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Abstract

We considered the livelihood of two prey species in the presence of a predator species. To

understand this phenomenon, we developed and analyzed two mathematical models considering

indirect and direct mutualism of two prey species and the influence of one predator species. Both

types of mutualism are represented by an increase in the preys’ carrying capacities based on direct

and indirect interactions between the prey. Because of mutualism, as the death rate parameter of

the predator species goes through some critical value, the model shows transcritical bifurcation.

Additionally, in the direct mutualism model, as the death rate parameter decreases to some critical

value, the model shows limit cycle phenomena.
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1 Introduction

When organisms of two or more different species interact, it is called symbiosis [7]. The three

main types of symbiosis are mutualism, commensalism, and parasitism. Mutualism is when both

interacting species benefit. An example of this is the bee and flowering plants. The bee gets nectar

from the flower for food and pollen from the flower gets onto the bee and spreads to other flowers,

helping the plant species reproduce. Both species benefit from each other. Commensalism is when

one species benefits while the other is unaffected. An example is a vulture and a lion. The lion

hunts its prey and gets its nutrition. The remainder of the prey is eaten by the vulture. The

vulture benefits while the lion is unaffected. Parasitism is when one species benefits while the other

is harmed. An example is the mosquito and the cow. The mosquito gets nutrients by drinking

the cow’s blood. The cow gets irritated skin at the bite site and possibly infected with diseases.

Here, the mosquito benefits and the cow is harmed. Mathematical models for symbiosis have been

developed [1, 5].

Mutualism and commensalism can be split up into further categories, such as obligate and faculta-

tive. Obligate symbiosis means that the symbiosis is necessary for the species’ survival. Facultative

symbiosis means that the symbiosis is helpful, but not required. Thus for mutualism, there are

three subcategories: facultative-facultative, obligate-facultative, and obligate-obligate. For com-

mensalism, there are two subcategories: facultative and obligate.

Predation is another form of interaction between different species. Consider a predator species and

one of the prey species that it hunts, such as the predator wolf and the prey rabbit. When the wolf

hunts the rabbit, the rabbit population decreases. When there is a small rabbit population, there is

less food for the wolves, so the wolf population decreases. When there are less wolves, less rabbits

are hunted, meaning the rabbit population grows. Finally, as the rabbit population increases, there
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is more food for the wolves, increasing their population.

Indeed, while predator and prey species interact with each other, predation is generally not consid-

ered a form of symbiosis. This is because symbiosis is defined by the persistence of the interactions

[7]. A mosquito can feed from a cow once and feed from the same organism again another time.

However, once the wolf has hunted the rabbit, there is no more interaction between the two organ-

isms.

Thus, we require a different model from symbiosis. The Lotka-Volterra system is the first to model

these changing dynamics by analyzing how one predator species and one prey species affect each

other. The standard two species model has been modified to simulate more specific factors regard-

ing predator-prey interactions, such as handling rate and herding behavior [9, 10]. There have been

multiple other articles that have studied a modified two prey, one predator model [2, 3, 4].

In this thesis we studied two mutualistic prey populations, by introducing the influence of a predator

species. An example of this is the multi-species herd comprised of zebras and wildebeests. Both are

prey to the lion and protect each other from the predator. In Chapter 2 we cover the mathematical

material required to understand the rest of the paper. This includes a basic overview of dynamical

systems, stability analysis, limit cycles, and bifurcations. In Chapter 3, we focus on the indirect

mutualism model and study the stability and bifurcations that occur in the model. In Chapter 4,

we focus on the more complex direct mutualism model. Like Chapter 3, we study the stability and

bifurcations that occur in the model, which will include limit cycles. In Chapter 5, we make conclud-

ing remarks about the biological significance of our results and make suggestions for future research.
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2 Background Materials

2.1 Differential Equations and Dynamical Systems

The study of dynamical systems starts with differential equations. The differential equations we

are interested in involve functions of time t, say the function x(t).

The order of a differential equation is the order of the highest derivative in the equation. We will

only concern ourselves with first order differential equations for the rest of the paper. A differential

equation is linear if every dependent variable and every derivative is to the first degree only. There

must also be no products of dependent variables or derivatives. A nonlinear differential equation

is a differential equation that is not linear. An autonomous differential equation is a differential

equation where the independent variable, say t, does not appear explicitly. We will be focusing on

nonlinear first order autonomous ordinary differential equations (ODEs) in this thesis.

Let us define a general system of first order autonomous ODEs of the form:

dx1

dt
= f1(x1, x2, ..., xn)

dx2

dt
= f2(x1, x2, ..., xn) (1)

...

dxn

dt
= fn(x1, x2, ..., xn),

where fi is a function for 1 ≤ i ≤ n. The the system (1) can be written in vector form

˙⃗x = f(x⃗), (2)
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where x⃗ = (x1, x2, ..., xn)
T and f(x⃗) = (f1(x1, x2, ..., xn), f2(x1, x2, ..., xn), ..., fn(x1, x2, ..., xn))

T

∈ Rn.

An issue with nonlinear differential equations is that for most of them, it is impossible to find

explicit solutions. Thus, we study the qualitative behavior of their solutions instead. This involves

a dynamical system, which are an evolution rule that defines a trajectory as a function of a single

parameter (time) on a set of states (the phase space) [29]. Dynamical systems are therefore cate-

gorized according to properties of their phase space, of their evolution rule, and of time itself. In

this thesis, we consider systems with a continuous phase space, D, that is typically Rn.

The evolution rule can be deterministic or stochastic. A system is deterministic if for each state in

the phase space there is a unique consequent, that is, the evolution rule is a function taking a given

state to a unique, subsequent state. Systems that are nondeterministic are called stochastic.

When the evolution rule is deterministic, then for each time, t, it is a mapping from the phase space

to the phase space, ϕt : D → D, so that x(t) = ϕt(x0) denotes the position of the system at time t

that started at x0. Here we assume that t takes values in some allowed range and that the initial

value of time is zero, so that ϕ0(x0) = x0.

Every dynamical system has orbits or trajectories; namely, the sequence of states that follow from

or lead to a given initial state. The simplest orbit is an equilibrium, where the orbit is a single

point: Γx = {x}. A periodic orbit, γ, is a closed loop. Thus, for each x on a periodic orbit, there

is a time T such that the point returns to itself: ϕT (x) = x.

Definition 2.1.1: Suppose the phase space of a dynamical system is D, an open subset of Rn. A

complete flow ϕt(x) is a one-parameter, continuously differentiable mapping ϕ : R×D → D, such

that,
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(i) ϕ0(x⃗) = x⃗ for all x⃗ ∈ D,

(ii) The composition ϕt ◦ ϕs = ϕt+s for each t, s ∈ R and x⃗ ∈ D.

Since a flow is differentiable, it has an associated ODE, or more specifically, a vector field.

Definition 2.1.2: A vector field is a function f : D → Rn that defines a vector v = f(x) at

each point x is the phase space D. The vector field associated with a flow is defined by

f(x) =
d

dt
ϕt(x)|t=0 (3)

Theorem 2.1.3: If ϕt(x) is a flow, then it is a solution of the initial value problem,

d

dt
ϕt(x0) = f(ϕt(x0)), ϕ0(x0) = x0, (4)

for the vector field defined in (3).

Proof: Let x(t) = ϕt(x0). From Definition 2.1.1 (ii), we get

dx

dt
= lim

ϵ→0

1

ϵ
[ϕt+ϵ(x0)− ϕt(x0)] = lim

ϵ→0

1

ϵ
[ϕϵ(x(t))− ϕ0(x(t))] = f(x(t))

Therefore the flow is the solution of the differential equation dx
dt = f(x). □

Example 2.1.4: In Figure (1), we can see an example of a flow. The first condition is shown

as ϕ0(x) = x. The second condition is shown by ϕt(y) = (ϕt ◦ ϕs)(x) = ϕt+s(x). Thus, given
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Figure 1: Illustration of a flow ϕt(y) = (ϕt(ϕs)(x)) = ϕt+s(x)

various initial conditions, we can look at a solution’s behavior and analyze its properties without

needing the solution itself.

2.2 Stability Analysis

As mentioned in the previous chapter, it is difficult to find solutions to systems of nonlinear dif-

ferential equations, which is why we study the behavior of these systems instead. To do so, we

need to look at the solutions at sufficiently large t. One of the best ways to do so is to look at the

equilibrium points, or steady states, of the system.

Definition 2.2.1: A point x̄ ∈ D is an equilibrium point if it satisfies fi(x̄) = 0 for all i = 1, ..., n.

Thus the importance of the steady state is that there is no change in the solution at the equi-

librium points, which make them a useful reference for solutions near those points.

The steady states can be stable, meaning the solutions go towards the equilibrium point. They
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can also be unstable, where the solutions go away from the equilibrium point. Mathematically, we

define stability to be the following:

Definition 2.2.2: Let x̄ be an equilibrium point. It is stable if for every neighborhood E of

x̄, there is a neighborhood E1 of x̄ in E such that every solution x(t) with x(0) = x0 in E1 is

defined and remains in E for all t > 0. Additionally, if there is an E1 such that limt→∞x(t) = x̄,

then x̄ is asymptotically stable. x̄ is unstable if it is not stable.

Definition 2.2.3: Steady states can be sinks, where the solutions go directly to or away from

the point. They can also be spirals, where the solutions circle to or from the steady state. Saddle

nodes are unstable steady states where the solutions approach the point before going away from it.

The goal of stability analysis is to determine the conditions in which solutions go towards cer-

tain steady states. In the nonlinear system, there are multiple steady states, so we must analyse

the local stability of each steady state to have a general idea of the global behavior. We find steady

states of nonlinear systems through the nullclines.

Definition 2.2.4: The xj nullcline is the set of points where
dxj

dt vanishes. That is, the set of

points determined by setting fj(x1, x2, ..., xn) = 0.

After finding the steady states, we then analyze their stability by finding the linearization of the

system (1). The linearization of the system (1) at a steady state x̄ = (x̄1, x̄2, ..., x̄n) is defined by
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the linear system of differential equations:

ż1 =
∂f1
∂x1

(x̄1, x̄2, ..., x̄n)z1 +
∂f1
∂x2

(x̄1, x̄2, ..., x̄n)z2 + ...+
∂f1
∂xn

(x̄1, x̄2, ..., x̄n)zn

...

żi =
∂fi
∂x1

(x̄1, x̄2, ..., x̄n)z1 +
∂fi
∂x2

(x̄1, x̄2, ..., x̄n)z2 + ...+
∂fi
∂xn

(x̄1, x̄2, ..., x̄n)zn

...

żn =
∂fn
∂x1

(x̄1, x̄2, ..., x̄n)z1 +
∂fn
∂x2

(x̄1, x̄2, ..., x̄n)z2 + ...+
∂fn
∂xn

(x̄1, x̄2, ..., x̄n)zn

Thus the linearization of (1) in vector matrix form at an equilibrium is the linear system

ż = Jz, (5)

where J =



∂f1
∂x1

(x̄1, x̄2, ..., x̄n) ... ∂f1
∂xn

(x̄1, x̄2, ..., x̄n)

...

∂fi
∂x1

(x̄1, x̄2, ..., x̄n) ... ∂fi
∂xn

(x̄1, x̄2, ..., x̄n)

...

∂fn
∂x1

(x̄1, x̄2, ..., x̄n) ... ∂fn
∂xn

(x̄1, x̄2, ..., x̄n)


,

is called the Jacobian matrix of the system (1) at an equilibrium point x̄.

We can analyze the stability of the nonlinear system (1) using the Jacobian matrix due to the

Hartman-Grobman Theorem.

Definition 2.2.5: A steady state x̄ is called hyperbolic if all eigenvalues of the Jacobian J evalu-

ated at x⃗ have nonzero real part.
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Theorem 2.2.6: Hartman-Grobman Theorem: Assume that x̄ is a hyperbolic equilibrium. Then,

in a small neighborhood of x̄, the phase portrait of the nonlinear system (1) is equivalent to the

linearized system ż = Jz⃗.

After finding the Jacobian matrix, we evaluate it at each steady state and get a corresponding

characteristic equation. The characteristic equation is of the form,

λn + a1λ
n−1 + ...+ an−1λ+ an = 0. (6)

Normally, we would solve for the eigenvalues and look at those to determine the stability.

Theorem 2.2.7: For a square matrix A, the equation v = Ax⃗ is:

(i) stable if A has no eigenvalues with positive real part;

(ii) asymptotically stable if and only if A has only eigenvalues with negative real part;

(iii) unstable if A has at least one eigenvalue with positive real part.

However, it is sometimes too difficult to find or study the exact eigenvalues of the matrix. Thus we

use the Routh-Hurwitz criteria to determine the stability of the steady state.

Theorem 2.2.8: Assuming the characteristic equation (6) has real coefficients, let H1, ...,Hn

denote the following n matrices:

H1 = (a1)

...
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Hk =



a1 a3 a5 ... a2k−1

1 a2 a4 ... a2k−2

0 a1 a3 ... a2k−3

0 1 a2 ... a2k−4

. . . . .

0 0 0 ... ak


...

Hn =



a1 a3 a5 ... 0

1 a2 a4 ... 0

0 a1 a3 ... 0

0 1 a2 ... 0

. . . . .

0 0 0 ... an


for 1 ≤ k ≤ n, where ak = 0 if j > n. If |Hk| > 0 for k = 1, ..., n, then all eigenvalues have negative

real parts.

For n = 2, the steady state is stable if a1 > 0 and a2 > 0. For n = 3, the steady state is

stable if a1 > 0, a3 > 0, and a1a2 > a3.

Example 2.2.9: Consider the Lotka-Volterra equations with logistic prey growth:

dx

dt
=

ax(K − x)

K
− bxy

dy

dt
= −cy + dxy (7)
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The parameters a, b, c, and d as well as the carrying capacity K are all assumed to be positive. The

biological meaning of the parameters is explained in Chapter 3.

To find the steady states of system (7), we must first find the nullclines of the system. The x-

nullclines are x = 0 and y = a(K−x)
bK . The y-nullclines are y = 0 and x = c

d . Thus the steady states

are (0, 0), (K, 0), and ( cd ,
a(dK−c)

dbK ).

The Jacobian matrix for the system is

J =


a(K−2x)

K − by −bx

dy −c+ dx

 . (8)

The Jacobian matrix (8) evaluated at the steady state (0, 0) is

J(0, 0) =

a 0

0 −c

.
The eigenvalues are a and −c, so the steady state is always unstable.

The Jacobian matrix (8) evaluated at the steady state (K, 0) is

J(K, 0) =

−a −bK

0 −c+ dK

.
The eigenvalues are −a and −c+ dK. Thus (K, 0) is stable when dK < c.

Figure (2) shows an example of the stable (K, 0) steady state. The parameters are a = b = d = 1

and c = 1.1. The carrying capacity K = 1 and the initial conditions are x = y = 0.5.

The Jacobian matrix (8) evaluated at the steady state ( cd ,
a(dK−c)

dbK ) is

J( cd ,
a(dK−c)

dbK ) =

 −ac
dK

−bc
d

a(dK−c)
bK 0

.
The characteristic equation is

λ2 +
acλ

dK
+

ac((dK − c)

dbK
= 0

11



Figure 2: Stable x only steady state

Figure 3: Stable coexistence steady state

We can use the Routh-Hurwitz criteria to analyze stability rather than finding the eigenvalues.

Thus, for ( cd ,
a(dK−c)

dbK ) to be stable, ac
dK > 0 and ac(dK−c)

dbK > 0, which is only true when dK > c.

Figure (3) shows an example of the stable ( cd ,
a(dK−c)

dbK ) steady state. The parameters are a = b =

d = 1 and c = 0.9. The carrying capacity K = 1 and the initial conditions are x = y = 0.5.

12



2.3 Periodic Solutions and Limit Cycles

This chapter is adapted from [28]. Steady states may lead to limit cycles, where the solutions main-

tain a stable orbit around the steady state. Mathematically, we can define a limit cycle through

the following steps.

Definition 2.3.1: Let ϕt(x0) be a solution of the differential equation of ẋ, where x0 is an initial

condition and t is time and an element of the maximal interval Ix0. A set A ⊂ Rn is invariant if

ϕt(x) ∈ A for every x ∈ A and t ∈ Ix.

Definition 2.3.2: The orbit of x ∈ Rn is defined as γ(x) = {ϕt(x) : t ∈ Ix}.

By extension, the positive semiorbit of x is γ+(x) = {ϕt(x) : t ∈ Ix ∩ R+}. Similarly, the negative

semiorbit of x is γ−(x) = {ϕt(x) : t ∈ Ix ∩ R−}. The invariant set A can also be seen as

⋃
x∈A

γ(x).

The ω-limit set is

ω(x) =
⋂

y∈γ(x)

γ+(y).

Similarly, the α-limit set of x is

α(x) =
⋂

y∈γ(x)

γ−(y).

13



Figure 4: Stable limit cycle

Example 2.3.3: Consider the system of two equations:

dx

dt
= x(1− (x2 + y2))− y

dy

dt
= y(1− (x2 + y2)) + x.

In polar coordinates, this system is:

dr

dt
= r(1− r2)

dθ

dt
= 1.

As seen in Figure (4), there is a stable limit cycle at r = 1, which in Cartesian coordinates is the

circle x2 + y2 = 1. Solutions that start inside the circle go away from the origin and towards the

circle. Solutions that start outside the circle go inward to the limit cycle.

14



Figure 5: Unstable limit cycle

Example 2.3.4: Consider the similar system of two equations:

dx

dt
= x((x2 + y2)− 1)− y

dy

dt
= y((x2 + y2)− 1) + x.

In polar coordinates, this system is:

dr

dt
= r(r2 − 1)

dθ

dt
= 1.

As seen in Figure (5), there is an unstable limit cycle at r = 1, which in Cartesian coordinates is

the circle x2 + y2 = 1. Solutions that start inside the circle go towards the origin. Solutions that

start outside the circle go away from the origin.

15



Figure 6: Limit Set Example

Example 2.3.5: Consider the system of two equations:

dx

dt
= y

dy

dt
= x(x− 1)(x− 3).

As shown in Figure (6), we can see the following limit sets:

α(x1) = ω(x1) = ∅;

α(x2) = ∅, ω(x2) = q;

α(x3) = ω(x3) = p;

α(x4) = ω(x4) = γ(x4).

(9)
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Lemma 2.3.6: If the positive semiorbit γ+(x) of a point x ∈ Rn is bounded, then:

(i) ω(x) is compact, connected, and nonempty;

(ii) y ∈ ω(x) if and only if there exists a sequence tk → +∞ such that ϕtk(x) → y when k → ∞;

(iii) ϕt(y) ∈ ω(x) for every y ∈ ω(x) and t > 0;

(iv) inf{∥ϕt(x)− y∥ : y ∈ ω(x)} → 0 when t → +∞.

Proof: Let W = γ+(x). By definition of the ω-limit set, ω(x) is closed. Since ω(x) ⊂ W , ω(x) is

also bounded. Thus ω(x) is compact.

Since γ+(x) is bounded, R+ ⊂ Ix, so

ω(x) =
⋂
t>0

At,

where At = {ϕs(x) : s > t}.

If y ∈ ω(x), then there exists a sequence tk → +∞ such that y ∈ Atk for k ∈ N. This means there

is a sequence sk → +∞ with sk ≥ tk for k ∈ N such that ϕs(x) → y when k → ∞. Conversely, if

there exists a sequence tk → +∞ such that ϕtk → y, then y ∈ Atk and

y ∈
∞⋂
k=1

Atk =
⋂
t>0

At,

since At ⊂ At′ for t > t′. Thus (ii) is proven.

Let (ϕk(x))k be a sequence contained in W . By compactness, there exists a subsequence (ϕtk(x))k,

with tk → +∞, converging to a point in W . Thus ω(x) is nonempty.

Assume to the contrary that ω(x) is disconnected. Then ω(x) = A ∪ B for some nonempty A and
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B such that Ā ∩B = A ∩ B̄ = ∅. Since ω(x) is closed,

Ā = Ā ∩ ω(x) = Ā ∩ (A ∪B) = (Ā ∩A) ∪ (Ā ∩B) = A.

By similar reasoning, B̄ = B. Thus A and B are also closed, so they are at a positive distance,

meaning

δ := inf{∥a− b∥ : a ∈ A, b ∈ B} > 0.

Let the set

C = {z ∈ R2 : infy∈ω(x)∥z − y∥} ≥ δ

4
.

It is trivial to show C ∩W is compact and nonempty. Thus, from (ii), C ∩W ∩ ω(x) ̸= ∅. This is

a contradiction, since C ∩W does not intersect ω(x) by the definition of C. So ω(x) is connected,

proving (i).

To prove (iii), we start with the assumption that y ∈ ω(x). Using (ii) and the continuity of the

function z 7→ ϕt(z), for all t > 0 we have: ϕtk+t(x) = ϕt(ϕtk(x)) → ϕt(y) when k → ∞. Since

tk + t → +∞ as k → ∞, from (ii) we get ϕt(y) ∈ ω(x).

Finally, assume to the contrary that there exists a sequence tk → +∞ and a constant δ > 0 such

that inf{∥ϕtk(x) − y∥ : y ∈ ω(x)} ≥ δ for k ∈ N. Since W is compact, there exists a convergent

subsequence (ϕt′k
(x))k of (ϕtk(x))k ⊂ W , which by (ii) has a limit p ∈ ω(x). However, we estab-

lished that ∥ϕtk(x) − y∥ ≥ δ for every y ∈ ω(x) and k ∈ N. This means ∥p − y∥ ≥ δ for y ∈ ω(x),

meaning p /∈ ω(x). This is a contradiction, thus proving (iv). □
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Now that we have an understanding of limit cycles and limit sets, we can talk about the Poincare-

Bendixson theorem. However, to do so, we must restrict our functions to R2.

Definition 2.3.7: Let f : R2 → R2 be a continuously differentiable function. A line segment

L is a transversal to f if for each x ∈ L the directions of f(x) and L generate R2.

Theorem 2.3.8: (Jordan’s curve theorem) If γ : [0, 1] → R2 is a continuous function with

γ(0) = γ(1) such that γ|(0, 1) is injective, then R2\γ([0, 1]) has two connected components, one

bounded and one unbounded.

We will not be proving Jordan’s curve theorem as it requires knowledge of topics outside of dynam-

ical systems. However, it is necessary to prove the following lemma.

Lemma 2.3.9: Assume that L is transversal to f and let x ∈ R2. Then ω(x) ∩ L contains at

most one point.

Proof: Assume that ω(x) ∩ L and let q ∈ ω(x) ∩ L. By Lemma 2.3.6, there exists a sequence

tk → +∞ such that ϕtk(x) → q when k → ∞. Since L is a transversal to f , for each y ∈ R2

sufficiently close to L there exists a unique time s such that ϕs(y) ∈ L and ϕt(y) /∈ L for t ∈ (0, s)

when s > 0, or for t ∈ (s, 0) when s < 0. Mainly, for each k ∈ N there exists s = sk such that

xk = ϕtk+sk(x) ∈ L.

There are two cases: when (xk)k is a constant sequence, meaning the orbit of x is periodic, and

when it is not. Assuming the first case, since the orbit of x is periodic, the ω-limit set ω(x) = γ(x)
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Figure 7: Intersections xk, xk+1 and xk+2 with the transversal L

only intersect L at the constant value of the sequence (xk)k, so ω(x) ∩ L = {q}.

In the second case, consider two points of the intersection xk and xk+1. The projection of f on

the perpendicular to L always has the same direction. The segment of orbit between xk and xk+1

together with the line segment between these two points form a continuous curve C whose comple-

ment R2\C has two connected components, due to Jordan’s curve theorem. Due to the direction of

f on the segment between xk and xk+1, the positive semiorbit γ+(x) is contained in the unbounded

connected component. This implies the next intersection xk+2 does not belong to the line segment

between xk and xk+1. Therefore the points xk, xk+1, and xk+2 are ordered along the transversal

L, as seen in Figure (7). Since the sequence (xk)k is monotonic along L, it has at most one accu-

mulation point in L and ω(x) ∩ L = {q}. □

These two lemmas help prove the Poincare-Bendixson theorem, which states the following:

Theorem 2.3.10: Let f : R2 → R2 be a continuously differentiable function. Then for the differ-

ential equations x′ = f(x), if the positive semiorbit of x, γ+(x), is bounded and ω(x) has no critical

points, then ω(x) is a limit cycle.

20



Proof: Since the semiorbit γ+(x) is bounded, by Lemma 2.3.6 (i), ω(x) is nonempty. Let p ∈ ω(x).

From Lemma 2.3.6 (i) and (iii), and the definition of the ω-limit set, ω(p) is nonempty and

ω(p) ⊂ ω(x). Let q ∈ ω(p). Since we are assuming ω(x) has no critical points, q is not a crit-

ical point and so there exists a line segment L containing q that is transverse to f . By Lemma 2.3.6

(ii), since q ∈ ω(p), there exists a sequence tk → +∞ such that ϕtk(p) → q when k → ∞. Following

the proof of Lemma 2.3.9, we can assume ϕtk(p) ∈ L for k ∈ N. Since p ∈ ω(x), by Lemma 2.3.6

(iii), ϕtk(p) ∈ ω(x) for k ∈ N. Thus ϕtk(p) ∈ L ∩ ω(x) and by Lemma 2.3.9, ϕtk(p) = q for every

k ∈ N. This implies γ(p) ⊂ ω(x).

Now, assume to the contrary that ω(x)\γ(p) is nonempty. Since ω(x) is connected, in each neigh-

borhood of γ(p) there exist points of ω(x) that are not in γ(p). Thus there exists a transversal L′ to

f containing one of these points, which is in ω(x), and a point of γ(p). This would mean ω(x)∩L′

contains at least two points. However, this contradicts Lemma 2.3.9, so ω(x) = γ(p) and ω(x) is a

limit cycle. □

From the Poincare-Bendixson theorem, we can obtain additional results.

Corollary 2.3.11: Let γ be an ω-limit cycle. If γ = ω(x) where x /∈ γ, then x has a neighborhood

O such that γ = ω(y) for all y ∈ O. That is, the set {y|ω(y) = γ} − γ is open.

Corollary 2.3.12: A compact set K that is positively or negatively invariant contains either

a limit cycle or an equilibrium point.

Corollary 2.3.13: Let γ be a closed orbit and let U be the open region in the interior of γ.

Then U contains either an equilibrium point or a limit cycle.
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Proof: Let D be the compact set U ∪ γ. Then D is invariant since no solution in U can cross

γ. If U contains no limit cycle and no equilibrium, then, for any x ∈ U , ω(x) = α(x) = γ by

Poincare-Bendixson. If S is a local section at a point z ∈ γ, there are sequences tn → ∞,sn → −∞

such that ϕtn(x),ϕsn(x) ∈ S and both ϕtn(x) and ϕsn(x) tend to z as n → ∞. However this is a

contradiction about the properties of monotone sequences. □

Corollary 2.3.14: Let γ be a closed orbit that forms the boundary of an open set U . Then

U contains and equilibrium point.

Proof: Suppose U has no equilibrium points. Consider first the case that there are only finitely

many closed orbits in U . We may choose the closed orbit that bounds the region with the smallest

area. There are then no closed orbits or equilibrium points inside this region, which contradicts

Corollary 2.3.13.

Now suppose that there are infinitely many closed orbits in U . If xn → x in U and each xn lies

on a closed orbit, then x must lie on a closed orbit. Otherwise the solution through x would spiral

toward a limit cycle since there are no equilibria in U . By Corollary 2.3.11, so would the solution

through some nearby xn, which is impossible.

Let v ≥ 0 be the greatest lower bound of the areas of regions enclosed by the closed orbits in U .

Let {γn} be a sequence of closed orbits enclosing regions of areas vn such that limn→∞vn = v. Let

xn ∈ γn. Since γ ∪ U is compact, we may assume that xn → x ∈ U . Then if U contains no equi-

librium, x lies in a closed orbit β bounding a region of area v. The usual section argument shows

that as n → ∞, γn gets arbitrarily close to β and hence the area vn − v of the region between γn

and β goes to 0. Then the argument above shows that there can be no closed orbits or equilibrium

points inside γ, which contradicts Corollary 2.3.13. □
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2.4 Bifurcations

Mathematical models often involve multiple parameters in their differential equations. When the

parameter values are changed, we may expect a change in the behavior of the solution of the dif-

ferential equations. If variation of a parameter changes the qualitative behavior of the solution, it

is called a bifurcation.

Definition 2.4.1: Consider the scalar differential equation x′ = f(x, β), where x, β ∈ R, β is

the parameter, and f : R2 → R is continuously differentiable.

We call x̄ a bifurcation point and β̄ a bifurcation value if f(x̄, β̄) = 0 and ∂
∂xf(x̄, β̄) = 0, where ∂

∂xf

denotes the partial derivative with respect to x.

We can extend this definition to apply to a system with multiple variables. We can analyze bifur-

cations qualitatively with a bifurcation diagram, which plots a variable’s steady state value with

a parameter. In this diagram we indicate what parameter values will cause a steady state to be

stable or unstable.

There are multiple types of bifurcations.

Definition 2.4.2: A saddle node bifurcation occurs when two steady states are created or de-

stroyed.
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Example 2.4.3: In the system of equations

dx

dt
= a− x2

dy

dt
= −y,

the system has a saddle node bifurcation at the parameter value a = 0. There is no steady state

when a < 0 and two when a > 0. The phase diagrams of Figure (8) demonstrates the change in

the system’s behavior when the parameter a goes from −1 to 0 to 1. The bifurcation diagram in

Figure (9) also demonstrates this change.

24



Figure 8: Saddle Node Bifurcation Phase Diagrams
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Figure 9: Saddle Node Bifurcation Diagram

Definition 2.4.4: Transcritical bifurcations occur when two steady state change their stability

from stable to unstable and vice versa.

Example 2.4.5: In the system of equations

dx

dt
= ax− x2

dy

dt
= −y,

the system has a transcritical bifurcation at the parameter value a = 0. As a goes from negative to

positive, the steady state at the origin goes from stable to unstable. Meanwhile, the steady state

(a, 0) goes from unstable to stable. The phase diagrams of Figure (10) demonstrates the change in

the system’s behavior when the parameter a goes from −1 to 0 to 1. The bifurcation diagram in

Figure (11) also demonstrates this change.
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Figure 10: Transcritical Bifurcation Phase Diagrams
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Figure 11: Transcritical Bifurcation Diagram

Definition 2.4.6: Pitchfork bifurcations are a combination of saddle node and transcritical

bifurcations. They are called that because the bifurcation diagrams look like pitchforks. There are

two types, supercritical and subcritical. Supercritical pitchfork bifurcations have stable branches.

Subcritical pitchfork bifurcations have unstable branches.

Since this type of bifurcation does not occur in the models we studied in this thesis, we will

not elaborate further with examples. However, we acknowledge its existence here since pitchfork

bifurcations are one of the three basic types of bifurcations.

Here we discuss a new type of bifurcation that is not found in the one-dimensional continuous

system; namely the bifurcation that gives to limit cycle. Figures (12) and (13) show a typical way

that limit cycles are represented in a bifurcation plot. Plotted for each parameter value are both

the maximum and minimum values of some function of the state variables as they traverse the limit

cycle. Such a bifurcation is known as the Hopf bifurcation.

The next two theorems come from [15]. The next theorem is stated for n = 2. A key requirement

that the given steady state be associated with complex eigenvalues where the real part changes sign
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(e.g. from negative to positive). In popular phrasing, such eigenvalues are said to “cross the real

axis”.

Theorem 2.4.7: (The Hopf-Bifurcation Theorem for the case n = 2.)

Consider the system of two differential equations which contains a parameter β,

dx1

dt
= f1(x1, x2, β)

dx2

dt
= f2(x1, x2, β)

where f1 and f2 are continuous and have partial derivatives. Suppose that for each value of β the

equations admit a steady state whose value may depend on β, that is (x̄(β), ȳ(β)) , and consider

the Jacobian matrix evaluated at the parameter-dependent steady state,

J (β) =

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2


(x̄,ȳ)

Suppose eigenvalues of this matrix are λ(β) = a(β)± b(β)i. Also suppose that there is a value β∗,

called the bifurcation value, such that a(β∗) = 0, b(β∗) ̸= 0, and as β is varied through β∗, the real

parts of the eigenvalues change signs ( dadβ ̸= 0 at β = β∗). Then the following three are possible,

(i) At the value β = β∗ a center is created at the steady state, and thus infinitely many neutrally

stable concentric closed orbits surround the point (x̄, ȳ) .

(ii) There is a range of β values such that β∗ < β < c for which a single closed orbit (a limit

cycle) surrounds (x̄, ȳ) . As β is varied, the diameter of the limit cycle changes in proportion to

|β − β∗|1/2 . There are no other closed orbits near (x̄, ȳ) . Since the limit cycle exists for β values
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above β∗, this phenomenon is known as a supercritical bifurcation.

(iii) There is a range of values such that d < β < β∗ for which a conclusion similar to case (ii)

holds, and it is called a subcritical bifurcation.

One of the attractive features of the Hopf bifurcation theorem is that it applies to larger sys-

tems of equations. This makes it somewhat more applicable than the Poincare-Bendixson theorem,

which holds only for the case n=2.

Theorem 2.4.8: (The Hopf-Bifurcation Theorem for the case n > 2.)

Consider a system of n variables as in (1), with the appropriate smoothness assumptions on fi that

are functions of the variables and a parameter β. If x̄ is an equilibrium point of this system and

linearization about this fixed point yields n eigenvalues,

λ1, λ2, ..., λn−2, a+ bi, a− bi

where eigenvalues λ1 through λn−2 have negative real parts and exactly λn−1, λn are complex

conjugates that cross the imaginary axis when β varies through some critical value, then there exist

limit-cycle solutions.

Example 2.4.9: Consider the system:

dx

dt
= y

dy

dt
= −y3 + βy − x.

As β goes from negative to positive, the system goes from a spiral sink to a stable limit cycle, as

seen in figures (12) and (13).

30



Figure 12: Hopf Bifurcation Example Phase Diagrams where β = −1 to β = 0 to β = 1
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Figure 13: Hopf Bifurcation Diagram

2.5 Nondimensionalization

Some systems have parameters, which affect the behavior of the system in various ways. Since

these parameters are unknown, we would like to limit the number of parameters in our model.

Thus we nondimensionalize the model. First we scale our current variables in relation to our cur-

rent parameters. Then we adjust our time variable. Finally, we choose new parameters to replace

the ones currently in the model. The qualitative behavior of the system remains the same after

nondimensionalization and it reduces the complexity of studying the model.

Example 2.5.1: Consider this system from [15]:

dN

dt
= (

KmaxC

Kn + C
)N − FN

V

dC

dt
= −α(

KmaxC

Kn + C
)N − FC

V
+

FC0

V
.

Here, N and C are variables and Kmax, F , V , Kn, α, and C0 are parameters. We will want to

reduce the number of parameters to more easily analyze the behavior of the system.
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To nondimensionalize, we use the fact that our variables and time are the product of a scalar

multiple and a unit carrying dimensions. As such:

N = N∗ × N̂

C = C∗ × Ĉ

t = t∗ × τ.

We want the scalar multiple of time and our variables. First we substitute our original variables

and time with the product.

d(N∗N̂)

d(t∗τ)
= (

KmaxC
∗Ĉ

Kn + C∗Ĉ
)N∗N̂ − FN∗N̂

V

d(C∗Ĉ)

d(t∗τ)
= −α(

KmaxC
∗Ĉ

Kn + C∗Ĉ
)N − FC∗Ĉ

V
+

FC0

V
.

Next we multiply both sides by τ , divide by N̂ and Ĉ, and group constants together. Thus we get

dN∗

dt∗
= τKmax(

C∗

Kn/Ĉ + C∗
)N∗ − τFN∗

V

dC∗

dt∗
= (

−ατKmaxN̂

Ĉ
)(

C∗

Kn/Ĉ + C∗
)N∗ − τFC∗

V
+

τFC0

V Ĉ
.

At this stage, we determine which values for τ , N̂ , and Ĉ would best simplify the model. In this

example we choose

τ =
V

F
, Ĉ = Kn, N̂ =

Kn

ατKmax
,
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and we get

dN∗

dt∗
= α1(

C∗

1 + C∗ )N
∗ −N∗

dC∗

dt∗
= −(

C∗

1 + C∗ )N
∗ − C∗ + α2.

where

α1 = τKmax =
V Kmax

F

α2 =
τFC0

V Ĉ
=

C0

Kn
.

Now we have a system of equations with two parameters instead of six, which is much easier to

analyze. After this, we usually drop the * to simplify writing the equations. We use these results

to aid in our analysis of the models presented in the following two chapters.
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3 Mathematical Model of Indirect Mutualism

Mutualism means the relations in which two or more species benefit from their relationship. To

develop our model of mutualism, we will be using the basic Lotka-Volterra model [10] and modifying

it to include two prey species that affect each other in mutualism. The standard Lotka-Volterra

system of equations is

dx

dt
= (a− by)x

dy

dt
= (cx− d)y.

The parameters a, b, c, and d are assumed to be non-negative. The first equation represents the

change in population of the prey species. It is increased by the population available to reproduce, as

well as its ability, represented by parameter a. It is decreased by the amount of prey hunted by the

predator species, which is limited by the amount of prey that can be hunted. This is also adjusted

by the ability of the predator to hunt the prey, represented by parameter b. The second equation

represents the change in population of the predator species. It is increased by the amount by the

amount of prey that can be hunted and the amount of predators that can hunt and reproduce. The

hunting and reproductive ability of the predator is represented by the parameter c. It is decreased

by the natural death rate of the predator, which is parameter d. This system does not represent

the death rate of prey by natural causes.

Next we will account for the prey’s carrying capacity with another term as

dx

dt
= ax(1− x

N
)− bxy

dy

dt
= (cx− d)y,
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where N is the carrying capacity. When the prey population is lower than the carrying capacity,

the (1− x
N ) term is positive, so the prey population will always grow if there is no predator. When

the prey population is higher than the carrying capacity, the (1− x
N ) term is negative, so the prey

population will shrink, even without the predator.

We can further extend this model to account for two prey species and one predator species:

dx

dt
= ax(1− x

N
)− bxz

dy

dt
= cy(1− y

M
)− dyz (10)

dz

dt
= −ex+ fxz + gyz.

Here, x and y are the prey species and z is the predator species. The parameters a and c are

the growth rates of x and y, respectively. Meanwhile, the parameters b and d are their respective

death rates. The parameter e is the predator’s death rate while f and g are the growth rates of

the predator due to the respective prey species. Finally, N is the carrying capacity of the x species

while M is the carrying capacity of the y species.

Now we wish to consider mutualism among two prey species. It is now generally accepted that

symbiotic organisms influence the carrying capacities of each other, hence the carrying capacities

of symbiotes are not fixed quantities, but should be considered as functions of population size.

To model mutualism among prey species, we will be incorporating two expressions studied in [1],

corresponding to indirect and direct interactions. The system of equations for symbiotic species

with indirect interactions (defined as “without direct interaction” in [1]) is
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dx

dt
= x(1− x

1 + ay
)

dy

dt
= y(1− y

1 + bx
),

where x and y are the interacting species and a and b are parameters showing the type and strength

of their symbiosis. In the following chapter, we suggest a mathematical foundation of this idea to

an extended three species model and investigate its dynamics.

3.1 Model Development

In this chapter, we introduce a mathematical model of symbiosis between three different species by

taking into account that the carrying capacity of the X species is a function of the Y species and

vice versa. Our model with indirect interaction is

dX

dt
= AX(1− X

1 + µY
)−BXZ

dY

dt
= CY (1− Y

1 + νX
)−DY Z (11)

dZ

dt
= −EZ + FXZ +GY Z,

where X and Y are the symbiotic prey species while Z is the predator species. The parameters A

and C are the natural birth rates of their respective prey species. The parameters B and D are

the death rates due to predation. The parameter E is the natural death rate of the predator. The

parameters F and G are the respective growth rates of the predator due to the respective prey

species. All of these parameters are positive. The parameters µ and ν show how much symbiosis
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affect the respective species’ carrying capacity. Since we are only considering mutualism in this

model, µ and ν are nonnegative.

Before proceeding with analysis, some scaling needs to take place so as to be better able to under-

stand how the parameters affect the dynamics. To this end, the variables are scaled as,

x = X, y = Y, z =
B

A
Z, tnew =

told
A

.

Thus we get

dx

d( t
A )

= Ax(1− x

1 + µy
)−Bx

Az

B

dy

d( t
A )

= Cy(1− y

1 + νx
)−Dy

Az

B
(12)

d(Az
B )

d( t
A )

= −E
Az

B
+ Fx

Az

B
+Gy

Az

B
,

which becomes

dx

dt
= x(1− x

1 + µy
)− xz

dy

dt
=

C

A
y(1− y

1 + νx
)−Dy

z

B
(13)

dz

dt
= −E

z

A
+ Fx

z

A
+Gy

z

A
,

We also use the following parameters:

a =
C

A
, b =

D

B
, c =

E

A
, d =

F

A
, e =

G

A
,µ = α, ν = β.

38



Thus we get our nondimensionalized model:

dx

dt
= x(1− x

1 + αy
)− xz

dy

dt
= ay(1− y

1 + βx
)− byz (14)

dz

dt
= −cz + dxz + eyz.

We still have seven parameters, which is difficult to analyze quantitatively, so we will make a few

assumptions to simplify our model even further. First, we will assume the x and y species have the

same death rate, causing our b parameter to be 1. Second, we will assume the two prey have the

same beneficial effect on the predator population, causing d = e. Finally, we assume the prey have

the same symbiotic effect on each other, meaning α = β. Thus we have four parameters in our final

model:

dx

dt
= x(1− x

1 + αy
)− xz

dy

dt
= ay(1− y

1 + αx
)− yz (15)

dz

dt
= −cz + dz(x+ y).

Note that our parameters a, c, d, and α retain the property that they are always positive. Addition-

ally, for biological study, the region of interest in R3 remains the positive octant H = {(x, y, z) ∈

R3|x > 0, y > 0, z > 0}.
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3.2 Steady States, Stability Analysis, and Bifurcations

There are seven steady states of equation (15):

(1) Complete extinction, (0, 0, 0)

(2) Prey x only, (1,0,0)

(3) Prey y only, (0,1,0)

(4) Prey x and predator, ( cd , 0,
d−c
d )

(5) Prey y and predator, (0, c
d ,

a(d−c)
d )

(6) Prey only, ( 1
1−α ,

1
1−α ,0)

(7) Coexistence, (x̄,ȳ,z̄) is the solution to the system of equations:

1− x̄

1 + αȳ
= z̄

a(1− ȳ

1 + αx̄
) = z̄ (16)

ȳ =
c− dx̄

d
.

More specifically, when a ̸= 1 the solutions are:

x̄ =
d(a+ 1) + cα(2a+ α(a− 1))∓ q

2dα(α+ 1)(a− 1)

ȳ =
d(a+ 1) + cα(2 + α(1− a))∓ q

2dα(α+ 1)(1− a)

z̄ =
(a+ 1)(d+ 2dα+ cα2)∓ q

2α(2d+ cα)
,
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where

q =
√
4α(1− a)(a(c− d) + d)(α+ 1)(d+ cα) + (d(a+ 1) + cα(2a+ α(a− 1))2. (17)

We denote these steady states as (x̄−, ȳ−, z̄−) and (x̄+, ȳ+, z̄+), corresponding to the respective

signs of q. When a = 1, the coexistence steady state is ( c
2d ,

c
2d ,

2d+cα−c
2d+cα ), which is biologically

significant when 2d
c + α > 1.

Lemma 3.2.1: For system (16) with positive parameters α, a, c, d and a ̸= 1, of the two steady

states (x̄−, ȳ−, z̄−) and (x̄+, ȳ+, z̄+), there is only one possible positive coexistence steady state,

(x̄−, ȳ−, z̄−) if and only if one of the following set of conditions is met.

i. a ̸= 1 and d < c < 2d;

ii. a ̸= 1, c > 2d, and 2d
c + α > 1;

iii. a < 1, a+ c
d > 1 and c < d;

iv. 1 < a < d
d−c and c < d.

Proof: To show this is true, we must first show the steady states are real. To do this, we must show

q (equation 17) is real. We can rewrite the expression under the radical of q as

d2(a+ 1)2 + 8acdα+ 4ac2α2 + α(4d2(α+ 1) + 2αcd+ 4cdα2 + c2α3)(a− 1)2,

which is greater than zero due to squared terms and our parameters being positive, meaning q is

real.

We will start with the z̄ terms. The term z̄+ is obviously positive. For the term z̄−, we know the

denominator is always positive. We can multiply both numerator and denominator by the conjugate

of the numerator. We know the conjugate is positive, so the sign of the numerator is preserved.

Doing so, we get the numerator to be 4aα(α+ 1)(2d+ cα)(2d+ cα− c).
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Thus, the numerator is positive when 2d+ cα > c, which can be rewritten as 2d
c + α > 1.

Now we will look at the x̄+ and ȳ+ terms. The numerator of x̄+ is obviously positive when a > 1.

When a < 1, we do not know the sign of d(a + 1) + cα(2a + α(a − 1)) = r. If r ≥ 0, then the

numerator is obviously positive.

If r < 0, then q−r > 0, since q is positive. To show q+r > 0, we can show (q+r)(q−r) = q2−r2 > 0.

q2 − r2 = 4α(1 − a)(ac + d(1 − a))(α + 1)(d + cα) > 0, since a < 1. Thus the numerator of x̄+ is

always positive.

Similarly, the numerator of ȳ+ is positive when a < 1. When a > 1, if d(a+1)+cα(2+α(1−a)) ≥ 0,

the numerator is still positive. If d(a + 1) + cα(2 + α(1 − a)) < 0, then by similar reasoning as

above, we can write q2− (d(a+1)+ cα(2+α(1−a)))2 = 4α(a−1)(c+d(a−1))(α+1)(d+ cα) > 0.

This is the case since a > 1, so the numerator of ȳ+ is always positive.

Therefore, when a < 1, x̄+ < 0 and ȳ+ > 0. However, when a > 1, x̄+ > 0 and ȳ+ < 0. Thus

(x̄+, ȳ+, z̄+) is not biologically significant.

Since we know the conjugates of the numerators of x̄− and ȳ− are always positive, we can use

that to find conditions for when x̄− and ȳ− are positive. The numerator of x̄− multiplied by its

conjugate is 4α(α+ 1)(d+ cα)(a− 1)(a(c− d) + d). The relevant part is (a− 1)(a(c− d) + d).

The numerator of ȳ− multiplied by its conjugate is −4α(α + 1)(d+ cα)(a− 1)(c+ d(a− 1)). The

relevant part is −(a− 1)(c+ d(a− 1)).

For x̄− > 0, we must have ac+ d > ad. For ȳ− > 0, we must have c+ ad > d. For z̄− > 0, we need

to have 2d + cα > c. Thus for the steady state to exist, we need ranges of parameter values that

satisfy all three conditions.

If a < 1, x̄− is always positive. Then, if d < c < 2d, ȳ− and z̄− will also be positive. However, if

c > 2d, ȳ− is still positive, but we also need 2d + cα > c for z̄− to be positive. If c < d, then z̄−
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will be positive, but we also need c+ ad > d for ȳ− to be positive.

If a > 1, ȳ− is always positive. Like above, if d < c < 2d, x̄− and z̄− will also be positive. However,

if c > 2d, x̄− is still positive, but we also need 2d+ cα > c for z̄− to be positive. If c < d, then then

z̄− will be positive, but we also need a < −d
c−d = d

d−c for x̄− to be positive.

Thus we have shown the conditions for which (x̄−, ȳ−, z̄−) is positive. □

The linear stability of these steady states is determined by considering the eigenvalues of the

Jacobian matrix,

J1(x, y, z) =


1− 2x

1+αy − z αx2

(1+αy)2 −x

aαy2

(1+αx)2 a− 2ay
1+αx − z −y

dz dz −c+ d(x+ y)

 , (18)

evaluated at each of these steady states.

3.2.1 Complete Extinction: x = 0, y = 0, z = 0

When the Jacobian matrix (18) is evaluated at x = 0, y = 0, and z = 0:

J1(0, 0, 0) =


1 0 0

0 a 0

0 0 −c

.
Since this is a diagonal matrix, the eigenvalues are 1, a, and −c. This means the origin is always

unstable. Biologically, this means that assuming there all three species at the start, there will never

be a time when all three species go extinct.
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3.2.2 The prey x only: x = 1, y = 0, z = 0

When the Jacobian matrix (18) is evaluated at x = 1, y = 0, and z = 0:

J1(1, 0, 0) =


−1 α −1

0 a 0

0 0 −c+ d

.
Since this is an upper triangular matrix, the eigenvalues are −1, a, and d− c. This steady state is

always unstable.

3.2.3 The prey y only: x = 0, y = 1, z = 0

When the Jacobian matrix (18) is evaluated at the steady state x = 0, y = 1, and z = 0

J1(0, 1, 0) =


1 0 0

aα −a −1

0 0 −c+ d

.
The characteristic equation for the Jacobian matrix is

−((−1 + λ)(a+ λ)(c− d+ λ)) = 0 (19)

Thus the eigenvalues are 1,−a, and d− c. This point is always unstable.

3.2.4 Prey x and Predator: x = c
d , y = 0, z = d−c

d

When the Jacobian matrix (18) is evaluated at the steady state x = c
d , y = 0, and z = d−c

d :

J1(
c
d , 0,

d−c
d ) =


− c

d α c2

d2 − c
d

0 a− d−c
d 0

d− c d− c 0

.
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Figure 14: Prey x and predator only steady state

The characteristic equation for the Jacobian is

(a− d− c

d
− λ)(c− c2

d
+

cλ

d
+ λ2) = 0. (20)

The eigenvalues are c−d+ad
d and

−c∓
√

c(c+4cd−4d2)

2d . For this steady state to be biologically signifi-

cant, d > c. Thus 4cd − 4d2 is negative and the real part of
−c∓

√
c(c+4cd−4d2)

2d is always negative.

This steady state is stable when a+ c
d < 1.

The plot of the trajectory in Figure (14) for x, y, and z shows that each species travels directly

towards its steady state with initial conditions x(0) = y(0) = z(0) = 0.5 and the parameters are

a = d = 0.25, α = 1, and c = 0.15.

Biologically, this makes sense. If the prey y cannot reproduce faster than the predator, then it will

go extinct.
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Figure 15: Prey y and predator only steady state

3.2.5 Prey y and Predator: x = 0, y = c
d , z = a(d−c)

d

When the Jacobian matrix (18) is evaluated at the steady state x = 0, y = c
d , and z = a(d−c)

d :

J1(0,
c
d ,

a(d−c)
d ) =


1− a(d−c)

d 0 0

aα c2

d2 −a c
d − c

d

a(d− c) a(d− c) 0

.
The characteristic equation for the Jacobian is

(1− a(d− c)

d
− λ)(ac− ac2

d
+

acλ

d
+ λ2) = 0. (21)

The eigenvalues are ac+d−ad
d and

−ac∓
√

ac(ac+4cd−4d2)

2d . For this steady state to be biologically

significant, d > c. Thus 4cd − 4d2 is negative and the real part of
−ac∓

√
ac(ac+4cd−4d2)

2d is always

negative. This steady state is stable when a > d
d−c .

The plot of the trajectory in Figure (15) for x, y, and z shows that each species travels directly

towards its steady state with initial conditions x(0) = y(0) = z(0) = 0.5 and the parameters are

a = 2, d = 0.25, α = 1 and c = 0.1.

Biologically, this means the prey x will go extinct if it cannot reproduce faster than the predator.
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Figure 16: Prey-only steady state

Note that both mathematically and logically, the “prey x and predator only” steady state and “prey

y and predator only” steady state cannot both be stable at the same time. That is because a < 1

for the former to be stable while a > 1 for latter.

3.2.6 The prey x and y only: x = 1
1−α , y = 1

1−α , z = 0

When the Jacobian matrix (18) is evaluated at the steady state x = 1
1−α , y = 1

1−α , and z = 0:

J1(
1

1−α ,
1

1−α , 0) =


−1 α − 1

1−α

aα −a − 1
1−α

0 0 −c+ 2d
1−α

.
The characteristic equation for the Jacobian is

(2d+ c(α− 1) + (α− 1)λ)(a(−1 + α2 − λ)− λ(1− λ)) = 0 (22)

The eigenvalues of the matrix are 2d+cα−c
1−α and

−(a+1)∓
√

(a−1)2+4aα2

2 . To be biologically significant,

α < 1. The conjugate eigenvalues are always negative and real. The steady state will be stable

when 2d < c(1− α) and unstable otherwise.
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The plot of the trajectory in Figure (16) for x, y, and z shows that each species travels directly

towards its steady state with initial conditions x(0) = y(0) = z(0) = 0.5 and the parameters are

a = d = 0.25, α = 0.2 and c = 0.65.

Biologically, this means that if the predator dies faster than it can grow from food supply, it will

go extinct.

3.2.7 The Coexistence Steady State Behavior

Theorem 3.2.2: The coexistence steady state (x̄, ȳ, z̄) of the system (15) is always stable when it

is biologically significant.

Proof: The Jacobian matrix (18) evaluated at (x̄, ȳ, z̄) is given as follows:

J1(x̄, ȳ, z̄) =


1− 2x̄

1+αȳ − z̄ αx̄2

(1+αȳ)2 −x

aαȳ2

(1+αx̄)2 a− 2aȳ
1+αx̄ − z̄ −ȳ

dz̄ dz̄ −c+ d(x̄+ ȳ)

.
which, in turn, yields a cubic characteristic polynomial equation in λ, given by

P (λ) = λ3 + a1λ
2 + a2λ+ a3 = 0, (23)

where the coefficients a1, a2, and a3 are expressed in terms of parameters of (15) as

a1 = 2z̄ +
2aȳ

1 + αx̄
+

2x̄

1 + αȳ
+ c− d(x̄+ ȳ)− a− 1
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a2 = a− c− ac+ d(x̄+ ȳ) + ad(x̄+ ȳ)− z̄ − az̄ + 2cz̄ + 2d(x̄+ ȳ)z̄ + z̄2

+
2acȳ + 2aȳz̄ − 2aȳ − 2adȳ(x̄+ ȳ)

1 + αx̄
+

2cx̄+ 2x̄z̄ − 2ax̄− 2dx̄(x̄+ ȳ)

1 + αȳ

+
4ax̄ȳ

(1 + αx̄)(1 + αȳ)
− ax̄2ȳ2α2

(1 + αx̄)2(1 + αȳ)2

a3 = ac−ad(x̄+ ȳ)−cz̄−acz̄−adx̄z̄−dȳz̄+d(x̄+ ȳ)z̄+ad(x̄+ ȳ)z̄+cz̄2+dx̄2z̄2+dȳz̄2−d(x̄+ ȳ)z̄

+
2aȳd(x̄+ ȳ) + 2acȳz̄ + 2adx̄ȳ2 − 2acȳ − 2ad(x̄+ ȳ)ȳz̄

1 + αx̄

+
2ad(x̄+ ȳ)x̄+ 2cx̄z̄ + 2dx̄ȳz̄ − 2acx̄− 2d(x̄+ ȳ)x̄z̄

1 + αȳ

+
adαx̄ȳ2z̄

(1 + αx̄)2
+

dαx̄2ȳz̄

(1 + αȳ)2
+

4acx̄ȳ − 4adx̄ȳ(x̄+ ȳ)

(1 + αx̄)(1 + αȳ)
.

Using (16), we can simplify the terms into

a1 =
x̄(1 + αx̄) + aȳ(1 + αȳ)

(1 + αx̄)(1 + αȳ)

a2 =
dx̄z̄ + dȳz̄(1 + αx̄)2(1 + αȳ)2 + ax̄ȳ + aαx̄2ȳ + aαx̄ȳ2

(1 + αx̄)2(1 + αȳ)2

a3 =
dx̄ȳz̄(aαȳ(1 + αȳ)2 + a(1 + αx̄)(1 + αȳ)2 + αx̄(1 + αx̄)2 + (1 + αȳ)(1 + αx̄)2

(1 + αx̄)2(1 + αȳ)2

By the Routh-Hurwitz criteria, (x̄, ȳ, z̄) will be stable if a1 > 0, a3 > 0, and a1a2 > a3. Since

x̄, ȳ, z̄, and all parameters are positive, it is clear that a1 > 0 and a3 > 0. The last criterion

a1a2−a3 = dx̄2z̄(1+αx̄)3(1+αȳ)+a2x̄ȳ2(1+αȳ)(1+αx̄+αȳ)+aȳ(1+αx̄)(αx̄3+x̄2(1+αȳ+dȳz̄(1+αȳ)3),
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Figure 17: Time plot of the coexistence steady state
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Figure 18: Phase Diagram of the coexistence steady state

is greater than zero, so a1a2 > a3. Thus (x̄, ȳ, z̄) is always stable if it is biologically significant. □

A plot of the trajectory in Figure (17) for x, y, and z shows that each species travels directly

towards its steady state with initial conditions x(0) = y(0) = z(0) = 0.5 and the parameters are

a = d = 0.25, α = 1 and c = 0.6.

In Figure (18) is a phase diagram of z vs. x and y, where the black curve is the x population and

the red curve is the y population.

Figure (19) is a 3D phase diagram of z vs. x vs. y.
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Figure 19: 3D Phase Diagram of the coexistence steady state

Biologically, this means that if the predator death rate is too low, there will be too many predators,

causing one of the prey species to go extinct. As the predator death increases, there are less prey

that will be killed, so all three species will stay around. However, the prey populations will not

explode in growth due to the continual presence of the predator.

3.2.8 Bifurcation Analysis

We now look at the steady states of (15) as a collective whole with bifurcation analysis. The first

diagram in Figure (20) is the bifurcation diagram of the x population vs the c parameter. The

other parameters are set to a = d = 0.25 and α = 1. As with all of these bifurcations diagrams, the

red line is stable while the black line is unstable. From bottom to top according to starting position

along the left axis, the corresponding steady states are the prey x and predator only steady state,

the coexistence steady state, and the x only steady state. The transcritical bifurcation occurs at

c = 0.1875.

The second diagram in Figure (21) is the bifurcation diagram of the y population vs the c pa-

rameter. Similar to the first diagram, the other parameters are set to a = d = 0.25 and α = 1.
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Figure 20: Bifurcation diagram of the x population vs the c parameter

- 1

- 0. 5

0

0. 5

1

1. 5

2

2. 5

3

Y

0 0. 2 0. 4 0. 6 0. 8
c

Figure 21: Bifurcation diagram of the y population vs the c parameter.

From bottom to top according to starting position along the left axis, the first corresponding steady

states is the coexistence steady state. Next is the prey x and predator only steady state and the x

only steady state along y = 0. Since these are the same set parameters, the transcritical bifurcation

occurs at c = 0.1875.

The third diagram in Figure (22) is the bifurcation diagram of the z population vs the α parame-

ter. The other parameters are set to a = d = 0.25 and c = 0.65. The two steady states displayed

are the prey-only steady state and the coexistence steady state. There is a transcritical bifurcation
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Figure 22: Bifurcation diagram of the z population vs the α parameter.

at α = 0.2308. When α < 0.2308, coexistence steady state is unstable while the prey-only steady

state is stable. When α > 0.2308, the coexistence steady state is stable while the prey-only steady

state is unstable. The prey-only steady state disappears once α = 1.

We notice many similarities between this model and the next model, as some major differences.
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4 Mathematical Model of Direct Symbiosis

Considering direct interaction among symbiotic prey species, we derive our model in the same way

as our indirect interaction model, except that we will use the direct interaction term (defined as

“mutual interactions” in [1]. While “asymmetrical interactions” is a third term in [1] and would fall

under our phrasing of “direct interactions”, unequal symbiosis is outside the scope of our research,

so the term and its specific biological implications will be ignored for this paper.) The system of

equations for symbiotic species with direct interactions is

dx

dt
= x(1− x

1 + axy
)

dy

dt
= y(1− y

1 + bxy
),

where x and y are the interacting species and a and b are parameters showing the type and strength

of their symbiosis [1].

4.1 Model Development

We will now use the direct interaction term. Our model with direct interaction is

dX

dt
= AX(1− X

1 + µXY
)−BXZ

dY

dt
= CY (1− Y

1 + νXY
)−DY Z (24)

dZ

dt
= −EZ + FXZ +GY Z.
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X and Y are the symbiotic prey species while Z is the predator species. The parameters A and C

are the natural growth rates of their respective prey species. The parameters B and D are the death

rates due to predation. The parameter E is the natural death rate of the predator. The parameters

F and G are the respective growth rates of the predator due to the respective prey species. All

of these parameters are positive. The parameters µ and ν show how much symbiosis affect the

respective species’ carrying capacity. Since we are only considering mutualism and commensalism

in this model, µ and ν are nonnegative.

Before proceeding with analysis, some scaling needs to take place so as to be better able to under-

stand how the parameters affect the dynamics. To this end, the variables are scaled as,

x = X, y = Y, z =
B

A
Z, tnew = atold.

We also use the following parameters:

a =
C

A
, b =

D

B
, c =

E

A
, d =

F

A
, e =

G

A
.

With these changes, Equations (24) become

dx

dt
= x(1− x

1 + αxy
)− xz

dy

dt
= ay(1− y

1 + βxy
)− byz (25)

dz

dt
= −cz + dxz + eyz.
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We still have seven parameters, so we will make the same three assumptions as our previous model

(15). Thus we have four parameters in our final model:

dx

dt
= x(1− x

1 + αxy
)− xz

dy

dt
= ay(1− y

1 + αxy
)− yz (26)

dz

dt
= −cz + dz(x+ y).

Note that our parameters a, c, d, and α retain the property that they are always positive. Addition-

ally, for biological study, the region of interest in R3 remains the positive octant H = {(x, y, z) ∈

R3|x > 0, y > 0, z > 0}.

4.2 Steady States, Stability Analysis, and Bifurcations

There are eight steady states of equation (26):

(1) Complete extinction, (0, 0, 0)

(2) Prey x only, (1, 0, 0)

(3) Prey y only, (0, 1, 0)

(4) Prey x and predator, ( cd , 0,
d−c
d )

(5) Prey y and predator, (0, c
d ,

a(d−c)
d )

(6) Prey only: the two steady states are (1∓
√
1−4α
2α , 1∓

√
1−4α
2α , 0)

(7) Coexistence, (x̄, ȳ, z̄) is the solution to the system of equations:

1− x̄

1 + αx̄ȳ
= z̄
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a(1− ȳ

1 + αx̄ȳ
) = z̄ (27)

ȳ =
c− dx̄

d
.

More specifically, when a ̸= 1, the coexistence steady state is:

x̄ =
d(a+ 1) + cα(a− 1)∓ q

2dα(a− 1)

ȳ =
d(a+ 1) + cα(1− a)∓ q

2dα(1− a)

z̄ =
a((4d2 + αc2 − cd)(a+ 1)∓ cq)

2(d2(a+ 1)2 + aαc2)

where

q =
√
4αd(a− 1)(c+ d(a− 1)) + (d(a+ 1) + cα(1− a))2. (28)

We denote these steady states as (x̄−, ȳ−, z̄−) and (x̄+, ȳ+, z̄+), corresponding to the respective

signs of q.

When a = 1, the coexistence steady state is ( c
2d ,

c
2d ,

4d2+c2α−2cd
4d2+c2α ), which is biologically significant

when α > 2d(c−2d)
c2 .

Lemma 4.2.1: For system (26) with positive parameters and a ̸= 1, of the two steady states

(x̄−, ȳ−, z̄−) and (x̄+, ȳ+, z̄+), there is only one possible positive coexistence steady state, (x̄−, ȳ−, z̄−),

which exists if and only if one of the following set of conditions is met:

i. a ̸= 1 and d < c < 2d;

ii. a ̸= 1, c > 2d, and α > 2d(c−2d)
c2 ;

iii. a < 1, c < d, and a+ c
d > 1;

iv. 1 < a < d
d−c and c < d.
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Proof: To show this is true, we must first show the steady states are real. To do this, we must show

q is real (28). We can rewrite the expression under the radical of q as

(4d2α+ (d− cα)2)(a− 1)2 + 4ad2,

which is greater than zero due to squared terms and our parameters being positive, meaning q is

real.

Next we will show the numerators of (x̄+, ȳ+, z̄+) are always positive. When a > 1, the numerator of

x̄+ is obviously positive. If a < 1, there are two cases. If d(a+1)+cα(a−1) ≥ 0 then the numerator

of x̄+ is still positive. If d(a+1)+ cα(a− 1) < 0, we need to show q2 − (d(a+1)+ cα(a− 1))2 > 0,

as explained in Lemma 3.2.1.

q2 − (d(a+ 1) + cα(a− 1))2 = 4dα(a− 1)(c+ d(a− 1)), which is positive since we assume a > 1.

Similarly, when a < 1, the numerator of ȳ+ is positive. If a > 1, there are two cases. If

d(a+ 1) + cα(1− a) ≥ 0 then the numerator of ȳ+ is still positive. If not, then

q2 − (d(a+1)+ cα(1− a))2 = 4dα(a− 1)(c+ d(1− a)) > 0, since a < 1. Thus the numerator of ȳ+

is always positive.

For the numerator of z̄+, when 4d2 + αc2 > cd, the numerator of z̄+. If 4d2 + αc2 < cd,

c2q2 − ((4d2 + αc2 − cd)(a + 1))2 = 4(2cd − 4d2 − c2α)(d2(a + 1)2 + ac2α) > 0, due to our as-

sumption. Thus the numerator of z̄+ is always positive.

Note that when a < 1, x̄+ < 0 and ȳ+ > 0. However, when a > 1, x̄+ > 0 and ȳ+ < 0. Thus

(x̄+, ȳ+, z̄+) is not biologically significant.

Since we know the conjugates of the numerators of x̄−, ȳ−, and z̄− are always positive, we can

use them to find the conditions for when (x̄−, ȳ−, z̄−) is positive by multiplying both numerator

and denominator by the respective conjugate. The numerator of x̄− multiplied by its conjugate is

4dα(a− 1)(a(c− d) + d). The relevant part is (a− 1)(a(c− d) + d).
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The numerator of ȳ− multiplied by its conjugate is 4dα(1− a)(c+ d(a− 1)). The relevant part is

(1− a)(c+ d(a− 1)).

The numerator of z̄− multiplied by its conjugate is 4a2(−2cd+4d2 + c2α)((a+1)2d2 + ac2α). The

relevant part is (−2cd+ 4d2 + c2α).

z̄− is positive when 4d2 + c2α > 2cd, which is the same as α > 2d(c−2d)
c2 . This condition is unneces-

sary if c < 2d.

If a < 1, the numerator of x̄− needs to be negative and the numerator of ȳ− needs to be positive.

Thus we need ac + d(1 − a) > 0 and c + ad − d > 0, the second inequality requiring additional

conditions. If c < d, then c + ad > d, which is the same as a + c
d > 1. If d < c < 2d, no other

conditions are necessary. If c > 2d, then α > 2d(c−2d)
c2 is needed to make z̄− positive.

If a > 1, the numerator of x̄− needs to be positive and the numerator of ȳ− needs to be negative.

Thus we need ac+d−ad > 0 and c+d(a−1) > 0, the first inequality requiring additional conditions.

If c < d, then a(c − d) + d > 0, which is the same as a < d
d−c . If d < c < 2d, no other conditions

are necessary. If c > 2d, then α > 2d(c−2d)
c2 is needed to make z̄− positive.

Thus we have shown the conditions for which (x̄−, ȳ−, z̄−) is positive. □

Like our first model, if the initial conditions have a species with zero population, that species

will never change and we can effectively remove that equation from the model under such con-

ditions. Thus we can analyze different cases where a species is included or not by adjusting the

Jacobian matrix.

The linear stability of these steady states is determined by considering the eigenvalues of the Jaco-

bian matrix,
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J2(x, y, z) =


1− x(2+αxy)

(1+αxy)2 − z αx3

(1+αxy)2 −x

aαy3

(1+αxy)2 a− ay(2+αxy)
(1+αxy)2 − z −y

dz dz −c+ d(x+ y)

 , (29)

evaluated at each of these steady states.

4.2.1 Complete Extinction: x = 0, y = 0, z = 0

When the Jacobian matrix (29) is evaluated at x = 0, y = 0, and z = 0:

J2(0, 0, 0) =


1 0 0

0 a 0

0 0 −c

.
Since this is a diagonal matrix, the eigenvalues are 1, a, and −c. For the entire system, this means

the origin is unstable.

4.2.2 The prey x only: x = 1, y = 0, z = 0

When the Jacobian matrix (29) is evaluated at x = 1, y = 0, and z = 0:

J2(1, 0, 0) =


−1 α −1

0 a 0

0 0 −c+ d

.
Since this is an upper triangular matrix, the eigenvalues are −1, a, and d−c. This point is unstable.
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4.2.3 The prey y only: x = 0, y = 1, z = 0

When the Jacobian matrix (29) is evaluated at the steady state x = 0, y = 1, and z = 0:

J2(0, 1, 0) =


1 0 0

aα −a −1

0 0 −c+ d

.
The characteristic equation for the Jacobian matrix is

−((−1 + λ)(a+ λ)(c− d+ λ)) = 0. (30)

Thus the eigenvalues are 1,−a, and d− c. This point is unstable.

4.2.4 Prey x and Predator: x = c
d , y = 0, z = d−c

d

When the Jacobian matrix (29) is evaluated at the steady state x = c
d , y = 0, and z = d−c

d :

J2(
c
d , 0,

d−c
d ) =


− c

d α c3

d3 − c
d

0 a− d−c
d 0

d− c d− c 0

.
The characteristic equation for the Jacobian matrix is

(a− d− c

d
− λ)(c− c2

d
+

cλ

d
+ λ2) = 0. (31)

The eigenvalues are c−d+ad
d and

−c∓
√

c(c+4cd−4d2)

2d . For this steady state to be biologically signif-

icant, d > c. Thus 4cd − 4d2 is negative and the real part of
−c∓

√
c(c+4d(c−d)

2d is always negative.

This steady state is stable when a < 1 and a+ c
d < 1.

The plot of the trajectory in Figure (23) for x, y, and z shows that each species travels directly

towards its steady state with initial conditions x(0) = y(0) = z(0) = 0.5 and the parameters are
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Figure 23: Prey x and Predator only steady state time plot

a = d = 0.25, α = 1, and c = 0.15. The bifurcation occurs at the parameter c = 0.1875. Note that

the behavior of the species’ populations matches those found in the corresponding steady state of

the indirect symbiosis model.

Biologically, this makes sense. If the prey y cannot reproduce faster than the predator, then it

will go extinct.

4.2.5 Prey y and Predator: x = 0, y = c
d , z = a(d−c)

d

When the Jacobian matrix (29) is evaluated at the steady state x = 0, y = c
d , and z = a(d−c)

d :

J2(0,
c
d ,

a(d−c)
d ) =


1− a(d−c)

d 0 0

aα c3

d3 −a c
d − c

d

a(d− c) a(d− c) 0

.
The characteristic equation for the Jacobian matrix is

(1− a(d− c)

d
− λ)(ac− ac2

d
+

acλ

d
+ λ2) = 0. (32)
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Figure 24: Prey y and Predator only steady state time plot

The eigenvalues are ac+d−ad
d and

−ac∓
√

ac(ac+4cd−4d2)

2d . For this steady state to be biologically

significant, d > c. Thus 4cd − 4d2 is negative and the real part of
−ac∓

√
ac(ac+4cd−4d2)

2d is always

negative. This steady state is stable when 1 < a and a > d
d−c .

The plot of the trajectory in Figure (24) for x, y, and z shows that each species travels directly

towards its steady state with initial conditions x(0) = y(0) = z(0) = 0.5 and the parameters are

a = 2, d = 0.25, α = 1 and c = 0.1. Note that the behavior of the species’ populations matches

those found in the corresponding steady state of the indirect symbiosis model.

Biologically, this means the prey x will go extinct if it cannot reproduce faster than the predator.

Note that this and the previous steady state cannot both be stable. That is because a < 1 to be

stable in the previous steady state while a > 1 for this steady state to be stable.

4.2.6 The prey x and y only: x = 1∓
√
1−4α
2α , y = 1∓

√
1−4α
2α , z = 0

We will denote the two prey species only steady states as follows: (x̄1, ȳ1, 0) = ( 1−
√
1−4α
2α , 1−

√
1−4α
2α , 0)

and (x̄2, ȳ2, 0) = (1+
√
1−4α
2α , 1+

√
1−4α
2α , 0). Note that for either steady state to be biologically signif-

icant, 0 < α ≤ 0.25. Also, for (x̄1, ȳ1, 0) to be biologically significant, 1 >
√
1− 4α.
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When the Jacobian matrix (29) is evaluated at the steady state x = x̄1, y = ȳ1, and z = 0:

J2(x̄1, ȳ1, 0) =


− 1

x1
αx1 −x1

aαx1 − a
x1

−x1

0 0 d(1−
√
1−4α)−cα
α

.
The characteristic equation for the Jacobian matrix is

(−aαx1 + aα+
a

(1 + αx2
1)

2
+

λ(a+ 1)

1 + αx2
1

+ λ2)(−c+
d(1−

√
1− 4α

α
− λ) = 0. (33)

The eigenvalues are d(1−s)−cα
α and α(a+1)∓r

−(1−s) ,

where r =
√
2a(1− s)− 8aα+ 4aαs+ (a+ 1)2α2 and s =

√
1− 4α.

The second eigenvalue α(a+1)+r
−(1−s) is obviously always negative with our assumptions that the parame-

ters a and α are positive and 1 >
√
1− 4α. The third eigenvalue will be negative when α(a+1) > r,

which is when 2a(1− s− 4α+ 2αs) < 0. Following this, we need to have 1− 4α < s(1− 2α). We

know 1− 4α > 0 and s(1− 2α) > 0, so this is equivalent to the condition (1− 4α)2 < (s(1− 2α))2,

which is the same as 1− 4α < 1− 4α+4α2. This is the same as requiring 0 < 4α2, which is always

true due to our assumptions. Thus, the third eigenvalue is always negative.

This means, (x̄1, ȳ1, 0) is stable when the first eigenvalue is negative, which is when α < 2d(c−2d)
c2 .

Similarly, when the Jacobian matrix (29) is evaluated at the steady state x = x̄2, y = ȳ2, and z = 0:

J2(x̄2, ȳ2, 0) =


− 1

x2
αx2 −x2

aαx2 − a
x2

−x2

0 0 d(1+
√
1−4α)−cα
α

.
The characteristic equation for the Jacobian matrix is

(−aαx2 + aα+
a

(1 + αx2
2)

2
+

λ(a+ 1)

1 + αx2
2

+ λ2)(−c+
d(1−

√
1− 4α

α
− λ) = 0. (34)
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Figure 25: Prey only steady state time plot

The eigenvalues are d(1+s)−cα
α and −α(a+1)∓u

1+s ,

where u =
√
2a(1 + s)− 8aα− 4aαs+ (a+ 1)2α2 and s =

√
1− 4α, as above. We can show the

third eigenvalue, −α(a+1)+u
1+s , is always positive. To do this, we show u > α(a+ 1), which is true if

2a(1 + s)− 8aα− 4aαs = 2a(1 + s− 4α− 2αs) = 2a((1− 4α) + (1− 2α)s) > 0, which it is due to

our assumptions. Thus, (x̄2, ȳ2, 0) is always unstable.

The plot of the trajectory in Figure (25) for x, y, and z shows that each species travels directly

towards its steady state with initial conditions x(0) = y(0) = z(0) = 0.5 and the parameters are

a = d = 0.25, α = 0.2 and c = 0.65.

Biologically, this makes sense as a high predator death rate and low growth rate will lead to the

predator’s extinction. The prey species help each other grow, but not enough for there to be an

abundance of prey for the predator to eat.

4.2.7 The Coexistence Steady State Behavior

As we proved in Lemma 4.2.1, the coexistence steady state exists with certain conditions of param-

eter values.
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Theorem 4.2.2: For the parameter values a, c, d, and α satisfying the conditions in Lemma 4.2.1,

the steady state (x̄, ȳ, z̄) is stable if

(1 + αx̄ȳ − 2aαȳ2)

d(x̄2 + aȳ2)(1 + αx̄ȳ)2
>

(−1 + x̄+ αx̄2ȳ(αȳ − 1))

x̄2(x̄+ aȳ)
.

Proof: First we evaluate the Jacobian matrix (29) at x = x̄, y = ȳ, and z = z̄ to get:

J2(x̄, ȳ, z̄) =


1− 2x̄

1+αx̄ȳ − z̄ αx̄2

(1+αx̄ȳ)2 −x

aαȳ2

(1+αx̄ȳ)2 a− 2aȳ
1+αx̄ȳ − z̄ −ȳ

dz̄ dz̄ −c+ d(x̄+ ȳ)

.
The characteristic equation for the evaluated Jacobian matrix is

λ3 + a1λ
2 + a2λ+ a3 = 0, (35)

where

a1 = 2z̄ +
(x̄+ aȳ)(2 + αx̄ȳ)

(1 + αx̄ȳ)2
+ c − d(x̄ + ȳ) − a − 1 (36)

a2 = a− c− ac+ d(x̄+ ȳ) + ad(x̄+ ȳ)− z̄ − az̄ + 2cz̄ + dx̄z̄ + dȳz̄ − 2d(x̄+ ȳ)z̄ + z̄2

+
(2 + αx̄ȳ)(−ax̄+ cx̄− aȳ + acȳ − dx̄(x̄+ ȳ)− adȳ(x̄+ ȳ) + x̄z̄ + aȳz̄)

(1 + αx̄ȳ)2

+
ax̄ȳ(2 + αx̄ȳ)2 − aα2x̄3ȳ3

(1 + αx̄ȳ)4
(37)
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a3 = ac−ad(x̄+ ȳ)−cz̄−acz̄−adx̄z̄−dȳz̄+d(x̄+ ȳ)z̄+ad(x̄+ ȳ)z̄+cz̄2+dx̄2z̄2+dȳz̄2−d(x̄+ ȳ)z̄

+
2dx̄ȳz̄ + 2adx̄ȳz̄ + dαx̄3ȳz̄ + dαx̄2ȳ2z̄ + adαx̄2ȳ2z̄ + adαx̄ȳ3z̄

(1 + αx̄ȳ)2

+
(2 + αx̄ȳ)(−acx̄− acȳ + adx̄(x̄+ ȳ + adȳ(x̄+ ȳ) + cx̄+ cȳ − dx̄(x̄+ ȳ − dȳ(x̄+ ȳ)

(1 + αx̄ȳ)2

+
adα2x̄3ȳ3(x̄+ ȳ) + acx̄ȳ(2 + αx̄ȳ)2 − acα2x̄3ȳ3 − adx̄ȳ(x̄+ ȳ)(2 + αx̄ȳ)2

(1 + αx̄ȳ)4
.

Using (27), we can simplify the terms to

a1 =
x̄+ aȳ

(1 + αx̄ȳ)2

a2 =
(dx̄z̄ + dȳz̄)(1 + αx̄ȳ)3 + x̄2(1 + αx̄ȳ − 2aαȳ)

(1 + αx̄ȳ)3

a3 =
dx̄ȳz̄(1 + a+ αx̄2 + aαȳ2

(1 + αx̄ȳ)2
.

By the Routh-Hurwitz criterion, (x̄, ȳ, z̄) will be stable if a1 > 0, a3 > 0, and a1a2 > a3. Since

x̄, ȳ, z̄, and all parameters are positive, it is clear that a1 > 0 and a3 > 0.

a1a2 − a3 = x̄2(x̄+ aȳ)(1+αx̄ȳ− 2aαȳ2)− d(x̄2 + aȳ2)(1+αx̄ȳ)2(−1+ x̄+αx̄2ȳ(αȳ− 1)) (38)

By inputting certain test values, it is easy to see there will be conditions for which a1a2 − a3 > 0.

Through algebraic manipulation, we get our condition from the theorem. □

Since this is a complicated expression analytically, to better understand the periodic solution

branch of system (26), we numerically show the time plots and phase portraits of the unstable

periodic solution for different values of c. Figures (26) and (27) show the time plot of the unstable
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Figure 26: x, y, and z vs. t. Initial conditions are x = 0.5, y = 0.5, z = 0.5, a = d = 0.25, α = 1,
and c = 0.55.
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Figure 27: x, y, and z vs. t. The populations have become unstable. Initial conditions are x = 0.5,
y = 0.5, z = 0.5, a = d = 0.25, α = 1, and c = 0.6.
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Figure 28: Phase diagram of z vs. x and y. Initial conditions are x = 0.5, y = 0.5, z = 0.5,
a = d = 0.25, α = 1, and c = 0.55.

periodic solutions for different values of c. Black curve represents the x population, the red curve

represents the y population, and the orange curve represents the z population.

Additionally, figures (28) and (29) show the phase portrait of the unstable periodic solutions for

different values of c. The black curve represents the x-z diagram while the red curve represents the

y-z diagram. The populations are in an unstable limit cycle. As is evident from the figure, it is

clear that as c decreases to c∗, the unstable periodic solution amplitude increases rapidly.

Finally, figures (30) and (31) show the 3D phase portraits of the unstable periodic solutions for

different values of c.

Biologically, this means that as the predator death rate or symbiosis parameter increases, there are

less prey that will be killed, so all three species will stay around. However, after a certain point, the

prey population has uncontrollable growth and causes the system to become unstable. This is likely

due to the stronger impact mutualism has on carrying capacity when there are direct interactions

between the symbiotic species.
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Figure 29: Phase diagram of z vs. x and y. The populations have become unstable. Initial
conditions are x = 0.5, y = 0.5, z = 0.5, a = d = 0.25, α = 1, and c = 0.6.
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Figure 30: 3D phase diagram of z vs. x vs. y. Initial conditions are x = 0.5, y = 0.5, z = 0.5,
a = d = 0.25, α = 1, and c = 0.55.
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Figure 31: 3D phase diagram of z vs. x vs. y. Initial conditions are x = 0.5, y = 0.5, z = 0.5,
a = d = 0.25, α = 1, and c = 0.6.

4.2.8 Bifurcation Analysis

In Figure (32), a bifurcation diagram is shown with c as the bifurcation parameter. The other

parameters are set to a = d = 0.25 and α = 1 The red line corresponds to a stable steady state

while the black line is unstable. For the periodic solutions (which are unstable), both the maximum

and minimum values of x(t) are depicted as circles. It is noteworthy that the amplitude of the

periodic solutions increases as c decreases from the Hopf bifurcation value, c = 0.5462, and the

periodic solution branch forms at some critical value c∗ > 0.

Note, too, the periodic solution branch only occurs over a small range of parameter c. As the

c parameter decreases, the system has another bifurcation at c = 0.1875, which is a transcritical

bifurcation.

In Figure (33), a bifurcation diagram is shown with α as the bifurcation parameter. The other

parameters are set to a = d = 0.25 and c = 0.9. For the periodic solutions, both the maximum and

minimum values of x(t) are depicted as circles. The green circles are stable limit cycles while the

open circles are unstable limit cycles. It is noteworthy that the amplitude of the periodic solutions

increases as α decreases from the Hopf bifurcation value, α = 0.31, and the periodic solution branch
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Figure 32: Bifurcation diagram of the x population vs the c parameter.
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Figure 33: Bifurcation diagram of the x population vs the α parameter.
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Figure 34: Bifurcation diagram of the x population vs the α parameter focused on the limit cycles.

forms at some critical value α∗ > 0.

Note too the saddle node bifurcation that occurs at α = 0.25. This corresponds to the prey only

steady state, which no longer exists when α > 0.25.

Figure (34) shows a bifurcation diagram with the same initial conditions as Figure (33), with a

close-up on the stable and unstable limit cycles. We can see the turning point of the branch that

occurs at α = 0.3119. Before the Hopf bifurcation point we see large, unstable limit cycles. For a

small range of α between the Hopf bifurcation and the turning point, there is a stable limit cycle.
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5 Conclusion

In this thesis, we have examined two models that simulate the effect of indirect and symmetrically

direct symbiosis in a two prey, one predator system. These models can have the alternate inter-

pretation of two mutualistic species withstanding the effect of a predator. This is different from

previously studied models about mutualism and predation, which only have one prey species while

the other mutualistic species is not directly affected by the predator.

For both models, only one species will go extinct at most. They also share a transcritical bifurcation

that occurs as c decreases and the disappearance of the prey only steady state when α increases.

However, as expected, the models made of two different functional responses will have some dif-

ferent behavior. Symbiosis with indirect interactions keeps the system stable, like in the normal

Lotka-Volterra model with carrying capacity. However, symbiosis with direct interaction can lead

to unstable limit cycles once the c or α parameters are sufficiently large. This unbounded growth

shares similarities with other mutualism models.

To start with the study of our model, we have made some assumptions to reduce the amount of

parameters. Additionally, we did not study the asymmetric case of mutualism. Finally, we did not

look at the possibility of commensalism and parasitism between the two prey species, which the

functional response in carrying capacity can account for. Further research can be done with this

model and some simple changes alone. With greater adjustments, future models may also account

for the specific mutualistic cases, such as the multispecies herd using a square root functional re-

sponse [9-10].
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6 Appendix

6.1 XPPAUT Code of Indirect Mutualism Model

init x=0.5 y=0.5 z=0.5

para a=0.25 c=1 d=0.25 alpha=1

x’=x*(1-(x/(1+alpha*y)))-x*z

y’=a*y*(1-(y/(1+alpha*x)))-y*z

z’=-c*z+d*x*z+d*y*z

done

6.2 XPPAUT Code of Direct Mutualism Model

init x=0.5 y=0.5 z=0.5

para a=0.25 c=1 d=0.25 alpha=1

x’=x*(1-(x/(1+alpha*x*y)))-x*z

y’=a*y*(1-(y/(1+alpha*x*y)))-y*z

z’=-c*z+d*x*z+d*y*z

done

6.3 Mathematica Code

Solve[{1-x/(1+\[Alpha]*y)==z, (a)(1-(y/(1+\[Alpha]*x)))==z,c==d(x+y)},{x,y,z}, PositiveReals]
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Solve[{1-x/(1+\[Alpha]*x*y)==z, (a)(1-(y/(1+\[Alpha]*x*y)))==z,c==d(x+y)},{x,y,z},PositiveReals]

j={{1-2x/(1+\[Alpha]*y)-z, \[Alpha]*x^2/(1+\[Alpha]*y)^2,-x},

{a*\[Alpha]*y^2/(1+\[Alpha]*x)^2,a-2*a*y/(1+\[Alpha]*x)-z,-y},{d*z,d*z,-c+d*(x+y)}}

MatrixForm[j]

Eigenvalues[j]

CharacteristicPolynomial[j,\[Lambda]]

k={{1-x (2+\[Alpha]*x*y)/(1+\[Alpha]*x*y)^2-z, \[Alpha]*x^3/(1+\[Alpha]*x*y)^2,-x},

{a*\[Alpha]*y^3/(1+\[Alpha]*x*y)^2,a-a*y (2+\[Alpha]*x*y)/(1+\[Alpha]*x*y)^2-z,-y},

{d*z,d*z,-c+d(x+y)}}

MatrixForm[k]

Eigenvalues[k]

CharacteristicPolynomial[k,\[Lambda]]

We set x, y, and z to the appropriate steady state values to get eigenvalues and characteristic

polynomials.
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