
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Nuutti Räihä

METHODS TO IMPROVE DEBUG FLOW FOR
INTELLECTUAL PROPERTY PROTECTION

Master’s Thesis
Degree Programme in Computer Science and Engineering

September 2022

Räihä N. (2022) Methods to Improve Debug Flow for Intellectual Property
Protection. University of Oulu, Degree Programme in Computer Science and
Engineering, 80 p.

ABSTRACT

Every company wants to protect their intellectual property and limit customer
visibility of confidential information. A company may protect its proprietary
information by different ways. This thesis will compare different methods that
try to protect intellectual property while maintaining the software debugging
capability.

Working with binary libraries without debug information makes customer
support very difficult. When a company is developing a new product, time to
market is important. Usually, the last months are very busy resolving urgent
customer issues. Especially during this period, the slow process of debugging
customer issues without debug information can cause delays and increase time to
market.

The goal of this thesis is to compare methods that protects intellectual property
by making reverse engineering more difficult. Study of the upcoming GNU
Compiler Collection (GCC) features related to debug data formats, such as
DWARF5, is also carried out while working with the thesis.

The approaches tried were split DWARF, injecting ELF files, stripping debug
data, and code obfuscation. Also optimisation and their effect on disassembly was
studied. The best solution was to compile the software with debug symbols and
strip them to a separate file. This way the symbol data can be loaded separately
into GDB. The symbol data layout and addresses are also always correct with the
solution.

Keywords: compilers, debugging, reverse engineering, DWARF, obfuscation

Räihä N. (2022) Virheiden etsinnän työnkulun parantaminen
immateriaaliomaisuudet huomioiden. Oulun yliopisto, Tietotekniikan tutkinto-
ohjelma, 80 s.

TIIVISTELMÄ

Yritykset haluavat suojella immateriaaliomaisuuksiaan ja rajoittaa asiakkaiden
näkyvyyttä tietylle tasolle asti. Tämä lopputyö vertailee eri metodeja
jotka koittavat suojata immateriaaliomaisuuksia, ilman että ohjelmiston
virheidenkorjattavuus kärsii.

Binäärikirjastot ilman virheenkorjaustietoja vaikeuttavat asiakkaan
tukemista. Uutta tuotetta kehitettäessä, markkinoille tuloaika on yritykselle
tärkeää. Yleensä viimeiset kuukaudet ovat kiireisiä asiakkaan ongelmien
tutkimuksien kanssa ja kyseiset ongelmat tulisi olla ratkaistuna mahdollisimman
nopeasti.

Tämän lopputyön tavoitteena on vertailla mahdollisia metodeja, jotka
suojaavat immateriaaliomaisuutta takaisinmallinnusta vastaan. Tarkoituksena
on myös tutkia tulevia GNU kääntäjä-kokoelman (GCC:n) ominaisuuksia liittyen
virheenkorjaustietoformaatteihin, kuten DWARF5.

Ongelman ratkaisuun koitettiin pilkottuja virheenkorjaustietoja, ELF-
tiedoston injektointia, virheenkorjaustiedon riisumista ohjelmistosta ja koodin
obfuskointia. Myös optimoinnin vaikutusta konekielestä takaisinmallinnettuun
Assembly-muotoon tutkittiin. Paras ratkaisu oli kääntää ohjelmisto
virheenkorjaustiedolla ja riisua ne omaan erilliseen tiedostoon. Näin ohjelmiston
symbolitieto pystytään latamaan erikseen virheenjäljittemänä käytettyyn GNU
Debuggeriin (GDB:hen). Näin symbolitietojen rakenne ja osoitteet ovat myös
aina paikkansapitävät.

Avainsanat: kääntäjät, virheiden etsintä, takaisinmallinnus, DWARF,
obfuskaatio

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1. Introduction ... 8

1.1. Intellectual Property.. 9
1.1.1. Protecting Intellectual Property .. 9
1.1.2. Reasoning Intellectual Property Protection................................ 10
1.1.3. IP Abuse... 10

1.2. Scope of the Thesis ... 11
2. Embedded Software Build Process .. 12

2.1. Build Process.. 12
2.1.1. Lexical Analysis.. 12
2.1.2. Syntax Analysis .. 14
2.1.3. Semantic Analysis ... 15
2.1.4. Intermediate Code Generation .. 15
2.1.5. Machine-Independent Code Optimisation 15
2.1.6. Code Generation ... 16
2.1.7. Symbol Table Management.. 16
2.1.8. Linkers ... 16
2.1.9. Loaders .. 17
2.1.10. Linking Loader ... 18
2.1.11. Dynamic Loader.. 18
2.1.12. Summary of the linkers and loaders .. 19

2.2. State of the Art Compilers ... 19
2.2.1. GNU Compiler Collection ... 19
2.2.2. Clang.. 19
2.2.3. GIMPLE vs LLVM IR... 20

2.3. Executable File Formats .. 20
2.3.1. ELF Files.. 21

2.4. Summary.. 22
3. Reverse Engineering ... 23

3.1. Why Reverse Engineering?.. 23
3.2. Reverse Engineering Methods ... 23

3.2.1. Static Analysis .. 24
3.3. Disassembly ... 24
3.4. Reverse Engineering Aids ... 24

3.4.1. Radare2 .. 24
3.4.2. Ghidra .. 25

3.5. Protecting Against Reverse Engineering ... 25
4. Obfuscation ... 26

4.1. Performing Obfuscation .. 26

4.2. Obfuscation Methods .. 27
4.2.1. Lexical Obfuscations ... 27
4.2.2. Data Obfuscations ... 27
4.2.3. Control Obfuscations... 28
4.2.4. Preventive Obfuscations and String Encryptions........................ 28

4.3. Obfuscation Tools ... 28
4.3.1. Obfuscator-LLVM... 29
4.3.2. DashO .. 29
4.3.3. Themida ... 29

4.4. Side Effects of Obfuscation ... 29
5. Debugging Software ... 31

5.1. Debugging Formats... 31
5.1.1. Stabs .. 31
5.1.2. COFF ... 31
5.1.3. DWARF.. 32

5.2. DWARF Debugging Format In detail ... 32
5.2.1. DWARF Structure ... 32
5.2.2. Debugging Information Entry... 33
5.2.3. Base Type ... 33
5.2.4. Data Structures.. 34
5.2.5. Variables... 35
5.2.6. Functions .. 35
5.2.7. Subprogram .. 36
5.2.8. Compilation Units ... 36
5.2.9. Debug Sections ... 36
5.2.10. Split Object Files... 38
5.2.11. DWARF Package Files .. 38

6. Implementation .. 39
6.1. Debug Fission... 39
6.2. Modifying ELF with Pyelftools ... 40
6.3. Stripping debug info ... 40
6.4. Optimisations ... 44
6.5. Obfuscations .. 45

7. Discussion ... 48
7.1. Trialed solutions ... 48

7.1.1. Debug Fission ... 48
7.1.2. ELF file injection .. 48
7.1.3. Stripping debug info .. 49
7.1.4. Optimisations.. 49
7.1.5. Obfuscation .. 49

7.2. Results ... 49
7.3. Workflow ... 50
7.4. Required changes.. 52
7.5. Future Work ... 52

8. Conclusions ... 54
9. REFERENCES .. 55
10. Appendices .. 61

FOREWORD

I would like to thank my thesis supervisor Olli Silvén and second examiner Mehdi
Safarpour. I would also like to express my gratitude to my technical supervisor
Kari Suvanto and my manager Lari Manninen for all the guidance, time allocations,
resource priority changes and the additional work caused by my thesis work.

I would also like to thank all the friends I made while studying. You entirely made
this possible with all the support I have gotten from you – study wise as well as with
all the time spent outside of studies, from get-togethers to relationships to cottage trips
to long walks on the golf course.

Oulu, September 28th, 2022

Nuutti Räihä

LIST OF ABBREVIATIONS AND SYMBOLS

API application programming interface
AST abstract syntax tree
BIST built-in-self-test
CFG control flow graph
COFF common object file format
DIE debugging information entry
DL dynamic loader
ELF executable and linkable format
GCC GNU compiler collection
GDB GNU Debugger
IoT internet of things
IP intellectual property
IR intermediate representation
ISA instruction set architecture
LTO link time optimisation
RTL register-transfer language
SSA static single assignment
SBST software-based-self-testing
SoC system on chip
R&D research and development

1. INTRODUCTION

Every company wants to protect their intellectual property and limit customer visibility
of confidential information. The software industry is arguably one of the most
important places where intellectual property (IP) is concentrated, as developing
software requires significant amount of money, time and work.

Protecting intellectual property provides important benefits not only to the company
that owns the IP, but also to its customers. Protecting intellectual property also protects
information security. Breached proprietary information could expose customers to
pirate products where their personal and sensitive data are at risk. Vulnerability in
software or hardware could risk the customer’s sensitive data too.

The number of embedded devices has increased tremendously. System-on-Chips
(SoC) are commonly used in embedded systems and in the internet of things (IoT) [1].
In order to protect the outcomes of the research and development (R&D), copyrights
and patents are used as legal protections [2].

Increased numbers of embedded devices mean increased amounts of data. Thus,
enhanced information security is more important than ever before. Open source
technologies can be considered secure as their code can be viewed by thousands of
engineers daily. Features and improvements are added quickly, and any flaws are
quickly spotted and fixed [3]. However, open source does not always provide feasible
solutions.

SoCs are usually developed in-house from scratch and many features, if not all, need
to be hand developed or heavily configured to get them working. As a result, embedded
devices often include the hardware and the software in one package. If open-source
software is used, it could be recognized from binaries in case the compiler is known.
This could open attack vectors for known vulnerabilities, if unsecure versions are used.

As the number of embedded devices has increased and will increase in the near
future, alongside protecting the software IP, protecting the hardware IP is also
necessary. Built-in-self-test (BIST) can be implemented within the chip. With these
tests, lower automated test equipment cost is achieved and time with testing is saved.
However, BIST can have nontrivial area, performance, and design time overhead. [4, 5]

Software-based-self-testing (SBST) addresses problems caused by structural BIST.
SBST methodology consists of memory self-testing, processor self-testing, global
interconnect testing, and testing nonprogrammable cores. New products generally run
new software. Even mature software usually includes new software because features
and configurations are different. To provide fast and quality updates to the customer,
good support is required from technology providers to application system designers.
[5]

IoT has been, and still is, a milestone for the technology development in today’s
world and it is expanding. The internet alone has had a huge impact on education,
communication, working, businesses, and a variety of other categories. Everyone has
experienced this impact in the times of working and studying from home. The internet
is arguably one of the most crucial technologies of the recent decades, and is continuing
its fast growth. IoT represents the next evolution of the Internet. In 2003, there were
500 million devices connected to internet. In 2010, the number was 12.5 billion [6].
The extensive growth was due to an increase in smartphones and tablet computers.

Juniper Research [7] states there were 35 billion IoT connections in 2020, expected to
rise to 83 billion by 2024.

Alongside the growth of smartphones, telecommunication systems have also
evolved. Broadband cellular network standards, such as GSM and LTE, have
been evolving and have increased the pervasiveness of mobile devices and mobile
computing. With the arrival of newer technologies and standards, such as the fifth
generation (5G) and upcoming sixth generation (6G) cellular standards, smartphone
manufacturers compete to be first in the market with, for instance, 5G- or 6G-enabled
products. As faster time-to-market is expected, shorter deadlines and higher pressure
on product development teams are imposed. Engineers need to react quickly to
customer requirements and issues, without sacrificing IP.

1.1. Intellectual Property

The software used in SoC devices can be divided into different categories, which
are hardware-dependent software, middleware, and application software. Figure 1
shows the connections between the hardware and software. The lower we go in the
stack, the more hardware dependent it gets. Hardware-dependent software represents
application programming interface (API) for the hardware functionality of the SoC.
These functionalities include hardware-dependent layers of the real time operating
systems access to peripheral device drivers, system debug and maintenance functions,
chip level configuration such as system registers, and often different kind of digital
signal processing algorithms. [8]

Figure 1. Hardware and software stack in SoC.

1.1.1. Protecting Intellectual Property

Protecting the hardware layer is important because otherwise reverse engineering
of hardware/software architectural partitioning and hardware functionality becomes

simpler. Some techniques to protect hardware IP are logic locking, IC camouflaging,
and split manufacturing. [9].

As mentioned, middleware and application software does not really differ from
application software, as the algorithms in this software do not necessarily rely on
the hardware and they could be copied into different applications. Stripping debug
symbols from the executable files is one rudimentary way to protect software IP. This
way reverse engineering becomes significantly harder.

Not removing debug symbols is dangerous from application security point of view.
Analysing code without debug symbols is difficult as debugger only provides limited
support for this. Person analysing the code needs to guess or use other tools for
different functions during the execution of the software. Other ways to protect software
IP include obfuscation, encryption, and break point detection [10].

1.1.2. Reasoning Intellectual Property Protection

Securing all the software is important in the SoCs. Vulnerabilities found with the
reverse engineering can have serious breaches to the user’s privacy. For example, there
has been vulnerabilities where an attacker could potentially gain access to the audio
data flow and eavesdrop on the mobile phone’s user and vulnerabilities which permits
root access to the user without unlocking the bootloader of the device. System on chip
vulnerabilities enable also denial of service attacks or remote code execution attacks,
for example, by crashing the baseband. This could lead to attacks to base transceiver
stations. [11, 12, 13, 14, 15]

Security breaches can be caused by either insiders or outsiders. Both breaches
can lead to leak of corporate secrets or confidential consumer information. Leaking
confidential consumer information can be damaging to both the organization and the
consumers. If crackers obtain personal data, organizations may face lawsuits and
potentially even lose their competitive position. [16]

1.1.3. IP Abuse

The definition of the IP abuse is broad. Some types of IP abuse are using IP lawsuits
as a tool against competitors, using IP licensing agreements against new entrants to
the market, and using contract law to expand the scope or term of intellectual property
rights protection.

China has only recently set up their antitrust laws, whereas in the US and EU,
the relationship between IP and antitrust laws has been developed over the past two
decades. China is an important member of the World Trade Organization and its
economy has grown rapidly; in 2008 it had become the second largest economy in the
world after the US, when measured on a purchasing power parity basis. That’s why
any international IP commercialization, anti-monopoly or IP abuse prevention strategy
cannot be ignored for a nation with such a big market. Hiding debug data might be
a crucial way to protect against IP abuse, that could prevent the company from being
first to market. [17]

11

1.2. Scope of the Thesis

IP protection is important for the companies. In the wrong hands it can be abused
in order, for example, to weaken the company’s time to market. When talking about
SoCs that are made from scratch, protecting only software from reverse engineering is
not enough. Hardware and software work together and when one is compromised, it
affects the other also.

This thesis studies a way to improve the debugging flow while still protecting IP.
The main objective is to protect the debug data generated in the compilation process
when delivering binary releases to customers. Another objective is slowing down
any potential reverse engineering, which could be achieved by code obfuscation. The
motivation is to improve existing ways of working with customer issues, and to save
precious time.

This thesis will first explain, in Chapter 2, the build process for embedded software
and introduce the state of the art compilers. Chapter 3 discusses reverse engineering,
focusing on static analysis. Some reverse engineering tools and protections against
reverse engineering is discussed, as well as disassembly.

Chapter 4 explains what obfuscation is, what types and kinds of obfuscations there
are and trade-offs the obfuscations cause. Chapter 5 explains debug data formats. The
final parts of the thesis are about the implementations tested during the thesis work and
discussion and conclusions about the results.

12

2. EMBEDDED SOFTWARE BUILD PROCESS

When an exception happens in an embedded system, the state of the system is captured
in a memory dump. Often when debugging memory dumps no source code is available.
Thus, engineers have to resort to machine code-level debugging. Machine code is
directly stored in the ELF file so it cannot be hidden. If design patterns are employed
in coding, disassembly results are easier to interpret. That is, good coding styles may
make the product more vulnerable to reverse engineering. This is especially true if
those doing reverse engineering are familiar with the used compilers and optimisations.

It is desirable that mapping machine code to source code not be straightforward
for IP protection reasons. Luckily machine code and patterns are not always directly
related to the source code. Source code undergoes multiple transformations and
optimisations during the compilation process, and thus, a single expression in the
source code does not always translate to the same machine code instruction or pattern.

One must understand the compilation process in order to understand what kind
of data is created during the compilation, and how it can be used. For example,
metadata files, so called .dat files, used in the debug process are generated during
the compilation.

2.1. Build Process

Compiler can be divided into two parts: a front end and a back end. Front end breaks
up the source program into pieces and imposes a grammatical structure on them,
called abstract syntax tree (AST). The grammatical structure is used in creating an
intermediate representation (IR) of the program. Optimisations done in the IR phase
can be called the middle end. Back end of the compiler uses the symbol table and
the IR to construct the target program. The main parts of the compiler can be seen in
Figure 2. [18]

The compilation process can be further divided into different phases. These phases
are lexical analysis, syntax analysis, semantic analysis, intermediate code generation,
machine-independent code optimisation, code generation and machine-dependent code
optimisation. Figure 3 illustrates the phases of a typical compiler.

The symbol table is used in all phases. As phases can be grouped together, not all
compilers have the same phases as listed above. Optimisation phases are optional so
one or both optimisation phases might be missing. [18]

2.1.1. Lexical Analysis

The first phase of a compiler is lexical analysis. It is also known as scanning as it reads
the source program’s meaningful character sequences and groups them into lexemes.
The lexical analyser produces a token from each lexeme. The form of the tokens can
be seen in Equation (1).

〈token-type, attribute-value〉 (1)

13

Figure 2. The main parts of the compiler.

Figure 3. Phases of the compiler.

14

As the lexical analyser reads the source code, it can have other tasks besides
identification of lexemes. The token-type is an abstract symbol that is used in syntax
analysis. It is often return to the syntax analyser, along with a pointer to the lexeme.
Information of the token is used in semantic analysis and code generation. For
example, consider following assignment statement seen in Equation (2):

X = Y ∗ 50 (2)

Characters could be grouped into five following lexemes introduced in Equation (3):
X , =, Y , ∗, 50 (3)

These five lexemes correspond to the tokens seen in Equation (4).
〈id, 1〉〈=〉〈id, 2〉〈*〉〈number, 3〉 (4)

X would be mapped to the token <id, 1>, where id is an abstract symbol and 1 points to
the symbol table. The symbol table entry for the identifier has information such as its
name and type. The assignment symbol, =, is mapped to the next token. The second
component can be omitted because the token does not need an attribute-value.

The second component 2 of the Y lexeme’s token points to the symbol table entry
for Y . The ∗ lexeme is mapped to the token <*>. Tokens are passed to the next phase,
syntax analysis. [18]

2.1.2. Syntax Analysis

Syntax analysis, also known as parsing, is the second phase of the compiler. The parser
creates a tree-like structure from the tokens produced by the lexical analyser. This tree
represents the grammatical structure of the token stream. At typical form is a syntax
tree, where an interior node is an operation, and its children are the arguments of the
operation. The syntax tree made from the tokens from Equation (4) can be seen in
Figure 4. For example, GCC constructs an abstract syntax tree.

=

<id,1> ∗

<id,2> <number,3>
Figure 4. Syntax tree made from tokens.

The interior node * has <id,2> as its left child and <number,3> as its right child. The
left child represents the identifier Y and the right child represents the identifier for the
integer 50. The node labelled ∗ tells us that we must first multiply the value of Y by
50. The root node tells us that we must store the result of this multiplication into the
location for the identifier X . Ordering of the operations is consistent with the usual
arithmetic conventions. [18]

15

2.1.3. Semantic Analysis

The syntax tree created in syntax analysis is used by the semantic analyser. It analyses
the AST and checks the source program for semantic consistency with the language
definition. The semantic analyser also collects type information for subsequent use in
intermediate-code generation. One of the most important jobs of the semantic analyser
is to check that each operator has legal operands. This is called type checking. For
instance, an error would be raised if a floating-point number is used to index an array
when the programming language requires an integer to be used.

Most languages support explicit and sometimes implicit type conversions. For
example, sometimes binary operations can be performed on pairs of integers. In
such cases, where an operator is applied to a floating-point number and an integer,
the compiler may convert or coerce the integer to a floating-point number. [18]

2.1.4. Intermediate Code Generation

After semantic analysis, compilers often generate a lower-level IR from the source
program. This representation can be thought as a program for an abstract machine,
and it has three important attributes: it is easy to produce, it is easy to translate to the
target machine, and it is easy to do transformation or optimisations on the IR itself.
[18]

One such IR is three-address code. This representation is composed of a sequence
of assembly-like instructions. Each instruction has three operands, and each operand
can act like a register. Three-address instructions have each at most one operator.
For this reason, the instructions fix the order in which operations are executed. The
compiler must generate temporary names to hold the values computed by three-addess
instruction. [18]

2.1.5. Machine-Independent Code Optimisation

Nowadays processor architectures have become more complex, as multicore and
multithreaded machines have become universal. Thus, compilers perform more and
more complex and important code optimisations. One of the problems in compiler
design is to make sure that the optimisations are correct and improve the performance
of the program, while keeping compilation times reasonable and the engineering effort
manageable. Some of the noteworthy optimisations for computer architectures are
parallelism and memory hierarchies. Parallelism can be in instruction level, where
multiple operators are executed at the same time and in processor level, where multiple
threads of the same application are run. Memory hierarchies enable us to build either
very fast storage, or very large storage. [18]

In order to achieve better (faster, shorter, or less power consuming) code, the
intermediate code needs to be optimised. A simple intermediate code generator
combined with code optimisation produces reasonably way to generate good target
code. Optimisations can be done at the compile time. The intermedaite code is often

16

divided into control flow graphs (CFG). If ASTs are high-level representations, CFGs
are more detailed low-level representations.

A CFG consists of nodes which are basic blocks representing the statements of
the code that are executed after each other without any jumps. The basic blocks are
connected with directed edges that represent jumps in the control flow. CFGs can be
used to eliminate unreachable or dead code. A CFG may have one or more exit nodes,
depending on possible different return points in a function. [19]

For example, one optimisation could be replacing integer numbers with floating
point number, thus possibly removing every function call that turns integer to floating
point number. This optimisation would also eliminate the direct correspondences
between the source code lines and the binaries, especially if the symbol tables will
be stripped. This sort of optimisation can also lead to shorter sequences. Often most of
the time is spent on these kinds of simple optimisations that improve the running time
of the target program while keeping the compilation time relatively same. [18]

2.1.6. Code Generation

IR of the source program is mapped into the target language with the code generator.
In the case of target language being machine code, first the registers and memory
locations are selected for each variable. Then the instructions are translated into
machine instructions. One critical feature for code generator is to assign the registers
to hold variables prudently. [18]

2.1.7. Symbol Table Management

The symbol table is a data structure in the compiler. Symbol table contains information
about source-program constructs. It is crucial for compiler, for example, to record
variable names and to collect information about numerous attributes of each name.
The collected attributes provide information about the storage allocated for its type,
name and scope. Also, with procedure names, things like number and types of its
arguments, the method of passing each argument and the type returned are collected.
It is vital to design the data structure in a way that lets compiler to find the records
quickly. [18]

2.1.8. Linkers

In order to run even the simplest programs, they need to be linked. Linker combines
independently assembled machine language programs and resolves all undefined
labels into an executable file. In this manner future modifications do not necessitate
recompilation of the whole program. Linker places the code and data modules
symbolically in memory, determines the address of data and instruction labels and
patches both, internal and external, references. From Figure 5 the toolchain from the
perspective of the programmer can be seen. It shows how the source code ends up
being executed.

17

Figure 5. Toolchain from the programmer’s point of view.

Symbol table and relocation information is used to resolve undefined labels which
happens on branch and jump instructions and data addresses. When all external
references are resolved, linker determines the memory locations where each module
will occupy.

When module is placed in memory, all absolute references need to be relocated to
reflects its true location. Output from linker is an executable file, and it is usually in
the same format as an object file. The difference between the executable file and the
object file is that there are no unresolved references in the executable file. However,
files can be partially linked, as in library routines. Partially linked files will have some
unresolved addresses and result in object files. [20]

2.1.9. Loaders

Loader loads executable files to main memory. There are different kind of loaders that
vary from simple to complex, and from small to large. In UNIX systems, loaders reads
the executable file header and determines the size of different segments. Large enough
address space for the text and the data is then created.

Instructions and data are copied into memory and any parameters for the main
program is copied onto stack. Machine registers are initialised, and the stack pointer
is set to the first free location. After all these, loader jumps to a start-up routine. The
routine copies parameters into the argument registers and calls the main routine of the

18

program. After the main routine returns, system call exit is called in order to terminate
the program. [21, 20]

2.1.10. Linking Loader

Linking loaders are general loaders that can load several object files, relocate them and
link them into an executable. Linking loader reads the names of all the object files
which are loaded. Then it locates and opens the said files. Loader directive is read and
the information read is used in calculating the total size of the program.

The loader locates large enough available memory area and reads next few loader
directives from the beginning, and the information read is loaded to special symbol
table. The process is then repeated for all the object files. Special symbol table is
converted into global external symbol table, which is used later in the linking. [21]

After the beginning of the object files has been read, rest of the first object file is
read and loaded. If necessary, instructions are relocated. All the loader directives are
executed, and any required special relocations are handled as soon as they are read.
This process is repeated for the rest of the object files. [21]

The main output of the loader is the loaded program, which is loaded in memory
as one executable module. The second output of the loader is a listing file with error
messages and a memory map. The last output is a single object file for the entire
program. Besides the first output, all outputs are optional. [21]

2.1.11. Dynamic Loader

Linking can be done in different times. The linking process can be though as
composing independent virtual spaces into one composite virtual space. Leon Presser
et al. [22] identified that linking at the late stages provide flexibility. The latest point
of linking is at the run time and it is called dynamic linking. When libraries are loaded
statically, they become part of the executable code. This results in updating every
program when a new release of the library is available. Dynamically linked libraries
try to solve this problem. [20]

Dynamic linking postpones the linking to the last possible moment. The linking
happens when an instruction requiring linking is executed. This is slow way of working
but it is more memory efficient as it does not require unnecessary routines. Dynamic
linking is a good solution when a program has a lot of procedures but uses only a few
of them.

Dynamic linking is implemented with loader routine called Dynamic Loader (DL).
When a new procedure should be called, DL is called with a software interrupt, and
the procedures is located, loaded and executed. After the procedure is executed, user
program is restarted by the DL. DL manages the memory itself and it can release the
memory used by the procedure and use it for other routines. [22]

19

2.1.12. Summary of the linkers and loaders

Linkers and loaders make it possible to edit the code without compiling everything
again. It is good to understand that finding IP from the object files can result in person
doing the reverse engineering to edit it and relink the module. This could compromise
the security of the product.

Symbols are resolved at link time. This generates information like symbol name and
memory address and these information can be reverse engineered. Dynamic loading
can be used to overload functions, which can help in reverse engineering. One example
of this is Linux’s LD Preload functionality. Loaders can be tricked into loading a
known dynamic linked library. Loaders can also receive new program code, which
again, could be used to reverse engineer the software.

2.2. State of the Art Compilers

This section will focus on compilers for C language. Today, C compilers need to
be optimizing compilers. Due to complex processors, C language is not as close to
hardware as it was compared to i386 processors. Optimizing code is difficult and only
two bigger compiler’s could be seen as the state of the art – GCC and Clang. However,
there are smaller non-optimising compilers like Tiny C Compiler.

2.2.1. GNU Compiler Collection

GNU Compiler Collection (GCC) is an open-source compiler produced by the GNU
project. It was originally written as the compiler for the GNU operating system,
but it includes front ends to C, C++ and many more. GCC can be considered as a
standard compiler, as most *nix operating systems have adopted it. The intermediate
representation of the GCC is called GIMPLE, and it supports multiple formats. [23]

2.2.2. Clang

Clang is a compiler for the C language family, developed by the Low Level Virtual
Machine (LLVM) project. End-user features of the Clang are fast compiles, low
memory use, expressive diagnostics and GCC compatibility. The motivation behind
the Clang was the need for compiler that allows better diagnostics, better integration,
and a nimble computer that is easy to develop and maintain. [24]

LLVM project is a collection of modular and reusable compiler and toolchain
technologies. LLVM was originally a research project at the University of Illinois, with
a goal of modern Static Single Assigment (SSA) based compilation strategy with both
static and dynamic compilation support. LLVM provides it’s own compiler back end,
which thrives to be modular, making it easy to extend. Optimisations are implemented
as modules, rather than statically built into the compiler. LLVM provides IR called
LLVM IR, which is in SSA form. LLVM IR can be used as input to all LLVM tools
and it can be edited manually with just a text editor. [25, 26]

20

2.2.3. GIMPLE vs LLVM IR

GIMPLE is a three-address representation derived from GENERIC. GENERIC is
a language-independent way of representing functions in trees. GCC turns source
code into GENERIC and GENERIC gets converted to GIMPLE. GIMPLE is used
for optimisations like inlining, constant propagation and tail call elimination. Then
GIMPLE is converted into Static Single Assignment (SSA) GIMPLE. SSA GIMPLE
makes sure all the values are consistent and performs optimisations. After the SSA
GIMPLE phase is done, it is converted back to GIMPLE form, in order to generate
register-transfer language (RTL) form. Back-end then generates assembly code from
the RTL representation. Compilation process with the GCC can be seen from Figure
6. [27, 28]

Figure 6. GCC compilation process.

LLVM IR is also three-address representation. It was originally created to use for
multi-stage optimisation. LLVM IR aims to be universal IR and the LLVM compiler is
designed to allow for optimisations at all stages of compilation, for example removing
dead and redundant code, inlining functions, unrolling loops and deleting dead loops.
LLVM IR is easier to process, transform and analyse compared to GIMPLE, as it is
originally designed to be a standalone IR. [29, 26, 30]

As GIMPLE is tightly coupled with the compiler suite, it often is output from
specific process and input to another specific process. LLVM IR is more versatile
and modular, so the IR form can be used in more various ways. This does not
automatically make LLVM IR harder to reverse engineer, but one could apply, for
example, obfuscation to the IR and continue to the code generation. In other words, as
LLVM IR is more modular, it can be easily processed, thus making it harder to reverse
engineer. [26, 31]

2.3. Executable File Formats

The executable and linkable format (ELF) is a standard file format for object files.
ELF is the standard binary file format for UNIX systems; however, it is a cross-
platform standard. It should be mentioned that there are three mainstream executable
file formats. Besides ELF files for UNIX systems, there are portable executable files
for Windows systems and Mach-O for OS-X and iOS systems.

There are three main types of object files, relocatable files, executable files, and
shared object files. A relocatable file is used in linking with other object files in
order to create an executable or a shared object file. A shared object file has two
uses in linking. The linker may process it with other relocatable and shared object
files to create another executable file. The dynamic linker can also combine it with an
executable file (alongside other object code) to create a process image. [20, 32, 33, 34]

21

2.3.1. ELF Files

ELF files primarily consists of binary representations of the program that is run on
a processor. As object files participate in linking and execution, ELF files provide
parallel views of the file’s contents. Figure 7 shows the linking view and Figure 8
shows the execution view.

Figure 7. Structure of the elf file as seen by the linker.

Figure 8. Structure of the elf file as seen during execution.

ELF files contain: the object file headers, the text segment, the static data segment,
the relocation information, the symbol table, and the debugging information. The ELF
header defines if 32-bit or 64-bit addresses are used. It also specifies the target ISA
and operating system ABI, alongside other attributes. [32]

The program header table tells how to create a process image. It contains, for
example, the offset of each section in the file image and the virtual address of the
section in memory. The section header table contains information about the file’s
sections. If the ELF file is used to build a process image, a program header table
is required. Relocatable ELF files do not need it. [32]

ELF files have special sections which hold program and control information.
Sections that support debugging are, for example, .debug_info and .debug_line.
Section .rodata contains initialised read-only data and .data contains initialised data.
Some more sections are, for example, .bss (uninitialised data), .symtab (global symbol
table, containing information to locate and relocate a program’s symbolic definitions
and symbolic references), .dynamic (all the information for dynamic linking) and
.strtab (string table of symbols or sections). [32]

22

2.4. Summary

The build process is a complex process with various phases. The source code changes
it’s form multiple times during the process and in each form, there are changes,
like optimisations, that differentiate the original source code from the executable.
If the symbols are stripped from the resulting object file, reverse engineering comes
considerably harder as there sometimes are little connections to the original code.

ELF files provide a parallel view of contents of the software. It is important to
understand it’s structure in order to find the IP inside it.

23

3. REVERSE ENGINEERING

Reverse engineering a compiled program is an effective and mature approach that can
even be applied on complex software. It cannot be prevented but it can be made more
difficult, slower and expensive. Reverse engineering can be used, for example, in
supporting software maintenance and in finding vulnerabilities. It can also be used to
violate the IP rights. It should be noted that not all reverse engineering is malicious.

Protections applied against the reverse engineering gives the attacker a second object
to attack. This slows down the attacker as identifying and bypassing the protections
also require reverse-engineering. However, there are lots of tools that help reverse
engineers to bypass the protections. This chapter will have a brief assessment of
common reverse engineering tools and techniques.

Reverse engineering was initially applied to the hardware. Nowadays, reverse
engineering is used in a variety of fields, from software and databases all the way to the
human DNA. M. Schwartz in the article "HOW-TO: Reverse-Engineering" describes
reverse-engineering being like rebuilding a car engine or diagramming a sentence.
According to Schwartz a lot can be learned by taking something apart and putting it
back together and that is the concept behind reverse engineering. Breaking something
down let us understand it, build a copy of it, or improve it. [35]

3.1. Why Reverse Engineering?

Reverse engineering is important in the computer hardware and software domain, as it
is used as a learning tool. It can be used to maintain software and to make the software
work more efficiently, and to uncover undocumented features. Reverse engineering can
also be used to cope with the complexity, recovering lost information, detecting side
effects and synthesizing higher abstractions. Alongside with replication of a product,
reverse-engineering can be used to find vulnerabilities from the software. [36, 37]

Reverse engineering has been successfully applied in, for example, redocumenting
programs and relational databases, identifying reusable assets, recovering architectures
and design patterns, identifying clones, codesmells and aspects, reverse engineering
binary code, renewing user interfaces, translating a program from one language to
another, migrating and wrapping legacy code. [38, 39]

3.2. Reverse Engineering Methods

Reverse engineering methods can be divided into static and dynamic analysis. Static
analysis does not include execution of the target program. The analysis is done with the
code describing the program. The dynamic analysis is done by executing the program
in a real or virtual processor. The results of the dynamic analysis depends on how the
program is executed. Dynamic analysis can be used to collect data of the program. For
example, snapshots of the state of the program and control flow graphs.

24

3.2.1. Static Analysis

Often the obtained software is an executable file without any debugging information.
Disassemblers can be used to obtain the representation of the target program in a form
of source code. Static analysis methods are, for example, control flow analysis, data
flow analysis and semantic analyser.

Branches, jumps and calls are analysed in the control flow analysis. This way,
unreachable code or code with no effective exists can be identified. With control flow
analysis it is also possible to determine a high level language loops structure if the
target code uses multiple jumps and is hard to read. [40]

Data flow analysis considers the update of variables and registers in order to find
reads from uninitialised memory or writes without any intervening reads. Semantic
analyser can help people performing the reverse engineering to understand what the
target code does. It analyses every execution path of the software and gives a symbolic
equation for the values of the output of each path. This analysis can find paths that
are not accessible, for example if clauses which can never be true. Target code with
multiple infeasible paths can be rewritten without these paths.

3.3. Disassembly

As described in Chapter 2 software compilation process involves assembler translating
assembly language into machine language. Disassembler translates machine language
back to assembly language, often in human readable format. For this reason,
disassemblers can be thought of as a reverse engineering tool. For example, GNU
Debugger (GDB) includes a command to disassemble machine code [41].

When the source code is available, interpreting disassembly is easier and quicker
than without source code. However, compile time optimisations can make the
disassembly harder to understand. Without the source code and with compile time
optimisations, understanding disassembly can be really hard. Disassembly is addressed
more in detail in Chapter 6

3.4. Reverse Engineering Aids

Different software and hardware aids are used in the reverse engineering. Some of
the software aids are debuggers, tracer, emulators, disassemblers, decompilers and
hexadecimal editors. Hardware aids are, for example, developer boards with hardware
debuggers. There are different kinds of reverse engineering frameworks and libraries,
which include a set of reverse-engineering tools. To name a few, radare2 [42], LIEF
[43], Ghidra [44] and IDA Pro [45].

3.4.1. Radare2

Radare2 is a complete framework for reverse-engineering with a support of variety
of executable formats across different processor architectures and operating systems.

25

Radare2 contains a set of tools used in the reverse engineering. For example, it includes
hexadecimal editor and debugger and it implement a command line interface for
moving around a file, analysing data, disassembling, binary patching, data comparison,
searching, replacing and visualizing. Radare2 includes also tools for extracting
information from different executable binaries, disassembler and assembler, hash tool,
binary diffing, finding byte patterns in files, launcher for running programs within
different environments, debugger and many more. Radare2 is usable in static analysis,
dynamic analysis and software exploitation. [46]

3.4.2. Ghidra

Ghidra is reverse engineering framework developed by the National Security Agency
of the United States. Ghidra is a free alternative to IDA Pro and it features include
disassembly, assembly, decompilation, graphing, scripting and many more features.
[44]

3.5. Protecting Against Reverse Engineering

Perfect protection against reverse engineering is impossible. However, the protection
techniques try to raise the cost of reverse engineering and time needed to perform the
reverse engineering. When the protected software is attacked, attackers need to reverse
engineer the protections alongside the targeted software. [47]

Debug symbols are often included in the object file [48]. This allows developers
to debug their application during the development. However, the binary file can be
used to gather information like variables, number of lines, function names and so on
[49]. Companies often may want to protect this kind of information. Stack traces with
the debug symbols can provide specific function addresses, which allows inserting
breakpoints while executing the code, for example. This kind of information can be a
dangerous from the software security point of view and make the reverse engineering
process quicker.

26

4. OBFUSCATION

Code obfuscation is a mechanism to protect the code with a purpose of reducing human
readability of the code. This can be achieved, for example, by renaming internal
variables and function names. This sort of security by obscurity is often disdained
in the security communities. However, obfuscation is cheaper than deobfuscation and
obfuscated code increases the skill level of the attacker and even skilled attacker needs
to give more effort compared to non-obfuscated code.

4.1. Performing Obfuscation

Obfuscation can be done at the source code level, intermediate level and binary level.
In order to obfuscate at binary level, the obfuscator should support the platform of the
binary. Obfuscation algorithms are also more complicated on the binary level, as data
is lost in the compilation process.

Obfuscating source code requires obfuscator to have a support for the specific
programming language used. However, obfuscating source code makes the developer’s
debugging work harder, as the obfuscated code needs to be either translated or reverse
engineered back to the original.

As explained in the Chapter 2, compiler creates intermediate representation of the
program that is independent of the programming language used. The compiler also
translates the IR to the machine code, so obfuscations at the IR level do not depend on
the used programming language, or the target platform. However, not all information
is available at IR level and some target platform specific obfuscations cannot be
implemented at IR level. [50]

Obfuscating can be combined with optimisations. One could even say that it is
important to optimise the obfuscated code in order to have as minimal performance
disadvantages as possible. Obfuscating LLVM IR has few rules. The rules can be seen
in Table 1.

Table 1. Rules of mixing optimisations and obfuscations (Derived from [50])

Rule 1 Obfuscations must survive LLVM optimisations
Rule 2 Performance is important: run classical LLVM optimisations first
Rule 3 Then obfuscations are applied
Rule 4 And a post optimisations pass is done

The ISA of the executing hardware can be randomized, and software binary code
can be encrypted. When the software binary code is encrypted, the file header
usually contains information about the decryptor. Execution binary is encrypted, and
it contains information how to decrypt instructions and execute them. Encryption can
be used to prevent code analysis and to make disassembling more difficult.

Obfuscation tools, however, are often limited in functionality by design. Protections
are pre-determined and injected code only includes only limited number of code
patterns that differs from the patterns of the original software. This can make

27

deobfuscation easier and the process can be automated. One way to automate the
deobfuscation is to identify fragments that are known before hand to be artificially
complex replacements of simpler control flow constructs. Then the found snippets can
be replaced with simpler variations. This way can be built on techniques like pattern
matching, symbolic execution and abstract interpretation. Off-the-shelf extensible
frameworks are available forattackers. Another way to fight the obfuscation is to
assume that the protections are superfluous and complex with respect to the semantics
of the protected software. Such a code will stand out from the original software in a
detectable way. The protecting code can then be removed. [51, 52, 53]

4.2. Obfuscation Methods

Code obfuscations can be categorized into five types. These types are lexical
obfuscations, data obfuscations, control obfuscations, preventive obfuscations and
string encryptions. All the obfuscations are some sort of code transformations. [54]

4.2.1. Lexical Obfuscations

Lexical obfuscations, also known as layout obfuscations, are one-way transformations.
This includes renaming identifiers, changing formatting, removing comments and
pruning. Pruning removes unused functionality. Overall these obfuscation changes
the lexical structure of the target program and makes it more difficult for attacker to
extract meaningful information from identifiers. [54]

4.2.2. Data Obfuscations

Data obfuscations tries to prevent unauthorized access to sensitive materials. Data
obfuscations can be split to three categories: storage and encoding obfuscations,
aggregation obfuscations and ordering obfuscations. Storage and encoding
obfuscations changes the representation and methods of usage of the variables.
Aggregation obfuscations merges variables, modifies inheritance relations and splits
or merges arrays. Ordering obfuscations reorder methods and arrays. [54]

Variable aliasing is a data obfuscation that changes how the variables are stored. For
example, variable can be split into several variables, or variables can be merged into
a single variable. For example four 8 bit variables could be merged into one 32 bit
variable. If x, y, i and j are 8 bit variables, they can be merged into a 32bit variable by
shifting and ORing. Example of splitting a variable into multiple variables would be
the reverse of the previous example.

Another data obfuscations are refactoring classes and restructuring arrays. Object
oriented code can be obfuscated by refactoring the classes in a way that changes the
class inheritance. For example, method’s of the class could be split into new classes.
Array restructuring makes understanding the structure of the arrays more difficult. For
example, array’s indexes could be shuffled and another array could give us the correct
order of the indexes.

28

4.2.3. Control Obfuscations

Control obfuscations makes it harder to understand the control flow of the program.
Control obfuscations have three groups: computation obfuscations, aggregation
obfuscations and ordering obfuscations. Computation obfuscations changes the
structure of the control flow, aggregation obfuscation merges and splits code fragments
and ordering obfuscations reorder code block, loops and expressions. [54]

Opaque predicates will evaluate at compile time to known values. Opaque
predicates can be used to create conditionals which complicates the control flow graph.
Obfuscators could also create opaque predicates itself by introducing new variables
with predecided relations.

Control flow flattening creates a proxy that is used in jumps between the basic
blocks. This could reduce the control flow graph height to two levels. The proxy
and all the basic blocks.

Function calls can be obfuscated with function pointer obfuscation. A pointer to
each function could be stored in a global array. Each function call would need to be
replaced by indexing the array correctly and calling the function pointer. This method
could be used with previously mentioned array restructuring and opaque predicates.

Instruction substitution replaces standard binary operations by more complicated
sequences of instructions which are functionally equivalent. This obfuscation is not
very secure as it could be removed by re-optimising the generated code.

Bogus control flow modifies a function call graph. It adds basic blocks before the
current basic block, which contains an opaque predicate and then makes unconditional
jump to the original basic block. The original basic block is cloned and filled up with
junk instructions.

Function transformations can be inline expansions. This makes finding all the callers
of the function harder. Another example of function transformations is splitting the
function to smaller parts in order to make harder to understand the context of the
function.

4.2.4. Preventive Obfuscations and String Encryptions

Preventive obfuscations try to make automatic deobfuscation techniques more difficult.
With string encryption obfuscations, strings must be decrypted at run time. This means
replacing string literals with calls to decrypting methods. [54]

4.3. Obfuscation Tools

Obfuscation tools are usually purchasable proprietary software. Open source
obfuscators are used mainly for research purposes or as a start for further development.
Otherwise the obfuscation results would not be safe as the tools often have
predetermined protections. Some obfuscation tools are introduced below.

29

4.3.1. Obfuscator-LLVM

Obfuscator-LLVM is a open source project by the information security group of the
University of Applied Sciences and Arts Western Switzerland of Yverdon-Ies-Bains.
It has also a commercial version, which has more advanced features. The open source
version supports following obfuscations: instruction substitution, bogus control flow,
control flow flattening and functions annotations. [31]

Instruction substitution replaces binary operators with functionally equivalent
sequences of instructions that are more complicated. Bogus control flow adds a basic
block with opaque predicates before the current basic block. The bogus block makes
a conditional jump to the original block. Control flow flattening transfers the structure
of the source code in a way that targets of any branches cannot be easily determined.
[31]

4.3.2. DashO

DashO is an enterprise application hardening and obfuscation tool developed by
PreEmptive Solutions. It supports Java, Android and Kotlin applications. DashO
obfuscates compiled code, injects code to automatically detect and respond to threats
and it can inject calls to custom code. DashO provides renaming, control flow and
string encryption obfuscations. [55]

4.3.3. Themida

Themida is a binary level obfuscator developed by Oreans Technologies. Some
of techniques supported by Themida are anti-debugging, anti-memory dump, anti-
disassembly, API wrapping, virtual machine emulation in specific blocks of code,
anti-tracing code insertion, and random internal data relocation. This makes Themida
more than an obfuscator, as it provides techniques to protect the software from reverse
engineering. [56]

4.4. Side Effects of Obfuscation

As the code protection is injected to the executable file, it can have unwanted side
effects to the performance of the software. Obfuscation can make the software slower,
increase the size of the binaries and make debugging by the developers harder.

If all the variables and strings are obfuscated, you need to have a mapping file that
translates all the random names. However, this increases the overhead as you need to
preserve the mapping files of every build. It also requires more work that you need to
use the mapping file to translate the obfuscated names.

Obfuscation should be done to release builds but not to debug builds. Debug
builds need to be focused on the developer experience, as they are used for daily
work. Obfuscation woudld preserve the two build system and it would result in big

30

differences between the release and debug builds. Code obfuscation can introduce new
bugs only in the release builds.

31

5. DEBUGGING SOFTWARE

Programs can be debugged with print statements. Often this method is not the
most efficient way of working but in some cases, printing can be the preferred
method. There are also low-level debuggers that enable us to execute the debuggable
program instruction by instruction, displaying registers and memory. With source-level
debuggers we can set breakpoints, step through the program’s source, print values, and
call program functions while in the debugger. This way of working needs coordination
between two different programs — compiler and debugger. [49]

During the compilation process, the compiler collects useful information about
the program which is used later when debugging the program. However, as the
compilation process often includes optimisations; it might turn out to be difficult to
relate the optimised code to the original source code. For example, “peephole” [18]
optimisations read the machine code and might rearrange and modify the code. The
modifications can be, for example, taking a pattern of two to three instructions and turn
it into a different pattern that is equivalent but more efficient.

A complete description of the executable program’s relationship to the source is hard
to achieve. The description needs enough detail to provide meaningful information to
the programmer but it also needs to be concise enough so it can be interpreted quickly,
and it will not take too much space. There are different debugging formats that aim to
achieve this, including stabs, COFF, and DWARF. [49]

5.1. Debugging Formats

Debugging formats are the mechanism by which the compiler communicates debug
information to the debugger. Debugging formats try to keep up with the optimisations
done when building the software. DWARF will be studied in this thesis as it is the
most recent and it is actively developed. It has major support and it has replaced most
of the other debugging formats.

5.1.1. Stabs

Stabs was created in the 1980s. It tackles the problem of the a.out [57] object
file format not storing debugging information. Stabs solves this by encoding the
information using special entries in the symbol table. Stabs was commonly used on
Unix systems, but the DWARF format has replaced it. [58, 59]

5.1.2. COFF

The Common Object File Format (COFF) is an object file format that replaced the
previous format, a.out. COFF’s elements describe the file’s symbolic debugging
information and file’s sections. Debugging information includes symbolic string names
for functions and variables, and line number information. COFF has now been replaced
by ELF format in most systems. [60, 61]

32

5.1.3. DWARF

DWARF is a debugging file format that is widely supported by compilers and
debuggers. DWARF is widely used in the *nix systems, but DWARF is applicable
to any operating system as well as to stand-alone environments. DWARF supports
source-level debugging, and it is designed to be extensible to different programming
languages. [62]

5.2. DWARF Debugging Format In detail

The DWARF Debugging Format is a representation of the relationship between an
executable program and its original source in a format that can be efficiently processed
by the debugger. In order to provide meaningful functionality, the debugger must
reverse numerous transformations performed by the compiler. This means that all the
data and states need to be converted to the terms that were originally used in the source
program. DWARF aims to make this possible and easy. [49]

5.2.1. DWARF Structure

The DWARF description of the program is a tree structure where each node can have
children or siblings. Nodes can be types, variables or functions. In order to achieve a
compact format, only the necessary information to describe the program is provided.
The structure is extensible in a uniform fashion, so the debugger can recognize and
ignore extensions even without understanding the meaning of them.

DWARF follows a block structured model, except for the topmost entry. DWARF
descriptive entries are contained within a parent entry and may have child entities. If
a node contains multiple entities, they are siblings as they are related to each other.
DWARF is also designed to describe virtually any procedural programming language
on any machine architecture, thus making it more versatile. DWARF is not dependent
on the object file format but it is often used with the ELF object file format. [49]

DWARF abstracts out the basics of the programming language and provides a
representation of them. This way it can support multiple programming languages,
as languages often contain numbers of built-in data types, pointers, data structures and
a way to create new data types. Base types are primary types which can be supported
in hardware. Other data types are collections or compositions of the base types.

DWARF can be used with different processor architectures. It does not matter, for
example, if the architecture is byte- or word-oriented. DWARF can be used with
Von Neumann architectures, which have a single address spaces for code and data,
with Harvard architectures, which have separate code and data address spaces, and
potentially for different digital signal processing architectures. DWARF can also be
used with common register-oriented architectures or with stack architectures. [48, 49]

33

5.2.2. Debugging Information Entry

The Debugging Information Entry (DIE) is the basic descriptive entity in the DWARF
format. Each DIE has a tag and a list of attributes. A tag tells what a DIE describe and
the attributes fill in the details and further describes the entity. A DIE is contained in,
or owned by, a parent DIE and it may have sibling DIEs or child DIEs. Attributes may
be, for example, constants, variables or references to another DIE. There are two types
of DIEs, DIEs describing data, including the data types, and DIEs describing functions
and other executable code. [49]

A DIE describing a named variable has several attributes, for example, the name of
the variable, the file where it was declared, the line where it was declared, and a link
to the base type. A DIE for a variable and the base type it refers could look like:

<1><57>: Abbrev Number: 3 (DW_TAG_base_type)
<58> DW_AT_byte_size : 4
<59> DW_AT_encoding : 5 (signed)
<5a> DW_AT_name : int

<2><90>: Abbrev Number: 6 (DW_TAG_variable)
<91> DW_AT_name : ret
<95> DW_AT_decl_file : 1
<96> DW_AT_decl_line : 5
<97> DW_AT_decl_column : 6
<98> DW_AT_type : <0x57>
<9c> DW_AT_location : 2 byte block: 91 64 (DW_OP_fbreg:

-28)

5.2.3. Base Type

The DIE for the base type (DW_TAG_base_type) consists of the top four lines, and
the DIE describing the named variable (DW_TAG_variable) is the remainder. We can
see that DW_AT_type: <0x57> is a reference to the base type describing integers.
A reference to a DIE is represented as the offset from the start of the compilation
unit containing the DIE. References can be previously defined DIEs or DIEs that are
defined later. Base types are also used in constructing other data types. For example,
pointer to a character DIE would be defined as follows:

<1><65>: Abbrev Number: 4 (DW_TAG_pointer_type)
<66> DW_AT_byte_size : 8
<67> DW_AT_type : <0x6b>

<1><6b>: Abbrev Number: 2 (DW_TAG_base_type)
<6c> DW_AT_byte_size : 1
<6d> DW_AT_encoding : 6 (signed char)
<6e> DW_AT_name : (indirect string, offset: 0x75): char

<2><9f>: Abbrev Number: 6 (DW_TAG_variable)
<a0> DW_AT_name : s

34

<a2> DW_AT_decl_file : 1
<a3> DW_AT_decl_line : 6
<a4> DW_AT_decl_column : 8
<a5> DW_AT_type : <0x65>
<a9> DW_AT_location : 2 byte block: 91 68 (DW_OP_fbreg:

-24)

Variable s points to a pointer type DIE which defines its size as eight bytes and in turn,
refers to the character base type. DIEs also describe the const and volatile attributes,
C++ reference types and C restrict types, amongst other types. For example, a C
program with a command line argument const char **argv produces:

<2><a2>: Abbrev Number: 6 (DW_TAG_formal_parameter)
<a3> DW_AT_name : (indirect string, offset: 0xb7): argv
<a7> DW_AT_decl_file : 1
<a8> DW_AT_decl_line : 3
<a9> DW_AT_decl_column : 33
<aa> DW_AT_type : <0xce>
<ae> DW_AT_location : 2 byte block: 91 50 (DW_OP_fbreg:

-48)

<1><ce>: Abbrev Number: 8 (DW_TAG_pointer_type)
<cf> DW_AT_byte_size : 8
<d0> DW_AT_type : <0xd4>

<1><d4>: Abbrev Number: 8 (DW_TAG_pointer_type)
<d5> DW_AT_byte_size : 8
<d6> DW_AT_type : <0x6c>

<1><6c>: Abbrev Number: 4 (DW_TAG_const_type)
<6d> DW_AT_type : <0x65>

<1><65>: Abbrev Number: 2 (DW_TAG_base_type)
<66> DW_AT_byte_size : 1
<67> DW_AT_encoding : 6 (signed char)
<68> DW_AT_name : (indirect string, offset: 0xb2): char

Here the DW_TAG_formal_parameter can be seen referring to another pointer type,
which refers to const type which refers to the base type. For arrays, the DIE defines
whether the data is stored in row major or column major form. The index for the array
is represented by a subrange type that gives upper and lower bound dimensions. This
way DWARF can support C-style arrays, which are zero-based, but also, for example,
Pascal arrays, which may have any value for low and high bounds. [49]

5.2.4. Data Structures

Programming languages usually have ways of grouping data together. There are
structures, unions, variant records and interfaces. Different languages have their own
terminology, but DWARF uses terminology based on C, C++ and Java. These ways
to group data together are called struct, union, class and interface in DWARF. For

35

example, a class DIE is a parent DIE which contains each of the class members. Each
class has a name and possibly other attributes. Class DIE descriptions do not differ
very much from simple variable descriptions. For instance, C++ access specifiers,
(“public”, “private”, “protected”) are described with accessibility attributes.

Structures, unions and interfaces are described in a rather similar way. Variables
have a chunk of memory or register that can contain a value. The type of the variable
describes what kind of values the variable can contain, and any possible restrictions on
modifying the variable, such as the const keyword. Variables also have scopes. In C,
variables declared in a function or in a block have function or block scope. Variables
declared outside these are in global or file scope. This enables declaring variables of
the same name across different files. [49]

5.2.5. Variables

DWARF splits variables into constants, formal parameters and variables. Constants
do not exist in C as “const” is just a keyword that states that the variable cannot be
modified without an explicit cast. Formal parameters represent the values passed to
a function. C allows declaring variables without defining them. When describing a
variable declaration, the DIE provides a description of the variable without telling the
debugger where the variable is. Often variables have a location attribute, which tells
where it is stored. Usually the variable can be found by adding a fixed offset to a frame
pointer. A variable can also be stored in a register. There are also other variables that
may require more complicated computations to locate the data, for example, C++ class
members. [49]

5.2.6. Functions

Functions, which return values, and subroutines, which do not, are variations of the
same thing in DWARF, as both are described with a subprogram DIE. A Subprogram
DIE has a name, a source location triplet and an attribute that indicates whether the
subprogram is outside the current compilation. A sub program DIE also has attributes
that give the low and high memory addresses if the function is contiguous. If the
function is not contained in contiguous set of memory addresses, a list of memory
ranges is given instead.

The low program counter address is assumed to be the entry point for the function.
The type attribute refers to the value that function returns. In C, void functions do not
have this attribute. One common compiler optimisation is eliminating instructions that
save the return address or frame pointer. DWARF handles this with two attributes. The
address of the caller is stored in the return address attribute and the address of the stack
frame for the function is computed with a frame base attribute. [49]

36

5.2.7. Subprogram

A subprogram DIE owns DIEs that describe the subprogram. Any passed parameters
are represented by variable DIEs. Variable DIEs have a parameter attribute. The cases
where the parameters are optional or have default value are represented by attributes.
The order for the DIEs of parameters is the same as the order of argument list for the
function and there might be additional DIEs, for example, to define types used by the
parameters. Function can define variables, and these variables can be global. These
variables follow the parameter DIEs. If a programming language allows lexical blocks,
they are described with lexical block DIEs. Lexical block DIEs can own variable DIEs
or nested lexical block DIEs. [49]

5.2.8. Compilation Units

Each source file is compiled independently when a program consists of multiple
files. Every separately compiled source file is called a compilation unit by DWARF.
DWARF data for a compilation unit starts with a Compilation Unit DIE. This DIE
has information about the compilation, for instance, the directory and the name of the
source file, the programming language used, and a string which identifies the producer
of the DWARF data. Also, offsets into the DWARF data section are included to locate
the line number and macro information.

When the compilation unit is contiguous in memory, there are also values for the
low and high memory addresses for the unit. A list of the memory addresses that the
code occupies is provided by the linker when the compilation unit is not contiguous.
A compilation unit DIE is a parent of all the DIEs that describe the compilation
unit. Usually, the first child DIEs describes data types, then global data, and then
the functions that make up the source file. DIEs for variables and functions are in the
same order as they appear in the source files. [49]

5.2.9. Debug Sections

The generated debug data can become large, often larger than the executable code and
data itself. DWARF reduces the size of the debugging data by creating a ‘.debug_str’
section which contains most of the strings.

Duplicate strings can be removed and strings in the debug data becomes references
to this section. Repeated declarations can be saved in separate compilation units in
uniquely named sections. Afterwards, common data can be used to eliminate duplicate
sections [48].

DWARF data can be generated for only type definitions, that are used as programs
can reference many header files which contain many unused type definitions. Type
definitions can be saved into ‘.debug_types’ and thus, duplicates can be eliminated.
In DWARF5 there are 15 different DWARF sections and 10 different DWARF split
sections. All the debug sections start with the ‘.debug_’ prefix. The DWARF sections
and a description of each section’s content can be seen in Table 2. Split object sections
are listed in Table 3. [49]

37

Table 2. DWARF Sections

Section Name Content
.debug_abbrev Contains abbreviation codes used in the .debug_info

section
.debug_addr Contains references to locations within the virtual

address space of the program
.debug_aranges Contains the lookup table for mapping addresses to

compilation units
.debug_frame Contains call frame information
.debug_info The core DWARF data containing DIEs
.debug_line Contains line number tables
.debug_line_str Contains strings for file names used in combination

with the .debug_line section
.debug_loclists Contains location lists which are used in place of a

location description whenever an object’s location can
change during its lifetime

.debug_macro Macro descriptions

.debug_names Contains the maintained name index for lookup by a
name for each DIE that defined a named subprogram,
label, variable, type, or namespace

.debug_rnglists Contains range lists, which are used when the set of
addresses for a debugging information entry cannot
be described as single contiguous range.

.debug_str Contains any strings referenced

.debug_str_offsets Contains the string offsets table for the strings in the
.debug_str section

.debug_str_sup Establishes relationship between the supplementary
object file and all the executable or shared objects files
that reference entries in the supplementary object file.

Table 3. DWARF Split Sections

Section Name Content
.debug_abbrev.dwo Abbreviation table for the compilation unit and type

units
.debug_info.dwo Full compilation unit
.debug_line.dwo Specialized line number table for the type units
.debug_loclists.dwo Location lists
.debug_macro.dwo Macro information
.debug_rnglists.dwo Range lists
.debug_str.dwo A string table
.debug_str_offsets.dwo A String offsets table

38

5.2.10. Split Object Files

Split DWARF splits the debug information into two parts at compile time. One part
remains in the object file and another part is written to a parallel .dwo file. The
motivation is to reduce the total size of object files processed by the linker, in order
to speed up link times and to reduce system memory requirements. The object
files contain skeleton DWARF debug information and the .dwo files include the full
DWARF debug information. There is a .dwo file for every source file so this method
has some limitations with large projects. A program called dwp, which is a split
DWARF packager, solves this problem by combining the .dwo files into a single .dwp
file. [63]

5.2.11. DWARF Package Files

While split DWARF object files allow compiling, linking and debugging a program
more quickly with less link-time overhead, they are not optimally suited to saving the
debug information for later debugging of a released program. A DWARF package file
collects the debugging information from the object files, or from separate DWARF
object files. This package has the .dwp extension mentioned earlier. A DWARF
package file is an object file too, and it uses the same object file format as the
corresponding application binary. The package file has only a file header, a section
table, a number of DWARF debug information sections, and two index sections.

The index sections are called .debug_cu_index and debug_tu_index, cu meaning
compilation unit and tu meaning type unit. The index files provide a quick way to
locate debug information by compilation unit ID for compilation units and by type
signature for type units. Both indexes use the same format and begin with a header,
followed by a hash table of signatures, then a parallel table of indexes, a table of offsets,
and then a table of sizes. [48]

39

6. IMPLEMENTATION

The goal of this thesis work was to compare methods that protects intellectual property
by making reverse engineering more difficult. This chapter will list five possible
methods to do so. Three of the methods delete the debug data and two of the methods
modifies the code.

A customer program image is built without debug data, so examining the large
structs containing system state or protocol data received from the network, is very
difficult and time-consuming.

In some cases, binary libraries of some modules are given to a customer alongside a
partial source release. Then the customer will make their own changes to the code and
build the software. When such a dump is debugged, there is no debug data in the ELF
file as the binary libraries are stripped of the debug data. The software can be build
internally with the debug data. Such ’debug ELFs’ can be used instead.

Using such a debug ELF has its own problems. The debug ELF may have the wrong
addresses for symbols. Also, the symbol layout may vary, as debug builds often include
code that is not in the customer build. So overall, customer ELFs have correct symbol
addresses but no type information for symbols. A debug ELF has type info but not
all the type info is correct, and the symbol addresses are wrong. Currently standard
practice is to find the address of a symbol using the customer ELF, then load the debug
ELF and cast that address to the correct type. When there are multiple symbols you
need to look at, this gets quite painful.

The first and rather obvious idea is to merge the type info into the customer ELF.
Some other ideas were stripping the libraries from the debug data and adding them
to the GDB when debugging. GDB also supports multiple symbol files, so symbols
could be loaded from the ELF file that way. Debug fission was also considered, as
well obfuscating the software during the compilation on IR level. The sections below
describe each potential solution and it was tested.

6.1. Debug Fission

Large applications might have an extensive amount of debug data, which can cause
problems. Debug fission is a response to these problems [64]. In debug fission, the
debug information is split at compile time. Part is in the object file and another part is
written to a parallel DWARF object file, which have a suffix of .dwo.

Debug fission is enabled with a ’-gsplit-dwarf’ switch in gcc versions 4.7 or greater.
Fission must be used when only compiling, so the ’-c’ (compile source file to object
code, do not invoke linker) switch is required when using ’-gsplit-dwarf’. The .dwo
files need to be linked with gold linker’s ’–gdb-index’ switch at link time, or the user
must manually set GDB’s debugging directory to the location of the .dwo files with the
GDB command ’set debug file directory directories’ [65].

With debug fission, several benefits were expected, namely faster build time, and
smaller build files. When build times were compared, link time decreased but
post processing time increased more than link time decreased. So the total build
time increased with debug fission. Debug fission also left some proprietary debug
information in the ELF files, so this option did not meet the basic requirements of IP

40

protection. Split dwarf greatly reduced the size of the ELF files but when the .dwo files
were packed into a .dwp file (DWARF objects packed), the total size was larger than
without debug fission. It is worth noting that a rather old compiler version was used in
these measurements. A more up-to-date version might provide better results.

6.2. Modifying ELF with Pyelftools

Another idea that seemed obvious was to modify the existing customer ELF, adding the
symbol data of the debug ELF. This solution would not resolve any potentially wrong
symbol layouts. Developing a program for this solution started with a python library
called pyelftools, which parses and analyses ELF files and DWARF information [66].
The program would need to:

1. Take the user ELF, the debug ELF, the map file from the debug ELF and a list of
compilation units as inputs.

2. Find the debug section for each compilation unit and record its length and offset
from the map file.

3. Merge the debug sections ranges to the user ELF’s section header.
4. Find call frame indexes and write them to the new ELF file
5. Find symbols and write the DWARF tags to corresponding location

Writing the DWARF tags turned out to be more complex than it initially appeared.
Given a compilation unit, one can easily iterate through the DIEs with pyelftools.
DIEs have DWARF tags as attributes. The DW_AT_name attribute tells us the name
of the symbol, and we can use its value to get the symbol value from the .symtab
section. If the DW_AT_name value can be found in the .symtab, then we can take the
tags offset and write it to the new ELF file. However, sometimes the DW_AT_name
attribute does not exist, and a symbol can only be found in other DIEs. For example,
DW_AT_abstract_origin is used for inline instances of inline subprograms, or out-of-
line instances of inline subprograms. The DWARF standard lists all the attributes in a
table. It is almost six pages long, so there are lots of attributes.

In practice, finding the correct offsets for DWARF got too complicated for this
approach to be suitable. For example, cached DIEs can have a .isra or a .constprop
suffix added to the name. This needs to be taken into account when finding symbols.
Range list offsets needs to be calculated if they are the same as the DW_AT_low_pc.
[48]

6.3. Stripping debug info

The GNU Binary Utilities, or ’binutils’, are a collection of tools for working with
binary programs, object files, assembly source code and more. The main tools are ’ld’,
which is a linker, and a ’as’, which is an assembler. Some of the other tools include
addr2line, gold, nm, objcopy, objdump and readelf. [67]

Objcopy takes an object file as a parameter. If a second file name is given as a
parameter, a copy of the input file will be created with a name of the second parameter.
For example ‘objcopy elf elf-copy‘ would copy an object file called ’elf’ to a file called

41

‘elf-copy‘. Objcopy has many options that alter the behaviour of the command. For
example, there are options called ’–strip-debug’ and ’–only-keep-debug’. If the ’–
strip-debug’ option is passed to objcopy, it does not copy any debugging symbols or
sections from the input file. The option ’–only-keep-debug’ does the exact opposite –
it only copies debugging symbols and sections from the source file. [68]

Let us illustrate this with a small C program, seen in Appendices A, B and C. The
file hello.c can be compiled into an object file with the debug data with the command
’gcc -g -c hello.c -o hello.o’. The main.c file can be compiled into an object file without
debug data in a similar fashion with the command ‘gcc -c main.c -o main.o‘. These
two object files can be linked together with the command ’gcc main.o hello.o -o main’.
This will create an executable called main, which will run the program we just created.

As hello.o contains debug information, we can find the layout of the Greetings struct
with GDB.

$ gdb -q -ex ’ptype g’ -ex quit main
Reading symbols from main...
type = struct Greetings {

STR hello;
STR byeybye;

}

The debug data can be copied to a new object file with the command ’objcopy
–only-keep-debug hello.o hello.debug’. This will create a new object file called
hello.debug, which has only the debug symbols and sections from the hello.o. The
debug information that was just copied can be removed from the original object file
with the command ‘objcopy –strip-debug hello.o‘. Now if hello.o and main.o are
linked again into an executable and we try to find the layout of the Greetings struct, no
data is found.

$ gdb -q -ex ’ptype g’ -ex quit main
Reading symbols from main...
type = <data variable, no debug info>

GDB supports multiple symbol files and the debug data can be added with a GDB
command ‘add-symbol-file‘ [69].

gdb -q -ex ’add-symbol-file hello.debug’ -ex ’ptype g’ -ex
quit main

Reading symbols from main...
add symbol table from file "hello.debug"
(y or n) y
Reading symbols from hello.debug...
type = struct Greetings {

STR hello;
STR byebye;

}

The stripped object file can be inspected more closely with the readelf program.
Readelf displays information about ELF format object files. It has multiple options
to control what information is being displayed. For example, with the ‘–file-header‘
option we can inspect the information in the ELF header at the start of the file. The

42

option ‘–sections‘ will display the information in the file’s section headers [70]. The
stripped object file has the following content:

$ readelf --wide --sections hello.o
There are 13 section headers, starting at offset 0x3b8:

Section Headers:
[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align
[0] NULL 0000000000000000 00000000

0000000000000000 0000000000000000 0 0 0
[1] .text PROGBITS 0000000000000000 00000040

000000000000003d 0000000000000000 AX 0 0 1
[2] .rela.text RELA 0000000000000000 00000278

0000000000000090 0000000000000018 I 10 1 8
[3] .data PROGBITS 0000000000000000 0000007d

0000000000000000 0000000000000000 WA 0 0 1
[4] .bss NOBITS 0000000000000000 00000080

0000000000000010 0000000000000000 WA 0 0 16
[5] .rodata PROGBITS 0000000000000000 00000080

000000000000001a 0000000000000000 A 0 0 1
[6] .comment PROGBITS 0000000000000000 0000009a

000000000000001c 0000000000000001 MS 0 0 1
[7] .note.GNU-stack PROGBITS 0000000000000000 000000b6

0000000000000000 0000000000000000 0 0 1
[8] .eh_frame PROGBITS 0000000000000000 000000b8

0000000000000078 0000000000000000 A 0 0 8
[9] .rela.eh_frame RELA 0000000000000000 00000308

0000000000000048 0000000000000018 I 10 8 8
[10] .symtab SYMTAB 0000000000000000 00000130

0000000000000120 0000000000000018 11 8 8
[11] .strtab STRTAB 0000000000000000 00000250

0000000000000024 0000000000000000 0 0 1
[12] .shstrtab STRTAB 0000000000000000 00000350

0000000000000061 0000000000000000 0 0 1
Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings), I

(info),
L (link order), O (extra OS processing required), G (group),

T (TLS),
C (compressed), x (unknown), o (OS specific), E (exclude),
l (large), p (processor specific)

The output tells us that there are no debug sections in the file. If we compare to the
original object file with all the debug data, we can see the debug sections that were
stripped.

$ gcc -g -c hello.c -o debug-hello.o
$ readelf --sections debug-hello.o
There are 21 section headers, starting at offset 0x9c0:

Section Headers:

43

[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align

[0] NULL 0000000000000000 00000000
0000000000000000 0000000000000000 0 0 0

[1] .text PROGBITS 0000000000000000 00000040
000000000000003d 0000000000000000 AX 0 0 1

[2] .rela.text RELA 0000000000000000 00000598
0000000000000090 0000000000000018 I 18 1 8

[3] .data PROGBITS 0000000000000000 0000007d
0000000000000000 0000000000000000 WA 0 0 1

[4] .bss NOBITS 0000000000000000 00000080
0000000000000010 0000000000000000 WA 0 0 16

[5] .rodata PROGBITS 0000000000000000 00000080
000000000000001a 0000000000000000 A 0 0 1

[6] .debug_info PROGBITS 0000000000000000 000000a0
00000000000000a1 0000000000000000 C 0 0 8

[7] .rela.debug_info RELA 0000000000000000 00000628
0000000000000258 0000000000000018 I 18 6 8

[8] .debug_abbrev PROGBITS 0000000000000000 00000148
0000000000000092 0000000000000000 C 0 0 8

[9] .debug_aranges PROGBITS 0000000000000000 000001e0
000000000000002f 0000000000000000 C 0 0 8

[10] .rela.debug_[...] RELA 0000000000000000 00000880
0000000000000030 0000000000000018 I 18 9 8

[11] .debug_line PROGBITS 0000000000000000 0000020f
000000000000005d 0000000000000000 0 0 1

[12] .rela.debug_line RELA 0000000000000000 000008b0
0000000000000018 0000000000000018 I 18 11 8

[13] .debug_str PROGBITS 0000000000000000 00000270
00000000000000ae 0000000000000001 MSC 0 0 8

[14] .comment PROGBITS 0000000000000000 0000031e
000000000000001c 0000000000000001 MS 0 0 1

[15] .note.GNU-stack PROGBITS 0000000000000000 0000033a
0000000000000000 0000000000000000 0 0 1

[16] .eh_frame PROGBITS 0000000000000000 00000340
0000000000000078 0000000000000000 A 0 0 8

[17] .rela.eh_frame RELA 0000000000000000 000008c8
0000000000000048 0000000000000018 I 18 16 8

[18] .symtab SYMTAB 0000000000000000 000003b8
00000000000001b0 0000000000000018 19 14 8

[19] .strtab STRTAB 0000000000000000 00000568
000000000000002c 0000000000000000 0 0 1

[20] .shstrtab STRTAB 0000000000000000 00000910
00000000000000b0 0000000000000000 0 0 1

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings), I

(info),
L (link order), O (extra OS processing required), G (group),

T (TLS),
C (compressed), x (unknown), o (OS specific), E (exclude),

44

l (large), p (processor specific)

The Option ‘–debug-dump‘ displays the contents of the DWARF debug sections in
the file. When the ‘readelf‘ is run with that option on ‘hello.o‘, not much is displayed,
not even base types, like int. When the same command is run for the object file with
debug information, the output is over 7 times longer.

6.4. Optimisations

Let us illustrate this with a simple C program, seen in Appendix D. The program
creates a simple linked list and uses bubblesort to sort it.

Source codes files are compiled into an object file with the ‘nanomips-elf-gcc‘
compiler, disassembly can be extracted with the ‘nanomips-elf-gdb‘. NanoMIPS Base
ISA Technical Reference Manual can be found from the MIPS website [71].

The GDB’s disassembly output for all the functions can be seen in Appendices F, G,
H, I and J.

The software is compiled with ‘-O3‘ optimisation and functions and data are placed
in their own sections and section garbage collection is used. The disassembly with the
source code reference can be seen in Appendix K. The source code information can be
seen with the GDB command ‘disas /s <function>‘. When the source files cannot be
found, only file name and line numbers are shown. This can be seen in Appendix L.
When all the debug data is stripped, no references to the original source code cannot
be seen. Such disassembly can be seen in Appendix M.

Downside of the ‘-O3‘ optimisation is the increase of the size. ‘-Os‘ is an
optimisation level with the size in mind. It enables same optimisations than ‘-O2‘
except those that often increase the code size. Another optimisation is link time
optimisation (LTO). LTO writes IR to the special ELF section. When the objects files
are linked, function bodies are read from ELF and instantiated as if they had been part
of the same translation unit.

Only the main functions disassembly is available as the software has seen some
heavy optimisation. Functions have been inlined to the main function, and as data
and functions are in their own sections with garbage collection enabled, references to
inlined functions are deleted.

The amount of instructions and branches in the disassembled functions can be seen
in Table 4. The optimised main function is 46 instructions long, with all the other
functions inlined. The unoptimised disassembly had total of 126 instructions and 12
branches.

Table 4. Complexity of disassembled function
Disassembly Instructions Branches
Unoptimised main 24 4
Unoptimised b_insert 20 1
Unoptimised b_sort 36 7
Unoptimised b_swap 16 0
Unoptimised init_arr 31 0
Optimised main 46 7

45

6.5. Obfuscations

Few LLVM based obfuscation tools were tried. However, none of them were
successfully integrated to the build environment and the toolchain. Existing results
of the obfuscations results were search instead. Pascal Junod et al. had run some
benchmark on OpenSSL with, and without, obfuscations [31]. These results will be
compared.

LLVM obfuscator provides bogus control flow, control flow flattening and
instruction substitution obfuscations. All these obfuscations adds code(?), so the
library size is bound to be increased. The size of the libcrypto.a and libssl.a with and
without different obfuscations can be seen in Table 5 and total size of the obfuscated
libraries in percentages can be seen in the Table 6. The size is in bytes. The option
for the column “Size with bogus control flow“ is with the default compiler options:
the pass is run three times, and a basic block is being obfuscated with a probability of
30%.

Table 5. Size of the OpenSSL libraries with and without obfuscations
Library libcrypto.a libssl.a
No obfuscation 3371184 592336
Instruction substitution 3382600 594128
Bogus control flow 3395424 593936
Control flow flattening 4388912 867456
Control flow flattening and bogus control flow 57046064 1191376
All previously mentioned obfuscations 21441280 5003640

Table 6. Size increase in the obfuscated OpenSSL libraries compared to unobfuscated
libraries

Library libcrypto.a libssl.a
Instruction substitution 100.34% 100.30%
Bogus control flow 100.72% 100.27%
Control flow flattening 130.19% 146.45%
Control flow flattening and bogus control flow 169.20% 201.13%
All previously mentioned obfuscations 636.02% 844.83%

Besides the size of the libraries, execution speed can be measured. The results of
the OpenSSL benchmarks on different algorithms, namely MD5, SHA512, RSA1024
and RSA4096 can be seen in Tables 7 and 8. The benchmark runs the algorithm
routine with a different sized inputs. The results are processed bytes, in thousands,
per second. Last row with all the obfuscation enabled has some additional compiler
options enabled. Bogus control flow probability is 100% and the pass is run two times.

Table 9 and 10 shows the benchmarks for RSA algorithm with different moduli.
Table 11 shows the performance difference between unobfuscated, instruction
substitution, bogus control flow and control flow flattening obfuscated binaries.
Percentages are the loss of performance compared to unobfuscated binary.

46

Table 7. OpenSSL benchmark for MD5 algorithm
Obfuscations applied 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
No obfuscations 23552.89k 78022.21k 202613.08k 337656.15k 412469.93k
Instruction substitution 20147.98k 65221.23k 182223.70k 297061.38k 373598.89k
bogus control flow 21961.77k 75055.73k 191669.76k 322189.99k 405228.20k
control flow flattening 4626.06k 17899.95k 63085.57k 175522.13k 357381.46k
control flow flattening and
bogus control flow 2426.18k 8767.02k 27689.22k 60316.67k 92009.81k

instruction substitution,
control flow flattening and
bogus control flow

334.18k 1335.83k 5155.75k 17650.01k 59845.29k

Table 8. OpenSSL benchmark for SHA512 algorithm
Obfuscations applied 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
No obfuscations 16267.34k 64235.24k 112194.30k 167185.07k 190887.25k
Instruction substitution 14304.69k 56231.81k 95766.36k 140968.96k 160869.03k
bogus control flow 15192.15k 58753.58k 103328.60k 152055.47k 174394.03k
control flow flattening 4058.90k 16660.07k 27805.70k 40517.63k 46282.07k
control flow flattening and
bogus control flow 1968.08k 8033.96k 13190.49k 19611.65k 22921.22k

instruction substitution,
control flow flattening and
bogus control flow

289.59k 1162.75k 1818.71k 2561.02k 2894.51k

Table 9. OpenSSL benchmark for RSA with moduli of 1024 bits
Obfuscations applied sign verify sign/s verify/s
No obfuscations 0.18ms 0.01ms 5493.4 70164.1
Instruction substitution 0.91ms 0.04ms 1098.5 24574.0
bogus control flow 0.93ms 0.04ms 1066.5 23674.0
control flow flattening 9.89ms 0.42ms 101.1 2377.3
control flow flattening and
bogus control flow 17.41ms 0.71ms 57.4 1419.0

instruction substitution,
control flow flattening and
bogus control flow

111.89ms 4.74ms 8.9 210.8

Table 10. OpenSSL benchmark for RSA with moduli of 4096 bits
Obfuscations applied sign verify sign/s verify/s
No obfuscations 32.71ms 0.44ms 30.6 2272.5
Instruction substitution 34.36ms 0.47ms 29.1 2132.5
bogus control flow 35.46ms 0.48ms 28.2 2078.8
control flow flattening 328.71ms 4.60ms 3.0 217.3
control flow flattening and
bogus control flow 521.00ms 6.90ms 1.9 145.0

instruction substitution,
control flow flattening and
bogus control flow

3710.00ms 52.08ms 0.3 19.2

47

Table 11. Performance loss compared to unobfuscated results in MD5 benchmark
Obfuscations applied 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
Instruction substitution 14.45% 16.41% 10.06% 12.02% 9.42%
bogus control flow 6.76% 3.80% 5.40% 4.58% 1.76%
control flow flattening 80.36% 77.06% 68.86% 48.02% 13.36%

48

7. DISCUSSION

As it turned out in Chapter 6, the solution involving binary tools worked well. The
other solutions had some trade-offs that will be discussed in this chapter. Likewise, the
changes required to apply the solution are discussed, together with the necessary the
changes in workflow. Lastly some future work is considered.

7.1. Trialed solutions

The other solutions tried besides using binary tools were debug fission, ELF file
injection, and obfuscation. All of these will be discussed in more detail in this section.

7.1.1. Debug Fission

The main issue with debug fission was inadequate IP protection. As not all debug data
was placed into the .dwo files, debug fission was not suitable as is. It would have been
easy for the developers to adapt to, as almost all the changes would have been in the
tools or the software build side. However, this would have caused some issues in the
build environment.

Integrating debug fission into the build systems is not the most straightforward as
the toolchain needs to be updated and it would have required a lot of background
work and testing from the toolchain developers, not to mention the increased storage
requirements and increased link times. As the debug fission left some proprietary
information to the ELF files, it was not suitable solution. Even when combining debug
fission with stripping the debug data from the object files, it would still be far from
ideal solution as the storage requirements and linking times increased.

It is important to notice that the proof of concept did not use the most recent
toolchain versions, so there could be improvements in the results with a newer
toolchain version. Because the adaptation of a new toolchain version takes a toll, an
older version was deemed adequate.

7.1.2. ELF file injection

Pyelftools provided a good API to analyse and parse ELF files. Even though the
solution seemed simple to develop initially, it was quickly discovered to be a complex.
Maintaining the developed solution would have been a big increase to the workload,
on top of the existing limited resources. Not to mention the problem of the different
symbol layouts between the user and debug ELF files might be different in some cases.

This solution is good for keeping IP safe and does not affect any build systems. Users
need to run the program themselves, or it can be integrated into an existing program
that generates core files from the dumps. Parsing the ELF file took a long time, so
it is not optimal in that way either, as developers might have multiple different issues
every day and one issue might have multiple memory dumps. The slowness of the tool
would increase the total working time substantially. ELF file injection is completely

49

possible to do, and a small-scale proof of concept was successfully completed, but
more resources would need to be allocated to finish and maintain the solution.

7.1.3. Stripping debug info

Stripping and glueing back the debug info was successful. The process is not heavy on
the resources, adds IP protection to a certain degree, and it easy to enable the solution.

7.1.4. Optimisations

Optimisations are somewhat a good way to protect the IP. Optimisations are trade off
between the binary sizes and the amount of optimisations done. We can see from Table
4 that optimised disassembly is shorter. Even so, reverse engineering might be harder
as there is less context. The example code was rather short, so optimisation from LTO
were not seen. LTO makes the code more optimised and harder to reverse engineer.

7.1.5. Obfuscation

Existing implementation were not working together with the build environment.
Instead, existing results were studied. Library sizes started to increase even with
a single obfuscations. When multiple obfuscations were used, library sizes easily
doubled. Depending of the library, the size could increase over 600% or 700%.
Considering the limitations of the embedded devices, these results are not acceptable.

The performance decrease was also seen after applying the obfuscations. RSA
benchmarks showed a big difference in the performance even with the single
obfuscations. The performance decrease depends on the algorithm and the input
size. Smallest decrease overall was in the bogus control flow obfuscation. The
loss of performance varies from 1.76% to 6.76%. Other obfuscations showed
more performance loss even in the best case scenarios. These kinds of results are
unacceptable for real-time operating system with time critical domains. Especially
because obfuscation like instruction substitution is easily removed by re-optimising
the generated code.

7.2. Results

This thesis work attempts to find the most suitable way to ease the burden of debugging
customer issues without exposing sensitive IP. Some goals that had to be kept in mind
while looking for a solution were:

1. Keeping intellectual property safe
2. Enabling easier debugging of customer issues
3. Finding an easy way for developers to use the solution
4. Finding a sensible solution that could be easily integrated into the build system

50

5. The size and the performance of the released binaries should not decrease

Table 12. IP Protection method comparison

Method Optimisation LTO
Removing
debug
symbols

Obfuscation

Performance Gains Yes Yes No No

Interusability
Obfuscation can revert
optimisations

Yes Yes
Optimisations
can revert
obfuscations

Makes reverse
engineering harder

Might be easier for
experienced debugger

Yes Yes yes

Increase to size Yes No No Yes
Harder debugging No Yes, possibly No Yes

IP protection is a hard requirement with no room for compromise. The solution had
to balance the trade-offs between the other goals. After discussion, four options were
evaluated: debug fission, injecting the ELF file, injecting the core file, and the usage
of existing GNU bintools. Obfuscation tools were not successfully tested but existing
results were studied. The existing results indicated unacceptable increase in the library
sizes. Enabling obfuscations could result in the image file that cannot be flashed to the
device. Besides the increase of the libraries, performance decreased a lot for a system
where each clock cycle is considered important.

The solution using binary tools turned out to be a great success, even though it was
initially deemed as unsuitable after earlier trials few years ago. The toolchain and its
binary utilities have matured and now the implementations work better than before.
This solution keeps the IP safe and there is no additional work for developers to enable
the solution. The solution is also fast to implement in the build system and does not
increase build time. However, more space is required to store the debug data. This can
get quite large as there are plenty of products and their software can be built daily, even
multiple times per day.

7.3. Workflow

In Figure 9 we can see the life cycle of the old debugging flow. It requires the whole
build process to be done twice and requires launching two debugger instances, not to
mention finding the address from the user load and using the second debugger instance
to find the correct symbol layout.

The new debugging flow, seen in Figure 10 shows how much simpler the new way
of working is. Engineers do not necessarily need to download all the debug files but
instead they can download the debug file of their own modules. This way they do
not need to load all the debug files into GDB, or load one big debug file into GDB.
Engineers can even preserve old debugging files if they know there have not been any
changes in the debug information. This makes the debugging flow even faster.

51

Figure 9. Old debugging flow.

Figure 10. New debugging flow.

52

7.4. Required changes

Some tools require minor changes, but the big change needed is in the build system.
Currently the majority of modules are not compiled with debug data so the build size
will increase. In the end, this can add a lot to the space requirements.

The stripped debug data also needs to be stored somewhere, so the space requirement
is not only at build time. Stripping the debug data is fortunately rather fast, so the only
increase to the build time comes from the debug data. An additional benefit to this
solution is that the debug data will be file specific. Most often developers only want
to examine variables in their modules. Alternatively, developers could ask module
owners what file they need to load in order to save space and not download all the
debug files. Splitting debug data out of every object file enables developers to do all
that and they do not have to load the debug data for hundreds of other modules.

7.5. Future Work

While working intensively with the DWARF format, some additional ways to solve the
original issue were identified. Maybe the best solution in theory would be to generate
the DWARF data with some sort of DWARF generator. That way every developer could
create symbol files with the debug information they needed. Developers typically know
when their data changes, so they would not need to regenerate the symbols for every
issue. The input to the DWARF generator could be JSON or code files, such as file
containing all the wanted structs and defines, or object files. To make the generator
efficient, it would need to be an in-house implementation.

A python module called dwarfgen [72] was found but it was not extensively tested
or worked with as it fell out of the scope of the thesis because of time constraints. It
would not have been a straightforward solution, but it could been a good starting point.
Another interesting library found was libdwarf [73]. This library provided a program
called dwarfgen and more research could be conducted on it.

One solution considered late in the project was adding custom functionality to GDB.
If one could tell GDB to ignore addresses from the symbol table, a debug ELF file
could be used without any modifications. However, some symbol layout would be
wrong in the debug ELF. Developers working with the debug ELFs usually only look
at symbols from their own modules, and they know usually know when their modules
have customer release specific code, which changes the symbol layout. Debugging
ELF would not be ideal in some cases, but overall efficiency would be improved a
lot. However, a ready solution for this was not found and time constraints prevented
more familiarity with the GDB source code. Any custom work would also require
maintenance work later.

Another future work item could be core file injection. Researching core files more
could produce some new ideas for tackling the debugging issue. Also, when the
toolchain version is internally updated to a more recent version, the debug fission ought
to be retested.

At the very end of finishing the work part of the thesis, a cross platform library called
LIEF [43] was found. LIEF can parse and manipulate executable file formats and its
purpose is to provide a library that supports different operations on different executable

53

file formats. It provides an API for different languages and abstracts features from the
different formats [74]. LIEF’s blog [75] explains that there is an ELF builder integrated
into LIEF. While the LIEF is not exactly in the scope of this thesis, as the LIEF’s focus
seem to be more reverse debugging than working with DWARF debug information,
LIEF is still an actively developed library that could be researched more and followed
actively in the case it later supports features that do fit this thesis’ scope.

As the objcopy method seemed promising, one future item is to actually implement
the required changes to the build system, to try the object debug data copying and
stripping in practice with a full modem software build.

Obfuscation could be studied more and trialed in the actual embedded device. This
way more suitable modules and scenarios for obfuscations could be found. It should
be noted that this would require in developing the in-house obfuscator as the use case
is rather specific. Company might not see this plausible, as the existing results indicate
too much of unwanted side effects, such as increase in the library size and bugs caused
by the obfuscation.

54

8. CONCLUSIONS

Protecting IP is important for companies providing proprietary software. Reverse
engineering can happen by exploiting debug data. Therefore, companies are not
willing to give debug data away even to trusted customers, due to worries over data
leaks or malicious intentions from third parties. Even though IP needs to be kept safe,
companies want to be the first to market, especially with flagship products. Customers
are demanding and require fast response to the issues that developers are faced with. It
is no good that the IP protection clashes with these two essential requirements, slowing
down issue resolution.

While compilers and linkers have evolved, the principles to understand them are the
same as in the past. Protecting IP is not a new requirement, and neither is the problem
of how to hide debug data and still work with it later.

Initially the best sounding solutions were debug fission, injecting the ELF file with
debug data, injecting the core file with debug data, and stripping the debug data and
using it again later. Later, more ideas were developed, such as generating symbol files
without addresses on demand or adding a functionality to GDB to ignore the addresses
from an externally loaded symbol table. A great deal of future work remains in this
area, but some solutions exist. The most suitable solution was stripping the debug data
and adding it later to GDB, as it fulfills all the criteria described in Chapter 7. This
solution does not compromise IP and it is easy and fast to integrate into the current
workflow, it enables loading the object data only of wanted modules, and it requires
little or no change to the internal tools. However, build size increases as the amount of
debug data increases, and thus it also increases build time.

The results of the thesis were somewhat contradictory. On the one hand, binary
tool utilities were researched again and found to be useful. The output of object
file stripping is also more useful than expected as the developer can load the debug
data per stripped module. On the other hand, changing the build system has its own
bureaucracy and side effects. However, the relief in the developer’s work is worth
the extra development time. Then again, injecting the ELF file was deemed to be
unsuccessful as it was slow, complex and hard to maintain.

55

9. REFERENCES

[1] System-on-a-chip - embedded artistry. https://embeddedartistry.
com/fieldmanual-terms/system-on-a-chip/. Accessed 2022-07-
17.

[2] Suh D., Hwang J. & Oh D. (2008) Do software intellectual property rights
affect the performance of firms? case study of south korea. In: 2008 The Third
International Conference on Software Engineering Advances, pp. 307–312.

[3] Murray D. (2020) Open source and security: why transparency
now equals strength. Network Security 2020, pp. 17–19. URL:
https://www.sciencedirect.com/science/article/pii/
S1353485820300829.

[4] Olcoz K., Tirado F. & Mecha H. (1999) Unified data path
allocation and bist intrusion. Integration 28, pp. 55–99. URL:
https://www.sciencedirect.com/science/article/pii/
S0167926099000127.

[5] Sosnowski J. (2006) Software-based self-testing of microprocessors.
Journal of Systems Architecture 52, pp. 257–271. URL: https:
//www.sciencedirect.com/science/article/pii/
S1383762105000780.

[6] Evans D. (2011) How the next evolution of the internet is changing everything.
Tech. rep.

[7] Research J. (2020) Iot the internet of transformation 2020. Tech. rep.

[8] Martin G. (2002) How to choose semiconductor ip: embedded software. In:
Proceedings 2002 Design, Automation and Test in Europe Conference and
Exhibition, pp. 16–.

[9] Rajendran J.J.V. (2017) An overview of hardware intellectual property protection.
In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp.
1–4.

[10] ul Iman M. & Ishaq A.F.M. (2010) Anti-reversing as a tool to protect intellectual
property. In: 2010 Second International Conference on Engineering System
Management and Applications, pp. 1–5.

[11] Looking for vulnerabilities in mediatek audio dsp. https://research.
checkpoint.com/2021/looking-for-vulnerabilities-in-
mediatek-audio-dsp/. Accessed 2022-07-12.

[12] Flaw in qualcomm modems enables backdoor for hackers to record your
phone calls. https://www.gsmarena.com/flaw_in_qualcomm_
modems_allows_backdoor_for_hackers_to_record_your_
phone_calls-news-49007.php/. Accessed 2022-07-12.

https://embeddedartistry.com/fieldmanual-terms/system-on-a-chip/
https://embeddedartistry.com/fieldmanual-terms/system-on-a-chip/
https://www.sciencedirect.com/science/article/pii/S1353485820300829
https://www.sciencedirect.com/science/article/pii/S1353485820300829
https://www.sciencedirect.com/science/article/pii/S0167926099000127
https://www.sciencedirect.com/science/article/pii/S0167926099000127
https://www.sciencedirect.com/science/article/pii/S1383762105000780
https://www.sciencedirect.com/science/article/pii/S1383762105000780
https://www.sciencedirect.com/science/article/pii/S1383762105000780
https://research.checkpoint.com/2021/looking-for-vulnerabilities-in-mediatek-audio-dsp/
https://research.checkpoint.com/2021/looking-for-vulnerabilities-in-mediatek-audio-dsp/
https://research.checkpoint.com/2021/looking-for-vulnerabilities-in-mediatek-audio-dsp/
https://www.gsmarena.com/flaw_in_qualcomm_modems_allows_backdoor_for_hackers_to_record_your_phone_calls-news-49007.php/
https://www.gsmarena.com/flaw_in_qualcomm_modems_allows_backdoor_for_hackers_to_record_your_phone_calls-news-49007.php/
https://www.gsmarena.com/flaw_in_qualcomm_modems_allows_backdoor_for_hackers_to_record_your_phone_calls-news-49007.php/

56

[13] Critical mediatek rootkit affecting millions of android devices. https:
//www.xda-developers.com/mediatek-su-rootkit-exploit/.
Accessed 2022-07-12.

[14] Unisoc phone chip firmware vulnerable to remote crash. https:
//www.theregister.com/2022/06/03/uisoc-chip-flaw-
check-point/. Accessed 2022-07-12.

[15] Cve-2022-20210. https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2022-20210. Accessed 2022-07-12.

[16] Ou C., Zhang X., Angelopoulos S., Davison R. & Janse N. (2022) Security
breaches and organization response strategy: Exploring consumers’ threat and
coping appraisals. International Journal of Information Management 65, p.
102498.

[17] Tian G.Y. (2009) Intellectual property (ip) protection versus ip abuses: The
recent development of chinese ip abuse rules and recommendations for foreign
technology-driven companies. Computer Law & Security Review 25, pp. 352–
366.

[18] Aho A.V., Lam M.S., Sethi R. & Ullman J.D. (2006) Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley.

[19] D0̆0e9vai R., J0̆0e1sz J., Nagy C. & Ferenc R. (2013) Designing and
implementing control flow graph for magic 4th generation language.

[20] Patterson D.A. & Hennessy J.L. (2013) Computer Organization and Design, Fifth
Edition: The Hardware/Software Interface. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 5th ed.

[21] Salomon D. (1992) Assemblers and Loaders. Ellis Horwood.

[22] Presser L. & White J.R. (1972) Linkers and loaders. ACM Comput. Surv. 4, pp.
149–167.

[23] Gcc, the gnu compiler collection. https://gcc.gnu.org/. Accessed 2022-
08-31.

[24] Clang: a c language family frontend for llvm. https://clang.llvm.org/.
Accessed 2022-08-31.

[25] The llvm compiler infrastructure. https://llvm.org/. Accessed 2022-08-
31.

[26] Llvm language reference manual. https://llvm.org/docs/LangRef.
html. Accessed 2022-07-22.

[27] Gimple (gnu compiler collection (gcc) internals). https://gcc.gnu.org/
onlinedocs/gccint/GIMPLE.html#GIMPLE. Accessed 2022-07-22.

https://www.xda-developers.com/mediatek-su-rootkit-exploit/
https://www.xda-developers.com/mediatek-su-rootkit-exploit/
https://www.theregister.com/2022/06/03/uisoc-chip-flaw-check-point/
https://www.theregister.com/2022/06/03/uisoc-chip-flaw-check-point/
https://www.theregister.com/2022/06/03/uisoc-chip-flaw-check-point/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20210
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20210
https://gcc.gnu.org/
https://clang.llvm.org/
https://llvm.org/
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html#GIMPLE
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html#GIMPLE

57

[28] Gnu c compiler internals/gnu c compiler architecture. https://en.
wikibooks.org/wiki/GNU_C_Compiler_Internals/GNU_C_
Compiler_Architecture. Accessed 2022-07-22.

[29] Lattner C. & Adve V. (2004) Llvm: a compilation framework for lifelong
program analysis & transformation. In: International Symposium on Code
Generation and Optimization, 2004. CGO 2004., pp. 75–86.

[30] Junod P., Rinaldini J., Wehrli J. & Michielin J. (2015), Obfuscator-llvm –
software protection for the masses.

[31] Junod P., Rinaldini J., Wehrli J. & Michielin J. (2015) Obfuscator-LLVM
– software protection for the masses. In: B. Wyseur (ed.) Proceedings of
the IEEE/ACM 1st International Workshop on Software Protection, SPRO’15,
Firenze, Italy, May 19th, 2015, IEEE, pp. 3–9.

[32] TIS (1995) Tool interface standard (TIS) executable and linking format (ELF)
specification Version 1.2. TIS committee.

[33] Overview of the mach-o executable format. https://developer.
apple.com/library/archive/documentation/Performance/
Conceptual/CodeFootprint/Articles/MachOOverview.html.
Accessed 2022-07-11.

[34] Pe format - win32 apps | microsoft docs. https://docs.microsoft.com/
en-us/windows/win32/debug/pe-format. Accessed 2022-07-11.

[35] How-to reverse-engineering. https://www.computerworld.com/
article/2585652/reverse-engineering.html. Accessed 2022-07-
17.

[36] Musker D.C., Protecting & exploiting intellectual property in electronics.
https://web.archive.org/web/20110709001411/http://
www.jenkins.eu/articles-general/reverse-engineering.
asp. Accessed 2022-07-11.

[37] Kumar M., Reverse engineering and vulnerability analysis in cyber security.
http://www.ijarcs.info/index.php/Ijarcs/article/
download/3502/3456. Accessed 2022-07-11.

[38] Chikofsky E. & Cross J. (1990) Reverse engineering and design recovery: a
taxonomy. IEEE Software 7, pp. 13–17.

[39] Canfora G. & Di Penta M. (2007) New frontiers of reverse engineering. pp. 326
– 341.

[40] Hamilton V. (1994) The use of static analysis tools to support reverse engineering.
In: IEE Colloquium on Reverse Engineering for Software Based Systems, pp.
6/1–6/4.

[41] Machine code (debugging with gdn). https://sourceware.org/gdb/
onlinedocs/gdb/Machine-Code.html. Accessed 2022-08-04.

https://en.wikibooks.org/wiki/GNU_C_Compiler_Internals/GNU_C_Compiler_Architecture
https://en.wikibooks.org/wiki/GNU_C_Compiler_Internals/GNU_C_Compiler_Architecture
https://en.wikibooks.org/wiki/GNU_C_Compiler_Internals/GNU_C_Compiler_Architecture
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/CodeFootprint/Articles/MachOOverview.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/CodeFootprint/Articles/MachOOverview.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/CodeFootprint/Articles/MachOOverview.html
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://www.computerworld.com/article/2585652/reverse-engineering.html
https://www.computerworld.com/article/2585652/reverse-engineering.html
https://web.archive.org/web/20110709001411/http://www.jenkins.eu/articles-general/reverse-engineering.asp
https://web.archive.org/web/20110709001411/http://www.jenkins.eu/articles-general/reverse-engineering.asp
https://web.archive.org/web/20110709001411/http://www.jenkins.eu/articles-general/reverse-engineering.asp
http://www.ijarcs.info/index.php/Ijarcs/article/download/3502/3456
http://www.ijarcs.info/index.php/Ijarcs/article/download/3502/3456
https://sourceware.org/gdb/onlinedocs/gdb/Machine-Code.html
https://sourceware.org/gdb/onlinedocs/gdb/Machine-Code.html

58

[42] radareorg/radare2: Unix-like reverse engineering framework and commandline
toolset. https://github.com/radareorg/radare2. Accessed 2022-
07-17.

[43] Github - lief-project/lief: Lief. https://github.com/lief-project/
LIEF. Accessed 2022-07-11.

[44] Nationalsecurityagency/ghidra: Ghidra is a software reverse engineering
(sre) framework. https://github.com/NationalSecurityAgency/
ghidra. Accessed 2022-07-17.

[45] Hex rays - state-of-the-art binary code analysis solutions. https://hex-
rays.com/ida-pro/. Accessed 2022-07-17.

[46] The framework - the official radare2 book. https://book.rada.re/
first_steps/overview.html. Accessed 2022-07-17.

[47] Basile C., Canavese D., Regano L., Falcarin P. & Sutter B.D.
(2019) A meta-model for software protections and reverse engineering
attacks. Journal of Systems and Software 150, pp. 3–21. URL:
https://www.sciencedirect.com/science/article/pii/
S0164121218302838.

[48] DWARF Debugging Information Format Committee (2017) DWARF Debugging
Information Format Version 5. DWARF5.

[49] Eager M.J. (2007), Introduction to the dwarf debugging format.

[50] Challenges when building an llvm-based obfuscator. https://llvm.
org/devmtg/2017-10/slides/Guelton-Challenges_when_
building_an_LLVM_bitcode_Obfuscator.pdf. Accessed 2022-08-
31.

[51] Collberg C. & Thomborson C. (2002) Watermarking, tamper-proofing, and
obfuscation - tools for software protection. IEEE Transactions on Software
Engineering 28, pp. 735–746.

[52] den Broeck J.V., Coppens B. & Sutter B.D. (2020) Flexible software protection.
CoRR abs/2012.12603. URL: https://arxiv.org/abs/2012.12603.

[53] Christou G., Vasiliadis G., Papaefstathiou V., Papadogiannakis A. & Ioannidis S.
(2020) On architectural support for instruction set randomization. ACM Trans.
Archit. Code Optim. 17. URL: https://doi.org/10.1145/3419841.

[54] Park J., Kim H., Jeong Y., je Cho S., Han S. & Park M. (2015) Effects of
code obfuscation on android app similarity analysis. J. Wirel. Mob. Networks
Ubiquitous Comput. Dependable Appl. 6, pp. 86–98.

[55] Preemptive protection dasho. https://www.preemptive.com/dasho/
pro/userguide/en/index.html. Accessed 2022-08-31.

https://github.com/radareorg/radare2
https://github.com/lief-project/LIEF
https://github.com/lief-project/LIEF
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/
https://book.rada.re/first_steps/overview.html
https://book.rada.re/first_steps/overview.html
https://www.sciencedirect.com/science/article/pii/S0164121218302838
https://www.sciencedirect.com/science/article/pii/S0164121218302838
https://llvm.org/devmtg/2017-10/slides/Guelton-Challenges_when_building_an_LLVM_bitcode_Obfuscator.pdf
https://llvm.org/devmtg/2017-10/slides/Guelton-Challenges_when_building_an_LLVM_bitcode_Obfuscator.pdf
https://llvm.org/devmtg/2017-10/slides/Guelton-Challenges_when_building_an_LLVM_bitcode_Obfuscator.pdf
https://arxiv.org/abs/2012.12603
https://doi.org/10.1145/3419841
https://www.preemptive.com/dasho/pro/userguide/en/index.html
https://www.preemptive.com/dasho/pro/userguide/en/index.html

59

[56] Oreans technologies : Software security defined. https://www.oreans.
com/Themida.php. Accessed 2022-09-14.

[57] The development of the c language*. http://www.bell-labs.com/usr/
dmr/www/chist.html. Accessed 2022-08-04.

[58] Stabs. https://sourceware.org/gdb/current/onlinedocs/
stabs.html#Overview. Accessed 2022-07-22.

[59] Rfr: 8065656: Use dwarf debug symbols for solaris. https:
//mail.openjdk.org/pipermail/build-dev/2014-November/
013726.html. Accessed 2022-07-22.

[60] Common object file format. https://www.ti.com/lit/an/spraao8/
spraao8.pdf?ts=1658481725958&ref_url=https%253A%252F%
252Fwww.google.com%252F. Accessed 2022-07-22.

[61] What is the difference between elf and coff format? https:
//microchipsupport.force.com/s/article/What-is-the-
difference-between-ELF-and-COFF-format. Accessed 2022-07-
22.

[62] The dwarf debugging standard. https://dwarfstd.org/. Accessed 2022-
07-28.

[63] RogueWaveSoftware (2017) Saving time and space with split dwarf. Tech. rep.

[64] Debugfission - gcc wiki. https://gcc.gnu.org/wiki/DebugFission.
Accessed 2022-07-08.

[65] Separate debug files (debugging with gdb). https://sourceware.org/
gdb/onlinedocs/gdb/Separate-Debug-Files.html. Accessed
2022-07-08.

[66] Github - eliben/pyelftools: Parsing elf and dwarf in python). https://
github.com/eliben/pyelftools. Accessed 2022-07-11.

[67] Binutils - gnu project - free software foundation. https://www.gnu.org/
software/binutils/. Accessed 2022-07-10.

[68] objcopy(1) — linux manual page. https://man7.org/linux/man-
pages/man1/objcopy.1.html. Accessed 2022-07-10.

[69] Files (debugging with gdb). https://sourceware.org/gdb/
onlinedocs/gdb/Files.html. Accessed 2022-07-10.

[70] readelf(1) — linux manual page). https://man7.org/linux/man-
pages/man1/readelf.1.html. Accessed 2022-07-10.

[71] nanomips architecture. https://www.mips.com/products/
architectures/nanomips/. Accessed 2022-08-05.

https://www.oreans.com/Themida.php
https://www.oreans.com/Themida.php
http://www.bell-labs.com/usr/dmr/www/chist.html
http://www.bell-labs.com/usr/dmr/www/chist.html
https://sourceware.org/gdb/current/onlinedocs/stabs.html#Overview
https://sourceware.org/gdb/current/onlinedocs/stabs.html#Overview
https://mail.openjdk.org/pipermail/build-dev/2014-November/013726.html
https://mail.openjdk.org/pipermail/build-dev/2014-November/013726.html
https://mail.openjdk.org/pipermail/build-dev/2014-November/013726.html
https://www.ti.com/lit/an/spraao8/spraao8.pdf?ts=1658481725958&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/spraao8/spraao8.pdf?ts=1658481725958&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/spraao8/spraao8.pdf?ts=1658481725958&ref_url=https%253A%252F%252Fwww.google.com%252F
https://microchipsupport.force.com/s/article/What-is-the-difference-between-ELF-and-COFF-format
https://microchipsupport.force.com/s/article/What-is-the-difference-between-ELF-and-COFF-format
https://microchipsupport.force.com/s/article/What-is-the-difference-between-ELF-and-COFF-format
https://dwarfstd.org/
https://gcc.gnu.org/wiki/DebugFission
https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html
https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html
https://github.com/eliben/pyelftools
https://github.com/eliben/pyelftools
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/binutils/
https://man7.org/linux/man-pages/man1/objcopy.1.html
https://man7.org/linux/man-pages/man1/objcopy.1.html
https://sourceware.org/gdb/onlinedocs/gdb/Files.html
https://sourceware.org/gdb/onlinedocs/gdb/Files.html
https://man7.org/linux/man-pages/man1/readelf.1.html
https://man7.org/linux/man-pages/man1/readelf.1.html
https://www.mips.com/products/architectures/nanomips/
https://www.mips.com/products/architectures/nanomips/

60

[72] dwarfgen - pypi). https://pypi.org/project/dwarfgen/. Accessed
2022-07-11.

[73] Da’s dwarf page). https://www.prevanders.net/dwarf.html.
Accessed 2022-07-11.

[74] Lief - library to instrument executable formats. https://lief-project.
github.io/blog/2017-04-18-lief/. Accessed 2022-07-11.

[75] Lief - new elf builder. https://lief-project.github.io/blog/
2022-01-23-new-elf-builder/. Accessed 2022-07-11.

https://pypi.org/project/dwarfgen/
https://www.prevanders.net/dwarf.html
https://lief-project.github.io/blog/2017-04-18-lief/
https://lief-project.github.io/blog/2017-04-18-lief/
https://lief-project.github.io/blog/2022-01-23-new-elf-builder/
https://lief-project.github.io/blog/2022-01-23-new-elf-builder/

61

10. APPENDICES

Appendix A Source code of hello.c
Appendix B Source code of hello.h
Appendix C Source code of main.c
Appendix D Source code of sort.c
Appendix E Source code of sort.h
Appendix F Unoptimised disassembly of the main function
Appendix G Unoptimised disassembly of the b_insert function
Appendix H Unoptimised disassembly of the b_sort function
Appendix I Unoptimised disassembly of the b_swap function
Appendix J Unoptimised disassembly of the init_arr function
Appendix K Optimised disassembly of the main function with source code
Appendix L Optimised disassembly of the main function without source code
Appendix M Optimised disassembly of the main function without debug info

62

A. Source Code of hello.h

#include <stdio.h>
typedef char* STR;
typedef struct Greetings {

STR hello;
STR byeybe;

} Greetings;
STR say_hello(void);
STR say_bye(void);
void init_greetings(void);

63

B. Source Code of hello.c

#include "hello.h"
Greetings g;
STR say_hello(void)
{

return g.hello;
}
STR say_bye(void)
{

return g.byebye;
}
void init_greetings(void)
{

g.hello = "Hello, World!";
g.byebye = "Bye, World!";

}

64

C. Source code of main.c

#include "hello.h"
int main(void)
{

init_greetings();
printf("\%s\n", say_hello());
printf("\%s\n", say_bye());
return 0;

}

65

D. Source code of sort.c

#include "sort.h"
#define SIZE 7
int arr[SIZE];
static void init_arr(void)
{

arr[0] = 31;
arr[1] = 8;
arr[2] = 2;
arr[3] = 11;
arr[4] = 9;
arr[5] = 90;
arr[6] = 100;

}
void b_insert(struct Node **llref, int data)
{

struct Node *ptr = (struct Node*)malloc(sizeof(struct
Node));

ptr->data = data;
ptr->next - *llref;

*llref = ptr;
}
void b_swap(struct Node *a, struct Node *b)
{

int temp = a->data;
a->data = b->data;
b->data = temp;

}

void b_sort(struct Node *ll)
{

int swapped;
struct Node *cur;
struct Node *next;
if (ll == NULL)

return;
do {

swapped = 0;
cur = ll;
while (cur->next != next) {

if (cur->data > cur->next->data) {
b_swap(cur, cur->next);
swapped = 1;

}
cur = cur->next;

}
next = cur;

} while (swapped);
}

66

int main(void)
{

struct Node *ll = NULL;
init_arr();
for (int i=0; i<SIZE; i++)

b_insert(&ll, arr[i]);
b_sort(ll);
return 0;

}

67

E. Source code of sort.h

#include <stdio.h>
#include <stdlib.h>
struct Node {

int data;
struct Node *next;

};
void b_insert(struct Node **llref, int data);
void b_sort(struct Node *ll);
void b_swap(struct Node *a, struct Node *b);
static void init_arr(void);

68

F. Unoptimised disassembly of the main function

Dump of assembler code for function main:
0x0040026c <+0>: save 32,fp,ra
0x0040026e <+2>: addiu fp,sp,-4064
0x00400272 <+6>: sw zero,8(sp)
0x00400274 <+8>: balc 0x400174 <init_arr>
0x00400276 <+10>: sw zero,12(sp)
0x00400278 <+12>: bc 0x400296 <main+42>
0x0040027a <+14>: aluipc a3,0x20
0x0040027e <+18>: lw a2,12(sp)
0x00400280 <+20>: sll a2,a2,2
0x00400282 <+22>: ori a3,a3,0x874
0x00400286 <+26>: addu a3,a2,a3
0x00400288 <+28>: lw a2,0(a3)
0x0040028a <+30>: addiu a3,sp,8
0x0040028c <+32>: movep a0,a1,a3,a2
0x0040028e <+34>: balc 0x4001d0 <b_insert>
0x00400290 <+36>: lw a3,12(sp)
0x00400292 <+38>: addiu a3,a3,1
0x00400294 <+40>: sw a3,12(sp)
0x00400296 <+42>: lw a3,12(sp)
0x00400298 <+44>: bltic a3,7,0x40027a <main+14>
0x0040029c <+48>: lw a3,8(sp)
0x0040029e <+50>: move.balc a0,a3,0x4001fa <b_sort>
0x004002a2 <+54>: move a3,zero: move a0,a3
0x004002a6 <+58>: restore.jrc 32,fp,ra

End of assembler dump.

69

G. Unoptimised disassembly of the b_insert function

Dump of assembler code for function b_insert:
0x004001d0 <+0>: save 48,fp,ra
0x004001d2 <+2>: addiu fp,sp,-4048
0x004001d6 <+6>: sw a0,12(sp)
0x004001d8 <+8>: sw a1,8(sp)
0x004001da <+10>: li a0,8
0x004001dc <+12>: balc 0x4002a8 <malloc>
0x004001de <+14>: move a3,a0
0x004001e0 <+16>: sw a3,28(sp)
0x004001e2 <+18>: lw a3,28(sp)
0x004001e4 <+20>: lw a2,8(sp)
0x004001e6 <+22>: sw a2,0(a3)
0x004001e8 <+24>: lw a3,12(sp)
0x004001ea <+26>: lw a2,0(a3)
0x004001ec <+28>: lw a3,28(sp)
0x004001ee <+30>: sw a2,4(a3)
0x004001f0 <+32>: lw a3,12(sp)
0x004001f2 <+34>: lw a2,28(sp)
0x004001f4 <+36>: sw a2,0(a3)
0x004001f6 <+38>: nop
0x004001f8 <+40>: restore.jrc 48,fp,ra

End of assembler dump.

70

H. Unoptimised disassembly of the b_sort function

Dump of assembler code for function b_sort:
0x004001fa <+0>: save 48,fp,ra
0x004001fc <+2>: addiu fp,sp,-4048
0x00400200 <+6>: sw a0,12(sp)
0x00400202 <+8>: sw zero,20(sp)
0x00400204 <+10>: lw a3,12(sp)
0x00400206 <+12>: beqzc a3,0x400246 <b_sort+76>
0x00400208 <+14>: sw zero,28(sp)
0x0040020a <+16>: lw a3,12(sp)
0x0040020c <+18>: sw a3,24(sp)
0x0040020e <+20>: bc 0x400232 <b_sort+56>
0x00400210 <+22>: lw a3,24(sp)
0x00400212 <+24>: lw a3,0(a3)
0x00400214 <+26>: lw a2,24(sp)
0x00400216 <+28>: lw a2,4(a2)
0x00400218 <+30>: lw a2,0(a2)
0x0040021a <+32>: bgec a2,a3,0x40022c <b_sort+50>
0x0040021e <+36>: lw a3,24(sp)
0x00400220 <+38>: lw a3,4(a3)
0x00400222 <+40>: lw a0,24(sp)
0x00400224 <+42>: move.balc a1,a3,0x40024a <b_swap>
0x00400228 <+46>: li a3,1
0x0040022a <+48>: sw a3,28(sp)
0x0040022c <+50>: lw a3,24(sp)
0x0040022e <+52>: lw a3,4(a3)
0x00400230 <+54>: sw a3,24(sp)
0x00400232 <+56>: lw a3,24(sp)
0x00400234 <+58>: lw a2,4(a3)
0x00400236 <+60>: lw a3,20(sp)
0x00400238 <+62>: bnec a3,a2,0x400210 <b_sort+22>
0x0040023c <+66>: lw a3,24(sp)
0x0040023e <+68>: sw a3,20(sp)
0x00400240 <+70>: lw a3,28(sp)
0x00400242 <+72>: bnezc a3,0x400208 <b_sort+14>
0x00400244 <+74>: bc 0x400248 <b_sort+78>
0x00400246 <+76>: nop
0x00400248 <+78>: restore.jrc 48,fp,ra

End of assembler dump.

71

I. Unoptimised disassembly of the b_swap function

Dump of assembler code for function b_swap:
0x0040024a <+0>: save 48,fp,ra
0x0040024c <+2>: addiu fp,sp,-4048
0x00400250 <+6>: sw a0,12(sp)
0x00400252 <+8>: sw a1,8(sp)
0x00400254 <+10>: lw a3,12(sp)
0x00400256 <+12>: lw a3,0(a3)
0x00400258 <+14>: sw a3,28(sp)
0x0040025a <+16>: lw a3,8(sp)
0x0040025c <+18>: lw a2,0(a3)
0x0040025e <+20>: lw a3,12(sp)
0x00400260 <+22>: sw a2,0(a3)
0x00400262 <+24>: lw a3,8(sp)
0x00400264 <+26>: lw a2,28(sp)
0x00400266 <+28>: sw a2,0(a3)
0x00400268 <+30>: nop
0x0040026a <+32>: restore.jrc 48,fp,ra

End of assembler dump.

72

J. Unoptimised disassembly of the init_arr function

Dump of assembler code for function init_arr:
0x00400174 <+0>: save 16,fp,ra
0x00400176 <+2>: addiu fp,sp,-4080
0x0040017a <+6>: aluipc a3,0x20
0x0040017e <+10>: li a2,31
0x00400180 <+12>: sw a2,2164(a3)
0x00400184 <+16>: aluipc a3,0x20
0x00400188 <+20>: ori a3,a3,0x874
0x0040018c <+24>: li a2,8
0x0040018e <+26>: sw a2,4(a3)
0x00400190 <+28>: aluipc a3,0x20
0x00400194 <+32>: ori a3,a3,0x874
0x00400198 <+36>: li a2,2
0x0040019a <+38>: sw a2,8(a3)
0x0040019c <+40>: aluipc a3,0x20
0x004001a0 <+44>: ori a3,a3,0x874
0x004001a4 <+48>: li a2,11
0x004001a6 <+50>: sw a2,12(a3)
0x004001a8 <+52>: aluipc a3,0x20
0x004001ac <+56>: ori a3,a3,0x874
0x004001b0 <+60>: li a2,9
0x004001b2 <+62>: sw a2,16(a3)
0x004001b4 <+64>: aluipc a3,0x20
0x004001b8 <+68>: ori a3,a3,0x874
0x004001bc <+72>: li a2,90
0x004001be <+74>: sw a2,20(a3)
0x004001c0 <+76>: aluipc a3,0x20
0x004001c4 <+80>: ori a3,a3,0x874
0x004001c8 <+84>: li a2,100
0x004001ca <+86>: sw a2,24(a3)
0x004001cc <+88>: nop
0x004001ce <+90>: restore.jrc 16,fp,ra

End of assembler dump.

73

K. Optimised disassembly of the main function with source code

Dump of assembler code for function main:
sort.c:
61 {

0x004000e2 <+0>: save 32,ra,s0-s3

9 arr[0] = 31;
0x004000e4 <+2>: aluipc a2,0x20
0x004000e8 <+6>: li a1,31

10 arr[1] = 8;
0x004000ea <+8>: lapc a3,0x420874 <arr>

9 arr[0] = 31;
0x004000ee <+12>: sw a1,2164(a2)

10 arr[1] = 8;
0x004000f2 <+16>: li a2,8
0x004000f4 <+18>: move s0,a3
0x004000f6 <+20>: sw a2,4(a3)

11 arr[2] = 2;
0x004000f8 <+22>: li a2,2
0x004000fa <+24>: sw a2,8(a3)

12 arr[3] = 11;
0x004000fc <+26>: li a2,11
0x004000fe <+28>: sw a2,12(a3)

13 arr[4] = 9;
0x00400100 <+30>: li a2,9
0x00400102 <+32>: sw a2,16(a3)

14 arr[5] = 90;
0x00400104 <+34>: li a2,90
0x00400106 <+36>: sw a2,20(a3)

15 arr[6] = 100;
0x00400108 <+38>: li a2,100
0x0040010a <+40>: addiu s3,a3,28

62 int i;
63 struct Node *ll = NULL;

0x0040010c <+42>: move s1,zero

15 arr[6] = 100;
0x0040010e <+44>: sw a2,24(a3)
0x00400110 <+46>: bc 0x400114 <main+50>

74

0x00400112 <+48>: move s1,a0

67 b_insert(&ll, arr[i]);
0x00400114 <+50>: lw s2,0(s0)

22 struct Node *ptr1 = (struct Node*)malloc(sizeof
(struct Node));
0x00400116 <+52>: li a0,8
0x00400118 <+54>: balc 0x4001e0 <malloc>
0x0040011a <+56>: addiu s0,s0,4

23 ptr1->data = data;
0x0040011c <+58>: sw s2,0(a0)

24 ptr1->next = *start_ref;
0x0040011e <+60>: sw s1,4(a0)

64 init_arr();
65 /* Insert elements of the array to linked list

*/
66 for (i = 0; i< SIZE; i++)

0x00400120 <+62>: bnec s3,s0,0x400112 <main+48>
0x00400124 <+66>: move s0,zero

44 swapped = 1;
0x00400126 <+68>: movep a2,a3,a0,s1

39 swapped = 0;
0x00400128 <+70>: move a5,zero

40 cur = start;
41 while (cur->next != next) {

0x0040012a <+72>: beqc s0,a3,0x400144 <main+98>

42 if (cur->data > cur->next->data) {
0x0040012c <+74>: lw a1,0(a2)
0x0040012e <+76>: lw a4,0(a3)
0x00400130 <+78>: bgec a4,a1,0x40013c <main+90>

50 }
51
52 void b_swap(struct Node *a, struct Node *b)
53 {
54 int temp = a->data;
55 a->data = b->data;

0x00400134 <+82>: sw a4,0(a2)

44 swapped = 1;
0x00400136 <+84>: li a5,1

56 b->data = temp;

75

0x0040013a <+88>: sw a1,0(a3)

44 swapped = 1;
0x0040013c <+90>: move a2,a3
0x0040013e <+92>: lw a3,4(a3)

41 while (cur->next != next) {
0x00400140 <+94>: bnec a3,s0,0x40012c <main+74>
0x00400144 <+98>: move s0,a2

45 }
46 cur = cur->next;
47 }
48 next = cur;
49 } while (swapped);

0x00400146 <+100>: bnezc a5,0x400126 <main+68>

68 b_sort(ll);
69 return 0;
70 }

0x0040014a <+104>: move a0,zero
0x0040014c <+106>: restore.jrc 32,ra,s0-s3

End of assembler dump.

76

L. Optimised disassembly of the main function without source code

Dump of assembler code for function main:
sort.c:

0x004000e2 <+0>: save 32,ra,s0-s3

9 in sort.c
0x004000e4 <+2>: aluipc a2,0x20
0x004000e8 <+6>: li a1,31

10 in sort.c
0x004000ea <+8>: lapc a3,0x420874 <arr>

9 in sort.c
0x004000ee <+12>: sw a1,2164(a2)

10 in sort.c
0x004000f2 <+16>: li a2,8
0x004000f4 <+18>: move s0,a3
0x004000f6 <+20>: sw a2,4(a3)

11 in sort.c
0x004000f8 <+22>: li a2,2
0x004000fa <+24>: sw a2,8(a3)

12 in sort.c
0x004000fc <+26>: li a2,11
0x004000fe <+28>: sw a2,12(a3)

13 in sort.c
0x00400100 <+30>: li a2,9
0x00400102 <+32>: sw a2,16(a3)

14 in sort.c
0x00400104 <+34>: li a2,90
0x00400106 <+36>: sw a2,20(a3)

15 in sort.c
0x00400108 <+38>: li a2,100
0x0040010a <+40>: addiu s3,a3,28

62 in sort.c
63 in sort.c

0x0040010c <+42>: move s1,zero

15 in sort.c
0x0040010e <+44>: sw a2,24(a3)
0x00400110 <+46>: bc 0x400114 <main+50>
0x00400112 <+48>: move s1,a0

77

67 in sort.c
0x00400114 <+50>: lw s2,0(s0)

22 in sort.c
0x00400116 <+52>: li a0,8
0x00400118 <+54>: balc 0x4001e0 <malloc>
0x0040011a <+56>: addiu s0,s0,4

23 in sort.c
0x0040011c <+58>: sw s2,0(a0)

24 in sort.c
0x0040011e <+60>: sw s1,4(a0)

64 in sort.c
65 in sort.c
66 in sort.c

0x00400120 <+62>: bnec s3,s0,0x400112 <main+48>
0x00400124 <+66>: move s0,zero

44 in sort.c
0x00400126 <+68>: movep a2,a3,a0,s1

39 in sort.c
0x00400128 <+70>: move a5,zero

40 in sort.c
41 in sort.c

0x0040012a <+72>: beqc s0,a3,0x400144 <main+98>

42 in sort.c
0x0040012c <+74>: lw a1,0(a2)
0x0040012e <+76>: lw a4,0(a3)
0x00400130 <+78>: bgec a4,a1,0x40013c <main+90>

50 in sort.c
51 in sort.c
52 in sort.c
53 in sort.c
54 in sort.c
55 in sort.c

0x00400134 <+82>: sw a4,0(a2)

44 in sort.c
0x00400136 <+84>: li a5,1

56 in sort.c
0x0040013a <+88>: sw a1,0(a3)

78

44 in sort.c
0x0040013c <+90>: move a2,a3
0x0040013e <+92>: lw a3,4(a3)

41 in sort.c
0x00400140 <+94>: bnec a3,s0,0x40012c <main+74>
0x00400144 <+98>: move s0,a2

45 in sort.c
46 in sort.c
47 in sort.c
48 in sort.c
49 in sort.c

0x00400146 <+100>: bnezc a5,0x400126 <main+68>

68 in sort.c
69 in sort.c
70 in sort.c

0x0040014a <+104>: move a0,zero
0x0040014c <+106>: restore.jrc 32,ra,s0-s3

79

M. Optimised disassembly of the main function without debug info

Dump of assembler code for function main:
0x004000e2 <+0>: save 32,ra,s0-s3
0x004000e4 <+2>: aluipc a2,0x20
0x004000e8 <+6>: li a1,31
0x004000ea <+8>: lapc a3,0x420874 <arr>
0x004000ee <+12>: sw a1,2164(a2)
0x004000f2 <+16>: li a2,8
0x004000f4 <+18>: move s0,a3
0x004000f6 <+20>: sw a2,4(a3)
0x004000f8 <+22>: li a2,2
0x004000fa <+24>: sw a2,8(a3)
0x004000fc <+26>: li a2,11
0x004000fe <+28>: sw a2,12(a3)
0x00400100 <+30>: li a2,9
0x00400102 <+32>: sw a2,16(a3)
0x00400104 <+34>: li a2,90
0x00400106 <+36>: sw a2,20(a3)
0x00400108 <+38>: li a2,100
0x0040010a <+40>: addiu s3,a3,28
0x0040010c <+42>: move s1,zero
0x0040010e <+44>: sw a2,24(a3)
0x00400110 <+46>: bc 0x400114 <main+50>
0x00400112 <+48>: move s1,a0
0x00400114 <+50>: lw s2,0(s0)
0x00400116 <+52>: li a0,8
0x00400118 <+54>: balc 0x4001e0 <malloc>
0x0040011a <+56>: addiu s0,s0,4
0x0040011c <+58>: sw s2,0(a0)
0x0040011e <+60>: sw s1,4(a0)
0x00400120 <+62>: bnec s3,s0,0x400112 <main+48>
0x00400124 <+66>: move s0,zero
0x00400126 <+68>: movep a2,a3,a0,s1
0x00400128 <+70>: move a5,zero
0x0040012a <+72>: beqc s0,a3,0x400144 <main+98>
0x0040012c <+74>: lw a1,0(a2)
0x0040012e <+76>: lw a4,0(a3)
0x00400130 <+78>: bgec a4,a1,0x40013c <main+90>
0x00400134 <+82>: sw a4,0(a2)
0x00400136 <+84>: li a5,1
0x0040013a <+88>: sw a1,0(a3)
0x0040013c <+90>: move a2,a3
0x0040013e <+92>: lw a3,4(a3)
0x00400140 <+94>: bnec a3,s0,0x40012c <main+74>
0x00400144 <+98>: move s0,a2
0x00400146 <+100>: bnezc a5,0x400126 <main+68>
0x0040014a <+104>: move a0,zero
0x0040014c <+106>: restore.jrc 32,ra,s0-s3

80

End of assembler dump.

	Title page
	Abstract
	Tiivistelmä
	Contents
	Foreword
	Abbreviations
	1. Introduction
	1.1. Intellectual Property
	1.1.1. Protecting Intellectual Property
	1.1.2. Reasoning Intellectual Property Protection
	1.1.3. IP Abuse

	1.2. Scope of the Thesis

	2. Embedded Software Build Process
	2.1. Build Process
	2.1.1. Lexical Analysis
	2.1.2. Syntax Analysis
	2.1.3. Semantic Analysis
	2.1.4. Intermediate Code Generation
	2.1.5. Machine-Independent Code Optimisation
	2.1.6. Code Generation
	2.1.7. Symbol Table Management
	2.1.8. Linkers
	2.1.9. Loaders
	2.1.10. Linking Loader
	2.1.11. Dynamic Loader
	2.1.12. Summary of the linkers and loaders

	2.2. State of the Art Compilers
	2.2.1. GNU Compiler Collection
	2.2.2. Clang
	2.2.3. GIMPLE vs LLVM IR

	2.3. Executable File Formats
	2.3.1. ELF Files

	2.4. Summary

	3. Reverse Engineering
	3.1. Why Reverse Engineering?
	3.2. Reverse Engineering Methods
	3.2.1. Static Analysis

	3.3. Disassembly
	3.4. Reverse Engineering Aids
	3.4.1. Radare2
	3.4.2. Ghidra

	3.5. Protecting Against Reverse Engineering

	4. Obfuscation
	4.1. Performing Obfuscation
	4.2. Obfuscation Methods
	4.2.1. Lexical Obfuscations
	4.2.2. Data Obfuscations
	4.2.3. Control Obfuscations
	4.2.4. Preventive Obfuscations and String Encryptions

	4.3. Obfuscation Tools
	4.3.1. Obfuscator-LLVM
	4.3.2. DashO
	4.3.3. Themida

	4.4. Side Effects of Obfuscation

	5. Debugging Software
	5.1. Debugging Formats
	5.1.1. Stabs
	5.1.2. COFF
	5.1.3. DWARF

	5.2. DWARF Debugging Format In detail
	5.2.1. DWARF Structure
	5.2.2. Debugging Information Entry
	5.2.3. Base Type
	5.2.4. Data Structures
	5.2.5. Variables
	5.2.6. Functions
	5.2.7. Subprogram
	5.2.8. Compilation Units
	5.2.9. Debug Sections
	5.2.10. Split Object Files
	5.2.11. DWARF Package Files

	6. Implementation
	6.1. Debug Fission
	6.2. Modifying ELF with Pyelftools
	6.3. Stripping debug info
	6.4. Optimisations
	6.5. Obfuscations

	7. Discussion
	7.1. Trialed solutions
	7.1.1. Debug Fission
	7.1.2. ELF file injection
	7.1.3. Stripping debug info
	7.1.4. Optimisations
	7.1.5. Obfuscation

	7.2. Results
	7.3. Workflow
	7.4. Required changes
	7.5. Future Work

	8. Conclusions
	9. REFERENCES
	10. Appendices
	A. Source Code of hello.h
	B. Source Code of hello.c
	C. Source code of main.c
	D. Source code of sort.c
	E. Source code of sort.h
	F. Unoptimised disassembly of the main function
	G. Unoptimised disassembly of the b_insert function
	H. Unoptimised disassembly of the b_sort function
	I. Unoptimised disassembly of the b_swap function
	J. Unoptimised disassembly of the init_arr function
	K. Optimised disassembly of the main function with source code
	L. Optimised disassembly of the main function without source code
	M. Optimised disassembly of the main function without debug info

