
University of North Florida University of North Florida 

UNF Digital Commons UNF Digital Commons 

UNF Graduate Theses and Dissertations Student Scholarship 

2022 

Estimation of 24-hour Urinary Creatinine Excretion through the Estimation of 24-hour Urinary Creatinine Excretion through the 

Development of a Model and Its Relationship to Outcomes in Development of a Model and Its Relationship to Outcomes in 

Hospitalized Critically Ill Veterans Hospitalized Critically Ill Veterans 

Lynn Diane Hiller 
University of North Florida, hillerld@verizon.net 

Follow this and additional works at: https://digitalcommons.unf.edu/etd 

 Part of the Dietetics and Clinical Nutrition Commons 

Suggested Citation Suggested Citation 
Hiller, Lynn Diane, "Estimation of 24-hour Urinary Creatinine Excretion through the Development of a Model 
and Its Relationship to Outcomes in Hospitalized Critically Ill Veterans" (2022). UNF Graduate Theses and 
Dissertations. 1137. 
https://digitalcommons.unf.edu/etd/1137 

This Doctoral Dissertation is brought to you for free and 
open access by the Student Scholarship at UNF Digital 
Commons. It has been accepted for inclusion in UNF 
Graduate Theses and Dissertations by an authorized 
administrator of UNF Digital Commons. For more 
information, please contact Digital Projects. 
© 2022 All Rights Reserved 

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F1137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/662?utm_source=digitalcommons.unf.edu%2Fetd%2F1137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/1137?utm_source=digitalcommons.unf.edu%2Fetd%2F1137&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/


 
 

 

Estimation of 24-hour Urinary Creatinine Excretion through the Development of a Model and Its 
Relationship to Outcomes in Hospitalized Critically Ill Veterans 

 
By 

 Lynn D. Hiller  
 

 
 

DCN DISSERTATION  
 
 

Submitted in partial fulfillment of the requirements of  
the degree of Doctorate in Clinical Nutrition   

University of North Florida 
 
 
 

 
DISSERTATION COMMITTEE 

 
Lauri Wright, PhD, RDN, LD/N, FAND 

Associate Professor, Chair, Department of Nutrition and Dietetics 
University of North Florida 

 
Philip Foulis, MD, MPH 

Department of Laboratory and Pathology Service 
James A. Haley Veterans Hospital 

Tampa Florida 
 

Susan Goldsmith MD 
Department of Gastroenterology 

James A. Haley Veterans Hospital  
Tampa Florida 

 
James Epps, PhD 

Associate Professor, Department of Mental Health Law and Policy 
University of South Florida 

Tampa Florida  
 
 



i 
 

Acknowledgements 

 

First, I would like to recognize Herta Spencer, MD, a pioneer in nutrition research whom I had 
the honor to work with early in my career. She still inspires me all these years later. 
Second, I would like to thank Jeff Fabri, MD, PhD, who gave me his unending support, made me 
believe I could do anything I desired and answered every question I could dream up.  
I am immensely grateful for my family, who has patiently supported me.  
Lastly, I want to thank each of my committee members for their time and contributions to this 
project.  They have provided wise guidance and made this project better.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ii 
 

Table of Contents 

Acknowledgements .......................................................................................................................... i 
Abstract ........................................................................................................................................... 1 

Introduction ..................................................................................................................................... 2 

Chapter 1: Significance/Literature Review ..................................................................................... 3 

Importance of skeletal muscle .................................................................................................... 3 

Studies which have examined the relationship between muscularity and outcomes .................. 6 

Methods of measuring muscularity in hospitalized patients ..................................................... 17 

Using creatinine to evaluate muscularity in hospitalized patients ............................................ 21 

The relationship between creatinine and outcomes .................................................................. 25 

The Creatinine Height Index ..................................................................................................... 27 

The relationship between CHI and outcomes: .......................................................................... 28 

Limitations of using UCE or CHI in the hospitalized patient:.................................................. 29 

Novel solutions to limitations: .................................................................................................. 30 

Chapter 2: Theoretical Framework ............................................................................................... 31 

Modeling ................................................................................................................................... 31 

Deterministic Models ................................................................................................................ 32 

Stochastic models...................................................................................................................... 34 

Steps of Model Building ........................................................................................................... 34 

Development of a stochastic model .......................................................................................... 36 

Model Application for Current Problem ................................................................................... 38 

Chapter 3: Methodology ............................................................................................................... 39 

Study Purpose ........................................................................................................................... 39 

Study Aims................................................................................................................................ 39 

Objectives ................................................................................................................................. 39 

Study design .............................................................................................................................. 40 

Phase 1: Model Development Study Design ............................................................................ 40 

Phase 1: Study Participants and Sample Size ........................................................................... 41 

Phase 1: Data Collection ........................................................................................................... 41 

Phase 1: Statistical Methods ..................................................................................................... 41 

Phase 2:  Model Application Study Design .............................................................................. 43 

Phase 2:  Study Participants and Sample Size .......................................................................... 44 



iii 
 

Phase 2: Data collection ............................................................................................................ 44 

Phase 2: Statistical Methods ..................................................................................................... 47 

Chapter 4: Results ......................................................................................................................... 47 

Model Building ......................................................................................................................... 48 

Model Validation ...................................................................................................................... 50 

Relationship between model derived CHI and muscularity ..................................................... 50 

Application of Model ................................................................................................................ 51 

Baseline demographics of study population ............................................................................. 51 

Prevalence of low muscularity in the cohort............................................................................. 52 

Relationship with Malnutrition ................................................................................................. 53 

Outcomes for the cohort............................................................................................................ 55 

Relationship between UCE, CHI and outcomes ....................................................................... 56 

Relationship between UCE, CHI and Serum Proteins, NUTRIC and Severity of Illness Scores
................................................................................................................................................... 60 

Chapter 5: Discussion ................................................................................................................... 61 

Model Development.................................................................................................................. 61 

Relationship between model derived CHI and muscularity ..................................................... 63 

Model Application .................................................................................................................... 65 

Baseline Demographics ............................................................................................................ 65 

Prevalence of low muscularity in the cohort............................................................................. 68 

Relationship with Malnutrition ................................................................................................. 68 

Outcomes for the cohort............................................................................................................ 70 

Relationship between UCE, CHI and Outcomes ...................................................................... 70 

Strengths of the Study ............................................................................................................... 71 

Limitations of the Study............................................................................................................ 72 

Chapter 6: Conclusions, Implications for Practice and Recommendations for Future Research . 73 

Conclusions ............................................................................................................................... 73 

Implications for practice ........................................................................................................... 74 

Recommendations for future research ...................................................................................... 75 

References ..................................................................................................................................... 76 

Appendix A.  IRB Approval ......................................................................................................... 92 
 
 

 



iv 
 

 

 

List of Tables 

 

Table 1. Studies Examining Relationship of Muscle Mass on Outcomes .................................... 10 

Table 2. Model 1 For Patients with or without SCI and Plasma Creatinine < 1.2 mg/dL ............ 49 

Table 3. Model 2 For Patients with or without SCI and Plasma Creatinine >1.2 mg/dL ............. 49 

Table 4. Model 3 For Patients without SCI and Plasma Creatinine < 1.2 mg/dL ........................ 50 

Table 5. Baseline Demographics .................................................................................................. 52 

Table 6. Prevalence of Sarcopenia Based on Creatinine Height Index ........................................ 53 

Table 7. Prevalence of Malnutrition Based on AND/ASPEN Clinical Characteristics ................ 54 

Table 8. Comparison of Malnutrition between Subjects with Low or Normal CHI ..................... 54 

Table 9. Outcomes ........................................................................................................................ 55 

Table 10. Length of Stay ............................................................................................................... 56 

Table 11. Length of Stay by Creatinine Height Index .................................................................. 57 

Table 12. Comparison of Outcomes between Subjects with Low or Normal CHI ....................... 59 

Table 13. Correlation between UCE, CHI, Protein Levels, Nutrition Risk and Severity of Illness 

Scores ............................................................................................................................................ 60 

 
 

 

List of Figures 

 

Figure 1. Malnutrition Based on CHI Level ................................................................................. 54 

Figure 2. Hospital and ICU Length of Stay in Days ..................................................................... 58 

Figure 3. Comparison of Six-Month Mortality by CHI ................................................................ 59 

 



1 
 

Abstract 

 
Background: Muscle mass has been found to be highly correlated with patient outcomes. 
Techniques to identify patients with low muscularity include computed tomography (CT) and 
bioelectrical impendence analysis (BIA) however disadvantages of cost, exposure to radiation 
and limited access make these measurements unavailable to the average dietitian. Urinary 
creatinine excretion (UCE) and the subsequent estimation of creatinine height index (CHI) have 
been strongly associated with muscularity and outcomes, however, these require a 24-hour urine 
collection. The postulation that UCE may be predicted from patient variables, through 
mathematical modeling, would avoid the need for a 24-hour urine collection and may be 
clinically useful.   
 
Methods: Input variables of age, height, weight, gender, plasma creatinine, urea nitrogen, 
glucose, sodium, potassium, chloride, carbon dioxide, and magnesium, from a deidentified data 
set of 967 patients who had UCE measured in the previous 5 years, were used to develop models 
to predict UCE. The model identified with the best predictive ability was validated using four-
fold cross validation and using a separate data set not used to construct the model. Model 
predicted UCE and CHI were compared to measures of muscularity. The model was then 
retrospectively applied to a convenience sample of 120 critically ill veterans to examine degree 
of low muscle mass observed in the cohort and if UCE and CHI were associated with outcomes 
in hospitalized veterans.  
 

Results: A model to estimate UCE was identified utilizing the input variables of plasma 
creatinine, plasma BUN, age and weight which was found to be highly correlated, moderately 
predictive of UCE and statistically significant. Model predicted UCE was found to be highly 
correlated with accepted measures of muscularity. Applying the model to a cohort of subjects 
identified that 44.2% of the subjects had CHI levels ≤ 60% and were considered to have severe 
sarcopenia. Subjects with model estimated CHI ≤ 60% were found to have significantly lower 
body weight, BMI, plasma creatinine, albumin and prealbumin levels. Subjects with CHI ≤ 60% 
were found to be 8.0 times more likely to be diagnosed with malnutrition and 2.6 times more 
likely to be readmitted in 6 months. Subjects with low CHI trended towards longer hospital and 
ICU LOS, however it did not meet statistical significance. The NUTRIC score was found to have 
no relationship with the presence of malnutrition. 
 
Conclusion: The development of a model which predicts UCE and correlates with muscle mass 
offers a novel method for the RDN to readily identify patients with sarcopenia on hospital 
admission. This method could allow the RDN to quickly screen new admissions for potential 
sarcopenia without the use of CT or DEXA scans and without the inconvenience of a 24-hour 
urine collection by using readily available patient variables 
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Introduction 

Consensus guidelines from the Society of Critical Care Medicine (SCCM) and the 

American Society of Parenteral and Enteral Nutrition (ASPEN) have recommended that 

measurement of actual energy expenditure, through the use of indirect calorimetry, be used to 

determine energy requirements.1 Actual measurement allows for individualized and targeted 

energy goals for the patient.1 Similarly, The European Society for Parenteral and Enteral 

Nutrition (ESPEN) recommends that energy intake be determined using indirect calorimetry if 

the patient is mechanically ventilated or, if calorimetry is not available, to use oxygen 

consumption, VO2, from a pulmonary arterial catheter or carbon dioxide output, VCO2, derived 

from a ventilator, to determine needs.2 

In contrast, for protein intake, the SCCM/ASPEN guidelines acknowledge that although 

protein needs in the critically ill appear to be higher than previously thought, determining 

individual requirements is difficult. As a result, the current recommendations are to provide 

between 1.2 to 2.0 g protein/kg actual body weight per day.1 The protein recommendation from 

ESPEN is that 1.3g protein/kg per day can be delivered progressively.2 These stark differences 

between energy and protein recommendations underscore the dilemma facing the practicing 

clinician. Calorie recommendations are based off of actual measurement of patient specific 

parameters whereas protein recommendations are based off of weight without any compensation 

for metabolic state, severity of illness or underlying muscularity. The range of protein intake, as 

recommended in the SCCM/ASPEN guidelines, when calculated for an individual patient are so 

wide and non-specific that they are not clinically useful.  

Previous studies attempted to identify protein requirements in the critically ill. Although 

protein intake, when provided above maintenance amounts, has been found to be beneficial, 
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studies have failed to consistently identify the protein intake most associated with improved 

outcomes.3–8 Although positive retrospective or observational studies have identified associations 

between higher protein intake and improved outcomes, these findings have been unable to be 

confirmed in randomized control trials (RCT).9–11 It has been suggested that lack of positive 

findings and failure to show effectiveness of nutrition therapy in these studies may be due to 

their failure to control for patient population type, the suitability of included patient types or 

metabolic state.12,13 Several studies have observed that targeted nutrition therapy appears to be 

the most beneficial in only patient specific groups such as those at high nutritional risk, with 

malnutrition or with low muscularity.14–18  

 

Chapter 1: Significance/Literature Review 

Importance of skeletal muscle  

It is well recognized that skeletal muscle has significant purpose beyond that of its 

structural functions. Skeletal muscle is an important metabolically active and homeostatic organ, 

accounts for approximately 50% of all body protein and plays key roles in immune function, 

glucose metabolism and protein synthesis.19,20 Oft forgotten, muscle plays a pivotal role in 

whole-body protein metabolism, which is of particular importance during acute stress or 

illness.21 All organs and tissues undergo protein turnover in which the rate of protein breakdown 

is balanced with the synthesis of new proteins. In the fed state, amino acids from food stuffs 

supply the needed precursors for new protein synthesis. Under normal conditions, ingested 

amino acids are incorporated into muscle to replace the amino acids which were lost during 

fasting, with the overall result being that the gains achieved are balanced with the losses. When 

nutrient intake is insufficient, muscle protein becomes the principal reservoir of needed amino 
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acids for all other organs and tissues.21 Normal protein turnover and maintenance of other 

essential organs and tissues can continue provided adequate muscle mass is available for 

cannibalism.21  

In the setting of acute illness, requirements for amino acids, intermediate metabolites and 

minerals from skeletal muscle increases due to increased synthesis of acute phase proteins, 

synthesis of protein components of the immune system and synthesis of proteins necessary for 

wound healing.12,20–22 Conversely, the anabolic response to feeding is impaired and loss of lean 

body mass may not be reversible by nutrition support.23,24 Mediators of this process are not 

entirely clear, however the counter-regulatory hormones, glucagon, catecholamines and 

glucocorticoids are generally elevated in the critically ill and stimulate amino acid catabolism.23 

In critically ill patients, directly correlated with the severity of the injury, increases in 

proinflammatory cytokines, glucocorticoids and oxidative stress reinforce the effect of catabolic 

hormones and contribute to muscle wasting.24  Critical illness thus initiates a cascade of events 

that lead to accelerated protein degradation, decreased rate of synthesis of selected proteins and 

increased catabolism and nitrogen loss.23 

 The overall consequence of this rapid body protein remodeling is metabolic imbalance in 

which “net muscle protein loss greatly exceeds the gain of protein elsewhere and whole-body 

nitrogen balance becomes strongly negative”.22 Additionally, in the acute care setting, when the 

calorie provision is insufficient, amino acids from skeletal muscle are broken down to provide 

the body with energy by way of gluconeogenesis.19  

Thus, acute illness results in a large protein loss from the body over a short period of 

hospitalization. Studies have further shown that this is largely muscle mass and clinically 

significant losses have been quantified.13,25 Furthermore, immobility associated with 
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hospitalization causes atrophy of skeletal muscle and additionally contributes to protein loss.23 

These net losses ultimately impair the immune response and may increase morbidity and 

mortality of the patient.23 It has been suggested that poor outcomes may occur when the 

increased amino acid uptake, to respond to the injury, is limited by both the lack of adequate 

exogenous protein provision and inadequate underlying muscle mass available to release amino 

acids.22  Experts have proposed that providing sufficient exogenous amino acids could improve 

outcomes by “increasing central protein synthesis, optimizing the inflammatory response, 

mitigating the loss of muscle protein, and mitigating muscle atrophy”.22   

As studies have observed that targeted protein intake appears to be the most beneficial in 

only patient specific groups such as those at high nutritional risk, with malnutrition or with low 

muscularity, it appears that nutrition risk is related to outcomes in the acutely ill.14–18 These 

findings, coupled with the recognition of the large protein losses and protein redistribution that 

occurs in acute illness, suggest that for personalized nutrition therapy to be beneficial, the patient 

with low muscularity or with malnutrition needs to be identified.13,15,16,26  The aims of nutritional 

therapy in the critically or acutely ill patient are thus to blunt the loss of lean body mass (LBM) 

or restore body protein mass and to provide adequate protein and energy.4,24 

As low muscle mass has been found to be predictive of outcomes, it may also be an 

important determinant of protein requirements.27 Measurement and assessment of LBM may thus 

provide important insights into patient’s protein needs as those who have low muscularity will 

have less to cannibalize and will require greater exogenous provision.28 Monitoring muscle mass 

may additionally provide a method to evaluate the effect and timing of the prescribed nutrition 

interventions. Unfortunately, practitioners generally rely on readily available measures, such as 

weight or body mass index (BMI), which do not relate to underlying muscularity, and may 
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ultimately prevent the clinician from directing interventions towards preserving or restoring 

muscle mass.29  

Widely used nutrition screening criteria and earlier diagnostic criteria for malnutrition 

have not included evaluation of muscle within their definition and instead focus on BMI and 

weight loss.30 This results in failure to identify low muscle mass and leads to emphasis on energy 

provision and weight maintenance rather than protein intake and targeting muscle.19 In contrast, 

both the AND/ASPEN and GLIM malnutrition criteria include identification of reduced muscle 

as a key diagnostic criteria.31,32  

Recent recommendations have been made in an attempt to shift the focus of nutrition into 

managing and reducing the loss of muscle mass to improve patient clinical outcomes.19 These 

recommendations propose that muscle mass should be at the core of nutrition management 

strategies. Patients should be screened for low muscle mass, and tools and techniques should be 

used to directly assess muscle mass within the nutritional assessment. Another key 

recommendation is that nutrition intervention should be optimized to focus on muscle rather than 

weight. To achieve these goals, the authors suggest that a change in focus and practice is 

required in how nutrition clinicians screen, assess and treat patients.19 

 

Studies which have examined the relationship between muscularity and outcomes 

Low muscle mass, as measured by a variety of methods, has been found to be associated 

with adverse outcomes in the critically ill and other hospitalized inpatient populations, Table 1. 

Studies have observed significant relationships between low muscle mass, or loss of muscle mass 

and in-hospital mortality, 30-day, 60-day, or 6-month mortality, higher disease severity scores, 
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hospital length of stay (LOS), pneumonia, respiratory failure, need for re-intubation and organ 

failure.17,25,28,33–42  

A recent retrospective study of 279 intensive care unit (ICU) patients who had computed 

tomography (CT) scans was conducted to examine if low muscle mass, as determined from CT 

scans, was associated with outcomes.36 They observed that 68% of the population was 

sarcopenic and that low muscle mass was significantly associated with older age, p < .001, more 

comorbidities, p = .009, and longer hospital LOS, p = .043. Importantly, on logistic regression, 

30-day mortality was found to be strongly associated with low muscle area (OR 0.98, p = .004).   

Loosen et al37 conducted an exploratory observational study of 155 patients admitted to 

the medical ICU who had CT scans on admission. They calculated skeletal muscle area to 

identify sarcopenia and mean skeletal muscle attenuation (MMA) to determine muscular fat 

deposition, myosteatosis, and then explored if these parameters were related to outcomes. They 

identified no differences in short term outcome, of ICU survival, between those with or without 

sarcopenia or between those with or without myosteatosis. However, they did observe significant 

differences in 6-month and 1-year survival. Patients with low skeletal muscle or high amounts of 

fatty infiltration of muscle were more likely to have died at 6-months or 1-year time points. 

Binary logistic regression analysis revealed both low muscle mass (OR, 0.979, p = .025) and 

fatty infiltration (OR, 0.964, p = .014) as prognostic of 6-month mortality.  

Jaitovitch et al38  conducted a prospective, observational study of 423 subjects who had 

been admitted to the medical ICU and who had a CT scan within the first 24-hours of admission. 

They sought to determine if muscle mass and fat mass, as identified on CT scan, were associated 

with survival and disability at hospital discharge. Disability was defined as discharged to a 

facility or home with assistance compared to discharged home without assistance. They observed 
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that larger muscle mass was significantly associated with decreased odds of mortality at 6-

months (OR 0.96 per cm2 increase in mass, CI 0.94-0.97, p < .001) and with decreased odds of 

disability (OR 0.98 per cm2 increase in mass, CI 0.96-0.99, p = .012). There was no statistically 

significant association between fat mass and survival, or disability observed. Larger muscle area 

was the only clinical parameter that remained significantly associated with survival after 

multivariable adjustments.  

Looijard et al17 conducted a retrospective database study of adult patients admitted to a 

mixed medical surgical ICU who were on ventilators and receiving enteral tube feedings. They 

examined data from 739 patients who had CT scans shorty after admission which they used to 

identify low muscle mass. Patients were divided into 3 groups: normal skeletal muscle area 

(SMA), low SMA and combined low SMA with low skeletal muscle density (SMD) based on CT 

scans. Patients were additionally stratified based on whether they received <1.2 or >1.2g 

protein/kg/day. The researchers sought to examine whether muscle mass and quantity of protein 

intake is associated with outcomes of 60-day and 6-month mortality. They observed a high 

prevalence of both low SMA and low SMD, 445 (60%) were found with low SMA, of those 200 

(45% of the low SMA group) were found to have low SMA and low SMD. Patients with low 

SMA were older, p < .001, lower weight, p < .001, and had higher APACHE II scores, p < .001 

than those with normal SMA. Low SMA group and Low SMA and SMD groups had higher 60-

day and 6-month mortality, all p < .001, compared to normal SMA. In the combined low SMA 

and Low SMD group, 60-day and 6-month mortality were significantly lower in those that 

received protein intake >1.2g/kg/day, p < .001. The authors concluded that optimal nutrition 

strategies may differ between patients with certain sub-groups benefitting while others do not. 
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Their study suggests that patients with low SMA and low SMD may benefit from early higher 

protein intake.  

 Imamura et al39 retrospectively examined a group of adults who underwent emergency 

surgery for colonic perforations who had CT scans the day of surgery. They further stratified  

patients by age into <75 years or ≥75 years old. They examined if there was a correlation 

between psoas muscle mass and LOS. A total of 46 subjects met criteria. The older group had 

significantly lower psoas muscle area, 961mm2 vs 1622mm2, p < .001, compared to the younger 

group. A significant negative correlation, r = .23, p = .02, was observed between LOS and psoas 

area in the younger group but not in the older group. They suggest that the older group may have 

generalized sarcopenia however many elderly transferred to other facilities for post-op care thus 

true LOS may be underestimated. 

 Fuchs et al40 conducted a prospective observational study of 231 patients in medical and 

surgical ICUs who were recently extubated. They examined the effect of low skeletal muscle as 

determined from the skeletal muscle index, SMI, measured from CT scans on outcomes at 30 

days after extubation. They observed that patients with low SMI had significantly greater rates of 

pneumonia, p < .001, 30-day mortality, p = .004, reintubation within 72 hours, p < .02, and 

respiratory failure within 30-days of extubation, p < .02 when compared to those with normal 

SMI. Low skeletal muscle was found to be a strong predictor of pneumonia, OR 0.96, p < .002, 

and 30-day mortality, OR 0.94, p < .03. 

Abramowitz et al41 conducted a retrospective data base analysis of NHANES data of 

11,687 adult subjects who had dual energy x-ray absorptiometry (DEXA) scan results. They 

included subjects with BMIs between 18.5 and 40. They sought to determine if there was a  
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Table 1. Studies Examining Relationship of Muscle Mass on Outcomes 

 
Study Subject 

Type and 

Number 

Design Observation or 

Intervention and Duration 

Results Notes 

Joyce 
2020 

Mixed med 
surg ICU; 
279 subjects 

Retrospective 
chart review 

Identified low muscle mass 
based on CT scans. 
Examined whether low 
muscle mass was associated 
with outcomes.  

189/279 (68%) were identified as being 
sarcopenic. Those with sarcopenia were 
significantly older, p<0.001, had more 
comorbidities, p<0.009, and hospital LOS, 
p<0.04. Using logistic regression, 30-day 
mortality was associated with low muscle area 
(OR 0.98, p = 0.004).   

Baseline sarcopenia was 
highly prevalent.  

Loosen 
2020 

Medical 
ICU; 155 
subjects 

Exploratory 
observational 
study 

Examined CT scans on ICU 
admission and calculated 
skeletal muscle area to 
determine sarcopenia and 
mean skeletal muscle 
attenuation (MMA) to 
determine muscular fat 
deposition. Explored if these 
parameters were related to 
outcomes.  

No differences in ICU survival between those 
with or without sarcopenia or between those with 
or without myosteatosis. Observed patients with 
low skeletal muscle or high amounts of fatty 
infiltration of muscle were more likely to have 
died at 6-months or 1-year time points. Binary 
logistic regression analysis revealed both low 
muscle mass (OR, 0.979, p=0.025) and fatty 
infiltration (OR, 0.0.964, p=0.014) as prognostic 
of 6-month mortality.  
 

Unclear role of muscle 
quality versus muscle 
quantity. They may play 
equally important roles.  

Jaitovich 
2020 

Medical 
ICU; 423 
patients 

Prospective 
observational 
study 

Evaluated CT scans obtained 
within the first 24-hours of 
ICU admission. Determined 
if muscle mass, fat mass and 
bone density, as identified on 
CT scan, were associated 
with survival and disability at 
hospital discharge 

Larger muscle mass was significantly associated 
with decreased odds of mortality at 6-months 
(OR 0.96 per cm2 increase in mass, CI 0.94-0.97, 
p< 0.001) and with decreased odds of disability 
(OR 0.98 per cm2 increase in mass, CI 0.96-0.99, 
p=0.012). There was no statistically significant 
association between fat mass and survival, or 
disability observed. 

Muscle area was the only 
clinical parameter that 
remained significantly 
associated with survival 
after multivariable 
adjustments. 

Looijard 
2020 

Mixed med-
surg ICU; 
on 
ventilators; 
739 subjects 

Retrospective 
Database search 

Patients were divided into 3 
groups: normal skeletal 
muscle area (SMA), low 
SMA and combine low SMA 
with low skeletal muscle 
density (SMD) based on CT 
scans. Patients were stratified 
based on whether they 

445 (60%) were found with low SMA, of those 
200 (45% of the low SMA group) were found to 
have low SMA and low SMD. Patients with low 
SMA were older, p<.001, lower weight, p<.001, 
and had higher APACHE II scores, p<.001 than 
those with normal SMA. Low SMA group and 
Low SMA and SMD groups had higher 60-day 
and 6-month mortality, all p<.001, compared to 

Lower muscle mass was 
associated with worse 
outcomes. Higher protein 
intake was associated 
with lower mortality in 
those with low muscle 
mass but not those with 
normal muscle mass.  
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received <1.2 or >1.2g 
protein/kg/day. Examined 
whether muscle mass and 
quantity of protein intake is 
associated with mortality. 
 

normal SMA. In the combined low SMA and 
Low SMD group, 60-day and 6-month mortality 
were significantly lower in those that received 
protein intake >1.2g/kg/day, p<.001. 

Imamura 
2019 

Adults who 
underwent 
emergency 
surgery for 
perforated 
colons; 46 
subjects 

Retrospective 
chart review 

Patients had CT scans on day 
of emergency surgery; 
stratified patients by age <75 
years or >/=75 years old. 
Examined if there was a 
correlation between psoas 
muscle mass and mortality. 
 

46 subjects met criteria. The older group had 
significantly lower psoas muscle area, p<.0001. 
A significant negative correlation, r=0.23, p=.02, 
was observed between LOS and psoas area in the 
younger group but not in the older group.  

Longer LOS associated 
with low muscle mass 
only in younger age 
group. Many elderly 
transferred to other 
facility for post-op care 
thus true LOS may be 
underestimated.  

Fuchs 
2018 

Adults; 
mixed med-
surg ICU; 
recently 
extubated; 
231 subjects 

Prospective 
observational  

Examined the effect of 
skeletal muscle 
measurements from CT scans 
on outcomes at 30 days after 
extubation 

Pts with low skeletal muscle index had 
significantly greater rates of pneumonia, p<.0001, 
30-day mortality, p<.004, reintubation within 72 
hours, p<.02, and respiratory failure within 30-
days of extubation, p<.02. Low skeletal muscle 
was a predictor of pneumonia, OR 0.96, p<.002, 
and 30-day mortality, OR 0.94, p<.03. 
 

Skeletal muscle is a 
strong predictor of 
outcomes 

Abramowitz 
2018 

Adults with 
BMIs 
between 
18.4 and 40; 
11,687 
subjects 

Retrospective 
data analysis 

Examined data from 
NHANES to determine if 
there was a relationship 
between low muscle mass, as 
measured by DEXA, and risk 
of death. Muscle mass was 
estimated from the 
appendicular skeletal muscle 
mass index.  

14% of all subject were found to have low muscle 
mass. Low muscle mass was not limited to those 
with low percent total body fat (%TBF). During 
their time frame of interest, 1,819 subjects died. 
When separated by muscle mass status, within 
each BMI category the hazard ratio for death was 
higher for subjects with low muscle mass, 
p<.001. When examining subjects with preserved 
muscle mass alone, there was a significantly 
increased risk of death among those who were 
obese compared with overweight, HR 1.23, 95% 
CI 1.04-1.47. 

Skeletal muscle mass is a 
significant mediator and 
modifier of the 
relationship of BMI and 
mortality.  

Shibahashi 
2017 

Adults with 
sepsis 
admitted to 
the ICU, 150 
subjects 

Retrospective Lean skeletal muscle mass 
was estimated from the cross-
sectional area of the psoas 
and paraspinal muscles at L3 
vertebrae. Patients were 
stratified to survived and 

Patients which survived had significantly larger 
muscle mass than those who did not, 43.3 cm2 vs 
36.8 cm2, p<.001. Skeletal muscle area was found 
to be an independent predictor of in-hospital 
mortality, OR 0.94, 95% CI 0.90-0.97, p <.001. 

Low skeletal muscle mass 
is associated with higher 
in-hospital mortality 
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deceased and into 60-80 
years and >80 years of age.  

When age groups were examined, skeletal muscle 
area remained significant regardless of age. 

Thibault 
2016 

Adults 
admitted to 
mixed Med-
surg ICU, 
931 subjects 

Multi-site 
Prospective 
observational 

Obtained BIA measurements 
on day 1 of ICU admission to 
estimated fat-free mass. 
Examined if there was a 
relationship between BIA 
measurements and 28-day 
mortality and disease severity 

BIA measures of fat-free mass were significantly 
lower in non-survivors than survivors, 4.10 vs 
4.59, p<.00. Disease severity scores were also 
significantly worse in those patients with lower 
fat-free mass, 21.8 vs 17.7, p<.001. Variables 
significantly associated with 28-day mortality 
were admitting BIA measurement of fat-free 
mass, APACHE II score, surgical diagnosis and 
increasing age. BMI was not found to be a 
significant variable.  
 

Future studies should be 
designed to assess 
whether nutrition 
interventions could 
change outcomes 

Weijs 
2014 

Adults 
admitted to 
mixed Med-
Surg ICU, 
who had a 
CT scan 
within the 
first 4 days, 
240 subjects 

Retrospective 
chart review 

Examined the relationship 
between muscle mass, as 
determined from CT scans, 
and BMI on hospital 
mortality  

Low muscle mass was found in 63% of all 
subjects. Patients with low muscle area had 
higher hospital mortality, 38.2% vs 12.5%, 
p<.001. Regression analysis demonstrated that 
muscle area, sex and APACHE II score where 
independent predictors of mortality while BMI 
and diagnosis were not.  

Low skeletal muscle mass 
is an independent 
predictor of mortality in 
ventilated patients. BMI 
appeared to have no 
impact on mortality.  

Moisey 
2013 

Adult 
trauma 
patients with 
CT scans on 
admission, 
148 subjects 

Retrospective 
chart review 

CT scans were used to 
identify both skeletal muscle 
and adipose tissue cross-
sectional areas. They sought 
to determine if low 
muscularity or low adiposity 
adversely affected outcomes.  
 
 

Based on BMI alone, 57% were overweight or 
obese and 7% were underweight. Based on CT 
scan measurements, 71% of all subjects were 
sarcopenic. Significantly more patients with 
sarcopenia died compared to those not 
sarcopenic, 32% vs 14%, p=.018. After 
controlling for age, sex and injury severity, low 
muscle index but not BMI or low albumin, was 
associated with hospital mortality, OR =0.93, 
95% CI 0.87-0.99, p =.025. Sarcopenic patients 
had significantly lower ventilator-free, p = .004, 
and ICU-free days, p=.004. No differences were 
noted in visceral adipose tissue mass between 
sarcopenic and non-sarcopenic patients. Adipose 

BMI poorly identifies low 
muscle mass and that low 
muscularity has 
significant implications 
on outcomes.  
 



13 
 

tissue was not associated with mortality, 
ventilator-free or ICU-free days. 
 

Puthucheary 
2013 

Adults, 
mixed med-
surg ICU, on 
vents longer 
than 48 
hours and 
ICU stays 
longer than 
7 days; 63 
subjects 

Prospective 
observational 
study 

Performed serial ultrasound 
measurements of rectus 
femoris and muscle biopsies 
on ICU days 1,3,7 and 10. 
Muscle protein synthesis, 
breakdown and balance was 
determined by leucine 
incorporation using leucine 
infusions on days 1 and 7 

Muscle cross-sectional area decreased from 
baseline by 17.7%, p <.001, by ICU day 10 and 
the ratio of protein to DNA by 29.5%, p <.001. 
Leg protein breakdown was elevated compared to 
synthesis, p =.05, resulting in a net catabolic 
balance. Increasing organ failure score was 
correlated with change in muscle cross sectional 
area, r = 0.23, p < .001.  

Skeletal muscle wasting 
occurred early and rapidly 
in critically ill patients 
and appeared to be due to 
both decreased synthesis 
and increased muscle 
breakdown.  
 

Gruther 
2008 

Adults, 
mixed med-
surg ICU; 
125 subjects 

Prospective 
observational 
study 

Conducted ultrasound 
measurements of the rectus 
femoris and vastus 
intermedius muscles and 
estimated muscle layer 
thickness. Interested in 
identifying muscle wasting in 
ICU patients and whether 
there was a relationship 
between muscle and length of 
stay (LOS). 

Observed a significant negative correlation 
between admission muscle layer thickness and 
LOS, p = .005 

Muscle wasting was best 
described by using a 
logarithmic function 

     ICU = intensive care unit; Med = medical; Surg = surgical; LOS = length of stay; CT = computed tomography; BMI = body mass 
index



14 
 

relationship between low muscle mass, as measured by DEXA, and risk of death at a mean time 

point of 9 years. Muscle mass was estimated from the appendicular skeletal muscle mass index. 

They observed that 14.1% of all subjects had low muscle mass and that low muscle mass was not 

limited to those with low percent total body fat (%TBF). During their time frame of interest, 

1,819 subjects died. When separated by muscle mass status, within each BMI category the 

hazard ration for death was higher for subjects with low muscle mass, p < .001. When examining 

subjects with preserved muscle mass alone, there was a significantly increased risk of death 

among those who were obese compared with overweight, HR 1.23, 95% CI 1.04-1.47. Skeletal 

muscle mass was observed to be a significant mediator and modifier of the relationship of BMI 

and mortality and that muscle mass altered the relationship of BMI with %TBF. 

 Shibahashi et al42 conducted a retrospective study of 150 adults > 60 years of age who 

were admitted to the ICU with sepsis and had a CT scan performed the day of ICU admission. 

They were interested if whether decreased skeletal muscle mass is associated with mortality. 

Lean skeletal muscle mass was estimated from the cross-sectional area of the psoas and 

paraspinal muscles at L3 vertebrae. Patients were stratified into survived and deceased groups 

and into 60-80 years and >80 years of age groups for analysis. Patients which survived had 

significantly larger muscle mass than those who did not, 43.3 cm2 vs 36.8 cm2, p < .001. Skeletal 

muscle area was found to be an independent predictor of in-hospital mortality, OR 0.94, 95% CI 

0.90-0.97, p < .001. When age groups were examined, skeletal muscle area remained significant 

regardless of age. The authors propose that identifying patients with low muscularity may allow 

for earlier intervention.  

 Thibault et al33 conducted a large multi-site prospective observational study of 

931patients admitted to mixed medical surgical ICUs who underwent BIA measurements to 
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assess fat-free mass on day of ICU admission. They were interested in examining if there was a 

relationship between BIA measurements and 28-day mortality and disease severity, APACHE II 

score. BIA measures of fat-free mass were significantly lower in non-survivors than survivors, 

4.10 vs 4.59, p < .001. Disease severity scores were also significantly worse in those patients 

with lower fat-free mass, 21.8 vs 17.7, p < .001. Variables significantly associated with 28-day 

mortality were admitting BIA measurement of fat-free mass, APACHE II score, surgical 

diagnosis and increasing age. BMI was not found to be a significant variable. They concluded 

that fat-free mass measured on ICU admission by BIA is associated with 28-day mortality.  

 Weijs et al28 conducted a retrospective chart review of 249 patients who were admitted to 

a mixed medical-surgical ICU, were on ventilators and who had a CT scan within the first 4 

days. They were interested if there was a relationship between muscle mass, as determined by 

the CT scan, BMI and outcomes. They observed that 63% of all patients had low muscle mass. 

Patients with low muscle area had higher hospital mortality, 38.2% vs 12.5%, p < .001. 

Regression analysis demonstrated that muscle area, sex and APACHE II score where 

independent predictors of mortality while BMI and diagnosis were not. When muscle area was 

examined as a continuous variable and not as a sex related cut-off category, sex disappeared as 

an independent predictor of mortality.  

 Moisey et al34 conducted a retrospective study of 148 adult patients admitted to their 

trauma unit who had a CT scan on day on admission. CT scans were used to identify both 

skeletal muscle and adipose tissue cross-sectional areas. They sought to determine if low 

muscularity or low adiposity adversely affected outcomes. On the basis of BMI alone, 57% were 

overweight or obese and 7% were underweight. In stark contrast, based on CT scan 

measurements, 71% of all subjects were sarcopenic. Significantly more patients with sarcopenia 
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died compared to those not sarcopenic, 32% vs 14%, p = .018. After controlling for age, sex and 

injury severity, low muscle index but not BMI or low albumin, was associated with hospital 

mortality, OR =0.93, 95% CI 0.87-0.99, p = .025. Sarcopenic patients had significantly lower 

ventilator-free, p = .004, and ICU-free days, p = .004. No differences were noted in visceral 

adipose tissue mass between sarcopenic and non-sarcopenic patients. Adipose tissue was not 

associated with mortality, ventilator-free or ICU-free days. The authors conclude that BMI 

poorly identifies low muscle mass and that low muscularity has significant implications on 

outcomes.  

 Puthucheary et al25 conducted a prospective observational study on 63 subjects admitted 

to a mixed medical-surgical ICU who were anticipated to be on a ventilator longer than 48 hours 

and require ICU stays of greater than 7 days. They were interested in characterizing the time 

course and pathophysiology of muscle loss in the critically ill. They performed serial ultrasound 

measurements of rectus femoris and muscle biopsies on ICU days 1,3,7 and 10. Additionally, 

muscle protein synthesis, breakdown and balance was determined by leucine incorporation using 

leucine infusions on days 1 and 7. They observed that muscle cross-sectional are decreased from 

baseline by 17.7%, p < .001, by ICU day 10 and the ratio of protein to DNA by 29.5%, p < .001. 

Leg protein breakdown was elevated compared to synthesis, p = .05, resulting in a net catabolic 

balance. Increasing organ failure score was correlated with change in muscle cross sectional 

area, r = .23, p < .001. The authors concluded that skeletal muscle wasting occurred early and 

rapidly in critically ill patients and appeared to be due to both decreased synthesis and increased 

muscle breakdown and was associated with organ failure.  

Gruther et al35  conducted a prospective observational study on 125 ICU patients. They 

performed ultrasound measurements of the rectus femoris and vastus intermedius muscles and 
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estimated muscle layer thickness (MLT). They were interested in identifying muscle wasting in 

ICU patients and whether there was a relationship between muscle and length of stay (LOS). 

They observed a significant negative correlation between admission MLT and LOS, p = .005. 

Additionally, they were able to describe muscle wasting using a logarithmic function.  

These studies lay the foundation for the growing understanding of the negative outcomes 

associated with low muscle mass. Outcomes of increased mortality, longer LOS, greater 

readmission rates and increased disease severity have all been demonstrated. Identifying low 

muscularity and changes in lean body mass are then essential for the provision of prompt, 

individualized nutritional therapy and mitigating adverse outcomes.43 The key step for the 

practitioner thus lies in how to easily identify these at-risk patients with low muscularity in the 

hospital setting.  

 

Methods of measuring muscularity in hospitalized patients 

Relying on body weight or body mass index (BMI) will fail to identify those with altered 

body composition, particularly in those who are obese with low muscularity.43 The assessment of 

muscle loss is now considered to be a key component of nutrition status.31,44 Although the 

clinician may attempt to identify loss of muscle mass through the use of a nutrition focused 

physical exam or anthropometric measurements, it remains a subjective assessment.31,45 Lean 

tissue loss may occur prior to weight loss and may be difficult to discern with visual techniques 

when there are concomitant changes in fat mass or extracellular water.44  More sensitive body 

composition technologies and techniques are available to objectively measure or estimate lean 

body mass.43,44,46,47 These techniques are gaining in acceptance and becoming more readily 

available for use in the hospitalized patient. The most commonly used methods to evaluate body 
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composition and muscle mass include computed tomography (CT), dual energy x-ray 

absorptiometry (DEXA), bioelectrical impendence analysis (BIA) and ultrasound (US).43,44,46,47 

Recent guidelines are available to aid the clinician in understanding the validity of some of these 

various measurements.46  

Studies which have examined the relationship between muscle mass and outcomes have 

generally relied on CT scans to identify patients with low muscularity.43,44,47 CT scans use high-

dose radiation to produce cross-sectional images of organs, skeletal muscle, adipose tissue and 

bone. Several computer programs are available to then analyze the images and make 

determinants of body composition.43,47 CT scan measurements at the mid-lumbar, L3, vertebral 

slice has been used to predict body fat and fat free mass. Cut-off points for low muscularity have 

been established and thus are considered to provide reference measurements of body 

composition.43 Although utilizing CT scans to measure muscle mass is considered a gold 

standard, it is not always practical.43,44,47 As CT scans expose the patient to a high dose of 

radiation, they are not ordered for the purpose of the nutrition assessment. Rather, their 

nutritional use is limited to those patients who underwent CT scans as part of their medical 

treatment. Short comings of relying on CT scans are that not all patients undergo CT scans early 

enough or frequently enough to be useful in identifying malnutrition, muscle loss or sarcopenia. 

These scans also require that the patient physically go to the radiology department which may be 

precluded in the unstable patient. Importantly, measurements of muscle mass are not routinely 

reported as part of CT scan results and these measurements require specialists trained in 

measuring muscle and body compartments.43,44,47  

Alternative methods for identifying low muscularity exist, although these have 

limitations as well.19,44,46–48 DEXA uses much lower doses of radiation and relies on measured 
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changes in x-ray attenuation to estimate body composition. As DEXA imaging is safer, it has 

been utilized to develop normal body composition data which has been extrapolated to develop 

reference values.47 DEXA has been found to be a valid technology to assess fat mass in adults, 

however studies validating lean mass are lacking.46 DEXA can provide a measure of 

appendicular lean mass, which is considered an indicator of muscle mass although hydration 

levels can impact soft tissue readings.19,48 Currently there is a lack of studies using DEXA in the 

inpatient setting and it may not be readily accessible in a variety of clinical settings.19 Lastly, 

most DEXA imaging currently done only encompasses the lumbar or femoral regions and thus 

does not include areas needed for the assessment of lean tissue. Whole body DEXA imaging for 

body composition analysis will have additional costs associated and will require trained 

personnel to read and interpret the results.46  

Bioelectrical impendence analysis (BIA) uses low amplitude electrical current to 

characterize the conductive and non-conductive fluids of the body. Fat and bone are poor 

conductors of electrical currents compared to water, muscle and blood which are excellent 

conductors. Electrodes placed on the body can measure the opposition to an electrical current 

through the body tissues which can then be used to estimate total body water and body 

composition.44,46 Advantages to the use of BIA for analysis of body composition include that it is 

inexpensive, portable, non-invasive and the measurements can be performed relatively quickly. 

BIA has several drawbacks of which the clinician should be aware of. BIA does not directly 

measure body composition. However, it provides indirect estimates based on manufacturer 

specific regression models. These models rely on several key assumptions which include that the 

body is comprised of 5 cylinders of uniform cross-sectional area. This assumption may be 

violated in those who are obese, have had an amputation or have shorter or longer than average 
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limbs. BIA accuracy has also been found to be affected by adiposity, fluid and electrolyte status, 

skin temperature and ambient temperature.43,44,46–48 Importantly, regression equations have been 

generally derived from healthy, normal weight ambulatory patients. The assumptions of these 

equations may not be true in the critically ill patient with alterations in intracellular and 

extracellular compartments or in disease states which are characterized by expansion of 

extracellular water.43 BIA has also been found to be unreliable in patients receiving electrolyte 

containing intravenous fluids as the measurement appears to be affected by the ion content of the 

fluid.49 It is currently unclear how long it takes to achieve ionic equilibrium after intravenous 

administration of fluids, thus recommendations for appropriate timing of BIA measurements in 

those hospitalized who require intravenous fluids cannot be made.49 For BIA to become more 

reliable in the acute care setting, resolution of these issues and the development and validation of 

accurate algorithms in the critically ill or hospitalized patients will be required.19,43,46,49  

Ultrasound imaging of muscles utilizes high frequency soundwaves to produce images 

based on the amplitude of the reflected soundwaves.43,46,47,50  US has been used to assess body 

composition including visceral and subcutaneous adiposity and skeletal muscle. It has the 

advantage of examining individual muscle groups and examining both muscle quantity and 

quality through measures such as muscle thickness, cross sectional area and echogenicity. 

Muscle thickness can be measured at multiple sites and equations have been proposed to predict 

fat-free mass or skeletal muscle mass.44 These measurements have been used to identify 

sarcopenia, malnutrition and muscle loss. The most commonly measured muscle in the critical 

care setting has been the quadriceps as it is readily accessible and has easy to identify fascial 

borders. US of the quadriceps has been used to predict whole body muscle mass and this 

technique has been shown to provide reasonable estimates of muscle mass compared to other 
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reference techniques.47,51 Musculoskeletal US is gaining in popularity, as it is less expensive, less 

invasive and more portable compared to CT scans. These advantages allow the clinician to 

obtain repeat measures and follow changes in muscle mass. For US use to become more widely 

accepted, expert consensus on choice of muscle groups or anatomic site, degree of compression 

and use of muscle thickness or cross-sectional area as the measurement standard will need to be 

determined.52,53 Lastly, although sarcopenic cut-offs have been proposed to identify low 

muscularity, further validation is required.35,43,46,47,50 

 

Using creatinine to evaluate muscularity in hospitalized patients  

 Although these measurement techniques can provide valuable information, disadvantages 

of cost, exposure to radiation, lack of standardization of procedures, need to transport the patient 

to the radiology department, lack of mathematical models for specific patient populations, lack 

of trained personnel and limited access to techniques and equipment will likely make these 

measurements infrequently available to the average clinician.54  A widely available and long-

accepted method for evaluating muscularity is by use of plasma creatinine levels and the 24-hour 

urinary creatinine excretion method.54–57  Plasma creatinine levels and measurement of 24-hour 

urinary creatinine excretion provide viable alternatives and avoid the disadvantages that occur 

with the other measurement techniques.  

Creatine is a nitrogenous organic compound which participates in cellular energy 

metabolism and is found primarily in muscle. Creatine production requires several steps. The 

first step involves the synthesis of guanidoacetate from glycine and arginine and requires the rate 

limiting enzyme glycine amidinotransferase in the kidney.55,58 Then creatine is formed by the 

transfer of s-methyl group from S-adenosylmethionine to guanidoacetate in the liver. This step is 
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irreversible and not rate limiting. This synthesized creatine is then released into the circulation 

where the next step is active uptake against a concentration gradient by muscle. This active 

uptake of creatine results in the replacement of about 2% of the total amount of creatine in 

muscle each day. As creatine uptake by muscles is relatively complete, blood levels remain low. 

Within the muscle, creatine exists in two forms, creatine and creatine phosphate. Creatine is 

continuously dehydrated by a nonenzymatic reaction to creatinine at a constant turnover rate.57,58 

Once formed, creatinine then diffuses from the cell, is transported by the blood and ultimately 

appears in the urine after glomerular filtration. In the healthy state and on a stable diet, creatinine 

output is constant on a day to day basis for the individual.55,58  

Creatinine is the sole metabolite of creatine and once formed undergoes renal excretion at 

a constant rate.55 Since 98% of creatine is located in striated muscle, skeletal and cardiac muscle, 

the amount of creatinine produced by the body varies directly and proportionally with the muscle 

mass. It has been identified that 17.9g of muscle produces 1g of urinary creatinine every 24 

hours, thus muscle mass can be predicted from 24-hour urinary creatinine excretion.56 

Additionally, since muscle creatinine concentration is 3-5g/kg of wet fat-free tissue, muscle mass 

can be reliably estimated.57 Due to these well identified processes and relationships, evaluation 

of serum creatinine levels and urinary creatinine excretion can be used to estimate muscle mass 

by validated equations.54,55  The ratio of total body muscle mass and 24-hour urinary creatinine 

excretion approximates a constant commonly referred to as the creatinine equivalence.54 

Researchers have confirmed strong correlations between plasma creatinine levels or 

urinary excretion of creatinine and lean body mass. Schutte et al56 observed that total plasma 

creatinine is a linear function of striated muscle mass and the two variables are strongly 

correlated.  They observed that plasma creatinine and urinary creatinine excretion were also 
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strongly correlated, r = .82, p < .001, and that plasma creatinine was strongly correlated with 

lean body mass, r = .72, p < .001.56 Urinary excretion of creatinine has also independently been 

found to be strongly correlated, r = .98, with LBM as measure by K40 counting.59 Welle et al60 

also demonstrated that creatinine excretion was closely associated, r = .93, with LBM as 

determined by K40 counting and that the relationship was not affected by age or sex. Urinary 

creatinine excretion was also found to be highly correlated with fat-free mass (FFM) as measured 

by densitometry and deuterium dilution, r = .89, p < .001 and considered a good predictor of 

FFM.61 Heymsfield et al55  demonstrated that muscle mass, as estimated from mid-arm muscle 

area calculated from arm circumference and triceps skinfold, was strongly correlated with 

urinary creatinine excretion, r = .94, p < .001.  

 Proctor et al62 compared DEXA and urinary creatinine excretion and compared those 

methods to known standards of underwater weighing and total body water as estimated with 

deuterium oxide dilution. They found that DEXA and urinary creatinine excretion did not detect 

similar differences in total body skeletal muscle mass as a function of age. DEXA was not as 

sensitive as urinary creatinine in identifying age related changes in muscle mass and that the 

disparity between the two methods was accounted for by differences in total body water. They 

observed that the creatinine excretion method provided a better estimate of age-related muscle 

loss than DEXA and that the decline in muscle strength observed with the older subjects 

corresponded with declines in muscle mass. Higher DEXA-based muscle mass estimates in older 

subjects appeared to be due to age-related increases in body water content which in turn was 

overestimated as lean tissue by DEXA.62 

 The clinician should be aware of certain metabolic or medical conditions that can alter 

creatinine output and in those instances, creatinine should not be used to estimate muscle mass. 
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Factors that can lead to elevated plasma creatinine concentration render the results unreliable and 

include muscle injury, intense exercise and kidney disease.55,56 Renal disease, which results in 

declines in glomerular filtration rate, will impact creatinine excretion. As glomerular filtration 

falls, urinary creatinine excretion falls, and the creatinine output is no longer proportional to 

muscle mass.55  

Lastly, nutritional intake may affect creatine production and creatinine excretion and may 

make results more difficult to interpret.55 Urinary creatinine excretion is influenced by three 

dietary constituents: protein, creatine, and creatinine. Dietary protein is the main source of the 

amino acid precursors of creatine and the level of protein intake has been noted to have a small 

effect on urinary creatinine excretion. Providing nutrition supplements with increased amounts of 

arginine and glycine, the two dietary amino acid precursors of creatine, may enhance 

transamidinase activity and result in higher creatine production. Dietary creatine intake, from 

meat, increases the size of the creatine pool which then proportionally increases the output of 

creatinine in the urine. Therefore, when using creatinine excretion to assess muscle mass it is 

important to control as many of these dietary factors as possible.55  

 Due to the correlation between plasma creatinine levels, urinary creatinine excretion and 

muscle mass, low plasma creatinine levels and low urinary creatinine output can be considered a 

marker of diminished muscle mass.20,56 This simple and inexpensive method to identify low 

muscularity allows assessment without relying on more complex techniques such as CT scans or 

DEXA.54,60 Perhaps more importantly, creatinine excretion originates from metabolically active 

muscle cell mass which may have significant implications and advantages over other estimates 

of muscle mass.62 

 



25 
 

The relationship between creatinine and outcomes  

Researchers have sought to examine the relationship between low plasma creatinine 

concentration or low urinary creatinine excretion and outcomes. Udy et al63 conducted a large 

retrospective study of over 1 million patients admitted to 175 ICUs across Australian and New 

Zealand. They stratified patients based on their plasma creatinine concentration measured within 

the first 24 hours of admission. They observed the highest in-hospital mortality in those with the 

lowest creatinine levels, adjusted OR = 2.03, 95% CI 1.86-2.21 and that this was greater than for 

those with elevated creatinine levels, adjusted OR = 1.60, 95% CI 1.55-1.66. Additionally, they 

observed this relationship between in-hospital mortality and plasma creatinine levels across all 

BMI categories. 

Cartin-Ceba et al64 had previously conducted a retrospective study of 11,291 ICU patients 

and examined the association between baseline plasma creatinine measured on admission and 

hospital mortality. For purposes of analysis, they stratified patients into one of four plasma 

creatinine levels, very low creatinine ≤ 0.6mg/dL, low creatinine 0.6-0.8 mg/dl, normal 0.9-

1.4mg/dL and high >1.4mg/dL. They observed a U-shaped curve with both low and high 

creatinine levels associated with unadjusted in-hospital mortality. A similar relationship was 

observed for ICU length of stay. After multivariate logistic regression analysis was used to 

control for BMI, age and gender, low baseline creatinine was associated with increased mortality 

in a dose response manner, OR = 2.59, 95% CI, 1.82-3.61, for creatinine ≤ 0.6mg/dL and OR = 

1.28, 95% CI, 1.03-1.60, for creatinine 0.6-0.8mg/dL.  

Thongprayoon et al65 conducted a broader study of 73,994 patients admitted to the 

general hospital population to determine if creatinine level was associated with in-hospital 

mortality or 1-year mortality. For analysis, baseline plasma creatine was categorized into one of 



26 
 

7 groups. They observed the lowest mortality in those with baseline creatinine levels of 0.7-

0.8mg/dL and a U-shaped distribution with the highest mortalities observed in the highest and 

lowest levels of creatinine. The risk associated with the lowest creatinine level, OR = 3.29, 95% 

CI, 2.08-5.00, was greater than the risk associated with the highest creatinine level, OR = 2.56, 

95% CI, 2.07-3.17. This association remained statistically significant even after adjusting for 

BMI. Similar findings were observed for 1-year mortality, with patients with the lowest and 

highest creatinine levels, experiencing the greatest mortality. They concluded that low plasma 

creatinine value at hospital admission has important prognostic importance for patient outcomes 

and appears to be a better surrogate marker for low muscle mass than BMI.65 

Hessels et al66 examined the relationship between urinary creatinine excretion (UCE) and 

mortality in 6151 ICU patients who had 24-hour urine collections within the first 3 days of ICU 

admission. For purposes of analysis UCE was stratified into sex specific quintiles. They 

observed that in-hospital mortality decreased for sex-specific quintiles of UCE, from 31% in the 

lowest to 9% in the highest quintile, p < .001 of urinary creatinine excretion. In multivariable 

logistic regression analysis with sex specific quintiles of UCE, they observed a 2.4 times increase 

risk of in-hospital mortality in the lowest quintile compared to the highest, OR = 2.56, 95% CI 

1.96-3.34, p < .001. In multivariable logistic regression analysis, UCE expressed as a continuous 

variable was found to be inversely associated with in-hospital mortality, with every 5mmol/24 

hour decrease in UCE, OR= 1.18, 95% CI 1.66-1.97, p < .001. Creatinine excretion additionally 

had the advantage of not being affected by edema, common in the ICU setting, which confounds 

weight, BMI and anthropometric measures.66  

Khan et al67 utilized UCE to identify skeletal muscle loss in critically ill patients who 

required ICU readmission. Using UCE to estimate skeletal muscle mass, they identified a >47% 
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reduction in skeletal muscle mass from the first to second ICU stay. All patients in their series 

met definition for sarcopenia based on muscle mass and all unfortunately expired.  

UCE has also been associated with poor outcomes in specific disease states. For example, 

ter Maaten et al68 examined 120 clinically stable outpatients with congestive heart failure and 

sought to determine if a relationship existed between UCE and death, myocardial infarction or 

heart failure hospitalization. They observed that patients in the lowest tertile of UCE experienced 

the worst clinical outcomes and that low UCE was associated with more severe heart failure.  

These studies demonstrate the strong relationship that has been identified between plasma 

creatinine levels or UCE and mortality and other outcomes. Plasma creatinine levels and UCE 

also appear to be strong predictors of poor outcomes independent of BMI. These represent 

relevant biomarkers to aid the clinician in risk stratification and identifying those with low 

muscularity who are at the greatest nutritional risk.  

The Creatinine Height Index 

Although advanced malnutrition or significant loss of muscle mass may be easy to 

identify via nutrition focused physical exam, for the hospitalized patient, the detection of less 

visually obvious or more subtle cases is key to prompt nutrition intervention and mitigation of 

poor outcomes and may single out those patients most likely to benefit from aggressive nutrition. 

The creatinine height index (CHI), initially developed for children and then later modified for 

use in adults, has been used for over 40 years. The CHI is a simple method to assess degree of 

muscle mass deficit and can be thought of as a combined anthropometric and biochemical 

measure.69–72 The CHI utilizes the principles of the relationship between UCE and muscle mass 

and is defined as the observed 24-hour urinary creatinine excretion divided by the amount 

expected in normal subjects of the same sex and height expressed as a percentage.69–71 Ideal body 
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weight, based on height and gender, when multiplied by the standard creatinine coefficient, 

milligrams of creatinine excreted per day per kilogram body weight, provides the expected 

amount of creatinine excretion per day.  Normal values of UCE by gender and for various 

heights have been determined and published.69 

The CHI is thus considered a marker of muscularity and used to detect protein 

depletion.57,69–71 A CHI <60% of predicted is defined as severe loss of muscle and related to a 

midarm muscle circumference of <10th percentile, between 60-80% of predicted as moderate 

loss, 80-90% as mild loss and >90% as normal.70,72 CHI has been observed to be more sensitive 

than other measures of nutrition status.69 An advantage of CHI is that it is not affected by weight, 

edema or obesity and its value is not altered by the inflammatory response like albumin or 

prealbumin.73 Although less commonly used today, CHI is considered a well-established 

standard in evaluating malnutrition and muscularity.57,70–72,74–76 

 

The relationship between CHI and outcomes: 

 CHI, as a surrogate for LBM, has been examined in a variety of settings and correlated to 

outcomes. Datta et al73 studied 167 patients on ventilators in a long-term acute care facility. They 

obtained CHI and a variety of other nutritional indices in these patients and then followed them 

to assess ability to wean from the ventilator. Patients were stratified by the CHI into normal to 

mild malnutrition, CHI >81%, moderate malnutrition, CHI 61-80%, severe malnutrition, CHI 

41-60%, and very severe malnutrition, CHI <40%. They observed that total serum protein, 

hemoglobin and CHI were significant predictors for successful weaning, with CHI having a 

stronger statistically significant effect on successful weaning and survival than any other 

variable, p = .0002.  
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 Schwebel et al77 examined CHI and percent Ideal Body Weight (%IBW) in a group of 

patients awaiting lung transplantation. They observed that decreased LBM, as identified by CHI, 

was not always related to %IBW and that low CHI was strongly related to degree of hypoxemia 

and death while awaiting transplant, p < .03. In those that received a transplant, low CHI was 

also found to be related to prolonged time on vent, p < .05, and ICU LOS, p < .001. 

 Medhat et al78  utilized CHI along with serum albumin level, mid-arm circumference, 

triceps skinfold, mid-arm muscle circumference, BMI and Subjective Global Assessment (SGA) 

to evaluate 103 patients with cirrhosis. The researchers observed that SGA identified 

malnutrition in 92.2% of patients, CHI identified malnutrition in 89.2%, and mid-Arm muscle 

circumference identified malnutrition in 86.4% of patients. CHI was noted to significantly fall 

with progression of cirrhosis from Child Pugh Score A, to B to C, p < .001. Of note, no patient 

was identified as being underweight by BMI, with 23% being normal weight and 77% being 

overweight or obese.  

 Apelgren et al79  examined a variety of commonly available nutritional parameters, 

including albumin, weight for height, and CHI, in a small group of critically ill veterans. They 

observed that both albumin and CHI had weak negative correlations with duration of ICU LOS, r 

= -.36 and -.46 respectively. Additionally, CHI was statistically higher in survivors compared to 

non-survivors, p < .05.79  

 

Limitations of using UCE or CHI in the hospitalized patient: 

A limitation in the use of urinary creatinine excretion or CHI to assess muscularity is the 

need for an accurate 24-hour urine collection.80–82 Twenty-four-hour urine collections, in the 

hospital setting, can be fraught with problems. These include inconvenience on the part of 
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nursing or the patient, inaccurate timing and incomplete collections for those patients without 

urinary catheters. Inaccurate timing refers to when the collection extends beyond the 24-hour 

mark and thus will over-represent the amount excreted in 24-hours. Incomplete collections may 

occur due to patient incontinence, nursing accidently discarding part of the sample, or for 

patients without urinary catheters, forgetting and using the restroom rather than collecting the 

full sample.80–82 Although spot urine samples, or time frames less than 24 hours have been 

utilized, difficulties with reliability persist, likely due to diurnal variations in nitrogen excretion, 

which have resulted in underestimating actual excretion.80–82 

 

Novel solutions to limitations: 

To allow wider application of CHI within the clinical setting, it has been proposed that in 

patients with normal renal function, the urinary creatinine excretion may be estimated from the 

plasma creatinine level.83  The proposed estimation is accomplished with the following equation: 

CC = UV/P, in which CC is normal creatinine clearance of 80ml/minute, UV represents 24-hour 

urine creatinine, P represents plasma creatinine concentration and one solves for UV. CHI would 

then be calculated from the estimated urinary creatinine excretion.83 This proposed manipulation 

has the additional benefit, in those with stable renal function, of allowing retrospective 

estimation of CHI and muscularity to examine changes over the course of the hospitalization.83-85 

The estimation of 24-hour urinary creatinine excretion from plasma creatinine level and 

subsequent estimation of CHI, although having the potential to be clinically useful, has not been 

modeled or validated to date.  

Currently our understanding of protein requirements for critically ill, hospitalized adults 

and for specific subgroups is inadequate. It appears unrealistic to define protein requirements for 
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different diagnostic groups at different stages of illness, with varying degrees of nutrition risk 

and underlying muscularity with one set of recommendations.13,17,83 It is important to further 

identify personalized factors, such as low muscle mass and degree of metabolic stress, to allow 

the clinician to individualize nutrient intake and identify those patients most in need of prompt 

adequate protein intake.13,17,83 Although accurate methods exist to detect low muscularity, the 

identification of readily available, non-invasive biomarkers would allow rapid screening of the 

majority of hospital admissions and provide a potential method for subsequent longitudinal 

follow up.57 

As no readily available biomarkers that screen for low muscularity exist, this project 

attempted to fill the existing gap by exploring if a robust model could be identified that predicted 

UCE from plasma creatinine level or other patient variables. This project also explored if model 

derived UCE and subsequent estimated CHI was related to patient outcomes and other 

commonly assessed measures of nutrition and metabolic stress.  

 

Chapter 2: Theoretical Framework 

Modeling 

Mathematical modeling is the process of creating a mathematical model from a data set 

and is a method in which mathematical terms are used to represent the behavior of real-world 

functions, and describe their aspects, their interaction and dynamics. In broad terms, models are 

developed to describe what is seen, explain why results occurred and to predict future results and 

outcomes.86–88 Models are a representation of reality in simplified forms. Mathematical models 

are used to develop scientific understanding, test the effect of changes in a system and aid in 

decision making. Mathematical modeling is routinely used throughout the disciplines of 
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medicine and health for widely ranging purposes such as drug metabolism and dosing89, 

antibiotic resistance90, disease diagnosis91,92, simulation and prediction of organ damage 

associated with drug or alcohol consumption93,94, infection control and infectious 

transmission95,96 and estimates of mortality97 to name a few. Nutrition professionals may be 

familiar with applications of modeling. The Prognostic Nutritional Index uses mathematical 

modeling to predict operative morbidity or mortality based off 4 nutrition parameters and the 

Nutrition Risk Index uses modeling to predict risk of post-operative complications based off of 2 

nutrition parameters.98–100 

To better discuss models, it can be considered helpful to identify classification categories 

between types of models. Models may be classified according to their structure and reflect their 

output and how they are used. A common classification method is to classify a model as 

deterministic or stochastic.  

 

Deterministic Models 

Deterministic models are designed to have precise outcomes through known relationships 

and exclude random variation. Thus, a deterministic model will always produce the exact same 

output when starting from a given initial state because the output of the model is fully 

determined by parameter values and the initial conditions of the system. It predicts outcomes 

with 100% certainty. Deterministic modeling is used when no randomness is involved in the 

development of future states of the system.86–88 For example, when using linear regression, if 

deterministic relationships exist between variables, one can predict with 100% certainty where 

the y-value will be based on the x-value. Ordinary differential equations and regression equations 

are used in deterministic modeling using powerful computer programs.86–88,101  
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An example of deterministic modeling is one of the many models that was published 

during the early days of the Covid-19 pandemic.102 As so little was known about the virus, 

researchers sought to use modeling to compute the infected population and number of casualties. 

Carcione and colleagues102 used a version of the Susceptible-Exposed-Infectious-Removed 

(SEIR) model to describe the spread of the virus and compute the number of infected, recovered 

and dead individuals on the basis of number of contacts, probability of disease transmission, 

incubation period, recovery rate and fatality rate in a region of Northern Italy. The  

SEIR model predicts a peak of infected and dead as a function of time, assumes births and 

natural deaths are balanced, and that population decreases due to the disease are dictated by the 

fatality rate of the disease. The parameters of the SEIR model are per capita birth rate, per capita 

natural death rate, virus induced average fatality rate, probability of disease transmission, rate of 

progression from exposed to infectious, and recovery rate of infectious individuals. SEIR is a 

system of non-linear ordinary differential equations which are solved numerically using 

computer programs. Specific differential equations exist which govern 4 population classes of 

susceptible, exposed, infected-infectious and recovered. The researchers first solved the 

differential equations using published Covid-19 data from Hong Kong and Singapore to develop 

a Covid-19 model.  

Next, they then applied the model to census and health data available from the Lombardy 

region in Italy. Use of the model allowed them to predict the number of infected individuals, the 

number who would require ICU admission, the day the peak of infected would occur on and 

predicted fatality rates. Using the model, they predicted that in less than three weeks the 

healthcare system in the region would be overwhelmed. The authors conclude that simulating the 

process of the infection is key to preparedness and to applying control measures.102 
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Deterministic models are not as commonly used in the field of medicine because 

deterministic modeling only allows the use of integers and does not allow for the random 

fluctuation that occurs within biological systems.  Deterministic models are likely to have less 

clinical value because clinical cohorts have random variation that are not necessarily found in 

research settings.86,101 Due to this, attention will be focused on stochastic models. 

 

Stochastic models 

Stochastic models are used to predict the distribution of possible outcomes and are based 

on random approaches. Stochastic models assume that the dynamics of the system being studied 

are partly driven by random fluctuations, such as blood glucose levels throughout the day, and 

because of this, the same set of parameter values and initial conditions can lead to different 

outcomes.86–88 Stochastic modeling in medicine considers that each biologic process is a random 

event that can take place with a certain probability.101,103 Stochastic modeling is conducted with 

computer programs utilizing probabilistic equations and analysis of variance.87,101  

 

Steps of Model Building 

The steps to modeling can be roughly thought of as follows.88,101,104 First, the investigator 

needs to identify if the current problem or question is amendable to mathematical modeling. 

Second, a data source needs to be identified which can be used for modeling purposes. In 

medical research this data may come from the electronic medical record (EMR), FDA drug 

databases or from state or federal agencies such as the health department or CDC to name a few 

examples.  



35 
 

Next, the obtained data set is randomly divided into sets. A common approach is to 

divide the data into three subsets. A training set, to build the model, contains approximately 80% 

of the data. A test set of 10% of the data is set aside to select the best model from among the 

models developed. The validation set, which contains the remaining 10% of the data is then set 

aside for validation purposes. Ideally the validation set is not used in the development of the 

model and saved specifically for validation.86 

The next step is to build the model using the training data set and several accepted 

mathematical equations, identifying variables which continue to improve the model. When no 

previous or limited knowledge exists that can adequately describe a relationship between 

variables of interest, the researcher generally starts with a body of data and attempts to fit 

equations to it. The most commonly used algorithms to accomplish this are support vector 

analysis, linear regression, logistic regression and linear discriminant analysis.101 When 

modelling the data using the training set, the inputs consist of the input predictor variables and 

the outputs are the result after application of the model. Commonly used methods to create this 

transformation include sum of squared residuals, which is an aggregate measure of total 

variability, maximum likelihood estimation, a method of estimating the parameters of a 

probability distribution, or maximizing the constraining hyperplane, also called support vector 

machines (SVM). SVM, considered a non-probabilistic binary linear classifier, uses the training 

data set and identifies the variables as belonging to one of two categories, it then builds a model 

that maximizes the width of the gap between the two and then assigns new data to one or the 

other category.101  

After models are identified, the investigator must select the one that best describes or fits 

the data. Thus, the next step in the process is to take the second set of data, the test set, and 
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decide which of the developed models works best by some measure of goodness. This is 

generally accomplished by identifying the model with the smallest mean squared error between 

predicted and measured data.86  

The last step is model validation which is performed with the remaining 10% of data 

partitioned aside for this purpose. Validation is the objective method that establishes the 

generalizability of the model and tests it against observations from the system it is intended to 

represent. A model should be validated for both intrinsic bias and extrinsic variance. The most 

common way to validate the model is to measure the mean squared error from the residuals as 

the model is applied with the difference between the observed and predicted values providing a 

measure of accuracy.86,104  

 

Development of a stochastic model 

An example of stochastic modeling is the development of the NUTRIC risk assessment 

tool.105 Heyland and colleagues postulated that not all critically ill patients have the same 

nutrition risk in that some benefit from nutrition intervention more than others. Their goal was to 

identify variables that would quantify the risk of a patient developing adverse events. Based on 

previously published research, they postulated that potential variables were age, the Acute 

Physiology and Chronic Health Evaluation (APACHE II) score, the Sequential Organ Failure 

Assessment (SOFA) score, interleukin-6 (IL-6), c-reactive protein, co-morbid illness, weight loss 

over the last 6 months, BMI <20, decreased oral intake over the previous week and pre-ICU 

hospital admission. The outcomes selected were ICU length of stay, 28-day mortality and 

ventilator free days within 28 days. The data set identified was the EMR from a convenience 

sample of 597 patients admitted to 3 tertiary care medical-surgical ICUs.  
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The investigators first validated the candidate variables by describing their association 

with 28-day mortality with chi-squared tests, Wilcoxon rank-sum tests, and Spearman correlation 

coefficients. Based on results and an additional sensitivity analysis, variables of oral intake, 

weight loss, BMI and c-reactive protein were excluded from further models. The remaining 

candidate variables were each fit as categorical predictors in separate single predictor logistic 

regression models predicting 28-day mortality. The parameters for each logistic regression model 

estimated the log of the odds ratio for each category of the variable compared to the lowest risk 

category. These parameters were rounded to whole numbers to provide the points used in the 

NUTRIC score. Variables were excluded if the inclusion in the NUTRIC score did not improve 

the scores ability to predict 28-day mortality. Additionally, using a multivariable fractional 

polynomial approach yielded a similar model with no improvement in performance. The final 

variables remaining were age, APACHE II score, SOFA score, number of co-morbidities, days 

from hospitalization to ICU admission and IL-6 level. Each variable remained independently 

statistically significant in the multivariable logistic model.  

Validation of the model was performed by evaluating the quality of the NUTRIC model 

to predict 28-day mortality on a set of data. Model discrimination was assessed by the C-statistic 

derived from calculating the area under the receiving operating characteristic curve and the 

generalized max-rescaled R-squared statistic. Goodness of fit was assessed by comparing the 

predicted and actual mortality by the Hosmer-Lemeshow goodness of fit test.   

Lastly, in a subset of 211 patients who had dietary intake data, the researchers examined 

if the NUTRIC score modified the association between intake and 28-day mortality. Logistic 

regression with nutritional intake, NUTRIC score and their product as continuous independent 

variables was used to generate a plot of association between intake and mortality by NUTRIC 
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score. They demonstrated that the association between risk score and mortality is attenuated in 

patients who meet calorie targets. The authors concluded that they believe they have identified a 

novel scoring tool, using a variety of mathematical techniques, to help identify which patient 

would benefit most from aggressive nutrition intervention.105  

 

Model Application for Current Problem 

As low muscularity has been strongly associated with outcomes, it is important to be able 

to promptly and easily identify those patients. Muscle measurements using techniques such as 

CT scans exist, however disadvantages of cost, exposure to radiation, lack of standardization of 

procedures, and limited access to techniques, trained radiologists and equipment will likely make 

these measurements infrequently available to the average clinician.54 The nutrition focused 

physical exam remains a subjective measure and anthropometric measurements of mid-arm 

circumference and triceps skinfold are impractical for screening all new admissions. The 

identification of readily available, non-invasive biomarkers or measures would allow rapid 

screening of the majority of hospital admissions and provide a potential method for subsequent 

longitudinal follow up.57 UCE and subsequent estimation of CHI have been strongly associated 

with muscularity and outcomes, however require a 24-hour urine collection.  The postulation that 

UCE may be estimated from plasma creatinine or other patient variables would avoid the need 

for a 24-hour urine collection and is uniquely suited to mathematical modeling.  The ability to 

predict CHI from model derived UCE may have clinical utility to become a quick screening tool 

to identify low muscularity, malnutrition and predict outcomes.  
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Chapter 3: Methodology 

Study Purpose  

 The purpose of the study was to develop a model to predict UCE from patient variables.  

The study additionally sought to determine if application of this model, to predict UCE and 

subsequent estimation of CHI, in a cohort of hospitalized veterans, was correlated with 

outcomes.  

Study Aims 

The primary aim of this research was to determine if 24-hour UCE can be reliably 

estimated from plasma creatinine or other patient variables by the development of a model and if 

the model can be validated. The secondary aims were to determine if low muscularity based on 

model derived CHI was correlated to low muscularity based on anthropometric measurements, to 

describe the degree of low muscle mass observed and determine if model derived UCE and CHI 

were associated with other assessment measures and outcomes in a cohort of hospitalized 

veterans. This study was reviewed and approved by the James A. Haley Veterans Hospital 

Research and Development Committee and the University of South Florida IRB and determined 

to meet criteria for an exempt study.  

Hypothesis 

Phase 1: H𝜃 There is no relationship between patient variables and UCE. 
 
Phase 2: H𝜃 There is no relationship between UCE, CHI and outcomes. 
 
Objectives 

1. To build a model to predict 24-hour UCE from plasma creatinine or other patient 

variables using a large de-identified data set. 

2. To validate the proposed model.  
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3. In a subset of patients, who had anthropometric measurements obtained, explore how 

well CHI, estimated from the model derived UCE, is associated with muscularity based 

on anthropometric measurements 

4. Apply the model retrospectively to 120 intensive care unit patients to predict 24-hour 

UCE for each subject 

5. Based on model derived 24-hour UCE, calculate CHI for the whole cohort and describe 

prevalence of low muscularity in the cohort. 

6. To explore if a relationship exists between CHI and the identification of malnutrition 

using AND/ASPEN criteria 

7. To explore if CHI is associated with outcomes of hospital LOS, ICU LOS, hospital 

mortality, 6-month mortality, 30-day readmission or discharge location.  

8. To explore if relationships exist between CHI and commonly collected assessment 

parameters of albumin, prealbumin, c-reactive protein (CRP), NUTRIC score, APACHE 

2 score and SOFA score.  

Study design 

Phase 1: Model Development Study Design 

 

 The first phase was the development of a model to predict 24-hour UCE from plasma 

creatinine level or other candidate variables of plasma blood urea nitrogen, sodium, potassium, 

glucose, chloride, carbon dioxide and magnesium and demographic variables of gender, age in 

years, height in centimeters, weight in kilograms and presence of spinal cord injury or neurologic 

disease. The model with the best R2 was examined for validation. Lastly, whether muscularity, 

based on anthropometric measurements, was correlated to muscularity, based on model derived 

CHI, was examined.  
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Phase 1: Study Participants and Sample Size 

 Eligible participants were veterans who received care at the James A. Haley Veterans 

Hospital in Tampa Florida (JAHVA) who had 24-hour urine laboratory testing which included 

creatinine excretion between 10/01/2016 to 09/30/2021. It was estimated that approximately 300-

1000 patients would be sufficient for model development.86 

Phase 1: Data Collection 

 A data set was obtained from Data Analytics and Acquisition Services (DAAS) which 

contained the laboratory, demographic and diagnosis variables of patients who received care at 

JAHVA, and who had 24-hour UCE measured, between 10/01/2016 to 09/30/2021. Mid-arm 

muscle circumference, triceps skinfold and mid-arm muscle area measurements were extracted 

from the EMR in a subset of 44 patients who had anthropometric measurements obtained by 

searching with the note title of “Nutrition Assessment”.  

Phase 1: Statistical Methods 

An initial test data set of 956 serum and urinary creatinine pairs was examined to identify 

potential mathematical relationships. A scatter plot was generated and visually examined for 

spline fitting. For plasma creatinine values greater than 5.0 mg/dL the relationship between 

serum and urinary creatinine appeared random. For pairs with plasma creatinine levels between 

1.5 and 5.0mg/dL, a linear relationship appears to emerge but with substantial scatter. For plasma 

creatinine from 1.5mg/dL and below, a strong linear relationship was observed with a wide band 

of scatter around a central line. Using the 448 urine and plasma creatinine pairs with plasma 

creatinine of 1.5 or below, a regression analysis was run.  

Next, additional patient input variables, readily available on admission, were added to 

develop models and improve the overall predictability. Input variables included were age, height, 
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weight, gender, serum urea nitrogen, glucose, sodium, potassium, chloride, carbon dioxide, 

magnesium and presence of a spinal cord injury (SCI) as surrogates to account for total body 

water, extracellular water and lean body mass. A data set of those patient variables for patients 

who had UCE measured in the previous 5 years was obtained from DAAS. The data set of 1592 

patients were reduced to 967 after patients with missing or incomplete data were excluded.  The 

subjects in the data set were 87.4% male and 12.6% female. For this step of model development, 

a plasma creatinine of ≤ 1.2 mg/dL was considered normal as it reflects the hospital’s reference 

interval.  

Descriptive statistics were completed, and all variables were examined for skewness and 

kurtosis. A correlation matrix was run and examined for multicollinearity. Age, weight, plasma 

creatinine and plasma BUN were observed to be the least correlated with one another. Next, a 

best fit regression was conducted which took every possible combination of variables and 

examined the R2 for each regression equation. Using several mathematical and analytical 

modeling approaches, including support vector analysis, linear regression and polynomial 

regression, models were constructed. Using stepwise regression and backward elimination with 

Alpha-to-remove at the 0.1 level, deleting input variables which were not significant, linear 

regression models were produced. The amount of variance explained did not increase after input 

of the four variables of age, weight, plasma creatinine and plasma BUN. To avoid overfitting, 

further input variables were not included.  

 Where indicated, Box-Cox transformation, mathematical curve fitting, was performed to 

test if transforming the outcome variable improves the model and to optimize the mean squared 

error. Using Box-Cox transformation, the log of the outcome variable, which produced the 

smallest mean squared error, was identified. For the final identified statistically significant 
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multivariable models, each remaining input variable was found to be independently statistically 

significant.  

Next, the model with the smallest mean squared error between predicted UCE and 

measured UCE, Model 3, was identified for validation. Validation was performed with two 

approaches. First the model was validated using cross validation methodology in which the data 

was randomly divided into 4 data sets. Then, using an additional set of 50 patients which were 

not included in the model development, the model was tested for goodness of fit, predictive 

performance and regression residual diagnostics.101 Statistical analyses for the development of 

models were performed using Minitab, I., 2020. MINITAB, http://www.minitab.com/en-

US/products/minitab/. 

Lastly, in a subset of 44 subjects, with normal plasma creatinine and without the presence 

of SCI, who had upper arm anthropometry measured, CHI was calculated from the Model 3 

predicted UCE. A correlation matrix was run comparing CHI to arm circumference (AC), arm 

muscle area (AMA) and arm muscle circumference (AMC). 

 

Phase 2:  Model Application Study Design 

In the second phase, a retrospective review of the electronic medical records (EMR) of 

ICU patients who received a complete nutrition assessment by the registered dietitian at the 

JAHVA was conducted. Using patient data extracted from the EMR, Model 3 was applied to 

estimate UCE and CHI for the cohort. Based on CHI, calculated from UCE, the prevalence of 

low muscularity was described for the cohort.  

Next, extracted data was examined to determine if UCE or CHI were clinically useful in 

predicting the presence of malnutrition, or were associated with outcomes of hospital LOS, ICU 
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LOS, hospital mortality, discharge location, 6-month mortality and 30-day readmission in the 

cohort. Lastly, extracted data was examined to determine if relationships exist between UCE and 

CHI and patient variables of albumin, prealbumin, c-reactive protein, NUTRIC score, APACHE 

2 score, and SOFA score.  

Phase 2:  Study Participants and Sample Size 

Patients who were hospitalized at JAHVA between 1/1/2016 to 9/30/2021, who during 

the course of their hospitalization required ICU admission, received full nutrition assessments 

and who had plasma creatinine levels of 1.2 mg/dL or less on admission were considered for 

inclusion. Patients were excluded if they were hospitalized < 72 hours, their admission plasma 

creatinine was greater than 1.2 mg/dL, or if they had a medical condition that is associated with 

muscle wasting such as spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis or 

other neurological diseases. It was estimated, for analysis, that a sample size of 120 patients was 

needed for a medium effect size, and an 𝛼 of 0.05.106,107 

Phase 2: Data collection 

Eligible patients were identified from the EMR by searching note titles of “Nutrition 

Assessment”, with the location of one of the intensive care units between the dates of 1/1/2016 to 

9/30/2021. Patients identified for potential inclusion had their EMR reviewed for eligibility. The 

retrospective chart review began with those admitted 9/30/21 and proceeded backwards until 120 

subjects that met criteria were reached. All data for Phase 2 was obtained and extracted from the 

medical record. Data after extraction from the EMR was entered into a password protected 

spreadsheet and de-identified upon entry.   

All patients identified for inclusion in Phase 2 had the following extracted from the EMR 

for the admission:  
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• age on admission 

• gender 

• reported race 

• height in centimeters 

• admission weight in kilograms 

• admission BMI  

• Primary and secondary medical diagnosis  

• date of hospital admission  

• date of ICU admission  

• date of ICU discharge 

• date of hospital discharge  

• admission plasma creatinine and blood urea nitrogen  

• albumin from date of nutrition assessment 

• pre-albumin from date of nutrition assessment 

• C-reactive protein from date of nutrition assessment 

• presence of malnutrition based on documentation in nutrition assessment 

• mortality during admission and up to 6 months after discharge 

• Discharge location 

• Readmission within 30-days of discharge 

 

The following were calculated for each patient from extracted data:  

• ideal body weight (IBW)  

• Model 3 derived UCE 
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• CHI calculated from Model 3 derived UCE 

• APACHE 2 score 

• SOFA score 

• NUTRIC score 

• Hospital and ICU LOS 

 

Model 3 was applied to each subject to predict UCE based on admission weight and 

admission plasma creatinine and BUN. For patients with multiple ICU admissions during the 

course of their hospital stay, all ICU days were added together to represent total ICU LOS. 

Primary and secondary medical diagnosis were collected to calculate APACHE 2 and NUTRIC 

scores. APACHE 2 and SOFA scores were based on the first ICU admission for those who had 

multiple admissions. Discharge location was grouped as either discharge to home, skilled nursing 

facility, long term acute care, hospice, transfer to another hospital for care not available at 

JAHVA or not applicable for those that died during the admission. Degree of sarcopenia was 

determined based on CHI and defined by the following cut-offs:  >75% of expected as 

normal/absent sarcopenia, <75-61% of expected as mild sarcopenia and <60% of expected as 

severe sarcopenia. Death dates, even if they occurred outside of a hospitalization, are recorded in 

the EMR as it serves as part of the veterans record of benefits.  
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Phase 2: Statistical Methods 

Descriptive statistics were calculated to describe characteristics of the cohort. Continuous 

variables are reported as mean (± standard deviation) or median (25%-75% interquartile range 

[IQR]) and categorical data are reported as counts and percentage. Between-group comparisons 

for baseline characteristics and length of stay were analyzed using a 𝜒2 test for categorical 

variables and Student t test or MANOVA for continuous variables as appropriate. A correlation 

matrix was run for all predictor and outcome variables to identify possible relationships. Linear 

regression analysis models, ANOVA and MANOVA as appropriate, were performed to assess 

the association of UCE and CHI and outcomes and patient characteristics. Odds ratios were 

calculated using 𝜒2 and logistic regression to examine relationships between CHI and outcomes. 

For purposes of statistical analysis, CHI ≤60% was considered low and >60% was normal, 

malnutrition was classified as present or not present, and mid-arm muscle area ≤ 25th percentile 

was classified as low and > 25th percentile as normal. All tests for statistical significance were 

two tailed and statistical significance was established at the threshold of p < .05. Missing data for 

laboratory measures was managed by insertion of means, as missing data represented only 2-6% 

of each measure. Statistical analyses were performed using IBM SPSS Statistics for Windows, 

version 25.0 (Armonk, NY: IBM Corp; 2017).  

Chapter 4: Results 

 This chapter will present the results of the data analysis for Phase 1 and Phase 2 of the 

research study. First, the results of model development will be presented. This will include the 

identification of several viable models. Next, the results of model validation will be presented. 

This is then followed by results of the analysis of model derived output and correlation with 
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known measures of muscularity. Next, the results of the application of the model to a cohort of 

patients will be reported. Baseline demographics of the cohort will be presented and prevalence 

of low muscularity and malnutrition for the cohort will be described. Lastly, the relationship 

between model derived UCE and CHI and outcomes will be highlighted.  

Phase 1 

 Model Building 

An initial model was developed using only plasma and urinary creatinine pairs. Using the 

448 urine and plasma creatinine pairs with plasma creatinine of 1.5 or below, it was identified 

that serum creatinine was a significant predictor of UCE but only accounted for 5% of the 

variability, R2 = .0549; p <.001, rendering it unsuitable to use for the practical prediction of 

individual UCE values. Residual diagnostics were conducted and found to be normally 

distributed.  

After the additional patient input variables were added, the following linear regression 

models were identified with potential utility for different patient populations (Table 2, Table 3, 

Table 4). Gender is defined as 1 = male and 2 = female. SCI is defined as 1 = presence of SCI 

and 2 = no SCI. 

Model 1. For the general population with normal plasma creatinine: 

Predicted Urinary Creatinine = 1426.93 – (262.82 x Gender) + (403.15 x SCI) – (20.47 x Age) + 

(7.39 x Weight) – (66.23 x Plasma Creatinine), R2 = .4085, p < .001. 

Model 2. For the general population with plasma creatinine >1.2mg/dL: 

Predicted Urinary Creatinine^0.5 = 36.02 – (4.76 x Gender) + (7.12 x SCI) – (0.298 x Age) + 

(0.12 x Weight) – (1.04 x Plasma Creatinine) – (0.02 x Plasma BUN) – (0.17 x Plasma 

Potassium), R2 = .4051, p < .001. In which the predicted urinary creatinine is transformed by the 
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square root, the result of which is then squared to revert back to the original scale, to obtain the 

final model predicted urinary creatinine. 

Model 3. For patients without SCI and with a normal plasma creatinine:  

Predicted Urinary Creatinine^0.833735 = 0 – (1.11 x Age) + (3.00 x Weight) + (231.92 x Plasma 

Creatinine) – (2.59 x Plasma BUN), R2 = .9098, p < .001. In which the predicted urinary 

creatinine is transformed, and the result of which is then reverted back to original scale, to obtain 

the final model predicted urinary creatinine. Overall, Model 3 was found to be highly predictive 

of UCE.  

Table 2. Model 1 For Patients with or without SCI and Plasma Creatinine < 1.2 mg/dL 

 B SE (B) 𝛽 p 

Constant  1426.93 282.14  < .001 
Gender -262.82 120.07 -0.16 0.03 

SCI 403.16 88.33 0.24 < .001 
Age -20.47 1.81 -0.44 < .001 

Weight 7.39 0.87 0.30 < .001 
Plasma 

Creatinine 
-66.23 5.09 -0.03 <.001 

 R2= .408, p < .001 
 

Table 3. Model 2 For Patients with or without SCI and Plasma Creatinine >1.2 mg/dL 

 
 B SE (B) 𝛽 p 

Constant 36.02 4.93  < .001 
Gender -4.76 1.94 -0.001 .014 

SCI 7.12 1.43 0.003 < .001 
Age -0.30 0.03 -0.006 < .001 

Weight 0.12 0.01 0.005 < .001 
Plasma 

Creatinine 
-1.05 0.09 -0.008 < .001 

Plasma BUN -0.02 0.01 -0.0009 .16 
Plasma 

Potassium 
-0.17 0.52 -0.0002 .74 

 R2 = .405, p < .001 
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Table 4. Model 3 For Patients without SCI and Plasma Creatinine < 1.2 mg/dL 

 
 B SE (B) 𝛽 p 

Age -1.11 0.36 -0.095 .002 
Weight 2.99 0.25 0.486 < .001 
Plasma 

Creatinine 
231.92 30.71 0.339 < .001 

Plasma BUN -2.59 0.61 -0.196 < .001 
R2= .91, p <.001 
 
 

Model Validation 

 Model 3 validation was conducted by two methods. First, cross validation was conducted 

using the original data set. Four-fold cross validation resulted in R2 of .4171, .4485, .4488 and 

.4488, all p < .001. Next, Model 3 was validated using a data set of 50 subjects, which were not 

included in model development. Mean predicted UCE was 1019.46 mg ± 318.63 SD, and mean 

measured UCE was 1033.04 mg ± 342.08 SD.  Predicted and measured UCE were found to be 

highly correlated, r = .716, p < .001. Linear regression analysis yielded R2 = .502, F = 50.478, p 

< .001. Durbin-Watson statistic = 2.071 indicated no autocorrelation in the residuals of the 

regression.  

Relationship between model derived CHI and muscularity 

 In a subset of 44 subjects, with normal plasma creatinine and without the presence of 

SCI, who had upper arm anthropometry measured, CHI was calculated from the Model 3 

predicted UCE. A correlation matrix was run comparing CHI to arm circumference (AC), arm 

muscle area (AMA) and arm muscle circumference (AMC). Model derived CHI was found to be 

strongly correlated to AC, r (42) = .665, p < .001, AMA, r (42) = .551, p < .001, and AMC, r 

(42) = .559, p < .001. Overall, CHI calculated from Model 3 predicted UCE was found to be 

highly correlated with accepted measures of muscularity.  
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Phase 2  

Application of Model 

A total of 191 medical records were retrospectively screened for inclusion. Forty-seven 

were excluded due to admission plasma creatinine >1.2mg/dL and 24 were excluded due to 

medical diagnosis which are associated with muscle wasting. A cohort of 120 patients had Model 

3 applied and UCE and CHI estimated, demographic and outcome data collected and were 

included in the final analysis.  

Baseline demographics of study population 

Baseline admission characteristics are presented on Table 5. All subjects were male. The 

mean age for the cohort was 69.08 ± 8.7 years, mean height 176.4 ± 6.8 cm, mean weight 83.5 

± 19.5 kg, mean BMI 26.9 ± 6.4 and mean IBW 73.8 ± 7.3 kg. Self-reported racial composition 

of the cohort was 93 (77.5%) were white, 24 (20%) were black and 3 (2.5%) did not report race. 

Admission laboratory values of the cohort were mean plasma creatinine 0.94 ± 0.17 mg/dL and 

mean plasma BUN 15.6 ± 5.1 mg/dL.  
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Table 5. Baseline Demographics 

 
Characteristic Whole Cohort 

(n=120) 
Subjects with CHI 

≤ 60% (n=53) 
Subjects with CHI 

>60% (n=67) 
Age, median (IQR), 

years 
69.00 (65.00,73.00)   

Mean (SD)    
Age, years 69.08 (8.75) 69.00 (9.24) 69.13 (8.41) 
Height, cm 176.42 (6.77) 177.61 (6.98) 175.48 (6.51) 
Weight, kg 83.50 (19.51) 69.93 (12.86) 94.24 (17.06) *** 

BMI 26.90 (6.39) 22.11 (3.78) 30.69 (5.42) *** 
Plasma BUN, gm/dL 15.64 (5.05) 15.24 (5.13) 15.96 (5.00) 
Plasma Creatinine, 

mg/dL 
0.94 (0.17) 0.83 (0.12) 1.03 (0.14) *** 

Albumin, gm/dL 2.55 (0.58) 2.42 (0.48) 2.65 (0.63) * 
Prealbumin, mg/dL 10.48 (5.67) 9.00 (4.18) 11.69 (6.42) ** 

CRP, mg/L 9.46 (7.69) 9.25 (7.69) 9.63 (7.76) 
APACHE Score 15.93 (4.88) 16.09 (5.29) 15.81 (4.57) 

SOFA Score 3.59 (2.64) 3.57 (2.49) 3.61 (2.76) 
NUTRIC Score 3.63 (1.39) 3.62 (1.47) 3.64 (1.33) 

 CHI = creatinine height index; * p < .05; ** p < .01; *** p < .001 
 

The mean severity of illness scores and nutrition screening scores for the cohort were 

APACHE II 15.93 ± 4.88, SOFA score 3.59 ± 2.64, and NUTRIC score 3.63± 1.39. The mean 

serum protein levels, on the day of the nutrition assessment, were Albumin 2.55 ± 0.58 g/dL, 

Prealbumin 10.48 ± 5.66 mg/dL and CRP 9.46 ± 7.70 mg/dL.   

There was a statistically significant difference in baseline characteristics based on CHI, F 

(13,106) = 18.48, p < .001; Wilks’ Λ =  0.306, partial 𝜂2 = .694 (Table 5). Subjects with CHI ≤ 

60% were observed to have significantly lower body weight, BMI, plasma creatinine, albumin 

and prealbumin levels compared to those subjects with CHI > 60%.  

Prevalence of low muscularity in the cohort 

Application of Model 3 to estimate UCE and subsequent calculation of CHI resulted in 

mean UCE of 1102.81 ± 284.56 mg/24-hours and mean CHI of 0.65 ± 0.17. For the entire 
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cohort, 33 (27.5%) were considered to have adequate muscle mass and had CHI >75%, 34 

(28.3%) had CHI levels between 75-61% and considered to have mild sarcopenia and 53 (44.2%) 

were found to have CHI levels ≤ 60% and were considered to have severe sarcopenia, Table 6. 

  
Table 6. Prevalence of Sarcopenia Based on Creatinine Height Index 

 
Degree of Sarcopenia Frequency Percent of Total 

CHI >75% 
Normal, No sarcopenia 

33 27.5 

CHI levels between 75-61% 
Mild Sarcopenia 

34 28.3 

CHI levels ≤ 60% 
Severe sarcopenia 

53 44.2 

 
 

Relationship with Malnutrition 

 Based on the nutrition assessment by the registered dietitian and using the AND/ASPEN 

criteria for malnutrition, for the entire cohort, 50 (41.7%) were identified with malnutrition and 

70 (58.3%) were identified as not having malnutrition, Table 7. Differences in prevalence of 

malnutrition were noted when subjects with CHI ≤ 60% were compared to those with CHI 

>60%. For subjects with CHI ≤ 60%, 36 of 53 subjects, 68%, were identified with malnutrition.  

For subjects with CHI >60%, 14 of 67 subjects, 21%, were identified with malnutrition (Table 7, 

Figure 1). Subjects with CHI ≤ 60%, were 8.0 times more likely to be identified with 

malnutrition (OR = 8.0; 95% CI = 3.5, 18.3; p < .001), Table 8. UCE and CHI were found to be 

moderately correlated to malnutrition, r = .57, p < .001 and r = .56, p < .001 respectively. 

Conversely, NUTRIC score, was found to have no relationship with presence of malnutrition, r = 

.004, p = .96.  
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Table 7. Prevalence of Malnutrition Based on AND/ASPEN Clinical Characteristics 

 
 Entire Cohort 

n = 120 
CHI levels > 60% 

n = 67 
CHI levels ≤ 60% 

n = 53 

Number 50 14 36 
Percent 41.7 21 68 

 
 
 
 
 
Figure 1. Malnutrition Based on CHI Level 

 
 

 

 

Table 8. Comparison of Malnutrition between Subjects with Low or Normal CHI 

Outcome CHI ≤ 60%a 

n = 53 
CHI > 60%a 

n = 67 
Odds Ratio (95% CI) p value 

Malnourished 36 (68) 14 (21) 8.02 (3.52-18.28) p < .001 
    a = number (%) 
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Outcomes for the cohort 

 
Table 9. Outcomes 

________________________________________________________________ 
Outcome                              Frequency  Percent of Total     
Hosp Mortality       
 Yes      13   10.80 

No     107   89.22  
Six Month Mortality       

Yes      23   19.20 
No      84   70.00 
NA (Died during hospital stay)  13   10.80 

Malnutrition      
Yes      50   41.70 
No      70   58.30 

Discharge Destination 
Home      68   56.70 
Skilled nursing facility   27   22.50 
Long term acute care facility     2     1.70 
Hospice       8     6.70 
Transfer to another hospital     2     1.70 
NA (Died during hospital stay)  13              10.80   

Readmit in 30 Days 
Yes      28   23.30 
No      78   65.00  

 NA (Died during/after hospital stay)  14   11.70    
 

Table 9 displays the overall summary of outcomes for the cohort. A total of 13 (10.8%) 

of subjects expired during the hospitalization, with 107 (89.2%) surviving to be discharged. For 

those who survived to discharge 68 were discharged home and 39 discharged elsewhere, with 27 

discharge to a SNF, 2 discharged to a LTAC facility, 8 discharged to hospice care and two 

transferred to another hospital for care not available at JAHVA. For those that were discharged 

from the hospital, 28 were readmitted within 30-days and 23 expired within 6-months of initial 

hospital discharge. 
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The mean hospital length of stay for the entire cohort was 34.6 ± 24.6 and median 25.0 

(IQR, 19.0-46.5) days. The mean ICU length of stay for the entire cohort was 14.7 ± 19.3 and 

median 10.0 (IQR, 4.0-17.8) days, Table 10.  

 
Table 10. Length of Stay 

 
 Days, mean SD Days, median IQR 

Hospital Length 
of Stay 

34.6 24.6 25.0 19.0-46.5 

ICU Length of 
Stay 

14.7 19.3 10.0 4.0-17.8 

 

 

Relationship between UCE, CHI and outcomes 

Linear regression analysis determined that UCE was significantly associated with 

outcomes of presence of malnutrition, hospital mortality, 6-month mortality, hospital LOS, ICU 

LOS, discharge location and readmission within 30-days of discharge, r = .594, R2 = .353, (F 

(7,112) = 8.72, p < .001). Similarly, using linear regression, CHI was significantly associated 

with outcomes of presence of malnutrition, hospital mortality, 6-month mortality, hospital LOS, 

ICU LOS, discharge location and readmission within 30-days of discharge, r = .575, R2 = .296,   

(F(7,112) = 7.92, p < .001).  
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Table 11. Length of Stay by Creatinine Height Index 

Length of Stay 
Days 

Whole Cohort 
(n = 120) 

Subjects with 
CHI ≤ 60%  

(n=53) 

Subjects with 
CHI >60% 

(n=67) 

p value 

Hospital LOS, 
median (IQR) 

25.0 
(19.0- 46.5) 

28.0 
(20.0-55.5) 

23.0 
(17.0-23.0) 

 

Hospital LOS, 
mean (SD) 

34.6 (24.6) 38.3 (24.5) 31.7 (24.5) p = .351 

ICU LOS, median 
(IQR) 

10.0 
(4.0-17.8) 

11.0 
(5.0-23.0) 

8.0 
(4.0-17.0) 

 

ICU LOS, mean 
(SD) 

14.7 (19.3) 16.7 (19.7) 13.6 (19.3) p = .351 

 

Table 11 and Figure 2 display the results of the differences in LOS by CHI. Subjects with 

CHI ≤ 60% had mean hospital LOS of 38.3 ± 24.5 days compared to subjects with CHI > 60% 

who had hospital LOS of 31.7 ± 24.5 days. Subjects with CHI ≤ 60% had mean ICU LOS of 

16.7 ± 19.7 days compared to subjects with CHI > 60% who had ICU LOS of 13.6 ± 19.3 days. 

Although differences in LOS may be clinically different, there was no statistically significant 

difference in LOS based on CHI, F (2,117) = 1.06, p = .351; Wilks’ Λ =  0.982, partial 𝜂2 = 

.018, Table 11. 
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Figure 2. Hospital and ICU Length of Stay in Days 

 

 

 

Table 12 displays differences in outcomes by CHI. Patients with CHI ≤60% were 2.2 

times more likely to die during the hospitalization, (OR = 2.2; 95% CI 0.68, 7.18; p = .19) and 

2.7 times more likely to die within 6-months of discharge, (OR = 2.66; 95% CI, 1.03, 6.9; p < 

.05). Patients with CHI > 60% were 1.8 times more likely to be discharged home, (OR = 1.8; 

95% CI, 0.82, 4.2; p = .15). Of these outcomes, only death within 6-months of hospital discharge 

met statistical significance, Figure 3. No relationship was observed between CHI and 30-day 

readmission.  
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Table 12. Comparison of Outcomes between Subjects with Low or Normal CHI 

Outcome CHI ≤ 60%a CHI > 60%a Odds Ratio (95% CI) p value 
Died during 

hospitalization 
8/53 (15) 5/67 (7) 2.20 (0.68-7.18) p = .19 

Discharged to 
location other than 

home 

20/45 (44) 19/62 (31) 1.81 (0.82-4.02) p = .14 

Readmitted within 
30-days 

10/44 (23) 18/62 (29) 0.72 (0.29-1.76) p = .47 

Died within 6-
months of 
discharge 

14/45 (31) 9/62 (15) 2.66 (1.0-6.9) p = .04 

    a = number (%) 

 

Figure 3. Comparison of Six-Month Mortality by CHI 
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Relationship between UCE, CHI and Serum Proteins, NUTRIC and Severity of Illness 

Scores 

 Table 13 displays the correlation between UCE, CHI and serum protein levels and 

severity of illness scores. UCE and CHI were found to be only weakly associated with albumin,  

r = .26, p < .005 and r = .22, p < .05, respectively. UCE and CHI were also found to be only 

weakly associated with prealbumin, r = .25, p < .005 and r = .24, p < .005, respectively. UCE 

and CHI were observed to have no significant relationship with serum CRP levels, r = .02, p = 

.84 and r = .01, p = .94, respectively. UCE and CHI were observed to have no significant 

relationship with NUTRIC score, r = .14, p = .12 and r = .03, p = .75, respectively. UCE and 

CHI were also observed to have no relationship with severity of illness scores.  

 

Table 13. Correlation between UCE, CHI, Protein Levels, Nutrition Risk and Severity of Illness 
Scores 

 
 Ur Crt CHI Albumin Prealb CRP NUTRIC APACHE SOFA 

Ur Crt -        
CHI 0.93*** -       

Albumin 0.26** 0.22* -      
Prealb 0.25** 0.24** 0.59*** -     
CRP 0.02 0.01 -0.34*** -0.56*** -    

NUTRIC -0.14 -0.03 -0.30** -0.25** 0.15 -   
APACHE -0.18 -0.09 -0.38*** -0.26** 0.03 0.81*** -  

SOFA 0.06 0.11 -0.32*** -0.31** 0.23* 0.56*** 0.57*** - 
 Ur Crt = urinary creatinine excretion; CHI = creatinine height index; Prealb = prealbumin 
 *p < .05; **p < .01; ***p < .001  
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Chapter 5: Discussion 

 
The purpose of this research was to investigate if a valid model could be developed to 

predict UCE, if the model predicted UCE was associated with known measures of muscle 

measurement and if model predicted UCE had clinical utility in predicting outcomes in a cohort 

of hospitalized veterans who required an ICU admission. The research included development of 

models to predict UCE using input variables from 956 patients. Using the model with the best R2, 

predicted UCE was compared to anthropometric measurements of muscle in a cohort of 44 

subjects who had measurements obtained. Lastly, the model with the best R2 was applied 

retrospectively in a cohort of 120 ICU patients and demographic and outcome variables were 

examined.  

 

Model Development 

The first attempt at model development used plasma creatinine as the only input variable 

to predict UCE. This was trialed as it has been previously postulated in the literature as a 

potential method to predict UCE.83 In patients with a normal plasma creatinine it is reasonable to 

assume that the creatinine level is a reflection of muscle mass and should be highly correlated 

with measurements of muscle mass. In individuals with normal, stable renal function, variations 

in muscle mass should be responsible for observed variations in plasma creatinine levels. This 

study identified, that in this veteran patient population, plasma creatinine was a significant 

predictor of UCE but only accounted for 5% of the variability, R2 = .0549; p <.001, with 95% of 

the variance accounted for by other untested variables. This rendered the use of plasma 

creatinine alone unsuitable to use for the prediction of individual UCE values. It seems 
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reasonable that other variable, such as age, gender, height and weight, which can be associated 

with the overall amount of muscle mass would play a role in predicting UCE.  

Next, additional patient input variables, readily available on admission, were added to 

develop models and improve the overall accuracy of the predictive equation. Input variables 

examined for inclusion in final models were age, height, weight, gender, serum urea nitrogen, 

glucose, sodium, potassium, chloride, carbon dioxide, magnesium and presence of a SCI as these 

can be considered surrogates to account for total body water, extracellular water and lean body 

mass.  

The first model was developed for the general hospital population with plasma creatinine 

≤ 1.2 mg/dL, and included patients both with and without SCI. The variables remaining in the 

model included input variables of gender, age, weight, plasma creatinine and presence or absence 

of SCI. A significant model was identified, R2 = .4085, p < .001, for potential use in phase 2 of 

the study. The second model was developed for patients with plasma creatinine > 1.2 mg/dL. 

Input variables remaining in model 2 included gender, presence or absence of SCI, age, weight, 

plasma creatinine, BUN, and potassium. The identified model was also found to be significant, 

R2 = .4051, p < .001. Lastly, to improve predictability further, a model was developed that 

excluded patients with the presence of a SCI and included only those with normal plasma 

creatinine, creatinine ≤ 1.2 mg/dL. The input variables remaining in model 3 included age, 

weight, and plasma creatinine and BUN. This final non-linear model, model 3, was found to be 

statistically significant, R2 = .9098, p < .001, and was selected for further investigation.  

The final step in model development was validation. Model 3 was able to be validated 

using two methods. First, 4-fold cross validation using the original data set was conducted 

resulting in R2 of .4171, .4485, .4488 and .4488, all p < .001. Next, validation was conducted 
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using a separate data set of 50 subjects that were not included in the model development.  Mean 

predicted UCE was 1019.46 mg ± 318.63 SD, and mean measured UCE was 1033.04 mg ± 

342.08 SD.  Predicted and measured UCE were found to be highly correlated, r = .716, p < .001. 

Linear regression analysis yielded R2 = .502, F = 50.478, p < .001. This final model, Model 3, 

was found to be highly correlated, moderately predictive and statistically significant.  

The final model with the best R2, Model 3, selected for further investigation contained 

more input variables than had been proposed in the literature for the development of a model.83 

Creatinine is non-protein bound, diffusible across cell membranes and flows freely from one 

compartment to another with the same permeability as water. The input variables remaining in 

the model identified in this study are not surprising as they are surrogates for total body water, 

extracellular water and lean body mass.112-114 Importantly, these input variables are all readily 

available on admission. Furthermore, this model was able to estimate UCE and CHI with the 

benefit of not requiring a 24-hour urine sample, which has been a limitation with using UCE or 

CHI to assess muscularity.80–82 Use of a model, such as this, to estimate UCE and CHI rather 

than 24-hour urine collections, in the hospital setting, can be done within minutes rather than 

waiting for the urine collection and analysis. It also avoids the inconvenience and pitfalls 

associated with the urine collection. This model may represent a potential surrogate “biomarker” 

to screen for low muscularity shortly after admission and allow for early identification of those 

patients most in need of nutrition intervention.57  

 

Relationship between model derived CHI and muscularity 

Although this model was found to be correlated and predictive of UCE, it was important 

to determine if this predicted UCE was related to known measures of muscle mass. To this aim, 
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this study examined if CHI, estimated from Model 3, was correlated with AC, AMA and AMC 

in a subset of subjects, who had normal renal function, were without the presence of SCI, and 

who had upper arm anthropometrics obtained during their nutrition assessment. Model derived 

CHI was found to be strongly correlated to AC, r (42) = .665, p < .001, AMA, r (42) = .551, p < 

.001, and AMC, r (42) = .559, p < .001. Overall, CHI calculated from Model 3 predicted UCE 

was found to be highly correlated with accepted measures of muscularity.  

Although there are a variety of techniques to measure and estimate muscle mass, such as 

CT, DEXA or BIA, these advanced tools were unavailable to the dietitians at JAHVA. Some 

dietitians at JAHVA, who have the skill and experience, obtain upper arm anthropometry when 

doing a full nutrition assessment. Thus, for this study, anthropometric measurements were the 

only available objective measures of muscularity to compare CHI against. The findings of this 

study, which identified good correlation between model derived CHI and anthropometric 

measures, confirms what has been found in another study that examined the relationship between 

UCE and muscularity. Heymsfield et al55 demonstrated that muscle mass, as estimated from 

upper arm anthropometry, was strongly correlated with UCE, r = .94, p < .001. Lambell et al115 

recently demonstrated that the bedside technique of upper arm anthropometry was strongly 

correlated with CT measured muscle area, r = .67, p < .001. UCE has also been found to be 

strongly correlated with LBM as measure by K40 counting and by densitometry and deuterium 

dilution.59-61 Thus, the model identified in this study was found to be highly correlated and 

moderately predictive of UCE and was also strongly correlated with a known objective measure 

of muscularity.  
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Model Application 

 The second phase of this study sought to examine if UCE and CHI, derived from Model 3 

had potential clinical usefulness. Phase 2 of the research was conducted by retrospectively 

applying the model to a cohort of 120 veterans who had been hospitalized and required an ICU 

admission. Phase 2 examined if UCE was associated with or predicted outcomes of malnutrition, 

mortality, discharge location or readmission.  

 

Baseline Demographics 

 Baseline demographics of the cohort are reported on Table 5. As this study was 

conducted at a Veterans Affairs hospital, all subjects were male, and the median age was 69.08 ± 

8.7 years. The cohort had a mean height of 176.4 ± 6.8 cm, mean weight of 83.5 ± 19.5 kg, and 

mean BMI of 26.9 ± 6.4, which could imply that the group was well nourished. However, as 

weight or BMI may be poorly correlated with muscle mass, reliance on these measures may 

result in the clinician failing to identify low muscle mass and ultimately prevent the clinician 

from directing their interventions accordingly and should be viewed with caution.19,29-32 

The mean severity of illness scores for the cohort were APACHE II 15.93 ± 4.88, which 

is associated with a 12-24% risk of mortality, and SOFA score 3.59 ± 2.64, which is associated 

with a <10% risk of mortality.116-117 As such, the cohort for this study is considered to have a 

lower risk for mortality.  

The mean serum protein levels, on the day of the nutrition assessment, were albumin 2.55 

± 0.58 g/dL, prealbumin 10.48 ± 5.66 mg/dL and CRP 9.46 ± 7.70 mg/dL.  This reduction from 

normal levels in albumin and prealbumin occurs in the presence of an inflammatory response, 
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which is reflected by the elevated CRP level and is commonly observed in the critically ill, 

regardless of nutrition status.118-119 

When the cohort was examined by whether or not subjects had CHI ≤ 60%, considered 

to be sarcopenic, compared to >60%, some differences between the groups were noted. 

MANOVA analysis identified a statistically significant difference in baseline characteristics 

based on CHI, F (13,106) = 18.48, p < .001; Wilks’ Λ =  0.306, partial 𝜂2 = .694 (Table 5). 

Subjects with CHI ≤ 60% were observed to have significantly lower body weight, BMI, plasma 

creatinine, albumin and prealbumin levels compared to those subjects with CHI > 60%. A higher 

body weight and higher BMI may not always indicate greater lean body mass, as in those with 

sarcopenic obesity.19,29-32 However in this study, those with sarcopenia as identified with model 

derived CHI, did have significantly lower weight and BMI.  

As plasma creatinine varies directly and proportionally with muscle mass, in those with 

normal renal function, and plasma creatinine levels have been strongly correlated with lean body 

mass, it was expected that those with low CHI would have lower plasma creatinine.54-57 This was 

confirmed by the findings observed in this cohort as those subjects with low CHI had 

significantly lower plasma creatinine levels (Table 5).  

The differences in albumin and prealbumin levels, between those with CHI >60% 

compared to those with CHI ≤ 60%, observed in this study was unexpected as the CRP levels 

were not different between the groups. In acute illness, some protein levels change in response to 

cytokines. Those proteins that increase in concentration are referred to as positive acute phase 

proteins and include CRP and ceruloplasmin. Other proteins fall in the face of an inflammatory 

response and these are referred to as negative acute phase proteins and include albumin, 

prealbumin and transferrin.118  As serum albumin and prealbumin are presently considered to be 
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associated with inflammation and not markers of nutrition status, one would have expected that 

lower levels would be observed in the presence of higher CRP levels and thus be similarly low in 

both groups.118-120 However, this was not observed. It should be noted that both groups 

demonstrated below normal albumin and prealbumin levels and elevated CRP levels as expected 

in the critically ill. Additionally, the severity of illness scores, APACHE II and SOFA, were not 

different between the two groups. Previous studies have demonstrated that albumin and 

prealbumin were correlated with measures of inflammation and did not change in response to 

nutrition intervention.118,121-122 

It has recently been suggested that low circulating levels of albumin suggests a long-term 

insufficient nitrogen intake and that treatment should be focused on resolving inflammation and 

provision of nitrogen.123 Other potential explanations for the lower levels of albumin and 

prealbumin observed in those with sarcopenia in this study may be extrapolated from what is 

known about skeletal muscle. Skeletal muscle is an important metabolically active organ, and 

plays key roles in protein synthesis.19,20 In the adequately fed state, amino acids from food 

supply the needed precursors for new protein synthesis. When nutrient intake is insufficient, 

muscle protein becomes the principal reservoir of the needed amino acids.21 Normal protein 

turnover and synthesis can continue provided adequate muscle mass is available for 

cannibalism.21  In the setting of acute illness, requirements for amino acids from skeletal muscle 

increases due to increased synthesis of acute phase proteins, synthesis of protein components of 

the immune system and synthesis of proteins necessary for wound healing.12,20–22 It could be 

hypothesized that the lower albumin and prealbumin levels seen in the group with sarcopenia 

reflects the lack of available amino acid substrates from skeletal muscle necessary for protein 
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synthesis. As this study was not designed to address this interesting finding, it will require 

additional investigation.  

 

Prevalence of low muscularity in the cohort 

Application of Model 3 to estimate UCE and subsequent calculation of CHI resulted in 

mean UCE of 1102.81 ± 284.56 mg/24-hours and mean CHI of 0.65 ± 0.17. For the entire 

cohort, 33 (27.5%) were considered to have adequate muscle mass and had CHI >75%, 34 

(28.3%) had CHI levels between 75-61% were considered to have mild sarcopenia and 53 

(44.2%) were found to have CHI levels ≤ 60% and were considered to have severe sarcopenia.  

Others have reported varying rates of prevalence of sarcopenia in the critically ill, mostly 

through the use of CT scans. Joyce et al36 reported a prevalence of sarcopenia of 68% in their 

cohort of ICU patients. Looijard et al17 observed a 60% prevalence of low skeletal muscle area 

using CT scans in their cohort of ICU patients and Weijs et al28 reported a 63% prevalence.        

Using DEXA, Abramowitz et al41 reported that 14% of their study cohort had sarcopenia. 

Differences in the reported prevalence of sarcopenia in these ICU patients and our findings may 

reflect the different method of measurement, CT versus DEXA, and for this study, an indirect 

method of estimating muscularity. However, the findings of this study, a prevalence of 44%, 

appear reasonable and within the range of what others have reported.  

 

Relationship with Malnutrition  

Based on the nutrition assessment by the registered dietitian and using the AND/ASPEN 

criteria for malnutrition, for the entire cohort, 50 (41.7%) were identified with malnutrition and 

70 (58.3%) were identified as not having malnutrition, Table 7. Varying prevalence of 
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malnutrition in the critically ill have been reported. A recent review of 20 studies found the 

prevalence of malnutrition to be from 38% to 78%.124 These widely varying rates are generally 

considered to be due to different tools and different criteria utilized to diagnosis malnutrition and 

include the use of Subjective Global Assessment, the Mini Nutritional Assessment or the 

Malnutrition Universal Screening Tool.124 The AND/ASPEN publication of standardized 

malnutrition diagnostic criteria has allowed more uniform analysis and comparisons between 

groups.31 A recent study by Hiura et al125 utilized the standardized malnutrition diagnostic 

criteria and identified a 23.9% and 21.1% prevalence of severe malnutrition in the medical ICU 

and surgical ICU respectively. Unfortunately, Hiura et al125 did not report the prevalence of 

moderate malnutrition in their groups so the overall prevalence of malnutrition is unclear. The 

findings of this current study of a 41.7% prevalence of malnutrition in the cohort is in line with 

the findings of others.124-125 

Differences in prevalence of malnutrition were noted when subjects with CHI ≤ 60% 

were compared to those with CHI >60%. For subjects with CHI ≤ 60%, 36 of 53 subjects, 68%, 

were identified with malnutrition, Figure 1.  For subjects with CHI >60%, 14 of 67 subjects, 

21%, were identified with malnutrition. Subjects with CHI ≤ 60%, were 8.0 times more likely to 

be identified with malnutrition (OR = 8.0; 95% CI = 3.5, 18.3; p < .001), Table 8. These findings 

are consistent with the AND/ASPEN standardized malnutrition diagnostic criteria as two of the 

diagnostic criteria, loss of muscle mass and diminished functional status as measured by hand 

grip strength, involve measurements of muscle mass and identification of sarcopenia.31 

Importantly, applying Model 3 retrospectively to a cohort of patients identified, on admission, 

those that would be diagnosed with malnutrition.  
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Conversely, the NUTRIC score, was found to have no relationship with presence of 

malnutrition, r = .004, p = .96. The NUTRIC score, although commonly used as a nutrition 

screening tool for ICU patients, was designed to identify ICU patients who would benefit from 

prompt nutrition intervention and not screen for malnutrition or nutrition risk.105 The NUTRIC 

score does not actually include any classic nutrition indicators, but is scored based on age, 

APACHE 2 score, SOFA score, number of co-morbidities, numbers of days from hospital 

admission to ICU admission and Interleukin 6 level, a pro-inflammatory cytokine.105 In this 

study, reliance on the NUTRIC score, alone, to screen patients would have failed to identify 

those with malnutrition and possibly delayed nutrition intervention.  

 

Outcomes for the cohort 

A total of 13 (10.8%) subjects expired during the hospitalization. This confirms predicted 

estimates from the mean APACHE 2 and SOFA scores with anticipated mortality rates of 12-

24% and <10% respectively. Overall, the mean hospital LOS was 34.6 ± 24.6 days and the mean 

ICU LOS for was 14.7 ± 19.3 days (Table 10). Of the 107 patients who were discharged, 28 

were readmitted within 30-days and 23 expired within 6-months of discharge. 

 

Relationship between UCE, CHI and Outcomes 

This study identified, with linear regression analysis, that UCE and CHI, were both 

significantly associated with the outcomes of presence of malnutrition, hospital mortality, 6-

month mortality, hospital LOS, ICU LOS, discharge location and readmission within 30-days of 

discharge, r = .594, R2 = .353,  p < .001 and r = .575, R2 = .296,  p < .001, respectively.  
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Several important differences in outcomes were also observed when subjects with CHI ≤ 

60% were compared with those CHI > 60% (Table 11, Table 12, Figure 2, Figure 3). Patients 

with low CHI were 2.2 times more likely to die during the hospitalization, 1.8 times more likely 

to be discharged to a location other than their home, and 2.66 times more likely to expire within 

6 months of discharge. However, difference in six-month mortality was the only outcome that 

met statistical significance. Hospital and ICU LOS was longer for those patients with CHI ≤ 

60% and could represent a clinical difference however did not meet statistical significance.  

The findings of this study of worse outcomes, or a trend towards worse outcomes, in 

those with low muscularity, coincides with the findings of others which have used various 

methods to estimate muscle mass. Previous research using CT scans to identify low muscularity 

have identified an increase in hospital, 30-day, 60-day, 6-month or 1-year mortality in those with 

sarcopenia.17,28,37,38,40   Sarcopenia identified with BIA has also been found to be associated with 

28-day mortality.33 Other studies have identified significant relationships between sarcopenia 

and increased hospital LOS using CT or US measurements.35,36  Lastly, Hessels et al66 identified 

a significant relationship between UCE and hospital mortality. This study, by use of a model, 

was able to obtain similar findings without the use of invasive testing or a 24-hour urine 

collection.  

 

Strengths of the Study 

Strengths of this study include the availability of a large de-identified data set from which 

models could be constructed and validated. Additionally, as this data set came from a specific 

patient population, identified models were highly predictive.  Also, the model identified was 
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simple enough that it can be easily applied by the average clinician and utilized variables that are 

available for patients shortly after admission.  

Several strengths for the design of Phase 2 have been identified. The data collected was 

readily available within the EMR. Limiting application of the model in Phase 2 to only ICU 

patients minimized heterogeneity of the study population. Limiting the study population to those 

that had received a full nutrition assessment by the RDN allowed comparison of model derived 

UCE and CHI to the presence or absence of malnutrition. Extensive documentation and 

laboratory testing are done for all patients who receive full nutrition assessments minimizing the 

likelihood of missing data. Lastly, collecting data during the selected time period ensured that the 

AND/ASPEN malnutrition criteria were used to identify malnutrition and avoided confounders 

of differing definitions or criteria of malnutrition.   

 

Limitations of the Study 

For Phase 1 several weaknesses are acknowledged. Models are strongly linked to the 

population which they were derived from, thus the model identified in this study, developed from 

a group of veterans, may be less applicable in other populations. As this study was conducted at 

a Veterans’ hospital, although data from females was not excluded, female data would be 

underrepresented in the deidentified data set from which the models were built.  For the 

development of the models, the study assumes that there have been accurate 24-hour urine 

collections. Cases in which the collection lasts for more or less than 24-hours or in which some 

urine is lost may result in inaccurate estimates of 24-hour creatinine excretion.  Lastly, there is a 

risk that some patients had elevated UCE not due to increased muscle mass but rather due to 

consumption of a very high protein diet or certain amino acid supplements.  
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For Phase 2 of the study additional limitations are acknowledged. Limitations associated 

with retrospective studies and small sample size may have precluded definitive results. 

Retrospective studies have the limitation of only identifying associations and not causation. 

These results may not be generalizable to females, non-veterans and patients of different age 

groups. The results will also not be applicable to patients with admission plasma creatinine levels 

of >1.2 mg/dL. It is unclear if these results would hold up if applied to those patients who had 

not received a full nutrition assessment or who were not ICU patients. Unfortunately, the sample 

size was too small to detect differences in LOS. These results may also not be applicable to 

patients with different medical acuity levels, represented by APACHE 2 and SOFA scores, as 

JAHVA has a patient acuity similar to a community hospital.  

 

Chapter 6: Conclusions, Implications for Practice and Recommendations for Future 

Research 

 

Conclusions 

The primary aim of this research was to determine if 24-hour UCE can be reliably 

estimated from plasma creatinine or other patient variables by the development of a model and if 

the model can be validated. Additional aims of the study were to determine if low muscularity 

based on model derived CHI is correlated to low muscularity based on anthropometric 

measurements. The last aim was to apply the model to a cohort of hospitalized critically ill 

veterans, to describe the degree of low muscle mass observed and determine if model derived 

UCE and CHI are associated with other assessment measures and outcomes.  
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   The study successfully identified a final model to estimate UCE utilizing the input 

variables of plasma creatinine, plasma BUN, age and weight. Each remaining input variable was 

found to be independently statistically significant. The final model was found to be highly 

correlated, moderately predictive of UCE and statistically significant. This model was then 

appropriately validated using two methods, four-fold cross validation and using a separate data 

set of subjects not used to construct the model. Next, the study sought to determine if model 

derived CHI was correlated to known measures of muscularity. Using a subset of patients in 

whom anthropometric measurements were obtained, the study identified that model derived CHI 

was highly correlated with arm muscle area, arm muscle circumference and arm circumference.  

In Phase 2 of the study, the model was retrospectively applied to a group of critically ill 

veterans. The model identified that 44.2% of the subjects were found to have CHI levels ≤ 60% 

and were considered to have severe sarcopenia. Subjects with model estimated CHI ≤ 60% were 

found to have significantly lower body weight, BMI, plasma creatinine, albumin and prealbumin 

levels. Subjects with CHI ≤ 60% were found to be 8.0 times more likely to be diagnosed with 

malnutrition and 2.6 times more likely to be readmitted in 6 months. Subjects with low CHI 

trended towards longer hospital and ICU LOS, however it did not meet statistical significance. 

Lastly, a commonly used ICU nutrition screening tool, NUTRIC, was found to have no 

relationship with the presence of malnutrition. 

Implications for practice 

The development of a model which predicts UCE and correlates with muscle mass offers 

a novel method for the RDN to readily identify patients with sarcopenia on hospital admission. 

This method could allow the RDN to quickly screen new admissions for potential sarcopenia 

without the use of CT or DEXA scans and without the inconvenience of a 24-hour urine 
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collection by using readily available patient variables. A model such as this is also ideally suited 

to be automatically computer generated.  

Recent recommendations have been made that muscle mass should be at the core of 

nutrition screening and management strategies, and that tools and techniques be developed to 

assess muscle mass.19 As nutrition screening is moving away from evaluation of weight and 

towards identifying sarcopenia, this study potentially fills a gap by providing a clinical tool to 

accomplish this.  This would thus allow the RDN to begin prompt nutrition intervention to those 

patients most in need.  

 
 
Recommendations for future research 

 

This study was limited by applying the identified model in a retrospective fashion to a 

group of critically ill veterans. Several future research studies are warranted to determine the 

applicability of the model to other populations. First, research should be designed to apply the 

model in a prospective fashion to the same patient population, using a larger sample size, to 

determine if the findings are consistent and if additional relationships with outcomes can be 

identified. Next, the model could be applied prospectively to sample populations of hospitalized 

veterans admitted to the general medical and surgical wards. This would allow analysis of the 

model’s ability to function as an admission nutrition screening tool. If these studies demonstrate 

positive findings, the model could then be applied to non-veteran patient populations.  

 Lastly, the findings of differences in albumin and pre-albumin levels between those 

subjects with or without sarcopenia was unexpected. These findings should be explored with an 

appropriately powered study examining relationships between these serum protein levels and 

direct and indirect measures of muscularity.  
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