12] = 1
a1a3

, (3.9)

I∗ω{2,3} = Tr[ω{2,3}(T1, T2)] = 1
2a1a3

Tr[T−1
1 · T2] = − 1

a2a3
, (3.10)

in agreement with the result above.

4 Pushforwards via derivatives of companion matrices

In the previous section we explained how (2.18) can be computed by evaluating (2.19)
on companion matrices and taking the trace. One disadvantage of this method is that
even for a relatively simple rational function ω(z), the corresponding rational functions
ωIJ given in (2.19) can be highly complicated as a consequence of the multiplying p × p
minor. Their complexity makes evaluating (2.19) on companion matrices a non-trivial and
time-consuming task.

In this section we present an alternative approach for computing the pushforward
of rational differential forms via companion matrices which avoids needing to evaluate
complicated minors on companion matrices. This method requires knowledge of the
derivatives of companion matrices, and we present a novel algorithm for efficiently computing
these partial derivatives for numerical data.

In (2.14), we used the chain-rule to write the pushforward I∗ω as

I∗ω =
∑

J∈([m]
p )

 ∑
ξ∈V(I)

ω(ξ)
∣∣∣∣∂ξ∂a

∣∣∣∣I
J

 ∧
j∈J

daj .
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Remarkably, the rational function prefactors multiplying ∧j∈J daj can be computed by
uplifting this expression to one involving companion matrices in the following natural manner:

∑
ξ∈V(I)

ω(ξ)
∣∣∣∣∂ξ∂a

∣∣∣∣I
J

= Tr

ω(T )
∑
σ∈Sp

sgn(σ)
∂Tiσ(1)

∂aj1
· · ·

∂Tiσ(p)

∂ajp

 =: I∗ωIJ . (4.1)

This formula is non-trivial since the partial derivatives of companion matrices are not
guaranteed to simultaneously commute, and in general they do not. Before giving a proof
of this formula, let us see it applied to our running example.

Example 3. Recall that in example 1 we considered the pushforward of

ω = d log z1 ∧ d log z2 = ω(z) dz1 ∧ dz2 , where ω(z) = 1
z1z2

.

In example 2 we confirmed that the rational function prefactors of the pushforward as defined
in (2.18) were given by

I∗ω{1,2} = 0 , I∗ω{1,3} = 1
a1a3

, I∗ω{2,3} = − 1
a2a3

,

where we used the companion matrices

T1 =
(

0 − a2
a1a3

−a2
a1

0

)
, T2 =

(
0 1
a3

1 0

)
.

The derivatives of these matrices are given by

∂T1
∂a1

=

 0 a2
a2

1a3
a2
a2

1
0

 , ∂T1
∂a2

=
(

0 − 1
a1a3

− 1
a1

0

)
,

∂T1
∂a3

=
(

0 a2
a1a2

3

0 0

)
, (4.2)

∂T2
∂a1

= 02×2,
∂T2
∂a2

= 02×2,
∂T2
∂a3

=
(

0 − 1
a2

3

0 0

)
. (4.3)

Using (4.1), one finds that

I∗ω{1,2} = Tr
[
ω(T )

(
∂T1
∂a1

∂T2
∂a2
− ∂T2
∂a1

∂T1
∂a2

)]
= 0 , (4.4)

I∗ω{1,3} = Tr
[
ω(T )

(
∂T1
∂a1

∂T2
∂a3
− ∂T2
∂a1

∂T1
∂a3

)]
= Tr

[
(T1T2)−1∂T1

∂a1

∂T2
∂a3

]
= 1
a1a3

, (4.5)

I∗ω{2,3} = Tr
[
ω(T )

(
∂T1
∂a2

∂T2
∂a3
− ∂T2
∂a2

∂T1
∂a3

)]
= Tr

[
(T1T2)−1∂T1

∂a2

∂T2
∂a3

]
= − 1

a2a3
, (4.6)

as expected.

Proof of (4.1). Recall that

• The companion matrices of I are assumed to be simultaneously diagonalizable, i.e.
there exists an invertible matrix P ∈ GLd(C(a)) such that each companion matrix Ti
can be written as Ti = PDiP

−1 where Di is a diagonal matrix.
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• The set of vectors of their simultaneous eigenvalues {λ(α)}dα=1 is precisely V(I) (as a
consequence of Stickelberger’s Theorem [26]) and, thus, the matrix components of Di

are (Di)αβ=λ
(α)
i δαβ .

Consequently, it is sufficient to prove that

Tr

ω(T )
∑
σ∈Sp

sgn(σ)
∂Tiσ(1)

∂aj1
· · ·

∂Tiσ(p)

∂ajp

 = Tr

ω(D)
∑
σ∈Sp

sgn(σ)
∂Diσ(1)

∂aj1
· · ·

∂Diσ(p)

∂ajp

 .
(4.7)

The pairwise commutativity of companion matrices implies that

ω(T ) = Pω(D)P−1 . (4.8)

Differentiating Ti = PDiP
−1 with respect to aj yields

∂Ti
∂aj

= P

(
∂Di

∂aj
+ [Γj , Di]

)
P−1 , where Γj := P−1 ∂P

∂aj
. (4.9)

Substituting (4.8) and (4.9) into the left-hand side (l.h.s.) of (4.7) produces

l.h.s.(4.7) =
p∑
r=0

∑
K∈([p]

r )

∑
σ∈Sp

sgn(σ) TrIJ(K;σ) , (4.10)

where

TrIJ(K;σ) := Tr

ω(D)
p∏

k=1


∂

∂ajk
Diσ(k) if k /∈ K[

Γjk , Diσ(k)

]
if k ∈ K


 . (4.11)

The contribution to (4.10) from r = 0, for which K = ∅, is clearly the right-hand side
of (4.7). Therefore, we need to show that the contributions for r > 0 vanish. To this end,
let r > 0 and fix K = {k1, . . . , kr} ∈

([p]
r

)
. In matrix components, (4.11) is given by

TrIJ(K;σ) =
∑

1≤α1,...,αr≤d
ω
(
λ(α1))

×

 r∏
s=1

 ks−1∏
k=ks−1+1

∂

∂ajk
λ

(αs)
iσ(k)

 (Γjks )αsαs+1

(
λ

(αs+1)
iσ(ks)

− λ(αs)
iσ(ks)

) p∏
k=kr+1

∂

∂ajk
λ

(α1)
iσ(k)

 ,
(4.12)

where k0 = 0 and αr+1 = α1, and we have written the sum over the matrix components
α1, . . . , αr explicitly. We now distinguish two cases.

• If r < p, then let K ′ = [p] \K = {k′1, . . . , k′p−r}. In this case we can always re-express
the sum over permutations in Sp as∑

σ∈Sp
=

∑
L′∈( [p]

p−r)

∑
π∈Sp−r

∑
σ∈Sp(K′,L′;π)

, (4.13)
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where the first sum is over L′ = {l′1, . . . , l′p−r} ∈
( [p]
p−r
)
and the third sum is over

Sp(K ′, L′;π) :=
{
σ ∈ Sp | ∀γ∈[p−r] : σ(k′γ) = l′π(γ)

}
, (4.14)

i.e. the set of r! permutations in Sp which map K ′ to L′ in a fixed manner according
to π. For each L′ = {l′1, . . . , l′p−r} ∈

( [p]
p−k
)
and π ∈ Sp−r, it is easy to show that

∑
σ∈Sp(K′,L′;π)

sgn(σ)
r∏
s=1

(
λ

(αs+1)
iσ(ks)

− λ(αs)
iσ(ks)

)
= 0 , (4.15)

for any choice of 1 ≤ α1, . . . , αr ≤ d. Thus, combining (4.12) with (4.13), we obtain∑
σ∈Sp TrIJ(K;σ) = 0.

• If r = p, then there are no longer derivative terms in (4.12). Then since

∑
σ∈Sp

sgn(σ)
p∏
s=1

(
λ

(αs+1)
iσ(ks)

− λ(αs)
iσ(ks)

)
= 0 , (4.16)

for fixed 1 ≤ α1, . . . , αr ≤ d, it again follows that ∑σ∈Sp TrIJ(K;σ) = 0.

Altogether we have that (4.10) vanishes except when r = 0 and K = ∅. This concludes our
proof of (4.1).

In many cases, evaluating (4.1) is more efficient than evaluating (2.18) using companion
matrices, provided one can determine the companion matrices for generic a-variables.
However, in some cases it is not tractable to compute companion matrices in full generality,
but only for numerical values of a-variables. How then can one determine the derivatives
of companion matrices with respect to a-variables for numerical values? It turns out that,
using lex ordering, we can solve this problem using the following algorithm.

To explain our algorithm, fix 1 ≤ j ≤ m and let a ∈ Agen be a generic a-variable. Let

S := C[z1, . . . , zn] , (4.17)

and

Sj := C
[
∂z1
∂aj

, . . . ,
∂zn
∂aj

, z1, . . . , zn

]
, (4.18)

be polynomial rings, where ∂z1/∂aj , . . . , ∂zn/∂aj are regarded as formal variables. Recall
that I(a) is an ideal in S. Define the ideals

dI
daj

(a) :=
〈
df1
daj

(•;a), . . . , dfn
daj

(•;a)
〉

=
〈
∂f1
∂aj

+ ∂f1
∂zi

∂zi
∂aj

, . . . ,
∂fn
∂aj

+ ∂fn
∂zi

∂zi
∂aj

〉
⊆ Sj ,

(4.19)

where again ∂z1/∂aj , . . . , ∂zn/∂aj are regarded as formal variables, and

Ij(a) := I(a) + dI
daj

(a) ⊆ Sj , (4.20)
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which is generated by the generators of I(a) and dI/daj (a). Let G(a) and Gj(a) be the
Gröbner bases for I(a) and Ij(a), respectively, using lex ordering with ∂z1/∂aj � · · · �
∂zn/∂aj � z1 � · · · � zn. Furthermore, let B(a) and Bj(a) be the standard bases for
S/I(a) and Sj/Ij(a), respectively. We will assume that Bj(a) = B(a). We do not know
what the necessary nor the sufficient conditions for this assumption are, but we note that it
is true for all the examples which we consider in this paper.

In this setting, and with the above assumption, the ith companion matrix Ti(a)
(evaluated at a) of I(a) can be computed via

zieα
Gj(a) = Ti(a)αβeβ , (4.21)

and its partial derivative ∂Ti
∂aj

(a) (evaluated at a) with respect to aj can be calculated using

∂(zieα)
∂aj

− Ti(a)αβ
∂eβ
∂aj

Gj(a)

= ∂Ti(a)αβ
∂aj

eβ . (4.22)

Notice that in both (4.21) and (4.22), the objects on the left-hand side that are being
divided by Gj(a) are polynomials in Sj while the polynomials on the right-hand side are
polynomials in S.

To understand why (4.21) is true, notice that each generator df`(•;a)/daj of dI(a)/daj
defines a non-constant linear function in the formal variables ∂z1/∂aj , . . . , ∂zn/∂aj . Conse-
quently, the nth elimination ideal of Ij(a) is

Ij(a) ∩ S = I(a) , (4.23)

and by the Elimination Theorem [24] we have that Gj(a) ∩ S = G(a). (We restricted our
attention to lex ordering in order to use this result.) Furthermore, given our assumption
that Bj(a) = B(a), it follows that zieα is a monomial in S and, hence, division by Gj(a) is
identical to division by G(a). Consequently, (4.21) does indeed compute the ith companion
matrix of I(a).

What about (4.22)? From (4.21) we have that

zieα ' Ti(a)αβeβ , (4.24)

where ' means equality modulo division by Gj(a). Differentiating both sides with respect
to aj (and regarding z-variables as implicit functions of aj) produces

∂(zieα)
∂aj

' Ti(a)αβ
∂aj

eβ + Ti(a)αβ
∂eβ
∂aj

, (4.25)

from which (4.22) follows.
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To demonstrate the mechanics of this algorithm, let us return to our running example.

Example 4. Recall from example 3 that the derivatives of the companion matrices1 in
example 2 are given by

∂T1
∂a1

=

 0 a2
a2

1a3
a2
a2

1
0

 , ∂T1
∂a2

=
(

0 − 1
a1a3

− 1
a1

0

)
,

∂T1
∂a3

=
(

0 a2
a1a2

3

0 0

)
,

∂T2
∂a1

= 02×2,
∂T2
∂a2

= 02×2,
∂T2
∂a3

=
(

0 − 1
a2

3

0 0

)
.

Let us recompute these using (4.22). Starting with derivatives with respect to a1, the relevant
ideal is

I1 =
〈
f1, f2,

df1
da1

,
df2
da1

〉
=
〈
a1z1 + a2z2, a3z

2
2 − 1, z1 + a1

∂z1
∂a1

+ a2
∂z2
∂a1

, 2a3z2
∂z2
∂a1

〉
,

(4.26)

and its Gröbner basis with respect to lex ordering is

G1 =
{
∂z1
∂a1
− a2
a2

1
z2,

∂z2
∂a1

, z1 + a2
a1
z2, z

2
2 −

1
a3

}
. (4.27)

Clearly the standard basis for I1 is B1 = {z2, 1} which is precisely the standard basis B for
I. Let e = (z2, 1)T . It is easy to show that

∂(z1e)
∂aj

− T1 ·
∂e

∂aj
=
(
z2
∂z1
∂a1

+ z1
∂z2
∂a1

,
∂z1
∂a1

+ a2
a1

∂z2
∂a1

)T
'
(
a2
a2

1a3
,
a2z2
a2

1

)T
, (4.28)

∂(z2e)
∂aj

− T2 ·
∂e

∂aj
=
(

2z2
∂z2
∂a1

, 0
)T
' (0, 0)T , (4.29)

from which we read off the formulae for the derivatives of the companion matrices with
respect to a1

∂T1
∂a1

=

 0 a2
a2

1a3
a2
a2

1
0

 , ∂T2
∂a1

= 02×2 , (4.30)

in agreement with what we found in example 3. A similar calculation confirms the
other derivatives.

5 Pushforwards via the global duality of residues

In this section we consider a different method for calculating (2.18) which uses global
residues and a special basis for the quotient ring Q = C(a)[z]/I which is dual to the
standard basis B. This method has also already appeared in the context of the scattering
equations [16]. It has some computational advantages over the previous method as it does
not necessitate the computation of companion matrices which grow very quickly in size.
For instance, for the n-particle CHY scattering equations, the companion matrices are of
size (n− 3)!× (n− 3)!.

1For this example, the companion matrices for grevlex-order and lexicographic order are the same.
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Global residues. Suppose that we wish to sum a rational function r ∈ C(a)(z) over
all points ξ ∈ V(I). We will later specialise to the case where r = ω

{1,...,n}
{j1,...,jn} where some

simplifications occur. Following [16], let us uplift this rational function to a rational
differential form with poles on V(I) as follows:

Ω(r) := r(z)dz1 ∧ · · · ∧ dzn
f1(z) · · · fn(z) . (5.1)

For each ξ ∈ V(I), we define the local residue of Ω(r) at ξ through the multi-dimensional
contour integral

Resξ(Ω(r)) := 1
(2πi)n

∮
Γξ

Ω(r) , (5.2)

where Γξ is some suitably defined contour around the pole ξ, a definition of which can be
found in [16]. We further define the global residue of r as

Res(r) :=
∑

ξ∈V(I)
Resξ(Ω(r)) . (5.3)

Using the multi-dimensional form of Cauchy’s theorem, we have that

Resξ(Ω(r)) = r(ξ)
∣∣∣∣∂f∂z (ξ)

∣∣∣∣−1
, (5.4)

where
∣∣∂f/∂z∣∣ is the determinant of the Jacobian matrix ∂f/∂z. Hence, our quantity of

interest can be expressed as the global residue of
∣∣∂f/∂z∣∣ r:

I∗r :=
∑

ξ∈V(I)
r(ξ) = Res

(∣∣∣∣∂f∂z
∣∣∣∣r) . (5.5)

Duality of global residues and the dual basis. Following [16], we can evaluate (5.5)
using the so-called global duality theorem which requires us to momentarily restrict our
attention to polynomials. We will later extend our analysis to include rational functions.

The following fact is a defining characteristic of Gröbner bases: the remainder of a
polynomial p ∈ C(a)[z] on division by G, denoted by pG , is unique. Moreover, when a
polynomial is evaluated on any point ξ ∈ V(I), only its remainder survives:

p(ξ) = pG(ξ) =
d∑

α=1
pαeα(ξ), ∀ ξ ∈ V(I) , (5.6)

where B = {eα}dα=1 is the standard basis for Q and pα ∈ C(a) are the components of p
modulo G in this basis. Consequently, it is natural to address the problem of computing
I∗p = ∑

ξ∈V(I) p(ξ) directly in Q. To this end, define the following symmetric inner product
on Q:

〈•, •〉 : Q×Q→ C(a), (p1, p2) 7→ 〈p1, p2〉 := Res(p1 p2) . (5.7)
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The Global Duality Theorem [27] tells us that 〈•, •〉 is a non-degenerate inner-product on
Q which implies the existence of a dual basis B∨ = B∨≺(I) := {∆α}dα=1 for Q such that

〈eα,∆β〉 = δαβ . (5.8)

Since 1 ∈ Q, it is always possible to express 1 in the dual basis as

1 =:
d∑

α=1
µα∆α , (5.9)

where µα ∈ C(a1, . . . , am) are the components of 1 in this basis.
Finally, the global residue of

∣∣∂f/∂z∣∣ p can be calculated by decomposing the remainder
of
∣∣∂f/∂z∣∣ p modulo G with respect to B(∣∣∣∣∂f∂z

∣∣∣∣p)G =:
d∑

α=1

(∣∣∣∣∂f∂z
∣∣∣∣p)

α

eα , (5.10)

and taking its inner product with 1

Res
(∣∣∣∣∂f∂z

∣∣∣∣p) =
〈(∣∣∣∣∂f∂z

∣∣∣∣p)G , 1
〉

=
〈

d∑
α=1

(∣∣∣∣∂f∂z
∣∣∣∣p)

α

eα,
d∑

β=1
µβ∆β

〉
=

d∑
α=1

(∣∣∣∣∂f∂z
∣∣∣∣p)

α

µα .

(5.11)

Therefore, once the universal coefficients µα are determined, I∗p can be computed as

I∗p = Res
(∣∣∣∣∂f∂z

∣∣∣∣p) =
d∑

α=1

(∣∣∣∣∂f∂z
∣∣∣∣p)

α

µα . (5.12)

What about rational functions? Naively, it seems that this method for calculating
the global residue of polynomials cannot extend to rational functions due to the presence
of denominators. However, for most rational functions we can find a polynomial which
will yield the same result when summed over V(I). This is achieved by replacing each
denominator by its polynomial inverse in Q. Explicitly, let us take a rational function
r(z) = p(z)/q(z) where p and q are polynomials, and suppose q does not vanish for any
point in V(I). Since f1, . . . , fn, q have no common zeroes, 1 ∈ 〈f1, . . . , fn, q〉 by Hilbert’s
Weak Nullstellensatz [24] and so we can then find polynomials f̃1, . . . , f̃n, qinv such that

1 = f̃1f1 + . . .+ f̃nfn + qinv q =⇒ qinv q
G = 1 . (5.13)

Once the polynomial inverse qinv is found, one can then compute I∗r as

I∗r = Res
(∣∣∣∣∂f∂z

∣∣∣∣p qinv

)
=

d∑
α=1

(∣∣∣∣∂f∂z
∣∣∣∣p qinv

)
α

µα . (5.14)

To summarise, we have reduced the problem of summing a rational function over the
points in V(I) to finding a Gröbner basis G, the standard basis B, the dual basis B∨ and
polynomial inverses for denominators. For the sake of completeness, we now briefly outline
how to calculate the dual basis and polynomial inverses, as detailed in [16].
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Calculating dual bases. First compute the Gröbner basis G and the standard basis
B = {eα}dα=1 where ≺ is either grlex or grevlex order. Then introduce some auxiliary
variables y1, . . . , yn and define the Bezoutian matrix B for I with components

Bi,j := fi(y1, . . . , yj−1, zj , . . . , zn)− fi(y1, . . . , yj , zj+1, . . . , zn)
zj − yj

. (5.15)

Let G̃ := G
∣∣
z→y. The remainder of detB on division by G ∪ G̃ can be decomposed in the

standard monomial basis as

detBG∪G̃ =:
d∑

α=1
(detB)αeα , (5.16)

where (detB)α ∈ C(a)[y] and y = (y1, . . . , yn). We then find the dual basis B∨ = {∆α}dα=1
with respect to the inner product 〈•, •〉 by the evaluating (detB)α on y = z [27]

∆α = (detB)α(z) . (5.17)

Example 5. Recall from example 2 that G = {z1+ a2
a1
z2, z

2
2− 1

a3
} and B = {e1, e2} := {z2, 1}.

Introducing auxiliary variables y1, y2 the Bezoutian matrix B for I is calculated to be

B =
(
a1 a2
0 a3(z2 + y2)

)
. (5.18)

The remainder of detB on division by G ∪ G̃ expressed in terms of B is given by

detBG∪G̃ = a1a3(z2 + y2) = (a1a3)e1 + (a1a3y2)e2 , (5.19)

from which we read off the dual basis B∨ = {∆1,∆2} := {a1a3, a1a3z2}. Furthermore, since
∆1 = a1a3 is z-independent, it is easy to decompose 1 with respect to the dual basis:

1 = µ1∆1 + µ2∆2 = (a1a3µ2)e1 + (a1a3µ1)e2 , (5.20)

from which the dual basis coefficients are calculated to be µ1 = 1
a1a3

and µ2 = 0.

Calculating polynomial inverses. Suppose we have some polynomial q ∈ C(a)[z]
which shares no common zeroes with f1, . . . , fn. Introduce some auxiliary variable w and
define the ideal J = 〈f1, . . . , fn, wq − 1〉 ⊆ C(a)[w, z1, . . . , zn]. Let ≺ be the block order
that compares the degrees of w first and breaks ties using grlex or grevlex order on z with
z1 � . . . � zn. Then inside G≺(J ) there is a polynomial that is linear in w of the form
w− qinv(z) ∈ G≺(J ) where qinv is the polynomial inverse for q in Q. The following example
builds on example 1.

Example 6. Let I be as in example 1. Suppose we wish to compute the polynomial inverse
for q(z) = z1z2 in Q. Let J = 〈f1, f2, wq − 1〉 ⊆ C(a1, a2, a3)[w, z1, z2] and let ≺ be the
block order described above. Then the Gröbner basis G≺(J ) for J with respect to ≺ contains
the element w + a1a3

a2
from which we can read of the polynomial inverse qinv(z) = −a1a3

a2
.
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Push-forwards. Finally we return to the task of computing (2.18). In particular, there
are some simplifications which occur when using (5.5) to compute (2.18) for top-dimensional
rational differential forms. To this end, consider ωJ = ω

{1,...,n}
J , for J = {j1, . . . , jn}.

Using (5.5) together with (2.19) we find that

I∗ωJ = Res
(∣∣∣∣∂f∂z

∣∣∣∣ωJ) = (−1)n Res
(
ω

∣∣∣∣∂f∂a
∣∣∣∣
J

)
, (5.21)

where ω ∈ C(z) is the rational function prefactor in (2.6) and
∣∣∂f/∂a∣∣

J
is the maximal minor

of the Jacobian matrix ∂f/∂a specified by the columns (j1, . . . , jn). Notice that
∣∣∂f/∂z∣∣

drops out of the global residue. Let ω(z) = p(z)/q(z) where p and q are polynomials such
that q does not vanish for any point in V(I), and let qinv be the polynomial inverse for q.
Then combining (5.21) with (5.14) we obtain the compact formula

I∗ωJ = (−1)n Res
(
p qinv

∣∣∣∣∂f∂a
∣∣∣∣
J

)
= (−1)n

d∑
α=1

(
p qinv

∣∣∣∣∂f∂a
∣∣∣∣
J

)
α

µα . (5.22)

This result is demonstrated in the following example.

Example 7. Recall that in example 1 we showed that the coefficients defined in (2.19)
and (2.18) are given by

ω{1,2} = 0 , ω{1,3} = 1
2a1a3

, ω{2,3} = z2
2a1a3z1

,

and

I∗ω{1,2} = 0 , I∗ω{1,3} = 1
a1a3

, I∗ω{2,3} = − 1
a2a3

,

respectively. Let us re-compute these pushforward coefficients using (5.22). Recall from
example 1 that the Jacobian matrices are

∂f

∂z
=
(
a1 a2
0 2a3z2

)
,

∂f

∂a
=
(
z1 z2 0
0 0 z2

2

)
. (5.23)

Without loss of generality, assume grevlex-order where z1 � z2. In example 5, we found
that µ1 = 1

a1a3
and µ2 = 0, while in example 6 we found that the polynomial inverse for

q(z) = z1z2 in Q is qinv(z) = −a1a3
a2

. Using (5.22), we have that

I∗ω{1,2} =
(
qinv

∣∣∣∣∂f∂a
∣∣∣∣
{1,2}

)
1
µ1 = 0 , (5.24)

I∗ω{1,3} =
(
qinv

∣∣∣∣∂f∂a
∣∣∣∣
{1,3}

)
1
µ1 = − 1

a2
(z1z

2
2)1 = 1

a1a3
, (5.25)

I∗ω{2,3} =
(
qinv

∣∣∣∣∂f∂a
∣∣∣∣
{2,3}

)
1
µ1 = − 1

a2
(z3

2)1 = − 1
a2a3

, (5.26)

in agreement with the result above.
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6 Computational considerations

Thus far we have presented three methods for computing the pushforward of a rational
differential form through some zero-dimensional ideal I = 〈f1, . . . , fn〉 ⊆ C(a)[z] without
needing to explicitly determine its common zeros V(I). In this section we compare the
strengths and weaknesses of these methods from a computational point of view, and we
give suggestions on how some of the bottlenecks can be overcome. To this end, let us briefly
review the steps needed for each method to calculate the pushforward of a rational p-form
ω = ω(z)dzi1 ∧ · · · ∧ dzip through I where ω ∈ C(z). Recall that in (2.19) we defined the
rational functions

ωIJ(z;a) = (−1)p ω(z)
∣∣∣∣[∂f∂z

]−1∂f

∂a

∣∣∣∣I
J

∈ C(a)(z) .

The steps needed to calculate I∗ω are as follows:

(i) Companion Matrices:

(a) Find the Gröbner basis G≺(I).
(b) Find the standard basis B≺(I).
(c) Find the companion matrices Ti.
(d) Evaluate the rational functions ωIJ on the companion matrices.
(e) Take the trace.

(ii) Derivatives of Companion Matrices:

(a) Find the Gröbner basis G≺(I).
(b) Find the standard basis B≺(I).
(c) Find the companion matrices Ti.
(d) Calculate the partial derivatives of companion matrices with respect to a-

variables.
(e) Evaluate the rational function ω on the companion matrices.
(f) Evaluate ∑σ∈Sp sgn(σ)

∂Tiσ(1)
∂aj1

· · ·
∂Tiσ(p)
∂ajp

.
(g) Multiply the results from (ii)e and (ii)f and take the trace.

(iii) Global Duality of Residues:

(a) Find the Gröbner basis G≺(I).
(b) Find the standard basis B≺(I).
(c) Find the dual basis B∨≺(I) using the Bezoutian matrix.
(d) Decompose unity in the dual basis.
(e) Calculate the polynomial inverses den

(
ωIJ
)

inv of the denominators of ωIJ .
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(f) Decompose
∣∣∣∣∂f∂z

∣∣∣∣ den (ωIJ)inv num
(
ωIJ
)G≺(I)

,

in the standard basis.
(g) Take the dot product between the coefficients from (iii)d and (iii)f.

The first thing to note is that all methods require the calculation of a Gröbner basis
G = G≺(I) for I with respect to some monomial order ≺. At this point it is worth noting
that the choice of monomial ordering ≺ can have significant influence on how long this
takes. In practice, graded lexicographic and graded reverse lexicographic ordering are usually
the best choice. For polynomial ideals with rational function coefficients, as in our case, the
calculation of Gröbner bases can be an extremely costly operation, since most Gröbner basis
routines are optimised for implementations over finite fields. This becomes a significant
bottleneck for large ideals, for example for the CHY scattering equations it already becomes
near impossible to find an explicit Gröbner basis for n > 6.

One possible way to significantly speed up the calculation of Gröbner bases is by using
numerical values for the a-variables. The corresponding ideal I(a) is then simply an ideal in
C[z], and the computation of Gröbner basis can now be done much faster, using Faugère’s
F4/F5 Algorithms [28, 29], for example. In this case, Gröbner bases for the scattering
equations can easily be found up to n = 10.

If we follow the above steps using numerical values for a-variables (making use of the
methods described in section section 4 to calculate the derivatives of companion matrices),
then the resulting rational prefactors I∗ωIJ are numeric. There are a number of methods
which can be used to reconstruct the algebraic answer from such numerical sampling.
For example, if we set each aj to a distinct prime number, it is sometimes possible to
reconstruct the algebraic answer using Egyptian fractions from a single evaluation, see for
example section 4 of [13]. This does, however, only work if the rational prefactors are of
a specific form. When this is not known to be the case, we can perform our numerical
sampling over finite fields for which there exist multiple fast Gröbner basis routines. In this
case, the algebraic answer can be obtained using rational reconstruction as implemented
in FiniteFlow [30] and FireFly [31]. However, depending on the degree of the rational
function and the number of variables, rational reconstruction may require many thousands
of evaluations, which can take a significant amount of time.

In addition to these difficulties in calculating Gröbner bases, there are several other
points at which we can encounter computational bottlenecks. The three methods described
above all have their own pros and cons, and therefore this is the point where one has to
consider which of the methods is most appropriate for the task at hand.

The size of the companion matrices is d × d where d = |V(I)| = |B| = dim(Q).
Depending on the size of the variety, the companion matrices can become very large. For
example, the companion matrices for the n-particle CHY scattering equations are of size
(n − 3)! × (n − 3)!. There is a potential bottleneck in evaluating a rational function on
big companion matrices, depending on the complexity of the rational function. This is
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the place where the main difference between methods (i) and (ii) is revealed, since (ii)
only has a single rational function to evaluate whereas (i) will in general have a large list
of functions to evaluate. Furthermore, the rational functions one has to evaluate on the
companion matrices for methods (i) and (ii) differs by a factor of

∣∣[∂f
∂z

]−1 ∂f
∂a

∣∣I
J
. This can in

general be a very unwieldy expression, and can significantly impact the calculation time.
These considerations favour method (ii) over (i), but the method (ii) has some additional
drawbacks. Specifically, it requires us to find the derivatives of companion matrices, and to
evaluate complicated product expressions for them as in point (ii)f. When doing calculations
on numerical data, we have to use the method described in section 4 to find the derivatives
of companion matrices. This requires additional Gröbner basis calculations in a larger ideal,
and, importantly, they have to be done using lexicographic monomial ordering, which takes
significantly longer.

These issues are sidestepped by method (iii), since it does not require us to evaluate a
rational function on large matrices. It does, however, have its own set of limitations. The
first difficulty we can encounter is in finding the dual basis B∨. As explained in section 5,
to calculate the dual basis we first have to find the Bezoutian matrix B, which is of size
n × n (where n indicates the number of functions that generate our ideal). Finding B

and its determinant detB is not too difficult, however finding the remainder of detB with
respect to G ∪ G̃ can be a time intensive task. The second drawback of this method is in
calculating the polynomial inverse den

(
ωIJ)inv. This again requires an additional Gröbner

basis calculation of a slightly larger ideal, which, as stressed before, can be quite time
intensive. One simplification occurs when calculating the pushforward of a top-form:

(−1)p ω(z)
∣∣∣∣∂f∂z

∣∣∣∣ ∣∣∣∣[∂f∂z
]−1∂f

∂a

∣∣∣∣
J

= (−1)p ω
∣∣∣∣∂f∂a

∣∣∣∣
J
, (6.1)

and the resulting rational function whose remainder we have to decompose in B is much
simpler. Now only the polynomial inverse of the denominator of ω needs to be calculated.
Indeed, if ω is a polynomial top-form, then no polynomial inverses have to be calculated
at all!

7 Examples

7.1 ABHY associahedron and Bi-adjoint φ3 Amplitudes

In this section we will use the methods developed in this paper to derive formulae for the
ABHY associahedron canonical form from which we can subsequently find formulae for
bi-adjoint φ3 amplitudes.

The starting point for our discussion are the original Cachazo-He-Yuan (CHY) scattering
equations [7]. They are a universal system of equations which connect the moduli space of
the n-punctured Riemann sphere to the kinematic space Kn which governs the scattering
of n massless particles. The moduli space is parametrized by the positions of n-punctures
z1, . . . , zn modulo an SL(2,C) symmetry. The kinematic space Kn is spanned by linearly
independent Mandelstam variables in d ≥ n− 1 dimensions. Given any set of particle labels
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A ∈
([n]
`

)
, where ` = 1, . . . , n− 3, the Mandelstam variable sA is defined by

sA :=
(∑
i∈A

ki
)2

=
∑
i<j∈A

sij , sij := (ki + kj)2 = 2ki · kj , (7.1)

where kµi are n massless momenta satisfying momentum conservation ∑n
i=1 k

µ
i = 0. The

dimensionality of Kn is [18]

dimKn =
(
n

2

)
− n = n(n− 3)

2 . (7.2)

Of special interest to us are the planar Mandelstam variables which are defined by

Xi,j := si,i+1,...,j−1 , (7.3)

where 1 ≤ i < j ≤ n and which vanish identically when j = i + 1 or (i, j) = (1, n). Let
us denote the set of non-vanishing planar Mandelstam variables by Xn of which there are
precisely n(n− 3)/2. Then Xn furnishes a natural basis for Kn since each two-particle
Mandelstam variable can be expanded in terms of Xn via

si,j = Xi,j+1 +Xi+1,j −Xi,j −Xi+1,j+1 . (7.4)

We will sometimes use the notation aj to denote the jth non-vanishing planar Mandelstam
variable where

Xi,j = a(i−1)n+j+δi,1−(i+2
2 ) , (7.5)

and a = (a1, . . . , a|Xn|). In [32], Dolan and Goddard showed that the scattering equations
can be recast in polynomial form using the polynomials

h` :=
∑

A∈( [n]
`+1)

sAzA , (7.6)

where zA := ∏
i∈A zi for ` = 1, . . . , n− 3. Throughout this section, we will use the SL(2,C)

symmetry of the scattering equations to fix z1 → 0, zn−1 → 1, zn → ∞, in which case
we obtain

f` := lim
zn→∞

h`
zn

∣∣∣∣
z1→0 , zn−1→1

. (7.7)

In terms of these gauge-fixed polynomials, the scattering equations define the following ideal

In := 〈f1, . . . , fn−3〉 ⊆ Q(Xn)[z] , (7.8)

where z = (z2, . . . , zn−2).
For the above choice of gauge fixing, the n-particle world-sheet Parke-Taylor form is

the (n− 3)-form

ωWS
n := − dz2 ∧ · · · ∧ dzn−2

z2(z2 − z3) · · · (zn−2 − 1) . (7.9)
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It was shown in [18] that the canonical form of the so-called ABHY associahedron can be
expressed as the pushforward of ωWS

n through the scattering equations:

ωABHY
n = In∗ωWS

n . (7.10)

It was further shown in [18] that the n-point bi-adjoint φ3 amplitude can be extracted from
ωABHY
n by pulling it back to an (n− 3)-dimensional subspace defined by the relations

ci,j = Xi,j +Xi+1,j+1 −Xi+1,j −Xi,j+1 , (7.11)

for every non-adjacent pair of indices 1 ≤ i < j ≤ n− 1 where ci,j are positive constants.
These relations can be used to solve for Xi>1,j in terms of X1,3, . . . , X1,n−1:

Xi>1,j = X1,j −X1,i+1 + Ci,j , (7.12)

where Ci,j := ∑i−1
r=1

∑j−1
s=i+1 cr,s is a positive constant. Let us use bi = X1,i to enumerate

the coordinates which parametrise the subspace onto which we pull back. The n-point
scattering amplitude mn can then be calculated as [18]

J ∗nωABHY
n = mn

n−1∧
k=3

dbk , (7.13)

where the ideal through which we pull back is given by

Jn = 〈Xi,j − gi,j(b) : Xi,j ∈ Xn〉 ⊆ Q(b)[z] , (7.14)

with b = (b3, . . . , bn−1), g1,i(b) = bi and gi>1,j(b) = bj − bi+1 + Ci,j .
Using the notation of (2.17), we can express the pushforward in (7.10) as

ωABHY
n = In∗ωWS

n =
∑

J∈([|Xn|]
n−3 )

In∗ωJ
∧
j∈J

daj , (7.15)

where the coefficients ωJ(z) are calculated according to (2.19) as

ωJ(z) = (−1)n
z2(z2 − z3) · · · (zn−2 − 1)

∣∣∣∣∂f∂z
∣∣∣∣−1 ∣∣∣∣∂f∂a

∣∣∣∣
J
. (7.16)

The pushforward can then be evaluated using the methods highlighted in sections 3 and 5
to sum ωJ(z) over V(In). We can also combine (7.13) with (7.10) to obtain the following
formula for mn:

mn

n−1∧
k=3

dbk = J ∗nωABHY
n = J ∗n

(
In∗ωWS

n

)
= (J ∗nIn)∗An

n−1∧
k=3

dbk , (7.17)

where

An(z; b) :=
∑

J∈([|Xn|]
n−3 )

J ∗nωJ(z)
∣∣∣∣∂g∂b

∣∣∣∣J

= (−1)n
z2(z2 − z3) · · · (zn−2 − 1)

∣∣∣∣∂(J ∗nf)
∂z

∣∣∣∣−1 ∑
J∈([|Xn|]

n−3 )

∣∣∣∣∂f∂a
∣∣∣∣
J

∣∣∣∣∂g∂b
∣∣∣∣J

= (−1)n
z2(z2 − z3) · · · (zn−2 − 1)

∣∣∣∣∂(J ∗nf)
∂z

∣∣∣∣−1 ∣∣∣∣∂(J ∗nf)
∂b

∣∣∣∣ ,
(7.18)
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is a rational function in Q(b)(z),

J ∗n f` = f`|Xi,j→gi,j(b) , (7.19)

is the pullback of the polynomial f` through Jn, and

J ∗nIn := 〈J ∗n f1, . . . ,J ∗n fn−3〉 ⊆ Q(b)[z] , (7.20)

is the ideal generated by the polynomials J ∗n f1, . . . ,J ∗n fn−3. The last equality in (7.18)
follows from the simplification

∑
J∈([|Xn|]

n−3 )

∣∣∣∣∂(J ∗nf)
∂a

∣∣∣∣
J

∣∣∣∣∂g∂b
∣∣∣∣J =

∣∣∣∣∂(J ∗nf)
∂b

∣∣∣∣ . (7.21)

The final expression in (7.18) essentially means that, at least in this case, the pullback and
pushforward are ‘associative’ in the sense that J ∗(I∗ ω) = (J ∗I)∗ω. From the polynomial
scattering equations one can show that

∣∣∣∣∂(J ∗nf)
∂b

∣∣∣∣ = (−1)n+1
n−3∏
i=1

n−1∏
j=i+2

(zi − zj) , (7.22)

with z1 = 0 and zn−1 = 1, which is independent of b. To find the coefficient mn of
db3 ∧ · · · ∧ dbn−1 in (7.17) one has to sum An over V(J ∗nIn)

mn =
∑

ξ∈V(J ∗nIn)
An(ξ) , (7.23)

which gives a rational function in b and Ci,j . We can then re-express mn as a rational
function in Xi,j by re-substituting bi → X1,i and Ci,j → Xi,j + X1,i+1 −X1,j . The latter
result can also be achieved by replacing |∂(J ∗nf)/∂z| with |∂f/∂z| in An and instead
summing over V(In) to produce the following formula for mn:

mn =
∑

ξ∈V(In)
A′n(ξ), (7.24)

where

A′n(z) = −
∣∣∣∣∂f∂z

∣∣∣∣−1 ∏n−3
i=1

∏n−1
j=i+2(zi − zj)

z2(z2 − z3) · · · (zn−2 − 1) , (7.25)

is a rational function in Q(Xn)(z).
We conclude this part by noticing that the formula (7.24) looks remarkably similar to

the CHY formula for the n-point amplitude scattering amplitudes in bi-adjoint φ3 theory
from [33]. As we will show shortly, the two formulae are in fact identical, and their apparent
differences come from the different formulations of the scattering equations. Indeed, we can
find a new CHY-like formula for bi-adjoint φ3 amplitudes for each equivalent form of the
scattering equations. Specifically, if the functions h1, . . . , hn−3 have the same common zeroes
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as the scattering equations, then using the associativity of the pullback and pushforward,
we can find the following CHY summand:

An(z) := (−1)n
(z1 − z2)(z2 − z3) · · · (zn − z1)

∣∣∣∣∂h∂z
∣∣∣∣−1 ∣∣∣∣∂(J ∗nh)

∂b

∣∣∣∣ /SL(2)z, (7.26)

where the SL(2)z instructs us to fix the position of three of the z’s. The amplitude is then
found as

mn =
∑

ξ∈V(In)
An(ξ) , (7.27)

where In is now the ideal generated by the polynomial scattering equations with the
appropriate gauge fixing. To make the connection to the standard CHY formula, let
us define

h̃a :=
∑
b 6=a

sab
za − zb

, a = 1, . . . , n , (7.28)

to be the original CHY scattering equations [7]. Only n − 3 of these equations are
independent, and we can thus remove any 3 of these equations, say h̃q, h̃r, and h̃s. Explicit
calculation yields∣∣∣∣∣∂(J ∗n h̃)

∂b

∣∣∣∣∣
[n]\{q,r,s}

= (−1)n+q+r+s+1 (zq − zr)(zr − zs)(zs − zq)
(z1 − z2)(z2 − z3) · · · (zn − z1) , (7.29)

and equation (7.26) turns into the standard CHY summand. We thus see that from this
point of view, the fundamental quantity in the CHY summand is only a single Parke-Taylor
factor multiplied by Jacobians that depend on the specific form of the scattering equations,
which may or may not yield a second Parke-Taylor form. As noted before, for polynomials ha
we can apply the method of global residues (section 5) using these equations, in which case
the Jacobian |∂h/∂z|−1 drops out of the calculation. It would be interesting to see if one can
use the results of this paper to derive similar formulae for other CHY-constructable theories.

To illustrate the results from this section, we will explicitly compute ωABHY
n and mn

for n = 4 and n = 5.

Four-points. The n = 4 scattering equations are expressed via a single polynomial f1 =
X1,3−(X1,3+X2,4)z2 which defines the ideal I4 = 〈f1〉 ⊆ Q(X4)[z2] where X4 = {X1,3, X2,4}.
In this case, the associated variety is trivially found to be

V(I4) =
{

X1,3
X1,3 +X1,4

}
. (7.30)

We are interested in calculating the pushforward of

ωWS
4 = − dz2

z2(z2 − 1) , (7.31)
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through I4 which can be expressed as

ωABHY
4 = I4∗ω

WS
4 = (I4∗ω{1}) dX1,3 + (I4∗ω{2}) dX2,4 , (7.32)

where

ω{1}(z2) = 1
z2(X1,3 +X2,4) , ω{2}(z2) = 1

(z2 − 1)(X1,3 +X2,4) . (7.33)

Here the subscripts {1} and {2} refer to the labelling of the planar Mandelstam variables
(a1, a2) = (X1,3, X2,4). Using (7.30), we find by direct computation that

I4∗ω{1} = 1
X1,3

, I4∗ω{2} = − 1
X2,4

, (7.34)

and hence

ωABHY
4 = dX1,3

X1,3
− dX2,4

X2,4
, (7.35)

in agreement with the known result. To extract the four-point scattering amplitude m4,
we pull ωABHY

4 back through the ideal J4 = 〈X1,3 − g1,3(b3), X2,4 − g2,4(b3)〉 ⊆ Q(b3)[X4]
where b3 = X1,3, g1,3(b3) = b3 and g2,4(b3) = C2,4 − b3, to obtain

J ∗4 ωABHY
4 = m4db3 . (7.36)

Consequently

m4 = J ∗4 (I4∗ω{1})
∣∣∣∣ ∂g∂b3

∣∣∣∣
{1}

+ J ∗4 (I4∗ω{2})
∣∣∣∣ ∂g∂b3

∣∣∣∣
{2}

= 1
b3

+ 1
C2,4 − b3

. (7.37)

Re-substituting b3 → X1,3 and C2,4 → X1,3 + X2,4 we then recognise the four-point
scattering amplitude

m4 = 1
X1,3

+ 1
X2,4

. (7.38)

Five-points. The above example was trivial since the variety was one-dimensional and
easy to determine by inspection. The case when n = 5 is comparatively more involved and
we will calculate ωABHY

5 and m5 using the method introduced in section 5 which leverages
the global duality of residues.

The n = 5 scattering equations are expressed via the polynomials

f1 = −(X1,3 +X2,5 −X3,5)z2 + (X1,3 −X1,4 −X3,5)z3 +X1,4 ,

f2 = −(X1,4 −X2,4 +X2,5)z2z3 − (X1,3 −X1,4 +X2,4)z2 +X1,3z3 ,
(7.39)

where we will sometimes label (a1, a2, a3, a4, a5) = (X1,3, X1,4, X2,4, X2,5, X3,5). These
polynomials generate the ideal I5 = 〈f1, f2〉 ⊆ Q(X5)[z] where z = (z2, z3). By pushing

ωWS
5 = − dz2 ∧ dz3

z2(z2 − z3)(z3 − 1) , (7.40)
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forward through I5 we obtain

ωABHY
5 = I5∗ω

WS
5 =

∑
J={j1,j2}∈([5]

2 )
I5∗ω{j1,j2} daj1 ∧ daj2 , (7.41)

where ωJ are calculated according to (2.19) as

ωJ(z) = − 1
z2(z2 − z3)(z3 − 1)

∣∣∣∣∂f∂z
∣∣∣∣−1 ∣∣∣∣∂f∂a

∣∣∣∣
J
. (7.42)

Explicitly,

ωJ(z) =
(1− z2

z2
, 1,−1, z2 − z3

z2(1− z3) ,
1− z3
z3 − z2

, 1,−1, z2
z3 − z2

, 1, z3
1− z3

) ∣∣∣∣∂f∂z
∣∣∣∣−1

, (7.43)

where ∣∣∣∣∂f∂z
∣∣∣∣ =(X1,4 −X2,4)(X1,4 +X3,5)−X1,3(2X1,4 −X2,4 +X2,5) (7.44)

+ (X1,4 −X2,4 +X2,5) (z2X2,5 + (z2 + z3)(X1,3 −X3,5)− z3X1,4) .

We will sum ωJ functions over all points in V(I5) using the methods introduced in section 5.
For the readers convenience, we will explicitly follow the steps outlined in section 6.

(iii)a Choosing grevlex ordering with z2 � z3, we calculate the Gröbner basis to be

G := Ggrevlex(I5) = (7.45) z2 + (z3−1)X1,4+z3(X3,5−X1,3)
X1,3+X2,5−X3,5

,

z2
3 − 2z3 + z3X2,5

X1,4−X2,4+X2,5
− z3X3,5

X1,3−X1,4−X3,5
− z3X1,3X2,4−X1,4(X1,3−X1,4+X2,4)

(X1,4−X2,4+X2,5)(X1,3−X1,4−X3,5)

 .
(iii)b The leading monomials of polynomials in the Gröbner basis are {z2

3 , z2}, and hence the
standard basis of Q := Q(X5)[z]/I5 is given by B := Bgrevlex(I5) = {e1, e2} := {z3, 1}.

(iii)c The dual basis is given by B∨ := B∨grevlex(I5) = {∆1,∆2} where

∆1 = (X1,4 −X2,4 +X2,5)(X1,3 −X1,4 −X3,5) , (7.46a)
∆2 = (z3 − 1)∆1 −X1,4(X1,3 −X1,4 +X2,4)−X2,5X3,5 , (7.46b)

are calculated using (5.17).

(iii)d Since ∆1 is constant with respect to z, the coefficients of the decomposition of unity
in terms of the dual basis B∨ is given by 1 = µ1∆1 + µ2∆2 where µ1 = 1/∆1 and
µ2 = 0.

(iii)e Having determined G, B, B∨ and ∆1,2, we now need to compute the polynomial
inverses of the denominators

ωJ

∣∣∣∣∂f∂z
∣∣∣∣ = − 1

z2(z2 − z3)(z3 − 1)

∣∣∣∣∂f∂a
∣∣∣∣
J
, (7.47)
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where the Jacobian
∣∣∂f
∂z

∣∣ cancels the inverse Jacobian present in ωJ as seen in (7.43).
There are only three distinct denominators: z2, 1− z3 and z3 − z2. Their polynomial
inverses are evaluated using the procedure described in section 5 and are given by

(z2)inv =X1,3(2X1,4−X2,4+X2,5)+X1,4(X2,5−X3,5)+X2,4X3,5−z2∆′
X1,3X1,4

, (7.48a)

(1− z3)inv =X1,3X1,4+X1,4X2,5+X2,5X3,5−z2∆′
X2,5X3,5

, (7.48b)

(z3 − z2)inv= (X1,4+X2,5)(X1,3(X1,4+X2,5)−z2∆′)−X2,4X2,5(X1,3−X1,4−X3,5)
X1,4X2,4X2,5

. (7.48c)

where

∆′ = (X1,3 +X2,5 −X3,5)(X1,4 −X2,4 +X2,5) . (7.49)

(iii)f Since µ2 = 0, we only need the coefficient of ωJ
∣∣∂f/∂z∣∣ (with denominator factors

replaced with their polynomial inverses) modulo G multiplying e1 = z3. In particular,
we find that

{1, 2} :
(
(1− z2)(z2)inv

G)
1

=− ∆1
X1,3X1,4

, (7.50a)

{1, 5} :
(
(z2 − z3)(z2)inv(1− z3)inv

G)
1
= + ∆1

X1,3X3,5
, (7.50b)

{2, 3} :
(
(1− z3)(z3 − z2)inv

G)
1

=− ∆1
X1,4X2,4

, (7.50c)

{3, 4} :
(
z2(z3 − z2)inv

G)
1

=− ∆1
X2,4X2,5

, (7.50d)

{4, 5} :
(
z3(1− z3)inv

G)
1

=− ∆1
X2,5X3,5

, (7.50e)

while the relevant coefficients for non-cyclic subsets J ∈
([5]

2
)
vanish since

(
±1G

)
1 = 0.

(iii)g Combining everything together, multiplying the expressions in (7.50) by µ1 = 1
∆1

, we
finally obtain

ωABHY
5 = (7.51)

−dX1,3∧dX1,4
X1,3X1,4

+ dX1,3∧dX3,5
X1,3X3,5

−dX1,4∧dX2,4
X1,4X2,4

−dX2,4∧dX2,5
X2,4X2,5

−dX2,5∧dX3,5
X2,5X3,5

,

which agrees with the known result.

Having computed ωABHY
5 , we can now extract five-point amplitude m5 by pulling (7.51)

back to the appropriate subspace. Alternatively, we can use (7.24):

m5 =
∑

ξ∈V(I5)
A′5(ξ) , (7.52)

where

A′5(z) = (1− z2)z3
z2(z2 − z3)(z3 − 1)

∣∣∣∣∂f∂z
∣∣∣∣−1

. (7.53)
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We will again calculate I5∗A
′
5 using the duality of global residues which means that we

can reuse the dual basis in (7.46) and the polynomial inverses in (7.48). To evaluate (7.52)
using (5.14) we first compute(

(1− z2)z3(z2)inv(z2 − z3)inv(z3 − 1)inv
G)

1
= (7.54)

∆1

[
1

X1,3X1,4
+ 1
X1,4X2,4

+ 1
X2,4X2,5

+ 1
X1,3X3,5

+ 1
X2,5X3,5

]
.

which when multiplied by µ1 = 1/∆1 gives the correct five-point amplitude

m5 =
∑

ξ∈V(I5)
A5(ξ) = 1

X1,3X1,4
+ 1
X1,4X2,4

+ 1
X2,4X2,5

+ 1
X1,3X3,5

+ 1
X2,5X3,5

. (7.55)

7.2 Momentum amplituhedron meets ABHY associahedron

As the second application of our methods, in this section we consider examples of pushfor-
wards of rational differential forms which are not top-dimensional. Our examples are taken
from [34]; this paper explores a remarkable connection between the canonical forms of the
ABHY associahedron and the momentum amplituhedron. In these examples, there are a
number of different spaces and maps involved which we will define below.

The momentum amplituhedron Mn,k, which is defined for 2 ≤ k ≤ n − 2 ≥ 2, is a
positive geometry whose canonical form Ωn,k := Ω(Mn,k) encodes the n-particle Nk − 2MHV
superamplitude for so-called N = 4 supersymmetric Yang-Mills (SYM) theory, expressed
in terms of spinor-helicity variables [19]. The momentum amplituhedron form Ωn,k is a
top-form onMn,k where the latter is a particular (2n−4)-dimensional region inside on-shell
space On. On-shell space is the space of spinor-helicity variables. It is parametrized by two
real 2× n matrices (λ, λ̃), each of which is understood modulo SL(2;R), and together they
satisfy momentum conservation λ · λ̃T = 02×2. Therefore dim(On) = 4n− 10.

There is a well-known scaling of spinor-helicity variables induced by the following torus
action of the little group

λi 7→ tiλi , λ̃i 7→ t−1
i λ̃i , (7.56)

where t = (t1, . . . , tn) ∈ Rn>0. On-shell space On modulo this torus action defines a (3n−10)-
dimensional space called the little group (LG) invariant space Ln. One of the simplest ways
to parametrize Ln is to first focus on λ (a real 2× n matrix), to use the SL(2) symmetry to
fix 3 of its degrees of freedom, and to use the torus action to rescale each of its columns
independently so that each column contains a 1. Consequently λ is parametrized by n− 3
variables and gives a chart for the real-slice of the moduli space of the n-punctured Riemann
sphere. One explicit realization of this parametrization was eluded to in the previous section,
but in this section we will instead use the realization given by Fock-Goncharov (FG) [35]:

λ =
(

0 1 1 1 1 · · · 1
−1 0 1 1 + z1 1 + z1 + z1z2 · · · 1 + z1 + . . .+ z1z2 · · · zn−3

)
, (7.57)

where λ ∈ Mat2,n(Q[z1, . . . , zn−3]). We can then fix λ̃ (another real 2×nmatrix) by using the
SL(2) symmetry to fix 3 degrees of freedom and to remove another 4 degrees of freedom by
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imposing momentum conservation. Consequently λ̃ is parametrized by 2n− 7 variables, call
them zn−2, . . . , z3n−10 (in addition to the n−3 FG variables). Moreover, it is always possible
to choose the SL(2) transformation such that λ̃ ∈ Mat2,n(Q[z1, . . . , z3n−10]). We will refer to
this type of parametrization for Ln as the extended Fock-Goncharov (eFG) parametrization.

In [34], the authors defined the reduced momentum amplituhedron form ωn,k. It is
obtained from the momentum amplituhedron form Ωn,k via the pullback given by the
torus action:

Ωn,k|(7.56) = Ω (RPn) ∧ ωn,k +O
(
dn−2t

)
, (7.58)

where

Ω(RPn) =
n∑
i=1

(−1)n−id log t1 ∧ . . . ∧ d log ti−1 ∧ d log ti+1 ∧ . . . ∧ d log tn , (7.59)

is the canonical form on real projective space RPn and O(dn−2t) denotes terms with
sub-leading degree in dt. By definition, ωn,k is defined on Ln and is an (n− 3)-form.

There is a natural set of equations, defined in [34], which relates Ln to a particular
subvariety of the kinematic space of n-particle Mandelstam invariants called the Gram-
determinant subvariety Gn. Its definition is not important to our discussion, but can be found
in [34]. Importantly, any chart for Gn can be expressed in terms of any (3n− 10)-element
subset of n-particle planar Mandelstam variables. Let

X̃n :=
{
X̃i,j : (i, j) ∈ Gn

}
, (7.60)

for some choice of indexing set Gn containing 3n − 10 non-adjacent pairs (i, j) where
1 ≤ i < j ≤ n. We use tildes to distinguish the variables parametrizing Gn from those
parametrizing Kn for convenience. Then the ideal

IL→G
n :=

〈
X̃i,j −

∑
i≤i′<j′<j

〈i′j′〉[i′j′] : (i, j) ∈ Gn
〉
⊆ Q(X̃n)[z1, . . . , z3n−10] , (7.61)

where the spinor-helicity brackets are evaluated on the eFG parametrization of Ln, defines
a map from a chart of Ln to a chart of Gn. This ideal is generically zero-dimensional as we
will see in examples.

Coming from the other side, there is also a natural set of equations which relates
the kinematic space of n-particle Mandelstam invariants Kn to this Gram-determinant
subvariety Gn. They are given by the so-called Gram-determinant conditions. Again,
the details are not important to our discussion, but can be found in [34]. These Gram-
determinant conditions define another generically zero-dimensional ideal which we denote
by IK→G

n ⊆ Q(X̃n)[Xn].
In [34], the authors showed that

1
|VL→G
n |

IL→G
n∗

n−2∑
k=2

ωn,k = 1
|VK→G
n |

IK→G
n∗ ωABHY

n , (7.62)

where VL→G
n and VK→G

n denote the complex affine varieties associated with IL→G
n and

IK→G
n , respectively. We will now proceed to verify this result in examples using some of the

methods developed in this paper.
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Four-points. Our first and simplest example occurs when n = 4. Since the dimen-
sions of L4 and G4 are the same, X4 = {X1,3, X2,4} and X̃4 = {X̃1,3, X̃2,4}. Consequently
IK→G

4 = 〈X1,3 − X̃1,3, X2,4 − X̃2,4〉 [34] and its variety is trivially VK→G
4 = {(X̃1,3, X̃2,4)}.

Using the following eFG parametrization for L4

λ =
(

0 1 1 1
−1 0 1 1 + z1

)
, λ̃ =

(
z2 −z2 z2 0

z1 + 1 −1 0 1

)
, (7.63)

we have that IL→G
4 = 〈X̃1,3 − z1z2, X̃2,4 − z2〉 and its associated variety is easily shown to

be VL→G
4 = {( X̃1,3

X̃2,4
, X̃2,4)}.

For n = 4, the only valid value for k is k = 2, and the reduced momentum amplituhedron
form written in terms of the above eFG-variables is given by [34]

ω4,2 = d log 〈12〉〈34〉
〈14〉〈23〉 = d log z1 , (7.64)

while the ABHY canonical form for n = 4 is given by (7.35)

ωABHY
4 = d log X1,3

X2,4
.

Since the varieties of interest both contain a single point, it is easy to evaluate the relevant
pushforwards via direct substitution to confirm (7.62):

IL→G
4∗ ω4,2 = ωABHY

4

∣∣∣
X→X̃

= IK→G
4∗ ωABHY

4 . (7.65)

Five-points. For n = 5 we have the following two reduced momentum amplituhe-
dron forms

ω5,2 = d log 〈12〉〈34〉
〈14〉〈23〉 ∧ d log 〈13〉〈45〉

〈15〉〈34〉 , ω5,3 = d log [12][34]
[14][23] ∧ d log [13][45]

[15][34] , (7.66)

defined on L5 and the following ABHY associahedron form (7.51)

ωABHY
5 = dX1,3∧dX1,4

X1,3X1,4
+ dX1,4∧dX2,4

X1,4X2,4
+ dX2,4∧dX2,5

X2,4X2,5
+ dX2,5∧dX3,5

X2,5X3,5
−dX1,3∧dX3,5

X1,3X3,5
,

defined on K5. In order to push forward the latter onto G5, we first note that X5 and X̃5
have the same size since 3× 5− 10 = 5 = 5(5−3)

2 :

X5 = {X1,3, X1,4, X2,4, X2,5, X3,5} , X̃5 = {X̃1,3, X̃1,4, X̃2,4, X̃2,5, X̃3,5} =: {ai}5i=1 .

(7.67)

In this case, the ideal of maps from K5 to G5 is given by [34]

IK→G
5 =

〈
X1,3 − X̃1,3, X1,4 − X̃1,4, X2,4 − X̃2,4, X2,5 − X̃2,5, X3,5 − X̃3,5

〉
, (7.68)

and its variety is simply

VK→G
5 =

{(
X̃1,3, X̃1,4, X̃2,4, X̃2,5, X̃3,5

)}
. (7.69)
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Consequently

IK→G
5∗ ωABHY

5 = ωABHY
5

∣∣∣
X→X̃

. (7.70)

On the other hand, if we parametrize L5 with the following eFG variables

λ =
(

0 1 1 1 1
−1 0 1 1 + z1 1 + z1(1 + z2)

)
, λ̃ =

(
z3 + (1 + z1)z4 −z3 − z4 z3 z4 0

1 + z1(1 + z2) + z5 −1− z5 z5 0 1

)
,

(7.71)

then the ideal of maps from L5 to G5 is given by

IL→G
5 =

{
X̃1,3 − z1((z2 + 1)z3 + (z2 − z5)z4),

X̃1,4 − z1z2z4, X̃2,4 − z3 + z4z5, X̃2,5 − z3 − (z1 + 1)z4, X̃3,5 + z1z4z5
}
.

(7.72)

Its corresponding set of common zeros contains the following two algebraic solutions involving
square roots:

VL→G
5 = (7.73)

z1 = ±
√

∆−X̃1,3(X̃2,4−X̃2,5)−X̃1,4(X̃2,5−X̃3,5)−X̃2,4X̃3,5

2X̃2,4(X̃1,4−X̃2,4+X̃2,5) ,

z2 = ±
√

∆+X̃1,3(X̃2,4−X̃2,5)+X̃1,4(X̃2,5+X̃3,5)−X̃2,4X̃3,5

2X̃2,5X̃3,5
,

z3 = ∓
√

∆+X̃1,3(X̃2,4+X̃2,5)−X̃1,4(X̃2,5−X̃3,5)−X̃2,4X̃3,5

2X̃1,3
,

z4 = (X̃1,4−X̃2,4)(∓
√

∆+X̃1,3(X̃2,4+X̃2,5)−X̃1,4(X̃2,5−X̃3,5)−X̃2,4X̃3,5)+2X̃1,3X̃2,4X̃2,5

2X̃1,3(X̃1,3−X̃1,4+X̃2,4) ,

z5 = ∓
√

∆−X̃1,3(X̃2,4−X̃2,5)−X̃1,4(X̃2,5+X̃3,5)+X̃2,4X̃3,5

2X̃1,4X̃2,5


,

where

∆ =
(
X̃1,3X̃2,4 − X̃1,3X̃2,5 + X̃1,4X̃2,5 − X̃1,4X̃3,5 + X̃2,4X̃3,5

)2
(7.74)

+ 4X̃1,3X̃2,4X̃3,5
(
X̃1,4 − X̃2,4 + X̃2,5

)
.

The presence of the square roots in VL→G
5 makes it extremely difficult to directly compute

the pushforwards of ω5,2 and ω5,3 via IL→G
5 . Instead of performing these pushforwards

directly, we will use the methods introduced in section 4. For the reader’s convenience, we
will explicitly follow the steps outlined in section 6 under method (ii).

(ii)a Choosing lex ordering with z1 � . . . � z5, the Gröbner basis is calculated to be

G := Glex
(
IL→G

5

)
= (7.75)

z1 + (1+z5)X̃1,4X̃2,5+X̃1,3(X̃2,4−X̃2,5)
X̃2,4(X̃1,4−X̃2,4+X̃2,5) ,

z2 + z5X̃1,4
X̃3,5

,

z3 − z5X̃1,4X̃2,5+X̃1,3X̃2,4+X̃1,4X̃3,5−X̃2,4X̃3,5
X̃1,3

,

z4 −
z5X̃1,4X̃2,5(X̃1,4−X̃2,4)+X̃3,5(X̃1,4−X̃2,4)2+X̃1,3X̃2,4(X̃1,4−X̃2,4+X̃2,5)

X̃1,3(X̃1,3−X̃1,4+X̃2,4) ,

z2
5 + z5(X̃1,3(X̃2,4−X̃2,5)−X̃2,4X̃3,5+X̃1,4(X̃2,5+X̃3,5))−(X̃1,3−X̃1,4+X̃2,4)X̃3,5

X̃1,4X̃2,5


.
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(ii)b By inspecting the leading monomials of polynomials in the Gröbner basis, we immedi-
ately write down the standard basis of Q := Q(X̃5)[z1, . . . , z5]/IL→G

5 which is given
by B := Blex(IL→G

5 ) = {z5, 1}.

(ii)c Next, we determine the companion matrices of IL→G
5 to be

T1 =

− (X̃2,4−X̃1,4)X̃3,5
X̃2,4(X̃1,4−X̃2,4+X̃2,5) − (X̃1,3−X̃1,4+X̃2,4)X̃3,5

X̃2,4(X̃1,4−X̃2,4+X̃2,5)

− X̃1,4X̃2,5
X̃2,4(X̃1,4−X̃2,4+X̃2,5) −

X̃1,3X̃2,4−X̃1,3X̃2,5+X̃1,4X̃2,5
X̃2,4(X̃1,4−X̃2,4+X̃2,5)

 , (7.76a)

T2 =

 X̃1,3(X̃2,4−X̃2,5)−X̃2,4X̃3,5+X̃1,4(X̃2,5+X̃3,5)
X̃2,5X̃3,5

− X̃1,3−X̃1,4+X̃2,4
X̃2,5

− X̃1,4
X̃3,5

0

 , (7.76b)

T3 =

(1− X̃1,4
X̃1,3

)X̃2,5
(X̃1,3−X̃1,4+X̃2,4)X̃3,5

X̃1,3
X̃1,4X̃2,5
X̃1,3

X̃2,4 + (X̃1,4−X̃2,4)X̃3,5
X̃1,3

 , (7.76c)

T4 =

 X̃1,4X̃2,5
X̃1,3

(X̃1,4−X̃2,4)X̃3,5
X̃1,3

X̃1,4(X̃1,4−X̃2,4)X̃2,5
X̃1,3(X̃1,3−X̃1,4+X̃2,4)

X̃3,5(X̃1,4−X̃2,4)2+X̃1,3X̃2,4(X̃1,4−X̃2,4+X̃2,5)
X̃1,3(X̃1,3−X̃1,4+X̃2,4)

 , (7.76d)

T5 =

 X̃1,3(X̃2,5−X̃2,4)+X̃2,4X̃3,5−X̃1,4(X̃2,5+X̃3,5)
X̃1,4X̃2,5

(X̃1,3−X̃1,4+X̃2,4)X̃3,5
X̃1,4X̃2,5

1 0

 , (7.76e)

from which one can easily calculate their derivatives with respect X̃5, as explained
in (ii)d.

For the remainder of the steps in method (ii), we will specialize to ω5,2; the computation
for ω5,3 yields the same result [34]. In terms of the eFG variables introduced above, ω5,2 is
expressed as

ω5,2 = d log z1 ∧ d log z2 = ω(z)dz1 ∧ dz2, where ω(z) = 1
z1z2

. (7.77)

(ii)e Evaluating ω on companion matrices yields

ω(T ) =

 X̃2,5
X̃1,3

(X̃1,4−X̃2,4)X̃3,5
X̃1,3X̃1,4

(X̃1,4−X̃2,4)X̃2,5
X̃1,3(X̃1,3−X̃1,4+X̃2,4)

X̃3,5(X̃1,4−X̃2,4)2+X̃1,3X̃2,4(X̃1,4−X̃2,4+X̃2,5)
X̃1,3X̃1,4(X̃1,3−X̃1,4+X̃2,4)

 . (7.78)

(ii)f For each 2-element subset J = {j1, j2} ∈
([5]

2
)
we compute∑

σ∈S2

∂Tσ(1)
∂aj1

∂Tσ(2)
∂aj2

.

For example, for J = {1, 2} we have

∑
σ∈S2

∂Tσ(1)
∂a1

∂Tσ(2)
∂a2

=

 1
X̃2,4(X̃1,4−X̃2,4+X̃2,5) 0

X̃2,4−X̃2,5
X̃2,4(X̃1,4−X̃2,4+X̃2,5)X̃3,5

0

 . (7.79)

The matrix expressions for other values of J are easily computed.
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(ii)g Finally, we compute the coefficients of the pushforward, denoted by IL→G
5∗ ωJ , via

Tr

ω(T )
∑
σ∈S2

∂Tσ(1)
∂aj1

∂Tσ(2)
∂aj2

 .
For example, for J = {1, 2} we find that the coefficient of da1 ∧ da2 = dX̃1,3 ∧ dX̃1,4
is given by

IL→G
5∗ ω{1,2} = 1

X̃1,3X̃1,4
, (7.80)

as expected. Similarly the other coefficients of the pushforward can be computed.

Consequently, we are able to confirm that

1
2I

L→G
5∗ (ω5,2 + ω5,3) = ωABHY

5

∣∣∣
X→X̃

= IK→G
5∗ ωABHY

5 . (7.81)

8 Conclusions and outlook

In this paper we have explored ways to calculate pushforwards of rational differential forms
through the common zeroes of a set of equations. In particular, when these equations are
polynomials we have shown that we can leverage the tools from computational algebraic
geometry to calculate the pushforward without explicitly finding the set of common zeroes of
these polynomials. To this end, we discussed three specific methods to do these calculations.
We expect that these methods will provide us with both conceptual and practical tools for
the calculations of pushforwards that had been previously not possible.

As we pointed out in the main text, a natural place where the methods developed in
this paper can be applied is to the study of positive geometries. As conjectured in [18, 20],
the canonical form of the ABHY associahedron, the momentum amplituhedron, and the
orthogonal momentum amplituhedron can all be found as pushforwards of (a suitable
extensions of) the world-sheet Parke-Taylor form through the solutions of the scattering
equations. Using the methods we developed in this paper, it should be feasible to extend
the range of canonical forms for which direct calculations are possible using this process.
This could further be applied to find the canonical forms of new positive geometries, such
as the conjectural ‘momentum amplituhedron in six dimensions’ [20].

Furthermore, it was observed in [34] and reviewed in section 7.2 that the canonical
forms of the momentum amplituhedron and the ABHY associahedron are closely related.
A natural next step would be to provide further links of these positive geometries to the
orthogonal momentum amplituhedron and the 6D momentum amplituhedron. A conjectural
web of connections, that builds on the diagram in the conclusions of [20], is shown in
figure 5. By calculating the pushforwards indicated in this web, these statements can be
verified and the precise nature of the connections between these positive geometries can be
better understood.

Although the applications to positive geometries were our main motivation, the tech-
niques developed in this paper can be easily applied to calculations of pushforwards that
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Figure 5. A web indicating the (conjectural) relations between different canonical forms. Solid lines
indicate differential forms related by a pushforward. We indicated with black lines the connections
that have already been investigated in the literature. Green lines depend on the hypothetical 6D
momentum amplituhedron. The differential forms that appear in this web are as follows: ωWS,4D

n

and ωWS,6D
n are extensions of ωWS

n to include the little group in 4 and 6 dimensions, respectively.
Ω3D
k , Ω4D

n,k, and Ω6D
n indicate the canonical forms of the relevant momentum amplituhedron in 3, 4,

and 6 dimensions, respectively. ω4D
n,k and ω6D

n are the reduced momentum amplituhedron forms in
4D and 6D, where the little group dependence has been stripped off. νqDn is the ABHY associahedron
canonical form when restricted to q-dimensional kinematics. The ideals that define the pushforwards
are as follows: I3D

k , I4D
n,k, and I6D

n are the ideals generated by the n-particle scattering equations in
3, 4, and 6 dimensions, and IA→B is the ideal generated by the equations relating the kinematic
spaces A and B. Kn is the space of Mandelstam variables of n-particle scattering in arbitrary
dimensions, Ldn is the little group invariant space for n particles in d dimensions, and Gdn is the
Gram-determinant subvariety of Kn for d-dimensional scattering.

can be found in other corners of mathematics and physics, far beyond the scope of scatter-
ing amplitudes.

Lastly, we note that the three methods studied in this paper all require the calculation
of Gröbner bases, which forms the main bottleneck in applying our methods to more
involved examples. One possible direction would be to improve the efficiency of Gröbner
basis calculations in this context. Alternatively, it would be very interesting to find
alternative ways to calculate the pushforward (or, equivalently, summing rational functions)
through the zeroes of a set of polynomials that altogether sidestep the need to calculate
any Gröbner bases.
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A Results from computational algebraic geometry

In this section we list the results from algebraic geometry which are referenced in this paper
to make the paper more self-contained.

Theorem 1 (Stickelberger’s Theorem [26]). The d complex zeros of a zero-dimensional
ideal I ⊆ C[z1, . . . , zn] are the vectors of simultaneous eigenvalues λ = (λ1, . . . , λn) of the
companion matrices T1, . . . , Tn of I:

V(I) =
{
λ ∈ Cn | ∃v∈Cd\{0}∀i∈[n] : Ti · v = λi v

}
. (A.1)

Theorem 2 (Global Duality Theorem [27]). Let I = 〈f1, . . . , fn〉 ⊆ C[z1, . . . , zn] be a
zero-dimensional ideal and let Q = C[z1, . . . , zn]/I be the corresponding quotient ring. Then
the symmetric inner-product

〈•, •〉 : Q×Q→ C, (p1, p2) 7→ Res(p1 p2) , (A.2)

where Res computes the global residue with respect to the f1, . . . , fn, is non-degenerate.

Theorem 3 (Hilbert’s Weak Nullstellensatz [24]). Let I ⊆ C[z1, . . . , zn] be an ideal satisfy-
ing V(I) = ∅. Then I = C[z1, . . . , zn].

Theorem 4 (Shape Lemma [26]). Let I be a zero-dimensional radical ideal in C[z1, . . . , zn]
such that all d complex roots of I have distinct zn coordinates. Then the unique reduced
Gröbner basis G of I with respect to the lexicographic order where z1 � . . . � zn has the shape

G = {z1 − q1(zn), . . . , zn−1 − qn−1(zn), r(zn)} , (A.3)

where r ∈ Q[zn] has degree d and each qi ∈ Q[zn] has degree strictly less than d.

Theorem 5 (Elimination Theorem [24]). Let I be an ideal in C[z1, . . . , zn] and let G be
a Gröbner basis of I with respect to the lexicographic order where z1 � . . . � zn. Then
for every 0 ≤ ` ≤ n, G ∩ C[z`+1, . . . , zn] is a Gröbner basis of the `th elimination ideal
I ∩ C[z`+1, . . . , zn].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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