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Abstract
Aim: DNA metabarcoding has great potential to improve biomonitoring in island's 
marine ecosystems, which are highly vulnerable to global change and non- indigenous 
species (NIS) introductions. However, the depth and accuracy of the taxonomic iden-
tifications are mainly dependent on reference libraries containing representative and 
reliable sequences for the targeted species. In this study, we evaluated the gaps in 
the availability of DNA sequences and their accuracy for macroinvertebrates inhabit-
ing Macaronesia's shallow marine habitats.
Location: Macaronesia (Azores, Madeira, Selvagens, Canaries).
Methods: Checklists of marine invertebrates occurring above 50 m depth were com-
piled using public databases and published checklists. The availability of cytochrome 
c oxidase subunit I (COI) and 18S rRNA (18S) gene sequences was verified in BOLD 
and GenBank. Finally, COI data were audited to check the congruence between mor-
phospecies and Barcode Index Numbers (BINs).
Results: The taxonomic coverage of different phyla was greater for COI but unbal-
anced and variable among archipelagos. NIS were better represented in genetic da-
tabases (up to 73% and 59%, for COI and 18S, respectively) than native species (up 
to 47% and 31%, for COI and 18S, respectively). NIS displayed a higher number of 
discordant records, and native species, a higher quantity of cases of multiple BINs. 
Notably, DNA sequences generated from specimens collected from Macaronesia 
were found in less than 10% of the species. Projection of the rates of accretion of 
DNA sequences suggests that decades will be needed to complete these reference 
libraries.
Main conclusions: The level of completion of reference libraries for Macaronesia's 
marine macroinvertebrates is generally poor. Without a solid effort to speed up the 
production of sequence data (i.e. generate more DNA barcodes), the ability to employ 
DNA- based biomonitoring of such vulnerable fauna is compromised. The high levels 
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1  | INTRODUC TION

Although of great importance, the world's marine ecosystems and 
biodiversity are increasingly exposed to several threats driven by 
global change, over- use of natural resources, habitat loss, inva-
sion by non- indigenous species (NIS), among other disturbances 
(Barbier, 2017; Molinos et al., 2016). This multitude of disturbances 
can severely impact ecosystems around the world, instigating the 
need for the densification and greater accuracy in biodiversity as-
sessments and monitoring across the planet (Borja et al., 2020; 
Cardinale et al., 2012; Pereira et al., 2010).

Islands, which contain one- fifth of the world's biodiversity and 
a profusion of endemic species, are among the most threatened 
ecosystems (Kier et al., 2009; Lagabrielle et al., 2009). Endemic spe-
cies often exhibit comparatively small population sizes with limited 
geographical distribution and habitat availability, making islands bio-
diversity highly vulnerable to global change, particularly to the intro-
duction of NIS (Vitousek, 1990). Macaronesia is a group of volcanic 
islands composed of five archipelagos (Azores, Madeira, Selvagens, 
Canaries and Cape Verde), located in the Northeast Atlantic Ocean 
(NEA), which was established based on their flora and fauna simi-
larities (Fernández- Palacios et al., 2011). Macaronesia has a unique 
and rich biodiversity and is the geographical boundary of many 
species, in both the terrestrial (Arechavaleta et al., 2010; Borges 
et al., 2008, 2010) and marine realms (Borges et al., 2010). The 
conservation of this valuable diversity is complex, and protection 
programmes have been already in place in some areas (e.g. under 
Natura 2000). However, further research and extensive biomoni-
toring programmes are still needed to assess more accurately which 
species are threatened and to provide a more holistic view of these 
ecosystems' present and changing status (Cacabelos et al., 2020; 
Iacarella et al., 2020). Thus, the strategic expansion of the network 
of protected areas and the effective allocation of resources for con-
servation is highly dependent on accurate and recurrent biodiversity 
assessments.

As above- mentioned, one of the major threats to native islands 
biodiversity is the introduction of NIS, and the Macaronesia ar-
chipelagos are not an exception (Arechavaleta et al., 2010; Borges 
et al., 2008; Moro et al., 2003). When introduced to new areas, 
NIS can spread rapidly and become invasive, modify habitats, com-
pete with native fauna for resources and threaten biodiversity (Bax 
et al., 2003; Rilov & Crooks, 2009). Their introduction, namely 
ships/vessels, canals and aquaculture activities, can provoke severe 

ecological, social and economic impacts (Diagne et al., 2020; Lenzner 
et al., 2020; Rilov & Crooks, 2009; Seebens et al., 2013; Wallentinus 
& Nyberg, 2007). Worldwide, it is predicted that NIS will increase 
one- third until 2050, with strong rises projected for Europe (Seebens 
et al., 2020). To determine the state of NIS introductions and their 
impact on ecosystems, and to implement measures to prevent bio-
diversity loss, data compilation is mandatory, and to that end, regu-
lations were created. Most of the marine waters of the NEA ocean 
fall under the jurisdiction of the European Union and its member 
states, including those surrounding the Azores, Madeira, Selvagens 
and Canary Islands, and thus, they are targeted by the European 
Marine Strategy Framework Directive (EU- MSFD) (European 
Commission, 2008; Tsiamis et al., 2019). This directive includes as-
sessment of NIS occurrence and has led to an increase in monitoring 
programmes and inventories in Europe over the last decades (e.g. 
Afonso et al., 2020; Chainho et al., 2015; Micael et al., 2014; Tsiamis 
et al., 2019).

Until recently, biodiversity assessments have been conducted 
almost exclusively through morphology- based species identifica-
tions. However, this approach has several drawbacks, being highly 
expertise- demanding and time- consuming, and delivering lower 
taxonomic resolution (Hering et al., 2018; Leese et al., 2016, 2018). 
With the exponential rise in the power of both DNA sequencers 
and computational technology, molecular techniques constitute an 
effective alternative or complement to morphology- based iden-
tifications, in particular DNA barcoding (short standardized DNA 
sequences amplified from a single specimen and used for species 
identification) and DNA metabarcoding. In the latter, DNA is ex-
tracted from bulk organismal samples or directly from the envi-
ronmental sample matrix such as seawater or sediment (in this 
case, designated as “environmental DNA” or eDNA). Subsequently, 
amplicon libraries for target gene regions are generated, high- 
throughput- sequenced and compared to reference sequences to 
deliver a taxonomic identification (Duarte, Leite, et al., 2021; Fais 
et al., 2020; Leese et al., 2016; Steyaert et al., 2020). DNA metabar-
coding offers potential benefits over morphological assessments, 
such as (i) increased sensitivity, (ii) discrimination of cryptic species, 
(iii) identification of species regardless of the life stage (e.g. eggs, 
larvae), (iv) enables assessments covering a wide range of taxa, and 
(v) allows high- throughput assessments leading to a higher spatial– 
temporal density of taxa occurrence data (Holman et al., 2019; 
Leduc et al., 2019; Schroeder et al., 2020; Suarez- Menendez 
et al., 2020). The taxonomic composition of hundreds of samples 

of suspected hidden diversity further deepen the expected gaps and reinforce the 
vulnerability of this endemism- rich fauna.
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can be assessed quickly and at a relatively low cost, facilitating the 
implementation of more extensive monitoring programmes and 
providing a more comprehensive view of the present and chang-
ing status of island ecosystems. This fast and reliable approach 
can be highly efficient for the early detection of NIS (Schroeder 
et al., 2020; Zaiko et al., 2015). Major caveats still include the in-
ability to quantify species abundances and distinguish between life 
stages (Duarte, Vieira, et al., 2021).

The depth and accuracy of DNA metabarcoding- based identi-
fications are mainly dependent on the availability of reference li-
braries containing representative and accurate sequences for the 
targeted species. The existence of gaps and unequal representation 
of taxonomic groups in reference databases may compromise the 
accuracy of the DNA- based biodiversity assessments (Ardura, 2019; 
Duarte et al., 2020; Leite et al., 2020; Weigand et al., 2019). Thus, 
assessing these gaps and the quality of sequence data in reference 
databases is mandatory for the successful implementation of DNA- 
based tools in biodiversity assessments.

In this study, we evaluated the gaps in the availability of DNA 
sequence data and their accuracy to assess macroinvertebrate 
diversity through DNA- based tools in Macaronesia's shallow ma-
rine habitats. As the DNA barcode region (cytochrome c oxidase 
subunit I— COI) and the gene encoding the nuclear 18S rRNA (18S) 
have been the most widely used genetic markers in metabarcod-
ing studies targeting marine invertebrates, including NIS (Duarte, 
Leite, et al., 2021; Duarte, Vieira, et al., 2021), the sequence avail-
ability was assessed for both. The incorporation of cutting- edge 
biomonitoring tools is essential for efficient management of is-
lands biodiversity and to develop mitigation strategies to deal 
with increasing environmental change in these highly vulnerable 
ecosystems.

2  | METHODS

2.1 | Checklist compilation

The four European Macaronesian archipelagos were used in this 
study: Azores, Madeira, Selvagens and Canaries (Figure 1). As re-
cent studies based on marine biota suggest that Cape Verde's com-
munity structure and biogeographic relationships differ significantly 
from the remaining Macaronesian islands (Cunha et al., 2014; Freitas 
et al., 2019; Wirtz et al., 2013), we opted not to include this archipel-
ago in our analysis. A list of native species (marine invertebrates) was 
compiled (14 May 2020) based on GBIF (gbif.org, 2020) and WoRMS 
(WoRMS Editorial Board, 2020) databases.

The following search criteria were applied for retrieving the spe-
cies lists from GBIF: only Animalia, without doubtful records, only 
taxa identified to species level and species recorded between 0 
and 50 m depth. Data from the Azores (https://doi.org/10.15468/ 
dl.ckd9sw) were mined selecting the polygon composed by the co- 
ordinates (long lat: −31.51977 36.55884, −24.62036 36.55884, 
−24.62036 39.97192, −31.51977 39.97192, −31.51977 36.55884), 

from Canaries (https://doi.org/10.15468/ dl.ubajg9) within the poly-
gon (long lat: −18.37463 27.42004, −13.29163 27.42004, −13.29163 
29.58069, −18.37463 29.58069, −18.37463 27.42004), from Madeira 
(https://doi.org/10.15468/ dl.z58kpz) within the polygon (long lat: 
−17.34146 32.35245, −16.22818 32.35245, −16.22818 33.15445, 
−17.34146 33.15445, −17.34146 32.35245) and from Selvagens 
(https://doi.org/10.15468/ dl.dab8eb) within the polygon (long lat: 
−16.13777 29.87343, −15.77614 29.87343, −15.77614 30.22865, 
−16.13777 30.22865, −16.13777 29.87343). Data were mined from 
WoRMS using the geounits for the Azores: “Azores (Archipelago),” 
for the Canaries: “Canaries (Archipelago),” for Madeira: “Madeira 
(island)” plus “Porto Santo(island)” and for Selvagens: “Selvagens 
(Archipelago).” The search was limited to marine and extant animal 
species and accepting only valid names. Species with the annotation 
“alien” were added to the list of NIS; see below. Then, the lists ob-
tained from GBIF and WoRMS were merged, duplicate entries were 
removed, and only marine invertebrates were accepted (taxonomy 
was confirmed on WoRMS).

The list of NIS (marine invertebrates) was compiled (14 May 
2020) for each archipelago based on multiple sources: WoRMS (spe-
cies with “alien” designation), the Information System on Aquatic 
Non- indigenous and Cryptogenic species (AquaNIS— http://www.
corpi.ku.lt/datab ases/index.php/aquanis; Olenin et al., 2014), Castro 
et al. (2020), Chainho et al. (2015), ICES (2019), MITECO database 
(Ministerio para la Transición Ecológica y el Reto Demográfico, 
Catálago Español de Especies Exóticas Invasoras) and Ramalhosa 
et al. (2019) (https://nutel apat.wixsi te.com/canni ngclo de/copia 
- madei ra- nis- 2 and references therein). Lists were merged, duplicate 
entries were removed, and only marine invertebrates were kept (tax-
onomic validity was confirmed in WoRMS). Depth of occurrence was 
verified on GBIF, and all species occurring only below 50 m depth 
were discarded.

2.2 | Genetic data mining and analyses

For each list (native and NIS), COI and 18S genetic data were mined 
from BOLD (Ratnasingham & Hebert, 2007) and GenBank (Sayers 
et al., 2019) using the R 3.6.0 software (R Core Team, 2019; www.r- 
proje ct.org) with the package “bold” (Chamberlain, 2019) and “ren-
trez” (Winter, 2017), respectively. In BOLD, the following terms 
were used to filter the sequences: for COI— “COI- 5P”; for 18S— “18S” 
or “18Sa”. In GenBank, the terms used were as follows: for COI— 
“COI[Gene] OR CO1[Gene] OR COXI[Gene] OR COX1[Gene] OR 
complete genome [All Fields] OR mitochondrial genome[All Fields]”; 
for 18S— “18S ribosomal RNA[Title] OR 18S rRNA[Title] OR 18S 
small subunit ribosomal RNA[Title] OR 18S ribosomal RNA[Gene] 
OR 18S rRNA[Gene] OR 18S small subunit ribosomal RNA[Gene]”. 
Only sequences with more than 500 base pairs were considered as 
this is the minimum length required for a sequence to meet Barcode 
Compliance standards (Ratnasingham & Hebert, 2007) and which 
has also been used in other gap analysis studies of European aquatic 
invertebrates (Duarte et al., 2020; Leite et al., 2020; Weigand 
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et al., 2019). To avoid duplicate records, GenBank records were 
detected in BOLD through the presence of the tag “Mined from 
GenBank, NCBI” or if the record had a GenBank's accession number. 
All GenBank accession numbers detected in BOLD were then manu-
ally confirmed on GenBank to double- check the duplicated status. 
The geographic origin of specimens and year of submission of the 
sequences were verified through BOLD metadata.

The number of Barcode Index Numbers (BINS) (Ratnasingham & 
Hebert, 2013) for each species within each taxon was retrieved from 
BOLD, based on the COI marker. Then, to verify the reliability of 
the genetic data for each species, the auditing and grading software 
BAGS was used (Fontes et al., 2020; https://github.com/tadeu 95/
BAGS). This tool relies on COI, the BIN system and the number of 
records to annotate and grade species according to the quality of 
their available public sequences. Grade A and grade B are considered 
concordant (one species = one BIN), grade C indicate multiple BINs 
for a given species (one species = two or more BINs), grade D is in-
sufficient data (less than three records), and grade E indicates discor-
dances, that is more than one species is assigned to a single BIN (two 
or more species = one BIN). More details can be found in Fontes 
et al. (2020). All the scripts used in this study can be consulted at 
https://github.com/pedro emanu elvie ira/NGB_Macar onesia.

3  | RESULTS

3.1 | Taxonomic composition

Final lists consisted of 1,342, 550, 1,177 and 36 species for Azores, 
Madeira, Canaries and Selvagens (Figure 1), comprising 13, 11, 15 and 
5 phyla, respectively (Figure 2; Table S1). Madeira was the archipelago 

with the highest percentage of NIS (9.5% of the total number of species), 
while Azores and Canaries displayed similar percentages (4.6 and 4.5%, 
respectively). No NIS were reported to occur in Selvagens (Table S1).

Mollusca was the most well- represented phyla in the Azores, 
Madeira and Canaries (31.9% to 63.0% of the total number of spe-
cies) (Figure 2; Table S1). Other dominant phyla in these regions in-
cluded Arthropoda (12.1% to 31.0%) and Cnidaria (8.4% to 15.3%). 
Selvagens comprised distinct phyla, dominated by Cnidaria (52.8%), 
Mollusca (22.2%) and Brachiopoda (13.9%) (Figure 2; Table S1). 
Dominant phyla containing NIS included Chordata in the Azores 
(25.8% of the number of NIS) and Bryozoa (up to 39.6%) in Madeira 
and Canaries (Figure 2; Table S1).

A total number of 11 species were shared among all archipel-
agos (Figure 1). The highest number of shared species was found 
between the Azores and Canaries (346), although Selvagens is 
the archipelago sharing the highest proportion of species with 
the other regions (between 19 and 31 of a total of 36 species). 
The Azores (913) and Canaries (708) harboured the highest num-
ber of unique species (i.e. not present in other archipelagos). Six 
NIS (Amathia verticillata (delle Chiaje, 1822), Botryllus schlosseri 
(Pallas, 1766), Bugula neritina (Linnaeus, 1758), Bugulina stolonif-
era (Ryland, 1960), Caprella scaura (Templeton, 1836) and Spirorbis 
(Spirorbis) marioni Caullery & Mesnil, 1897) were found in the 
Azores, Madeira and Canaries. While the Azores had the highest 
number of NIS (62), Canaries was the archipelago with the highest 
number of unique NIS (39) (Figure 1). Thirteen Azorean NIS are 
native in the other regions, mostly in Canaries (10) (Figure S1). Of 
the 54 NIS present in the Canaries, 10 are native in the other ar-
chipelagos (most from the Azores: 7), while of the 53 NIS present 
in Madeira, 12 are native in the other archipelagos (10 from the 
Canaries) (Figure S1).

F I G U R E  1   Top left: Map of 
Macaronesian archipelagos studied: 
Azores, Madeira, Selvagens and Canaries. 
Top right and bottom: Venn diagrams 
showing the shared and unique total, 
native and non- indigenous species (NIS) 
among all Macaronesia archipelagos 
[Colour figure can be viewed at 
wileyonlinelibrary.com]
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3.2 | Gap analysis and grading system

More records were found on GenBank than on BOLD, with more se-
quences available for COI than 18S (Tables 1, S2, S3). When merging 
the information of both databases and excluding duplicated records, 
the Azores was the archipelago with the highest number of native 
(COI: 46.8% and 18S: 30.6%) and NIS represented in the genetic da-
tabases (COI: 72.6% and 18S: 54.8%), while Madeira displayed the 
lowest, for both native (COI: 39.8% and 18S: 26.5%) and NIS (COI: 
61.5% and 18S: 40.4%). In general, NIS displayed higher percentages 
(65.4%– 79.0%) of at least one of the genetic markers (COI or 18S) 
when compared with native species (38.1%– 51.6%). However, the 
percentage of species with both genetic markers was much lower for 
native (17.8%– 25.8%) and NIS (36.5%– 52.8%).

In the Azores, Phoronida was the phylum with the highest cover-
age for COI (100.0%), followed by Arthropoda (61.5%) and Annelida 
(57.1%), while for 18S, Entoprocta and Brachiopoda were the most 
well- represented with sequences (both with 100.0%). In the Canaries, 
Ctenophora and Chordata had full coverage for both markers 
(100.0%), with 100.0% of Sipuncula species having COI sequences, 
but none with 18S. On the other hand, Gnathostomulida species are 
fully covered for 18S, but none is represented in genetic databases for 
COI. In Madeira, Platyhelminthes and Ctenophora had 100% coverage 
for both markers. In Selvagens, Echinodermata and Arthropoda spe-
cies had 100.0% coverage for COI, and Arthropoda and Cnidaria had 
66.7% and 42.1% for 18S, respectively (Figure 3).

When considering only COI sequences generated from speci-
mens collected in any of the four Macaronesian archipelagos here 
studied (according to BOLD; Figure S2), the availability of sequences 
on genetic databases decreased drastically. For instance, only 64 of 
the 1,280 native species of the Azores met this criterion. These val-
ues were much lower for the other archipelagos, with only 19 out of 
1,124 native species from the Canaries, 17 out of 498 native spe-
cies from Madeira and five out of 37 native species from Selvagens. 
Among NIS, only Phorcus sauciatus (Koch, 1845) had records gener-
ated from specimens collected in Macaronesia, although these re-
cords were from Madeira and Canaries where is considered a native 
species. Percnon gibbesi (H. Milne Edwards, 1853), which has been 
considered a NIS in the Azores, despite the present uncertainty of 
its current status, also has COI sequences in genetic databases ob-
tained from specimens collected in the region.

Considering all archipelagos, the grading system BAGS classified a 
higher percentage of NIS (~50%) as discordant (grade E) when compared 
with native species (~41%) (Figure 4). In general, around one- quarter of 
the species had insufficient records (grade D), and less than 10% were 
concordant species (grades A and B). More cases of Multiple BINs (grade 
C) were detected in native species (between 12.6% and 36.4%) than 
in NIS (between 7.7% and 18.5%) (Figure 4). When excluding discor-
dant and insufficient cases (grades D and E), for the native species, all 
phyla displayed more BINs than species (except Porifera), which for NIS 
was only observed in half of the phyla (Figure S3). For native species, 
Arthropoda (228) and Mollusca (128) displayed the highest number of 

F I G U R E  2   Marine invertebrate's 
taxonomic composition by native and by 
non- indigenous species (NIS) occurring 
in each archipelago. The numbers in the 
top of each bar indicate the total number 
of species per phylum. Chordata only 
includes Ascidians [Colour figure can be 
viewed at wileyonlinelibrary.com]
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BINs, but Cnidaria had the highest ratio BIN/species, with five times 
more BINs than species. For NIS, Chordata displayed the highest num-
ber of BINs (9), with almost three times the number of BINs per species. 
More than 40% of the native species displayed two or more BINs, with 

nine species displaying six or more BINs, while one- third of NIS were sin-
gle BINs, with only two species having more than two BINs (Figure S3).

Taking into consideration the first time (year) a native species 
had COI sequences publicly available on BOLD and based on a 

TA B L E  1   Overall DNA sequence coverage for COI and 18S genetic markers on GenBank and BOLD for native and non- indigenous 
species (NIS) occurring on each Macaronesian archipelago

Archipelago
No. of 
species Marker

No. of records No. of species with DNA sequences

GenBank BOLD
GenBank (% 
of coverage)

BOLD (% of 
coverage)

GenBank +BOLD (% 
of coverage)

Azores Native 1,280 COI 14,470 12,370 559 (43.7) 559 (43.7) 599 (46.8)

18S 1,551 95 385 (30.1) 10 (0.8) 391 (30.6)

COI+18S 316 (24.7) 10 (0.8) 330 (25.8)

At least one 
marker

628 (49.1) 559 (43.7) 660 (51.6)

NIS 62 COI 3,174 2,845 44 (71.0) 41 (66.1) 45 (72.6)

18S 155 0 34 (54.8) 0 (0.0) 34 (54.8)

COI+18S 29 (46.8) 0 (0.0) 30 (48.4)

At least one 
marker

49 (79.0) 41 (66.1) 49 (79.0)

Canaries Native 1,124 COI 11,229 10,682 353 (31.4) 349 (31.1) 384 (34.2)

18S 853 151 235 (20.9) 9 (0.8) 244 (21.7)

COI+18S 187 (16.6) 9 (0.8) 200 (17.8)

At least one 
marker

401 (35.7) 349 (31.0) 428 (38.1)

NIS 53 COI 3,809 3,095 34 (64.2) 29 (54.7) 34 (64.2)

18S 174 0 31 (58.5) 0 (0.0) 31 (58.5)

COI+18S 28 (52.8) 0 (0.0) 28 (52.8)

At least one 
marker

37 (69.8) 29 (54.7) 37 (69.8)

Madeira Native 498 COI 5,310 4,954 181 (36.4) 182 (36.6) 198 (39.8)

18S 508 44 130 (26.1) 5 (1.0) 132 (26.5)

COI+18S 108 (21.7) 5 (1.0) 111 (22.3)

At least one 
marker

203 (40.8) 182 (36.6) 219 (44.0)

NIS 52 COI 2,089 1,839 31 (59.6) 28 (53.9) 32 (61.5)

18S 141 0 21 (40.4) 0 (0.0) 21 (40.4)

COI+18S 18 (34.6) 0 (0.0) 19 (36.5)

At least one 
marker

34 (65.4) 28 (53.9) 34 (65.4)

Selvagens Native 36 COI 402 421 13 (36.1) 13 (36.1) 15 (41.7)

18S 151 0 11 (30.6) 0 (0.0) 11 (30.6)

COI+18S 8 (22.2) 0 (0.0) 9 (25.0)

At least one 
marker

16 (44.4) 13 (36.1) 17 (47.2)

NIS 0 COI – – – – – 

18S – – – – – 

COI+18S – – – – – 

At least one 
marker

– – – 
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cumulative percentage per year (between 1.9% and 2.9% per year, 
that is ~0.8 to 37 new species per year), all the archipelagos still 
have less than half of the species with COI sequences. Assuming the 
constant rate of accretion of sequence records for missing species, 
the projection until completion (100%) of the reference libraries in-
dicates that the Azores may be the first archipelago to achieve this 
goal (around 2040), followed by Madeira and Selvagens (around 
2050), with the Canaries only reaching it after 2050 (Figure 5).

4  | DISCUSSION

As a result of this study, four main findings can be pointed out: (a) 
reference DNA sequence libraries are still highly incomplete for 

F I G U R E  3   Percentage of coverage of COI and 18S for each phylum within each archipelago. Phyla with only one species were 
not included. To see details about these, see Tables S1 and S2. Chordata only includes Ascidians [Colour figure can be viewed at 
wileyonlinelibrary.com]

Azores

7755

10000
Annelida

Arthropoda

Brachiopoda

Bryozoa

Chordata

Cnidaria

Echinodermata

Mollusca

Phoronida

Platyhelminthes

Porifera

Sipuncula

55050

00

2255

550000500505500

Canaries

25

5500

7755

10000
Annelida

Arthropoda

Brachiopoda

Bryozoa

Chordata

Cnidaria

Echinodermata

Mollusca

Platyhelminthes

Porifera

Sipuncula

225525255555

00

555

Madeira

5500

7755

10000
Annelida

Arthropoda

Brachiopoda

Bryozoa

Chordata

Cnidaria

Echinodermata

Mollusca

Platyhelminthes

Porifera
2

00

225525255

Selvagens

00

2255

5500

7755

10000
Arthropoda

Brachiopoda

Cnidaria

Echinodermata

Mollusca

COI

18S
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BAGS (Fontes et al., 2020). Grades A and B— concordant species; 
grade C— multiple BINs; grade D— insufficient records; and grade 
E— discordant BINs
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Macaronesian marine macroinvertebrates; (b) non- indigenous spe-
cies have higher levels of sequence completion than native species, 
but higher numbers of discordant records, (c) a high proportion of 
native morphospecies are assigned to multiple BINs, suggesting con-
siderable hidden or cryptic diversity, which, if confirmed, can only be 
accurately monitored through DNA- based tools, and (d) extrapola-
tion of the rates of accretion of DNA sequences in genetic databases 
suggests that some decades will be needed to complete the refer-
ence libraries for marine macroinvertebrates.

Despite the contribution of several studies to complete 
Macaronesia's macrozoobenthos reference libraries (Borges 
et al., 2016; Gargan et al., 2017; Gomes, 2014; Luz & Keskin, 2019; 
Silva et al., 2011; Valdés, 2017), we found that their taxonomic cover-
age is still incipient compared with the diversity of the region. Besides, 
we found that different archipelagos and taxonomic groups display 
different degrees of completeness (Figure 3; Tables S2, S3). Despite 
having more species than other archipelagos (Figure 2), the Azores 
had the highest percentage of species sequenced— 47% for native 
and 73% for NIS— and Madeira the lowest— 40% for native and 62% 
for NIS, respectively. Consistently, a higher number of records were 
found on GenBank than on BOLD. However, although GenBank con-
tains reference sequences from many different genetic markers and 
includes all domains of life, it is more prone to errors than BOLD as it 
contains many non- curated data entries (López- Escardó et al., 2018). 
NIS displayed higher levels of completion in all archipelagos (Table 1). 
These species are generally the focus of a greater number of studies 
due to their high impact on the environment and thus may experience 
a higher trend of sequence deposition in genetic databases (Briski 
et al., 2016; Pyšek et al., 2008; Trebitz et al., 2015). The number of 
NIS is also much smaller than native species; therefore, levels of com-
pletion are typically higher (Duarte et al., 2020; Weigand et al., 2019).

A noteworthy observation when considering sequence records 
from specimens collected in Macaronesia is that the percentage of 
COI barcoded native species drops to less than 10% (Canaries and 
Madeira have less than 2%) (Figure S2). Ideally, these reference libraries 
should include specimens collected in Macaronesia (and from differ-
ent Macaronesian islands and archipelagos) to allow the detection of 
possible highly divergent lineages or endemic cryptic taxa that require 
DNA- based tools to be recognized. Indeed, such cases have already 
been reported in previous studies of peracarid crustaceans in the re-
gion (Desiderato et al., 2019; Vieira, Desiderato, Holdich, et al., 2019). 
This may be important to assess small- scale variation of populations 
or newly introduced populations. This reasoning was supported by a 
quick search into the Web of Science (25 March 2021), which yielded 
only 4 published research papers dealing with DNA barcoding of 
Macaronesian marine invertebrate fauna. Furthermore, a look into the 
MarBOL (Marine Life) campaign within the BOLD database indicates 
no dedicated projects to DNA barcoding of Macaronesia macroin-
vertebrates, and very few projects dedicated to marine invertebrate 
fauna from the Northeast Atlantic, that may include Macaronesian 
specimens (e.g. BNAGB, Barcoding Northeast Atlantic Gastropods 
and Bivalves; BNEAC, Barcoding Northeast Atlantic Cephalopoda).

DNA- based biodiversity assessments in NEA have been lim-
ited by poor taxonomic coverage of genetic databases (Hestetun 
et al., 2020). These limitations are transversal across Europe (Duarte 
et al., 2020; Leite et al., 2020; Weigand et al., 2019), which led to 
the creation of national (Price et al., 2020) and international initia-
tives aiming to fill the reference libraries for aquatic biota (Leese 
et al., 2016, 2018). Nearby coasts that share many species with 
Macaronesia, such as the Iberian Peninsula, still have 60% of the spe-
cies lacking COI barcodes (based on BOLD only), among Annelida, 
Crustacea and Mollusca (Leite et al., 2020). Although this value 

F I G U R E  5   Cumulative percentage 
of native species with available COI 
sequences per year and projection until 
completion assuming constant rate of 
accretion of sequence records for missing 
species
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is only slightly lower than the one here reported for Macaronesia 
(globally 63% merging BOLD and GenBank data), we must keep in 
mind that most of the sequenced specimens were not collected in 
Macaronesia. Because several studies indicate the occurrence of 
highly divergent lineages in Macaronesia, to the point of segregat-
ing in separate endemic lineages (Desiderato et al., 2019; Vieira, 
Desiderato, Holdich, et al., 2019; Xavier et al., 2010), various mor-
phospecies may skip DNA- based detection even if they are present 
in reference libraries. Considering this possibility, we suspect that 
these completion levels for Macaronesia may be somewhat overes-
timated, though it is still unknown how much. Therefore, reference 
libraries must include specimens collected locally.

We also found significant differences between COI and 18S com-
pleteness (Tables 1, S2, S3). Despite many gaps in the COI library, 18S 
still falls behind, and more work should be conducted in populating 
other non- COI reference libraries. If only species sequenced for both 
markers are considered, these values decrease noticeably (Table 1). 
This may be a relevant limitation to efficiently detect some species 
as several studies suggest that some taxonomic groups are prefer-
entially detected by different markers and primers (Grey et al., 2018; 
Lacoursière- Roussel et al., 2018; Leduc et al., 2019; Leite et al., 2019). 
Considering this, it has been argued that DNA metabarcoding, either 
to detect native species or NIS, should rely on more than one genetic 
region to assure detection of the widest possible spectrum of taxa 
(Duarte, Leite, et al., 2021; Stat et al., 2017).

More than one- third of the species still display discordant re-
cords, with higher percentages in NIS than native species (Figure 4). 
Incongruencies should be carefully examined to detect the sources 
of conflict (e.g. misidentifications, incomplete taxonomy or se-
quences that were deposited under different synonyms) and subse-
quently curated, so that DNA- based tools can reliably identify these 
species in bulk or environmental samples. Discordant records raise 
mistrust because erroneous observations derived from them may 
easily remain undetected through unsupervised taxonomic assign-
ments of metabarcoding data and quickly propagate across studies. 
As such, quality control and quality assurance tools must be imple-
mented to audit and curate reference libraries (Fontes et al., 2020; 
Leese et al., 2018; Weigand et al., 2019), as the reliability of the ref-
erence sequences is as essential as their availability, or even more.

When considering only concordant species records assigned 
to multiple BINs, approximately 20% of native and 10% of NIS fell 
under this condition (Figure 4). From a taxonomic perspective, spe-
cific phyla displayed one to five times more BINs than barcoded 
species (Figure S3). Therefore, it appears that a very high propor-
tion of species from Macaronesia may incorporate undescribed 
or cryptic diversity. Indeed, several recent studies report the high 
incidence of deeply divergent endemic lineages in Macaronesia 
(Tavares et al., 2017; Vieira, Desiderato, Azevedo, et al., 2019; Xavier 
et al., 2010). Most of these highly divergent lineages have restricted 
distributions, frequently even limited to a single island, which makes 
them potentially more susceptible to global change and NIS impacts, 
thereby constituting a prime target for conservation measures. DNA- 
based approaches detect molecular entities (molecular operational 

taxonomic units— MOTUs), and it is important to connect the differ-
ent MOTUs to their occurrence in each island/archipelago, as some 
may be endangered lineages or endemic species, which may only be 
diagnosed through DNA- based methods. Hence, it becomes impera-
tive to generate more sequence records of specimens collected in the 
Macaronesia archipelagos.

Although the number of species with COI sequences available 
on BOLD has been increasing in the last twenty years, so far, only 
less than half of the native species present in these Macaronesian 
archipelagos have sequences available. Excluding species discovery 
or extinction, we estimate it will take another twenty to thirty years 
to exhaustively complete the reference libraries of DNA barcodes 
for the species present in these islands, if the rate of production of 
COI sequences is sustained. However, as rarer species may be harder 
to find, these projections are probably the best- case scenario as they 
do not consider the expected difficulties in the access to specimens 
of rarer species. Moreover, these projections do not contemplate the 
predicted growth of NIS introductions due to the increase in mari-
time traffic and the absence of legislation to prevent the involuntary 
transport of these species in hull fouling. More likely, it will take even 
longer to complete the DNA barcode libraries of all marine inver-
tebrates present in Macaronesia (Figure 5). Many studies based on 
DNA metabarcoding of marine taxa may also contribute to generate 
sequences that can potentially match species still unavailable in the 
libraries, but that will remain as unknown until matching sequences 
are finally deposited in reference databases.

In what concerns the coastal area and the number of islands, the 
Azores and Canaries are the most extensive archipelagos and held the 
highest number of NIS and native species of marine macroinvertebrate 
fauna compiled in the current study (Figure 1). Furthermore, the Azores 
and Madeira shared the highest number of NIS, but a minimal number 
of species (only six) are considered NIS in all archipelagos. However, we 
should keep in mind that species with the non- indigenous status in one 
archipelago may be native to the others and vice versa, and the species 
status (i.e. indigenous, non- indigenous, cryptogenic) may change over 
the years as more knowledge is acquired. For instance, Percnon gibbesi 
has been previously considered a NIS in the Azores, but its status re-
mains uncertain. Several NIS recorded in the Azores and Madeira are 
considered native species in the Canaries, whereas some NIS occurring 
in the Canaries are native in the Azores (Figure S1).

Madeira displayed the highest % of NIS (NIS/total number of 
species ratio), particularly in Arthropoda and Mollusca, which is also 
supported by recent data found in the literature that considers this 
archipelago highly impacted by bioinvasions (Bailey et al., 2020). 
However, we cannot discard the possibility that the highest % found 
in this region can be biased by the greater effort employed in con-
ducting NIS- focused studies in Madeira (Canning- Clode et al., 2013; 
Parretti et al., 2020; Ramalhosa et al., 2014, 2019). To our best knowl-
edge, no NIS were reported in Selvagens. Being a tiny remote archi-
pelago of difficult access and with no permanent human population, 
it is probably less susceptible to NIS introductions, but, for the same 
reasons, an updated assessment of NIS may also be more challenging 
to accomplish.
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5  | CONCLUSIONS

Unless more intense efforts are made to obtain representative 
DNA sequences for the macroinvertebrate species occurring in 
Macaronesia, either native or NIS, DNA- based monitoring will be defi-
cient or impractical for this region's invertebrate fauna. Furthermore, 
an efficient curation of the available DNA sequences must be taken 
into consideration as, according to our results, only one- fifth of the 
species had concordant records, and less than 10% of the records 
were from specimens sampled in Macaronesia. Although completing 
the gaps in reference libraries is essential to make the most of the 
DNA- based tools, a careful compilation, verification and annotation 
of available sequences are fundamental to assemble large curated 
and reliable reference libraries that provide support for rigorous spe-
cies identifications. Conventional morphology- based tools used in 
biomonitoring continue to provide invaluable information about the 
status of the populations. However, DNA metabarcoding can provide 
high data density over space and time, impart a unique diagnosis tool 
for cryptic taxa and ultimately be more responsive to environmental 
management needs while also enabling the early detection of NIS. 
Santos et al. (2016) “advocate a continuing effort to build comprehen-
sive island data for multiple taxa, to serve the wider scientific com-
munity in the coming decades.” We extend this plea, as current rates 
of accretion of reference DNA sequence data for Macaronesia are too 
slow to materialize the benefits of DNA- based monitoring for enhanc-
ing biodiversity conservation efforts in this region.

By our predictions, completeness will be accomplished only after 
2040, considering the current rate of accretion of 1.9%– 2.9% per year. 
Researchers must, at least, triple the current efforts if this goal is to be 
achieved in the next decade. To this end, initiatives such as “BIOSCAN” 
(Hobern, 2020), which involves more than 1,000 researchers from over 
30 countries and aims to generate barcode coverage for 2.5 million spe-
cies, may be decisive to fill up the gaps across the planet.

Robust monitoring will allow a more comprehensive view of the sta-
tus of the island populations, helping to mitigate the ongoing pressures 
(e.g. climate change, fisheries) these populations experience and, there-
fore, contributing to preserve the invaluable ecosystem services these 
islands provide. If this goal cannot be reached due to lack of taxonomic 
expertise, sampling bottlenecks (e.g. inability to get specimens from rare 
species) and the high levels of cryptic and endemic diversity that are 
expected, other approaches based on reverse taxonomy, MOTUs/BINs 
or taxonomy- free methods (Cordier et al., 2017, 2018; Ratnasingham & 
Hebert, 2013; Weigand et al., 2019) may be an option, although far from 
ideal. MOTUs/BINs can be used provisionally and associated with an 
identification to the lowest possible rank, but always with the final goal of 
eventually reaching a true identification and recognition of species. If the 
intention is to use DNA- based tools to detect non- indigenous species, 
then identifications at the species level are mandatory, and consequently, 
populating reference libraries with DNA barcodes becomes paramount.
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