
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Emanuel Queiroga Amorim Fernandes

Development of a web-based platform
for Biomedical Text Mining

December 2019

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Emanuel Queiroga Amorim Fernandes

Development of a web-based platform
for Biomedical Text Mining

Master dissertation
Master Degree in Computer Science

Dissertation supervised by
Miguel Francisco Almeida Pereira Rocha
Hugo Samuel Oliveira Costa

December 2019

D I R E I T O S D E A U T O R E C O N D I Ç Õ E S D E U T I L I Z A Ç Ã O D O
T R A B A L H O P O R T E R C E I R O S

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas
as regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor
e direitos conexos.
Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indi-
cada.
Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições
não previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM
da Universidade do Minho.
Licença concedida aos utilizadores deste trabalho

Atribuição
CC BY
https://creativecommons.org/licenses/by/4.0/

ii

A C K N O W L E D G E M E N T S

Agradeço a todas as pessoas que me acompanharam durante o desenvolvimento deste pro-
jeto, sem elas não seria possı́vel.
Ao meu orientador, o professor Miguel Rocha, agradeço pela disponibilidade e pelos con-
hecimentos ministrados que auxiliaram a realizar este trabalho. A oportunidade, apoio e
compreensão ao longo do mesmo. Ao meu supervisor na empresa, Hugo Costa, por toda
a colaboração prestada, disponibilidade e auxı́lio em cada etapa do desenvolvimento da
aplicação. Ao Rúben Rodrigues pela ajuda prestada, nomeadamente na fase inicial do pro-
jeto e esclarecimento de dúvidas. A toda a equipa da SilicoLife por serem pessoas afáveis e
de boa disposição.
Aos meus amigos por todos os bons momentos de diversão e descontração como também
pelo apoio prestado. A toda a minha famı́lia, em especial ao meu pai, José Fernandes, à
minha Mãe, Paula Fernandes, e ao meu irmão Paulo Fernandes por todo carinho, apoio,
dedicação e motivação. À minha namorada, Catarina Vieira, por me acompanhar e apoiar
em todos os momentos da minha vida.

iii

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.
I further declare that I have fully acknowledged the Code of Ethical Conduct of the Univer-
sity of Minho.

iv

R E S U M O

A mineração de Literatura Biomédica (BioLM) pretende extrair informação de alta qual-
idade da área biomédica, através da criação de ferramentas/metodologias que consigam
automatizar tarefas com elevado dispêndio de tempo. As tarefas subjacentes vão desde
recuperação de informação, descoberta e recuperação de documentos relevantes para a
extração de informação pertinente e a capacidade de extrair conhecimento de texto. Nos
últimos anos a SilicoLife tem vindo a desenvolver uma ferramenta, o @Note2, uma BioLM
Workbench multiplataforma baseada em JAVA, que executa as principais tarefas inerentes
a BioLM. Também possui uma versão autónoma com uma interface amigável para o uti-
lizador.

Esta tese desenvolveu uma plataforma de software baseada na web, que é capaz de
executar algumas das tarefas de BioLM, com suporte num núcleo de bibliotecas do projeto
@Note. Para tal foi necessário melhorar o servidor RESTful atual, criando novos métodos e
APIs, como também desenvolver a aplicação baseada na web, com uma interface amigável
para o utilizador, que comunicará com o servidor através de chamadas à sua API.

Este trabalho focou o seu desenvolvimento em tarefas relacionadas com recuperação de
informação, focando na pesquisa eficiente de documentos de interesse através de uma inter-
face integrada. Nesta fase, o objetivo foi também ter um conjunto de interfaces capazes de
visualizar e explorar as principais entidades envolvidas em BioLM: pesquisas, documentos,
corpora, entidades relacionadas com processos de anotações e recursos.

Palavras-chave: Aplicação Baseada na Web, Mineração de Literatura Biomédica, Recuperação
de Informação.

v

A B S T R A C T

Biomedical Text Mining (BTM) seeks to derive high-quality information from literature in
the biomedical domain, by creating tools/methodologies that can automate time-consuming
tasks when searching for new information. This encompasses both Information Retrieval,
the discovery and recovery of relevant documents, and Information Extraction, the capa-
bility to extract knowledge from text. In the last years, SilicoLife, with the collaboration
of the University of Minho, has been developing @Note2, an open-source Java-based multi-
platform BTM workbench, including libraries to perform the main BTM tasks, also provid-
ing user-friendly interfaces through a stand-alone application.

This work addressed the development of a web-based software platform that is able to
address some of the main tasks within BTM, supported by the existing core libraries from
the @Note project. This included the improvement of the available RESTful server, providing
some new methods and APIs, and improving others, while also developing a web-based
application through calls to the API provided by the server and providing a functional
user-friendly web-based interface.

This work focused on the development of tasks related with Information Retrieval, ad-
dressing the efficient search of relevant documents through an integrated interface. Also, at
this stage the aim was to have interfaces to visualize and explore the main entities involved
in BTM: queries, documents, corpora, annotation processes entities and resources.

Keywords: Biomedical Text Mining, Information Retrieval, Web Based Application.

vi

C O N T E N T S

1 introduction 1

1.1 Context 1

1.2 Objectives 2

1.3 Structure of the thesis 2

2 state of the art 4

2.1 Biomedical text mining 4

2.1.1 Information retrieval 5

2.1.2 Named entity recognition 7

2.1.3 Relation extraction 8

2.1.4 Tools 9

2.1.5 Resources 10

2.2 The @Note project 10

2.2.1 @Note application 13

3 web application development 15

3.1 Technologies and languages 15

3.1.1 Java 15

3.1.2 Hibernate ORM 16

3.1.3 Hibernate Search and Lucene 16

3.1.4 Spring framework 19

3.1.5 Web-based technologies 20

3.2 @Note Architecture 21

3.2.1 @NoteLibs 22

3.2.2 @Note data access 23

3.2.3 @Note domain model 25

3.3 Cache 29

3.4 Search 30

3.4.1 Hibernate Search 31

3.4.2 Boolean search 35

3.5 Processes 40

3.5.1 Process data status 40

3.5.2 Corpus creation 42

3.6 @Note web 43

3.6.1 @Note web structure 43

3.6.2 Data access 47

vii

Contents viii

3.6.3 Modules 48

3.6.4 Global search 59

3.6.5 Navigation 60

4 results 63

4.1 Queries 63

4.2 Corpora 64

4.3 Processes 65

4.4 Documents 67

4.5 Curator 68

4.6 Resources 69

4.7 Global Search 71

4.8 User 74

5 conclusions and future work 75

5.1 Summary of the work 75

5.2 Prospects for future work 75

a implemented @fields for lucene indexing 80

L I S T O F F I G U R E S

Figure 1 @Note Architecture 21

Figure 2 @Note java libraries 22

Figure 3 @Note data access packages, entities and their relations 24

Figure 4 @Note Domain model 25

Figure 5 @Note Query class diagram 27

Figure 6 @Note Corpus class diagram 27

Figure 7 @Note IEProcess class diagram 28

Figure 8 @Note Resource class diagram 29

Figure 9 Search method in a Lucene Service with permissions and filters 34

Figure 10 Boolean expression grammar 37

Figure 11 Boolean expression example tree 38

Figure 12 Global search expression grammar 39

Figure 13 @Note data process status table of the relational database 41

Figure 14 Corpus configuration classes diagram 43

Figure 15 Create corpus from global search query sequence diagram 44

Figure 16 Create corpus from a publications lucene query sequence diagram 45

Figure 17 @Note web file structure 46

Figure 18 @Note web module main structure 46

Figure 19 DataTable Header of publications 52

Figure 20 DataTable pagination 55

Figure 21 Method ngOnInit of curatorViewComponent component 56

Figure 22 Scroll properties 58

Figure 23 @Note web Queries interface 64

Figure 24 @Note web Query interface 64

Figure 25 @Note web Corpus interface 65

Figure 26 @Note web Processes interface 66

Figure 27 @Note web Process interface 66

Figure 28 @Note web Document filter modal interface 67

Figure 29 @Note web Document interface 68

Figure 30 @Note web Corpus creation by document expression search interface 68

Figure 31 @Note web running process on top of page interface 68

Figure 32 @Note curator abstract interface 69

Figure 33 @Note web curator full text interface 70

ix

List of Figures x

Figure 34 @Note web Resources interface 70

Figure 35 @Note web Resource interface 71

Figure 36 @Note web global search initial state interface 71

Figure 37 @Note web global search Filters interface 72

Figure 38 @Note web global search interface building a query 73

Figure 39 @Note web global search results interface 73

Figure 40 @Note web User administration management interface 74

Figure 41 @Note web User administration process data status interface 74

L I S T O F TA B L E S

Table 1 Key points on tools that implement Biomedical Text Mining (BTM)
methodologies 11

Table 2 Table with resources available for BTM tasks 12

Table 3 Table with implemented Named Entity Recognition (NER) tasks on
@Note 14

Table 4 Some Hibernate Search annotations applicable on data persistence
classes 18

Table 5 Caches in anote2daemon controllers, with the method they are associ-
ated to 30

Table 6 Methods in anote2daemon controllers that evicts caches and the caches
they evict 30

Table 7 SearchPropertiesImpl variables with description 33

Table 8 Tokens and terminal characters of the Boolean expression 36

Table 10 DataTable Columns Input 52

Table 9 DataTable inputs 52

Table 11 DataTable Header buttons 53

Table 12 Web application page routes 62

Table 13 Queries’ @Fields 81

Table 14 Corpus’ @Fields 81

Table 15 AuthUsers’ @Fields 82

Table 16 Processes’ @Fields 82

Table 17 ProcessOrigins’ @Fields 83

Table 18 ProcessTypes’ @Fields 83

Table 19 Publications’ @Fields 84

Table 20 ResourceElements’ @Fields 85

Table 21 Resources’ @Fields 85

Table 22 SynonymsId’s @Fields 85

xi

A C R O N Y M S

A

AJAX Asynchronous JavaScript And XML.

API Aplication Programing Interface.

B

BASE Bielefeld Academic Search Engine.

BTM Biomedical Text Mining.

C

CORS Cross-origin resource sharing.

CSS Cascading Style Sheets.

D

DAO Data Access Object.

DOI Digital Object Identifiers.

DOM Document Object Model.

G

GO Gene Ontology.

H

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

I

IE Information Extraction.

IOC Inversion of Control.

xii

Acronyms xiii

IR Information Retrieval.

J

JDBC Java Database Connectivity.

JSON JavaScript Object Notation.

M

MESH Medical Subject Headings.

ML Machine Learning.

MVC Model View Controller.

N

NCBI National Center for Biotechnology Information.

NER Named Entity Recognition.

NLP Natural Language Processing.

O

ORM Object Relational Mapping.

P

PDF Portable Document Format.

PID Persistent Identifiers.

PMC Pubmed Central.

POJOS Plain Old Java Objects.

POS Part of Speech.

R

RDBMS Relational Database Management System.

RE Relationship Extraction.

REST Representational State Transfer.

Acronyms xiv

S

SQL Structured Query Language.

U

UM University of Minho.

W

W3C World Wide Web Consortium.

X

XML Extensible Markup Language.

1

I N T R O D U C T I O N

1.1 context

The Life sciences produce a large amount of information that is spread in scientific publi-
cations and databases (Larsen and von Ins, 2010). The publications contain textual non-
structured data that turns the search and extraction of high-quality information into a
difficult challenge. As a consequence, biomedical researchers spend a large amount of
time extracting useful information from literature. Biomedical Text Mining (BTM) is the field
that applies a process of deriving high-quality information from texts and literature of the
biomedical domain. Thus, BTM appeared to create tools/methodologies that can automate
and reduce time-consuming tasks when searching for new information in biomedical liter-
ature (Shatkay and Craven, 2012).

Information Retrieval (IR) and Information Extraction (IE) are the two major BTM tasks.
IR includes the methods related to the discovery of documents (articles, books, patents)
and their pre-processing to make them suitable for subsequent operations (e.g. Portable
Document Format (PDF) to text conversion). IE on the other hand, has the capability to
extract high-quality information from text streams. Two of the main tasks in IE are Named
Entity Recognition (NER) and Relationship Extraction (RE).

These two processes can be tested in terms of performance and accuracy, being typically
validated against golden standard corpora (set of biomedical documents) that contain an-
notations (bio-entities and relations) curated by specialists (Kim et al., 2003). In the last
decade, challenges such as Biocreative (http://www.biocreative.org/) were created by the
BTM community to compare and improve BTM algorithms.

Over the last few years, the Biosystems research group University of Minho (UM) and
the SilicoLife company have worked in the BTM field. In this period, @Note2 1 a multi-
platform BTM Workbench has been developed, fully written in Java and that uses a MySQL
database. This framework copes with the most important IR and IE tasks in the field and
promotes multi-disciplinary research. The @Note2 architecture, based in plug-ins, enables

1 http://www.anote-project.org

1

1.2. Objectives 2

the fast development of new BTM methodologies, while keeping a user-friendly interface
(Lourenço et al., 2009).

The software developed in the @Note project includes a set of core Java libraries imple-
menting the main tasks in IR and IE. In the last couple of years, these have been used as
the basis for the implementation of a server, providing a number of BTM methods, with
two different options, through well-defined RESTful Aplication Programing Interface (API)s
or integrated database access. A set of graphical user interfaces are provided within the
@Note client stand-alone application, which is made available as open-source software.

1.2 objectives

The main goal of this work is the development of a web-based software platform that is
able to address some of the main tasks within BTM, focusing on the visualization and
exploration of the main entities and results (e.g. documents, corpora, annotations). This will
be supported by existing core BTM libraries from the @Note project.

In detail, the scientific/ technological objectives are:

• To review methods/algorithms and existing tools within the field of BTM;

• To review the existing software within the @Note BTM framework;

• To review web programming tools, selecting the most adequate for this project;

• To improve the available RESTful server within the @Note project, providing new
methods and APIs, and improving others making them more suitable to support web-
based applications;

• To develop a web-based application allowing the user to visualize, explore and man-
age the main entities involved in BTM.

• To develop a tool allowing the Boolean search of documents by named entities and by
free text with an interactive and intuitive web-based interface integrated, and allow
corpus creation by both search types.

1.3 structure of the thesis

The state of the art (next chapter) explores the BTM field, focusing on topics such as the
problems it addresses, its main tasks and the resources that support them. It reviews some
developed tools by the scientific community that implement BTM methodologies similar to
the proposed objectives. Also, it briefly introduces the @Note project where this thesis is
integrated in. The chapter describing the web application development follows, explaining

1.3. Structure of the thesis 3

the architecture and domain of the solution, and describing the development of the web
application starting by the back-end implementation. The next chapter focuses on the
results, showing the web application interface with some examples of data and interactions.
The last chapter brings the main conclusions of the work and some lines of prospective
future work.

2

S TAT E O F T H E A RT

2.1 biomedical text mining

The significant increase in the number of unstructured biomedical texts in the last few years
gave birth to BTM. Resorting to computational tools, time-consuming tasks can be replaced
with automated processes, designed for quality knowledge extraction in the biomedical and
molecular biology domains (Shatkay and Craven, 2012; Cohen and Hunter, 2008).

Tasks related to BTM can address a vast number of purposes giving answers to differen-
tiated groups within the scientific community (Shatkay and Craven, 2012). The tasks can
be divided in two distinct categories: IR, where the main purpose is to find and organize
relevant documents from a larger set, through well-formed queries on an indexed database,
and IE which is responsible for more in-depth analyses of text, such as NER where the
purpose is to identify interesting entities like genes, proteins or cellular locations, while RE
identifies links between these entities.

The NER process can be performed by distinct approaches, including lexicon-based, rule-
based or Machine Learning (ML) based techniques. Each approach has advantages and
disadvantages regarding the need to resort to manual curation (e.g. necessity of curated
lexica, rules or ML models).

The RE process also has different approaches (e.g. semantic rules, Part of Speech (POS)
trees), but ML methods are still an option. RE methods identify possible relations between
previously annotated bio-entities (Shatkay and Craven, 2012; Rodriguez-Esteban, 2009).

Evaluation of the processes pipelines associated with a specific task is done with a stan-
dard goal. The standard goal is a corpus with instances of the task, ideally providing correct
solutions free of errors, although this scenario rarely happens. The evaluation is based on
metrics that score the processes, and based on the results responds to questions about how
well the system performs (Shatkay and Craven, 2012).

Typical performance measures for both IR and IE systems are recall (Rc) and precision
(Pc):

recall =
TP

TP + FN

4

2.1. Biomedical text mining 5

precision =
TP

TP + FP
Recall and precision are calculated by dividing the original set the BTM task processed, into
four subsets related to its classification. True positives (TP) are the entities correctly clas-
sified, false positive (FP) are incorrectly classified entities, true negatives (TN) are entities
correctly classified as negative or correctly not classified as an entity, and false negatives
(FN) are when the system failed to classify an entity or incorrectly classified as negative.
Recall generally corresponds to sensitivity, however reaching 100% of this metric is trivial.
For example, if an IR system labels all retrieved documents as relevant it would successfully
indicate the user all the documents relevant to him, however a system like this would be
useless. A system with a nearly perfect precision is also trivial to implement, modifying
the previous IR example to a system that only labels one document as relevant. To more
systematically evaluate a system, two additional metrics that balance the trade-off between
precision and recall are used. They are the accuracy and F-score:

accuracy =
TP + TN

TP + FP + TN + FN

Fscore =
2Pc ∗ Rc
Pc + Rc

2.1.1 Information retrieval

In any research, the first step is to obtain relevant information, from where knowledge can
be extracted. IR offers several methods to search for documents that might be interesting
to the users needs, the goal is to retrieve all relevant documents, while correctly discarding
irrelevant ones. Sometimes, the number of relevant documents might require time to ana-
lyze that greatly surpasses what is available. When this happens, a finer grained query can
be applied or the information can have some priority enabling structure, showing the user
the retrieved documents which best suit him.

Publications can be accessed on public repositories, aggregators or catalogs, that can con-
tain abstracts, citations, full text articles, reports, etc. To prevent ambiguity, and enable easy
reproduction of results reported by other teams, each resource has a persistent identifier.
Two examples are: Handle Persistent Identifiers (PID), where abstract ids are assigned to a
resource in accordance to the Handle schema, and Digital Object Identifiers (DOI)1, serial ids
used to uniquely identify digital resources (Przybyła et al., 2016).

1 http://www.doi.org/

2.1. Biomedical text mining 6

Currently, two of the most popular repositories are Pubmed Central (PMC)2 and arXiv3.
PMC contains around 3.9 million publications related to Biomedical and life sciences fields.
It also contains an open access subset, that is part of the total collection of articles in PMC,
with over 1 million articles. ArXiv gives access to full preprints and abstracts of 1.2 million
publications related to Biology, Chemistry, Physics, Computer science and Mathematics,
among others.

Aggregators are especially useful to text miners, as they contain information harvested
from multiple sources searchable and available in an uniform way. The Bielefeld Academic
Search Engine (BASE)4 by Bielefeld University Library provides more than 100 million doc-
uments from more than 4,000 sources and about 60% of the indexed documents for free
(Open Access). It contains abstracts, full text articles, books and multimedia documents,
software and datasets.

Focused on the area of the Life Sciences, we have the aggregator PubMed https://www.

ncbi.nlm.nih.gov/pubmed/ by the National Center for Biotechnology Information (NCBI), U.S.
National Library of Medicine, that comprises more than 30 million citations for biomedi-
cal literature from MEDLINE, life science journals, and online books. Generally, full text
articles are not available, but may contain links to their content or publisher web sites. How-
ever, NCBI’s PMC archive contains more than 5 million free full-text records, of biomedical
and life science research https://www.ncbi.nlm.nih.gov/pmc/.

An indexed structure is fundamental to retrieve information from these databases, es-
pecially for Boolean queries. The structure relies on tokenization, a Natural Language Pro-
cessing (NLP) process of segmenting text, where the document(s) are divided into tokens
later combined to form terms. Terms are sorted, typically alphabetically, and they refer-
ence documents containing them forming an index. When a Boolean query is executed, the
documents referenced by the terms which satisfy the set operation from the query are re-
trieved. However, these terms alone may not be sufficient as they only contain tokens from
the documents processed. For example, querying a term not present in the index but where
a synonym is, the documents referenced by the synonym should be retrieved which will
not happen. To solve this problems, other terms corresponding to fundamental concepts
may be inserted.

This type of index can be enriched with different types of useful information to support
processes of categorization or summarization, among others:

• The exact position on the text or words surrounding the term, which is useful for
longer phrases identification and location.

• Grammatical information, such as part-of-speech tags.

2 https://www.ncbi.nlm.nih.gov/pmc/
3 https://arxiv.org/
4 https://www.base-search.net

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pmc/

2.1. Biomedical text mining 7

• Statistics, like the number of times and number of documents a term occurs and is
contained, respectively.

Simple Boolean queries, despite efficient implementation have domain-specific limita-
tions problems, such as the fact that short Boolean queries might result on impractical
number of documents retrieved. Natural language problems can lead to the retrieval of
irrelevant documents, while relevant ones may be missed.

Methods based on the vector model try to address the issues of Boolean queries explicit
words and terms dependency. Documents are viewed as vectors of weights, reflecting
the significance of the individual terms. Queries also follow this principle and are also
represented as a vector. The search algorithm can be reduced to comparing similarities
between the documents and query vectors, being the most similar retrieved (Shatkay and
Craven, 2012).

2.1.2 Named entity recognition

NER contains the methods of IE responsible for the identification of interesting entities in
texts. Before explaining the processes of NER, let’s enumerate some factors related to this
task, which impose significant difficulties:

• Synonyms — the same entity (e.g. gene) can have different names depending on
authors and context;

• Abbreviations — the same entity (e.g. compound) can have several different abbrevi-
ations and acronyms depending on the context.

• Homonymous — biological entities can be represented by names that have common
meanings in English (e.g. a gene name FOR).

• Ambiguity — the same name is often used for entities of different classes (e.g. a gene
and its encoded proteins).

• Entity names composed by combining others (e.g. genes or compounds).

Dictionary based methods

On this method, a dictionary structure is parsed searching for matches with entity names
kept in the dictionary keys and possible synonyms. This process has two major limitations:
the results will only be as complete as the dictionary used, i.e. an entity that is not present
on the structure cannot be matched, and context is not taken into consideration, so the
homonymy problem is not addressed, i.e. common terms used in natural language should
be omitted from the dictionaries as they will generate a huge number of false positives.

2.1. Biomedical text mining 8

One approach to mitigate the problems of an incomplete dictionary is to use a general-
ized dictionary relying on named patterns. This type of dictionaries might increase recall;
however, some precision is typically lost. Different kinds of dictionaries can be employed
as components of the NER, with better evaluation than the separate parts.

Rule-based methods

These methods rely on morphological and lexical properties of named entities of different
classes, as well as syntactic analyses. The core rules can be devised separated in stages.
One method by Fukuda et al. (1998) has 2 stages of rules, in the first stage the terms are
identified, and the second stage extends them with rules based on syntax like POS. These
methods have the advantage of how easy the extraction process is to understand, while their
drawback is the non existence of default rules. According to the situation, rules might have
to be modified and created, and therefore this task typically expends significant human
effort.

Learning classification models

Machine Learning methods are automatic processes where the model learns from labeled
training data. These models automatically identify regularities among named-entities if
a good dataset of training examples is available. Generally, producing these datasets is
very costly and requires a considerable amount of manual work. Maximum-entropy mod-
els, probabilistic sequence models, like Hidden Markov Models and Conditional Random
Fields are some examples of machine learning methods widely used for NER tasks.

2.1.3 Relation extraction

This field of BTM also includes methods for the identification of relations between entities
of interest. The extraction of relations is a complex task and the systems are mostly based
on hand-coded patterns, ML processes or a combination of the two, using detailed syntactic
analysis and semantic categories and relationships.

Co-occurrence

This kind of methods are based on finding co-occurrences of two entities within short
passages of text or in documents. As a standalone process, it has a major limitation, just
by two entities co-occurring, a relation is not confirmed as the relation can be elsewhere
on the text or even be non existent. To support the hypothetical existing relationship, the
frequency with the possibility by chance in mind and textual context can provide more
information towards the significance of the relationship found.

2.1. Biomedical text mining 9

Rule-based methods

On these systems, rules can be applied on syntactic and semantic level to pre-processed
text divided into tokens. Interesting entities like proteins and verbs can be labeled using
NER and POS tagger processes, respectively.

POS taggers can be based on models that are induced by supervised machine-learning
methods from labeled corpora. These ML methods are able to identify statistical regularities
in the context of a given token that enable its part of speech to be disambiguated (Shatkay
and Craven, 2012).

2.1.4 Tools

The scientific community has at its disposal several resources available for IR, IE processes,
as well as access to multiple structured databases to use on their work. Some function as a
standalone service, others provide a workflow of operations combining existing resources.
Next, we enumerate some tools that implement BTM methodologies:

• XplorMed5 (Perez-Iratxeta et al., 2001) — The XplorMed server allows to explore a
set of abstracts derived from a MEDLINE search. The system gives main associations
between the words in groups of abstracts. Then, you can select a subset of your
abstracts based on selected groups of related words and iterate your analysis on them.

• Whatizit6 — Text processing system that allows text mining tasks on text, great at
identifying molecular biology terms and linking them to publicly available databases.
Several vocabularies can be integrated in a single pipeline, examples of already in-
tegrated vocabularies are Swissprot, the Gene Ontology (GO), the NCBI’s taxonomy,
Medline Plus.

• Egas7 (Campos et al., 2013) — Egas is a web-based platform for biomedical text min-
ing and collaborative curation, supporting manual and automatic annotation of con-
cepts and relations.

• PubAnnotation8 — PubAnnotation is a repository of text annotations, especially those
made to literature of life sciences, e.g., PubMed or PMC articles. If one has such an-
notations, they can be registered in PubAnnotation. When annotations are registered,
PubAnnotation aligns them to the canonical text that is taken from PubMed and PMC,
which means all the annotations in PubAnnotation are linked to each other through

5 http://xplormed.ogic.ca/
6 http://www.ebi.ac.uk/webservices/whatizit
7 https://demo.bmd-software.com/egas/
8 http://www.pubannotation.org/

2.2. The @Note project 10

canonical texts. It is a new way of publishing or sharing text annotations using recent
web technology: annotations will become accessible and searchable through standard
web protocol e.g., Representational State Transfer (REST) API.

• Argo9 (Rak et al., 2012) — Argo is an inter-operable, integrative, interactive and col-
laborative system for text analysis with a convenient graphic user interface to ease
the development of processing workflows and boost productivity in labour-intensive
manual curation. Robust, scalable text analytics follow a modular approach, adopting
component modules for distinct levels of text analysis. The user interface is available
entirely through a web browser that saves the user from going through often compli-
cated and platform-dependent installation procedures. Argo comes with a predefined
set of processing components commonly used in text analysis, while giving the users
the ability to deposit their own components.

Table 1 provides some key points on the tools described above.

2.1.5 Resources

To support the BTM tasks explored in subsections 2.1.1, 2.1.2, 2.1.3, several resources have
been developed over the years. Lexical resources collect frequent lexical information on text
corpora such as parts of speech and spelling variants. Terminology resources collect names
of entities employed in the biomedical domain, they generally store synonyms and have
a hierarchical organization, such as graph structures. Ontology resources store relations,
such as is a and part of, between biomedical entities and their significance Bodenreider
(2006). Table 2 presents some of these resources and summarily explains them.

2.2 the @note project

The Biosystems research group (UM) and SilicoLife company released @Note214 currently
on version 2.1.4 (November, 23rd - 2016), a BTM tool which promotes the joint efforts
between three distinct classes: biologists, text miners and software developers (Lourenço
et al., 2009). @Note is built on top of AIBench a facilitator to the referred multidisciplinary
approach empowering the project with modular and flexible development. Its plug-in based
approach also enables the fast development of new BTM methodologies, while keeping a

9 http://argo.nactem.ac.uk/
10 https://www.nlm.nih.gov/research/umls/
11 http://wordnet.princeton.edu
12 http://wordnetweb.princeton.edu/perl/webwn
13 http://www.geneontology.org/
14 http://anote-project.org/

2.2. The @Note project 11

Ta
bl

e
1

.:
K

ey
po

in
ts

on
to

ol
s

th
at

im
pl

em
en

t
BT

M
m

et
ho

do
lo

gi
es

To
ol

D
ev

el
op

er
s

M
ai

n
fo

cu
s

W
eb

in
te

r-
fa

ce
im

pl
e-

m
en

ta
ti

on

IR
ta

sk
s

IE
ta

sk
s

lim
it

at
io

ns

xp
lo

rm
ed

C
ar

ol
in

a
Pe

re
z-

Ir
at

xe
ta

,
Pe

er
Bo

rk
,

an
d

M
ig

ue
l

A
.

A
nd

ra
de

A
bs

tr
ac

ts
vi

ew
ca

n
be

co
nd

en
se

d
by

re
la

ti
on

ex
-

tr
ac

ti
on

be
tw

ee
n

w
or

ds
co

nt
ai

ne
d

on
th

em
.

C
la

ss
ifi

ca
ti

on
of

ab
st

ra
ct

s
ba

se
d

on
M

ed
ic

al
Su

bj
ec

t
H

ea
di

ng
s

(M
eS

H
)

te
rm

s;
C

om
pu

ta
ti

on
of

re
la

ti
on

s
an

d
w

or
ds

to
at

ta
in

a
de

si
ra

bl
e

su
bs

et
.

Se
rv

er
is

lim
it

ed
to

5
0
0

ab
st

ra
ct

s;
D

ir
ec

t
qu

er
ie

s
to

Pu
bm

ed
ar

e
cu

rr
en

tl
y

un
av

ai
l-

ab
le

.

W
ha

ti
zi

t
Eu

ro
pe

an
Bi

oi
nf

or
m

at
ic

s
In

st
it

ut
ea

M
od

ul
ar

se
rv

er
-

ba
se

d
so

lu
ti

on
fo

r
lit

er
at

ur
e

an
al

ys
is

Pi
pe

lin
e

of
se

v-
er

al
av

ai
la

bl
e

m
od

ul
es

fo
r

N
ER

an
d

R
E.

O
n

th
e

w
eb

in
-

te
rf

ac
e

on
ly

on
e

pi
pe

lin
e

is
av

ai
l-

ab
le

Eg
as

Bi
oi

nf
or

m
at

ic
s

gr
ou

pb
at

Th
e

U
ni

ve
rs

it
y

of
A

ve
ir

oc

C
ol

la
bo

ra
ti

ve
fe

a-
tu

re
s,

an
no

ta
ti

on
-

as
-a

-s
er

vi
ce

so
lu

-
ti

on
.

H
TM

L5
,

C
SS

3
an

d
Ja

va
Sc

ri
pt

Li
st

of
id

en
-

ti
fie

rs
/

qu
er

y
of

/t
o

Pu
bM

ed
or

Pu
bM

ed
C

en
tr

al

M
L-

ba
se

d
pr

ot
ei

n
na

m
e

re
co

gn
it

io
n,

pr
ot

ei
n-

pr
ot

ei
n

in
te

ra
c-

ti
on

s,
et

c.
Pu

bA
nn

ot
at

io
n

M
ai

nl
y

de
-

ve
lo

pe
d

an
d

m
ai

nt
ai

ne
d

by
D

BC
LS

d

C
ol

le
ct

an
no

-
ta

ti
on

s
to

lif
e

sc
ie

nc
e

lit
er

at
ur

e,
fr

ee
re

po
si

to
ry

of
te

xt
an

no
ta

ti
on

.

R
ub

y
on

R
ai

ls
Li

st
of

id
en

ti
fie

rs
of

so
m

e
m

aj
or

pu
bl

ic
da

ta
ba

se
s.

SP
A

R
Q

L
qu

er
ie

s.

H
as

so
m

e
pr

ed
e-

fin
ed

an
no

ta
to

rs
or

le
t’s

th
e

us
er

sp
ec

if
y

on
e

(U
R

L,
PO

ST
/G

ET
)

A
nn

ot
at

io
ns

ne
ed

to
be

in
th

e
Pu

bA
nn

ot
at

io
n

JS
O

N
fo

rm
at

A
rg

o
Th

e
N

at
io

na
l

C
en

tr
e

fo
r

Te
xt

M
in

in
ge

at
Th

e
U

ni
-

ve
rs

it
y

of
M

an
ch

es
te

rf

Ea
se

on
co

m
-

bi
ni

ng
co

m
po

-
ne

nt
s,

m
an

ua
l

in
te

rv
en

ti
on

,w
eb

-
ba

se
d

in
te

rf
ac

e,
us

er
co

lla
bo

ra
-

ti
on

.

G
oo

gl
e

W
eb

To
ol

ki
t

an
d

Sc
al

-
ab

le
Ve

ct
or

G
ra

ph
ic

s

K
le

io
:

a
kn

ow
le

dg
e-

en
ri

ch
ed

IR
sy

st
em

fo
r

bi
-

ol
og

y
(N

ob
at

a
et

al
.,

2
0
0
8
)

W
el

l
st

ru
ct

ur
ed

pi
pe

lin
e

w
or

k-
flo

w
w

it
h

m
an

y
co

m
po

ne
nt

s.

a
ht

tp
:/

/w
w

w
.e

bi
.a

c.
uk

/
b

ht
tp

:/
/b

io
in

fo
rm

at
ic

s.
ua

.p
t/

c
ht

tp
s:

//
w

w
w

.u
a.

pt
/

d
ht

tp
:/

/d
bc

ls
.r

oi
s.

ac
.jp

/
e

ht
tp

:/
/n

ac
te

m
.a

c.
uk

/
f

ht
tp

:/
/m

an
ch

es
te

r.a
c.

uk
/

2.2. The @Note project 12

Resource Type Summary
UMLS10

Specialist
lexicon
(Browne
et al., 2003)

Lexical The SPECIALIST lexicon is a syntactic lexicon of
biomedical and general English words, providing ortho-
graphic, morphological and syntactic information about
individual vocabulary items. The Lexicon consists of a
set of lexical entries with one entry for each spelling or
set of spelling variants in a particular POS.

Wordnet11

(Miller,
1995)

Lexical Wordnet links English nouns,verbs, adjectives, and ad-
verbs to sets of synonyms that are in turn linked
through semantic relations that determine word defini-
tions. Its structure makes it useful for NLP processes
where synonym words are grouped into unordered
sets called synsets. Synsets are linked between each
other through relations, like super-subordinate relation
(e.g. table is a piece of furniture) or cross-POS refer-
ences (e.g. painter is the AGENT of paint, while pic-
ture is its RESULT.). The result network can be nav-
igated via browser12 or freely retrieved from https:

//wordnet.princeton.edu/wordnet/download/.
Gene
ontology13

(GO) (Ge-
neOntol-
ogyCon-
sortium,
2004)

Ontological Divided into three distinct structured ontologies that
describe gene products in terms of their associated bi-
ological processes , cellular components and molecu-
lar functions in a species-independent manner. The
GO ontology is structured as a directed acyclic graph
where each term has defined relationships. Every term
has a term name and a unique zero-padded seven digit
identifier, a namespace that identifies to which ontology
it belongs. All terms except root terms (e.g. biologi-
cal process) include links that captures how the term re-
lates to others. Some extra information like synonyms
can also be included.

Table 2.: Table with resources available for BTM tasks

https://wordnet.princeton.edu/wordnet/download/
https://wordnet.princeton.edu/wordnet/download/

2.2. The @Note project 13

friendly user interface, a crucial aspect for creating a bridge between biologists and BTM
computational processes.

@Note provides the currently most important tasks of IR and IE in the field implemented
on a set of Java libraries with well-defined RESTful APIs. This collection of methods can be
accessed through a Java project called anote2daemon which can be deployed on a server as a
web service using the JavaScript Object Notation (JSON) format for communication. However,
these methods are not only available through their RESTful APIs, each method also has an
implemented API within the Java project with database access.

2.2.1 @Note application

Regarding IR, well defined queries can be produced to search over databases (e.g PubMed
and patent search). From these, documents’ meta-data including abstracts are retrieved
from the database. If free full text is available, it can be downloaded using an implemented
automatic operation. There also options to provide the possibility to add annotations or
manually classify the document relevance. To further help management and organization,
each document has labels related to context associated like blood testing or Humans. There
is also an option to perform clustering over the queries using different methods.

Retrieved documents can be selected to form a corpus, where IE processes can be ap-
plied to extract knowledge from the collection. For these processes, the resources currently
supported are: dictionaries, lookup tables, rulesets, ontologies, and set of lexical words.

Manual curation is also available for automatic processes, providing an environment
where annotated terms in documents are marked with different colors based on their class,
helping experts to correct possible mistakes and inconsistencies on their resources.

Table 3 features the NER tasks implemented in @Note with a small description of their
major role.

For RE processes, @Note uses a pre-processed corpus with NER tasks already performed.
RE processes are divided into Corpus Relation Extration and Corpus Relation Co-ocorrence
Extration.

Corpus Relation Extration is based on NLP algorithms of POS shallow parsing, using POS-
Taggers like GATE15 and Ling Pipe16. The process can be configured with the following
parameters:

• Relation Extraction Model — model for the results like Binary verb limitation(1× 1)
where the verb relation is binary or verb limitation (M×M).

• Relation types — Relation types for extraction (e.g compound–compound, compound–
biological process).

15 https://gate.ac.uk/
16 http://ir.exp.sis.pitt.edu/ne/lingpipe-2.4.0/

2.2. The @Note project 14

NER task Major role

ABNER

URL: http://pages.cs.wisc.edu/~bsettles/abner/
Biomedical Named Entity Recogniser. It uses machine learning (linear-
chain conditional random fields, CRFs) to find entities such as genes, cell
types, and DNA in text.

Chemistry
Tagger

URL:https://gate.ac.uk/sale/tao/splitch21.html#sec:parsers:
chemistrytagger

Designed to tag a number of chemistry items in running text. Currently,
it tags compound formulas (e.g. SO2, H2O, H2SO4 ...) ions (e.g. Fe3+,
Cl-) and element names and symbols (e.g. Sodium and Na).

Linneaus
Tagger

URL:http://linnaeus.sourceforge.net/
Performs NER processes based on lexical resources (Dictionaries, Lookup
Tables, Rule Sets, Ontologies) matching terms in the text using the Lin-
neaus Tagger. Lexical resources and options can be based on previously
applied NER processes.

Lexical
resources
[native]

Performs NER processes based on lexical resources (Dictionaries, Lookup
Tables, Rule Sets, Ontologies) matching terms in the text. Also, results
can be filtered using Stopwords (Lexical Words Resource) to remove com-
mon English words and improve results using the disambiguation pro-
cess. Lexical resources and options can be based on previously applied
NER processes.

Table 3.: Table with implemented NER tasks on @Note

• Advanced model options

– Using a maximum word distance between verbs (clues) and annotated entities in
the sentence.

– Keep Only Relations where verbs are associated only with nearest entities.

– Keep Only relations where the entities are only associated to the nearest verb.

• Manual Curation (from other process) — merge previously manually annotated enti-
ties from another previous process in the RE process.

• Verbs lists — Use verb list from the lexical resources to filter the results and/or an-
other to add as relation clues.

Corpus Relation Co-ocorrence Extration is based on entity proximity (e.g terms in the same
sentence). The model for this process can have the entities in the sentence continuous or
mixed in pairs, Entity Sentence Continuous or Mix Entity Pairs Sentence respectively.
@Note also has a ML based module, the BioTML that enables users to create models, trained
based on available annotations (NER or RE) created by the user using the manual curation
environment.

http://pages.cs.wisc.edu/~bsettles/abner/
https://gate.ac.uk/sale/tao/splitch21.html#sec:parsers:chemistrytagger
https://gate.ac.uk/sale/tao/splitch21.html#sec:parsers:chemistrytagger
http://linnaeus.sourceforge.net/

3

W E B A P P L I C AT I O N D E V E L O P M E N T

This chapter starts by describing the technologies and languages used on the development
of the @Note web application. This chapter then explains the architecture of the system,
properly identifying the entities involved and their relations. Since the solution is focused
on access and navigation of information, data access and storing is explained in more
detail. The major back-end implementations are explained in detail, such as, the creation of
the Lucene database and queries using that database. The final section is dedicated to the
angular front-end development.

3.1 technologies and languages

This section explains some technical aspects of the technologies and languages used to
develop the application, as well as the methodologies and good practices associated with
them to design and implement the system.

3.1.1 Java

Java is an object oriented programming language and is used in the back-end implemen-
tation of the system. Some of the advantages of programming in Java are (Gosling and
McGilton, 1995):

• Portability : Applications written in Java run without modification on multiple oper-
ation systems and hardware architectures.

• Interpreted, threaded and dynamic: The Java interpreter can execute Java bytecodes
directly on any machine to which the interpreter and run-time system have been
ported. Java also supports multithreading at the language level and the language and
run-time system are dynamic in their linking stages.

• Object oriented: Java provides a clean and efficient object-based development plat-
form.

15

3.1. Technologies and languages 16

• Robust: Java features help on acquiring reliable programming habits and its extensive
compile-time checking, followed by a second level of run-time checking, increases
software reliability.

3.1.2 Hibernate ORM

An Object Relational Mapping (ORM) system works around the object-relational impedance
mismatch, the tabular representation data versus the interconnected graph of objects repre-
sentation by object-oriented languages, by whisking data to and from a relational database
to appropriate objects (O’Neil, 2008; hib, a). This mismatch between the two representations
has the following problems (hib, a):

• Granularity: Object model classes sometimes don’t have a one to one correspondence
with the tables in the database.

• Subtypes (inheritance): Relational Database Management System (RDBMS) do not de-
fine anything similar, at least standardized, to inheritance in object-oriented languages.

• Identity: RDBMS primary key versus object equals method or == to define the notion
of ’sameness’.

• Associations: RDBMS foreign keys association representation versus references by
object-oriented languages.

• Data navigation: In relational databases, to minimize the number of Structured Query
Language (SQL) queries, several entities are typically loaded via JOINs and the target
entities are selected before walking the object network.

In addition to helping with this mismatch, Hibernate ORM also consistently provides a su-
perior performance over straight Java database connectivity code and is highly configurable
and extensible (hib, a).

3.1.3 Hibernate Search and Lucene

In a digital world, where knowledge is increasingly more vast and differentiated, it is
urgent we empower ourselves with tools that allow us a fast access to this knowledge.
Lucene is a high performance text search library written in Java, already used by @Note
to search resources and its elements. At @Note, Lucene is used through Hibernate Search,
that integrates Apache Lucene, handles indexing, datastore synchronization, clustering and
infrastructure transparently, also providing an API for query building.

Hibernate search offers full text search for objects stored by Hibernate ORM and other
sources. It has the following advantages (hib, b):

3.1. Technologies and languages 17

• Offers control on how to store data, and how to extract information, also exposing all
capabilities of Apache Lucene.

• Offers architectural solutions to maintain a high performance, scalable and distributed
index.

• Query results can be organized by groups and categories.

Model

At the beginning of a search, it is necessary to have a database with efficient methods
to arrive at the intended information, allowing for fine-grained queries with options like
case-sensitivity, suggestions, filtering of results and sort. Lucene’s index stores documents’
terms into maps, called inverted indexes because the search is based on the terms of the
documents. Each term must have a token and a field name.

The way query results are organized can be explained using the Lucene Practical Scoring
Function1 :

score(q, d) = ∑
t in q

(t f (t in d) × id f (t)2 × t.getBoost() × norm(t, d))

1. tf(t in d) is the term’s frequency, so documents that have more occurrences of a given
term receive a higher score.

2. idf(t) correlates to the inverse of docFreq (the number of documents in which the term
t appears), rarer terms give higher contribution.

3. t.getBoost() is a search time boost of term t in the query q.

4. norm(t,d) is an index-time boost factor that solely depends on the number of tokens
of this field in the document, so that shorter fields contribute more to the score.

Hibernate Search model

To map the domain model, persistent classes are marked with several annotations and
filled with value types that define their state. To add free text capabilities with Hibernate
Search, additional annotations to the class are required. Table 4 lists some of the referred
annotations.

Analysis is the process in which text is converted into terms, Hibernate Search has an con-
figurable analyser class that can be applied to entities, properties or even fields. Custom
reusable analysers can be defined and are comprised by: a name, unique identifiers of the

1 https://lucene.apache.org/core/8_2_0/core/org/apache/lucene/search/similarities/

TFIDFSimilarity.html

https://lucene.apache.org/core/8_2_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://lucene.apache.org/core/8_2_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

3.1. Technologies and languages 18

Annotation Location Use
@Indexed Class entity Specifies that the entity is indexable, can have search-

able fields.
@AnalyzerDef Class entity Definition of a custom analyzer for indexation.
@AnalyzerDefs Class entity Allows multiple @AnalyzerDef definitions.
@Field Basic value

type
Specifies that the field is searchable. A custom or built-
in-in analyzer, can be passed to the field to customize
the indexation.

@Fields Basic value
type

Allows multiple @Field annotations to be associated to
the value.

@SortableField Value type Explicitly specifies that the field is sortable
@IndexedEmbedded Collection

value type
Index associated entities for example: (@ManyToMany,
@*ToOne, @Embedded and @ElementCollection) as part of
the owning entity

@FieldBridge Value Type Custom bridge for the field for more fine-grained index-
ing.

Table 4.: Some Hibernate Search annotations applicable on data persistence classes

analyser definition; a list of character filters, responsible for the pre-processing of characters
before they are converted into tokens; a tokenizer, transforms the input characters into to-
kens; a list of filters that can remove, modify or add words. This separation of tasks enables
re-usability of these components when defining other analysers.

Query

Hibernate Search provides a list of querying methods that can be combined to make a fine
grained search. Some of the options available are:

• Keywords;

• Words where some are unknown;

• Phrases;

• Range values, like between dates, numbers or words;

• Results similar to the text search.

Queries can also be configured with the following options:

• boostedTo (on query type and on field): boost the whole query or the specific field by
a given factor.

• withConstantScore (on query): all results matching the query have a constant score equal
to the boost.

3.1. Technologies and languages 19

• filteredBy(Filter) (on query): filter query results using the Filter instance.

• ignoreAnalyzer (on field): ignore the analyzer when processing this field.

• ignoreFieldBridge (on field): ignore field bridge when processing this field.

3.1.4 Spring framework

The Spring framework is a Java platform that provides comprehensive infrastructure sup-
port for developing Java applications. Spring enables to build applications from Plain Old
Java Objects (POJOs) and to apply enterprise services non-invasively to POJOs. Two of the
advantages of the Spring platform are: turn a local Java method into a remote procedure
without having to deal with remote APIs; make a Java method execute in a database trans-
action without having to deal with transaction APIs. (Pivotal, 2017)

The Spring framework consists on features organized into modules, grouped into contain-
ers such as (Pivotal, 2017):

• Core Container: Has modules that provide the fundamental parts of the framework,
such as the Inversion of Control (IoC) and dependency injection features. It also pro-
vides access to objects in a framework-style manner.

• Data Access/Integration: Has transaction modules for integration, with Hibernate for
example, and modules for data access, for example giving support to pragmatic and
declarative transaction for classes. It also provides a Java Database Connectivity (JDBC)
abstraction layer.

• Web: Contains Springs Model View Controller (MVC) and REST Web Services implemen-
tation.

Inversion of Control

In a Java platform application development, it is the developer’s task to organize basic
building blocks into a coherent whole. This task can use patterns, good practices given
a name, a description of what it does, where to apply it, and the problems it addresses.
The Spring Framework codifies formalized design patterns as first-class objects that can be
integrated in the application. IoC also known as dependency injection, provides formalized
means of composing disparate components into a fully working application.

IoC is a process whereby objects define their dependencies, that is, the other objects they
work with, only through constructor arguments. These dependencies are injected when
creating a bean. In Spring, the objects that form the backbone of the application, and that
are managed by the Spring IoC container, are called beans (Pivotal, 2017).

3.1. Technologies and languages 20

3.1.5 Web-based technologies

With the advances on modern browsers, we observed an increase on web-applications,
where deployed JavaScript code size has grown 45% over the course of the year 2015

(ENACHE, 2015). Web applications make the project more accessible, avoiding possible
complicated installation and configurations to use the product. However, writing a full-
fledged application on JavaScript, Cascading Style Sheets (CSS) and a general-purpose script-
ing like PHP alone lacks productivity (e.g. duplication of code, writing too much code),
maintainability (e.g. lack of modular components) and abstraction.

To help solve these problems, several web frameworks are available, either developed
with an MVC architecture in mind like Ruby on rails2, or their well designed framework are
MVC enablers like Django3.

MVC is a design pattern that encourages the division of the application into three inter-
dependent components. Views contain how the data are presented, among the components
needed for display they might also contain subviews. Controllers are the interface between
their associated views and models, they define how the application interacts with the user.
The model is the application central structure, contains all of the application logic and data.
A modular structure is extremely useful, isolating functional units as much as possible,
facilitating their understanding and modification (Krasner and Pope, 1988).

Angular

Angular4 is a web framework, 100% Javascript and client-side. Powered by google, created by
Miško Hevery. Some examples built with it can be found at https://www.madewithangular.
com/ with websites like the one from the Oscars5.

Angular is extremely modular, actually many of its libraries are modules, as well as, many
other third party libraries are also available as modules. An angular application must have
at least one module, the root module. From this module the application can be constructed by
adding other cohesive modules of functionality, they can feature a specific business domain
(e.g. a module for IR tasks) or simply provide some utility (e.g. a bootstrap module to help
with the application graphical design).

Two special features about angular are: Data binding and Directives. Data binding is the
automatic synchronization of data between the model and view components. The view can
be thought as an instant projection of the model, which enables the controller to be com-
pletely separated and unaware of the view’s existence. This is especially useful for testing
and applying different presentation forms of information to the same controller. Directives

2 http://rubyonrails.org/
3 https://www.djangoproject.com/
4 https://angularjs.org/
5 http://oscar.go.com/

https://www.madewithangular.com/
https://www.madewithangular.com/

3.2. @Note Architecture 21

Figure 1.: @Note Architecture

are markers on a Document Object Model (DOM) element that extend the HyperText Markup
Language (HTML), the language for describing the structure of web pages (w3h), with new
attributes, providing functionality to the application. The DOM is an API for valid HTML
and well-formed Extensible Markup Language (XML) documents. It defines the logical struc-
ture of documents and the way a document is accessed and manipulated (Wood and Level,
2004). Angular already provides many useful built-in directives (e.g. ng-model, ng-repeat)
and encourages the user to write their own when needed. For example, with the ng-repeat
directive, we can mark a table HTML tag to populate a table bind to a model. We write the
code to populate the columns, and one row and the directive will repeat the rows as many
times as there are elements in the model.

3.2 @note architecture

In figure 1, we provide the architecture of the @Note system, where we can see that the de-
veloped web application data is a RESTful Java application connected to selected databases.
The project has two databases to query for information, both implemented using Hibernate,
and set up through configuration files. One of them is a relational database, where we used
MySql, and the other is a repository of files for Lucene queries. The anote2daemon is a Spring
RESTful web service, giving access to @Note’s methods to the outside. The mapped methods
use the five core @Note libs to access the database and execute BTM processes. Finally, the
@Note web application has services implemented with REST requests configured to query
a server with an @Note web service running.

3.2. @Note Architecture 22

Figure 2.: @Note java libraries

3.2.1 @NoteLibs

The @Note project has seven Java libraries connected and maintained as Maven6 projects.
Figure 2 shows what each library contains and their dependencies.

The more relevant Java libraries to the web application development are: Core, anote2daemon
and Processes. The Core library has the essential data structures, data access and business
logic of the domain. The Processes library implements the majority of the BTM processes.
Processes implemented in other libraries have a reason to be in a separated library, for
example ProcessesGate8 has the BTM processes dependent on the Gate8 framework. The
anote2daemon library provides a RESTful API to access @Note’s data and BTM processes.

The contributions of this thesis to the improvement of the @NoteLibs can be summarized
as:

• Core:

– Use Hibernate Search to create a Lucene database and queries for that database.
The Resource and ResourceElements already had implementations related to Lucene.

– Implementation of attribute languages for Boolean expression search.

– Implementation of data access methods better suited for the web application, for
example, implementation of paginated results.

– Implementation of data access to track the progress of running processes and
consult reports of finished processes. Data access implementation involved cre-
ating a data persistence class, services and the Data Access Object (DAO).

6 https://maven.apache.org/

3.2. @Note Architecture 23

• Processes: Added two corpus creation methods, using the process tracking implemen-
tation at the Core. One method adds publications to the corpus from a set of publica-
tion identifiers, and the other from a set of objects from the classes implementing the
interface IPublication.

• anote2daemon:

– Added methods to the controllers related to the new implementations on Core
and Processes.

– Added beans of the new implemented services at Core.

– Implemented caching for some methods.

– Implemented methods related to authentication and communication with the
@Note web application.

3.2.2 @Note data access

The @Note Core project provides access to the entities stored in the relational database and
the Lucene database. Figure 3 has a relationship between the entities and the modules
they are included in. Access is granted by a class implementing the interface IDataAccess,
and all methods that access the database must be defined here. Two methods implement
IDataAccess:

• DatabaseAccess: Reads configurations of the relational and Lucene databases, accessing
the files and creating an Hibernate session. Implements the methods to access the
database using the services in dataaccess.implementation and Lucene packages.

• DaemonAccess: Has methods to connect and authenticate for an anote2daemon running
at a server. In the anote2daemon, all methods declared at IDataAccess are implemented,
by Hypertext Transfer Protocol (HTTP) requests.

Services are the bridge between the DAO and data access, they request the information
from methods implemented in DAOs and return business objects.

Lucene DAO implementations use the Hibernate Search API to build database queries to
access the Lucene index of @Fields defined in data persistence classes at model.entity. Model
DAO implementations use Hibernate to query the relational database.

GenericDao for both Lucene and model can be instantiated for a data persistence class, and
contains generic methods that can return results of the instantiated type. A simple example
of a generic method is to get an entity using its id as input.

3.2. @Note Architecture 24

Figure 3.: @Note data access packages, entities and their relations

3.2. @Note Architecture 25

Figure 4.: @Note Domain model

3.2.3 @Note domain model

A domain model captures the entities of a problem and their relations. Figure 4 contains
the most important entities to understand the system. The meaning of each entity is the
following:

• Document: Documents are unstructured texts with relevant metadata like authors, year
of publications etc.

• Query: Query is a search on a database for potential documents of interest related to a
specific task. Documents associated to a query have relevance related to the query.

• Corpus: This entity represents a structured set of documents over which IE processes
extract information.

• Resource: A Resource represents formally knowledge on a specific domain (e.g. biolog-
ical entity or relation type). BTM processes can be defined with the option/necessity
on the inclusion of resources to run.

• Resource Element: This entity specifies a selected term representing an element of a
specific domain with its synonymous and external databases.

• IEProcess: IE processes extract information from the unstructured text on documents of
a corpus by generating annotations.

3.2. @Note Architecture 26

• NERProcess: This entity specifies IE processes of the NER type, which identify and
annotate entities of interest on documents.

• REProcess: This entity specifies processes of the RE type, which find relations involv-
ing entities previously annotated by a NER process.

Users and permissions

Users belong to one of two groups, Admin or General. Admins have access to administra-
tion functionalities such as: changing permissions and creating users.

The @Note platform has five major entities: Queries, Corpus, IEProcesses, Resources and
Documents. With the exception for Documents, accessibility is restricted based on user per-
missions. A permission to a resource can be classified as: owner, read write, read and none.
Permissions and user groups have a significant impact on the development of the applica-
tion, as the majority of requests to the database need to obey the logic imposed by user
permissions. The users’ permissions are also used to ”remove” information, for example
if a dictionary is no longer useful to a user, ”removing” that dictionary is changing the
permission of that resource to none. The dictionary now is not returned on a query with the
set of dictionaries associated to this user, while for other users using that resource nothing
changes. If the dictionary is again of use to the user, an admin can change the permission
again. Only elements that have errors and should never have any application are deleted
by changing its validity parameter on the database.

Query

Queries are IR operations to search for documents. If the search is related to an external
database, the documents are retrieved and stored. Queries have a set of parameters that help
on the selection of relevant documents. The relevance of a document to a query can vary on
levels from None to Relevant.

As shown in figure 5, the QueryOriginType gives information on how the query was
executed. Processes on the @Note platform for queries have a specific name associated to it,
for example a query to the Pubmed database has an origin of PUBMED. Properties are key-
value pairs that provide additional information on a query, like date ranges on publications.

Corpus

A corpus is a set of documents created by an IR process, selected from a given source with
a given purpose executing a query, over which BTM processes can be executed. In figure 6,
it is visible that like on the Query properties, there are pairs to store additional information
about the corpus, such as if they are full texts or abstracts.

3.2. @Note Architecture 27

Figure 5.: @Note Query class diagram

Figure 6.: @Note Corpus class diagram

3.2. @Note Architecture 28

Figure 7.: @Note IEProcess class diagram

IEProcess

An IEProcess (Information extraction process) manages information related to a BTM pro-
cess run. In figure 7, we have a diagram with the interactions of the entities involved. An
IEProcess must be run over a Corpus, has a type (NER or RE), and have a reference to the
process algorithm executed. If the corpus’ documents have relevant information related to the
executed process setup, it generates annotations of the documents. An annotation references
a portion of text on a document, which can be identified by the start and end offsets. An-
notations automatically generated from IE processes can later be curated by a user, that can
validate them and add notes. Annotations can be related to entities or events on documents.
Entities must reference a resource element used by the process, have a class that defines the
color shown when presented on a curator view, and also indicate if the entity is an abbrevia-
tion. Event annotations reference the entities at its left and right and have an event properties
object that defines additional information on the event.

Resource

Resources are auxiliary knowledge to BTM processes adding domain-specific knowledge.
Each type of resource has a specific structure and complexity of relations between enti-
ties. However, they all have terms that represent a domain entity. Resources can also help
the algorithm’s precision, one example being stop words that identify segments of text that
should be ignored even if they are candidates to generate an annotation. As it can be seen

3.3. Cache 29

Figure 8.: @Note Resource class diagram

in the figure 8, resources can be of type Dictionary, LexicalWords, LookupTable, Ontology or
RuleSet

3.3 cache

The @Note application can be applied to an extensive database with millions of documents
and terms. As such, even a simple count operation on the database can take a couple of
minutes to complete. In order to provide a smoother experience in the web application,
a cache system was implemented. This cache implementation in the anote2daemon stores
some values returned by chosen methods. When the method is called for the same input
the stored value is returned.

On Spring, caching can be enabled by adding some beans to the application context file
and by adding annotations on controller methods. The stored values in cache can be purged
if conditions change, e.g. on a method to return the total documents in the database cache
value should be purged if new documents are added. The implemented Spring cache does
not store values persistently, all data is lost if the application is terminated or restarted.

By adding a <cache:annotation-driven / > followed by a bean with id cacheManager and the
class org.springframework.cache.support.SimpleCacheManager, with some more group declara-
tions we register a cacheManager, the first step to apply caching in the system. The cache
group is now ready to receive beans declaring each cache. Cache annotations on methods
are added on daemon controllers, and it is necessary to declare them in the cache group. De-
clared controllers were: publicationsController, corpusController and resourceElementsController.
To enable cache on a method it is used the annotation @Cacheable, and to remove cached
values the annotation @CacheEvict. Both need to receive as an entry parameter the name
of the cache. If the method they are associated to has a variable as input, it is also passed

3.4. Search 30

Cache Associated method Controller
countAllPublications countAllPublications() PublicationsController
countAllDistinctColumnVal-
uesFromPublications

countAllDistinctColumnVal-
uesFromPublications()

PublicationsController

resourceContent getResourceContent() ResourceElementsController
resourceClassContent getResourceClassContent() ResourceElementsController
corpusStatistics getCorpusStatistics() CorpusController

Table 5.: Caches in anote2daemon controllers, with the method they are associated to

Method Controller Evicted caches
createMultiplePublications() PublicationsController countAllPublications

countAllDistinctColumnVal-
uesFromPublications

updatePublication() PublicationsController countAllDistinctColumnVal-
uesFromPublications

addResourceElements() ResourceElementsController resourceContent
resourceClassContent

addResourceElementsWith-
outValidation()

ResourceElementsController resourceContent
resourceClassContent

removeResourceClass() ResourceElementsController resourceContent
resourceClassContent

addResourceElementSyn-
onyms()

ResourceElementsController resourceContent

updateCorpus() CorpusController corpusStatistics
updateCorpusStatus() CorpusController corpusStatistics
registerCorpusProcess() CorpusController corpusStatistics
addCorpusPublication() CorpusController corpusStatistics
inativateCorpus() CorpusController corpusStatistics

Table 6.: Methods in anote2daemon controllers that evicts caches and the caches they evict

as a key value (spr, a). Table 5 contain the implemented caches and table 6 contains the
methods where they are evicted.

3.4 search

This section explains the implementation of the new searching features on the application’s
domain. It starts with the Hibernate Search, going through its database, DOM queries and
services. It closes with Boolean expression search, two implementations of attribute gram-
mars to search for documents, the first using words in text and the other resource elements
annotated in the text.

3.4. Search 31

3.4.1 Hibernate Search

Analysers

To facilitate/enable different types of queries, most fields are indexed using multiple anal-
ysers. For the custom analysers, we used two tokenizer factories 7:

• StandardTokenizerFactory: This tokenizer splits the text field into tokens, treating whites-
pace and punctuation as delimiters including hyphens. Delimiter characters are dis-
carded, with the following exceptions:

– Periods (dots) that are not followed by whitespace are kept as part of the token,
including Internet domain names.

– The ”@” character is among the set of token-splitting punctuation, so email ad-
dresses are not preserved as single tokens.

• KeywordTokenizerFactory: This tokenizer treats the entire text field as a single token.

The filters used are:

• stopFilterFactory: Removes words contained in a stop words list. The default list has
english stop words list with words usually not useful to a search 8.

• LowerCaseFilterFactory: Lowercase all words.

• EdgeNGramFilterFactory: generates edge n-gram tokens of sizes within the given range.

The KeywordsSplitter analyser uses the StandardTokenizerFactory and the filter StopFilterFac-
tory. This is a very general analyser only using the StopFilterFactory for some optimization.

The toLowerCase analyser is very identical to KeywordsSplitter, with an additional filter to
convert all words to lowercase. Queries applied to data transformed by this analyser are non
case-sensitive.

The keywordEdgeAnalyzerCS and tokenEdgeAnalyzerCS analysers generate terms applying
an EdgeNGramFilterFactory. These terms are substrings of the token given as input, start-
ing at value minGramSize with a maximum range of maxGramSize. For example, the token
textmining generates the following terms tex, text, textm, ..., textmining. This method of
storing data is useful for imprecise text search, when we want more results, even if less
reliable they have an higher chance of containing what is looked for.

7 https://lucene.apache.org/solr/guide/6_6/tokenizers.html

8 https://lucene.apache.org/core/4_6_0/analyzers-common/org/apache/lucene/analysis/core/

StopAnalyzer.html#ENGLISH_STOP_WORDS_SET

https://lucene.apache.org/solr/guide/6_6/tokenizers.html
https://lucene.apache.org/core/4_6_0/analyzers-common/org/apache/lucene/analysis/core/StopAnalyzer.html#ENGLISH_STOP_WORDS_SET
https://lucene.apache.org/core/4_6_0/analyzers-common/org/apache/lucene/analysis/core/StopAnalyzer.html#ENGLISH_STOP_WORDS_SET

3.4. Search 32

Search fields

To make a field searchable we need to apply some annotations configuring how the index is
created. The tables 15, 14, 16, 17, 18, 19, 13, 20, 21 and 22 contain for each data persistence
class the database column with the associated Lucene @Fields listed by name.

The field names listed follow a naming convention in their definition. All field names
finished by ”CS” are indexed and analysed by keywordsSplitter analyser, the ones finished by
”NCS” use the analyser toLowerCase and those finished by ”Sort” are not analysed. In this
last case, just the field text is stored to enable sorting by that field the results returned by a
query. We can observe the application of these rules at data persistence class Publications for
the column pub title:

@Fields(value = {

@Field(name="titleCS",index=Index.YES , analyze=Analyze.YES , analyzer =

@Analyzer(definition="KeywordsSplitter"), store=Store.NO),

@Field(name="titleNCS",index=Index.YES , analyze=Analyze.YES ,analyzer =

@Analyzer(definition="toLowerCase"), store=Store.NO),

@Field(name = "pubTitleSort", analyze = Analyze.NO, store = Store.YES)

})

@SortableField(forField = "pubTitleSort")

For field names starting by ”keywordEdgeNGram ”, the field is analysed by keywordEdge-
Analyzer, starting by tokenEdgeNGram it is used the tokenEdgeAnalyzer. We can observe
this at ResourceElements data persistence class for the column res element:

@Field(name = "keywordEdgeNGram_res_element", index = Index.YES , store =

Store.NO , analyze = Analyze.YES , analyzer = @Analyzer(definition = "

keywordEdgeAnalyzer"), boost = @Boost (2)),

@Field(name = "tokenEdgeNGra_res_element", index = Index.YES , store = Store.

NO, analyze = Analyze.YES , analyzer = @Analyzer(definition = "

tokenEdgeAnalyzer"))

Lucene bridges

All index fields of Hibernate Search must be converted into Strings, the majority of this work
is done automatically by some built-in bridges. However, this does not cover all cases
like class relations. To help Hibernate Search convert these relations to string based, we
implemented two-way bridges, all with the same structure: initialization of a string with

3.4. Search 33

Variable Type Description
value String Text search
fields List<String > List of fields to search at
wholeWords Boolean If true the query must use the text search as a

continuous segment
keywords boolean If true the text search must be divided word by

word
caseSensitive Boolean If true the query must be case-sensitive, otherwise,

it must do a non case-sensitive search
restrictions Map<String,

String >
Restricts returned results of pairs field value. For
example return just processes of a specific corpus

filters Map<String,
List<String >>

Filter results, allows for more than one value for
the same field

expression Boolean The text search is a Boolean expression

Table 7.: SearchPropertiesImpl variables with description

a value used to ”connect” string representations of the two classes the bridge is applied to.
This ”connection” is used by the two methods implemented in the bridge:

• objectToString: Converts the object into a string to be in the Lucene indexation.

• stringToObject: Converts a string generated by objectToString back to an object.

Query

All Lucene data access services have methods to query the Lucene database. We will explain
how to query for paginated data, sorted by a field that returns results based on user permis-
sions to that resource. These have the parameters searchProperties (of type ISearchProperties),
permission (string), index and paginationSize (integers), asc (Boolean), and sortBy (string). The
permission refers to the user requesting the data, required to only return what the user has
access to; (index and paginationSize are used to return the intended page of results; if asc is
true, the results are in ascending order, otherwise they are returned in descending order;
sortBy indicates the field the results are sorted by. SearchPropertiesImpl class implements the
search configurations the presentation layer uses to communicate with the business layer
how to make the query. Table 7 has SearchPropertiesImpl, that implements ISearchProperties),
variable names, their type and how they are used.

Lucene queries need the unique index field defined at @Field definition, these are stored at
enums created for each searchable data persistence class. Using the enum ProcessLuceneFields
created for the data persistence class Processes, we can define the following enum where for
each database column is attributed a suggestive name, usually the names of the variables of
the corresponding business class. The exception is the name none that is used to represent
the absence of sorting by an entity:

3.4. Search 34

Figure 9.: Search method in a Lucene Service with permissions and filters

processOrigin("processOrigins.pro_po_descriptionNCS", "processOrigins.

pro_po_descriptionCS", "processOrigins.pro_po_descriptionSort",

SortField.Type.STRING),

processType("processTypes.pro_pt_typeNCS", "processTypes.pro_pt_typeCS", "

processTypes.pro_pt_typeSort", SortField.Type.STRING),

notes ("pro_notesNCS","pro_notesCS", "none", null),

name("pro_nameNCS","pro_nameCS","proNameSort",SortField.Type.STRING),

none("","","none",null);

private final String NCS;

private final String CS;

private final String SORT;

private final SortField.Type SORTTYPE;

Each entity name has a correspondence to a Lucene index field name. The exception is
the parameter SORTTYPE that instead of having a field name, has a SortField type necessary
for sorting. The enum then has methods to retrieve the associated name based on one of
the four parameters.

In figure 9, we have a visual representation on how the search method is structured. First,
the function inputs are structured as maps, each having its own role for sub-queries. When
necessary, the respective enum is used to get the unique field name. The next step is to
call the query defined at GenericLuceneDaoImpl, its results are then converted to the business
equivalent.

3.4. Search 35

3.4.2 Boolean search

One of the major tasks of the web application is to empower its users with powerful query-
ing tools. Almost all the information is stored using Lucene indexation and has search
methods by phrase and keyword implemented. However, the document database is very
extensive and always growing, and so it was decided it required a more precise and config-
urable query method. A Boolean query accomplishes this by refining requests with logical
operators.

The application provides two distinct Boolean query operations on documents:

• Global search: This Boolean search uses resource elements, more specifically, their unique
identifiers, as arguments and queries annotated documents for the results. This type of
search allows for example to combine proteins and genes logically to retrieve relevant
documents.

• Expression: This Boolean search uses words or phrases as arguments to search on
Lucenes index database for the results.

To accomplish the goal of Boolean querying for documents, we used the Java Compiler
Compiler (JavaCC). JavaCC is a parser generator and lexical analyzer generator for Java.

Expression grammar

In the introduction to this chapter, we talked about the grammar to be applied for documents.
However, it can be applied to any class that implements the GenericLuceneDao and has data
indexed by Lucene. It is dependent on a Lucene service, and on a list of index fields to query
for results. To write a Boolean expression able to combine words and phrases (sequence of
words that should be combined on the search) with logical operators we defined the tokens
given in table 8.

Figure 10 shows the following Boolean expression’s grammar functions and their interac-
tions:

• one line: initializes an array of queries to be manipulated by the operation; when the
expression reaches the terminal symbol, the expression reached its end and the list of
queries must only have one element that is returned.

• operation: inherits a list of queries (queriesIn), and initializes a new list queriesOut. When
the end of the operation is reached, it checks for three different cases: the operation
entered the andOp path, in this case the queries in queriesOut are combined into a single
query with the AND logic. This query is then added to queriesIn; The orOp path is very
similar to the previously described only changing the logic by which the queries are

3.4. Search 36

Token Definition Explanation
Word ([”&”, ”+”,

”—”,”!”, ””̈,”
”,”(”,”)”, ”;”])+

Represents words of the text search

AND (”&” — ”+” —
”AND ”)

Characters that represent the logical operator and.

OR (”—” — ”OR ”) Characters that represent the logical operator or.
NOT (”!”) Character that represent the logical operator not.
QUOTED

"\""

(

"\\" ~[]

|

~["\""]

)*

"\""

Represents a phrase, the quotation marks, allows
the content to be considered as a single entity.

(In a term implies that an operation will follow it.
) Indicates that an operation preceded by (has fin-

ished.
; End of the Boolean expression

Table 8.: Tokens and terminal characters of the Boolean expression

3.4. Search 37

Figure 10.: Boolean expression grammar

combined to OR. The third option is if the operation only contains an unary, in this
case no logic operation is applied to the queries at queriesOut, they are simply added
to the queriesIn list.

• notRule: inherits a list of queries, queriesIn, and initializes a new list queriesOut. When it
reaches the end, applies the logic of the NOT Boolean operator to combine the queries
at queriesOut, it is then added to queriesIn.

• word: Generates a query using the string found by WORD and adds it to the list of
queries inherited.

• quoted: Generates a query using the string found by QUOTED and adds it to the list
of queries inherited.

Some examples of Boolean expressions are provided below (< >refers to the variable
symbol):

• <WORD>

• <WORD> AND <QUOTED>

• <WORD> AND <QUOTED> AND <WORD>

3.4. Search 38

Figure 11.: Boolean expression example tree

3.4. Search 39

Figure 12.: Global search expression grammar

• (<WORD> AND <WORD>) OR <QUOTED>

• <WORD> AND (<WORD> OR <QUOTED>)

• <WORD> AND !(<WORD> OR <QUOTED>)

Global search

A Boolean search by the global search method must allow logical operations on BTM resource
elements: the annotationService has the method to fetch documents based on the resourceEle-
ment, and as such it is a dependency to this grammar. To write a Boolean expression in
this language it is necessary to provide the resource elements unique identifiers, which are
captured using the token CONSTANT defined as:

<CONSTANT : (< DIGIT >)+ > | < #DIGIT : ["0"-"9"] >

The terminal symbols defined are: QUERY; END; AND; {; }; OR; TERM .
Figure 12 maps global search expression’s grammar functions and their interactions:

• query p: initializes a list to store sets of resource element ids (Long) and has the terminal
symbols QUERY and END that start and finish the expression, respectively. When the
end is reached, the list must have only one set of documents that are the result of the
query.

• operation: operation just initializes a new Set of Long that is inherited by either andOp
or orOp.

3.5. Processes 40

• andOp/orOp: Both fetch the publications with the resource element annotated on it and
apply the respective logic.

3.5 processes

This section goes through the implementation of the data process status, used to track the
progress of processes/jobs, and report the result. It also has a subsection on the new corpus
creation processes, that include the new progress tracking and report system for processes.

3.5.1 Process data status

@Note has many different types of operations/processes, from executing a query to fetch
documents from an external database to run an NER process. The system runs them in
threads and their progress is printed by a method to the standard output stream. The
desktop application uses a super implementation on this method to store the progress
of the process in a variable, allowing the progress to be displayed. However, with the
introduction of the web application, we decided it was necessary to implement a more
robust and complete approach to the tracking and reporting on processes. The problems to
solve can be summarized as:

• The web application needs to be able to access the progress of the process.

• If a process fails, this should be evident together with the reason why it failed.

• It should be possible for a user to track her/his processes that are running.

• An administrator should have a clear picture on the processes run /running on the
server.

The solution started by adding a table to the relational database. Figure 13 shows a
representation on MySQL Workbench of that table. Each field has the following purpose:

• dps id: Primary key, incremental.

• dps data object id: Id related to the result of the process. For example, a corpus
creation process stores here the id of the corpus it creates.

• dps type resource: Identifies the type of process, the options are: ’queries’, ’resources’,
’corpus’, ’ner’, ’re’.

• dps status: Identifies in which state the process is at, the options are: ’start’, ’running’,
’finished’, ’stop’, ’error’.

3.5. Processes 41

Figure 13.: @Note data process status table of the relational database

• dps report: A textual report on the process.

• dps progress: A numerical value representative of the progress at the update time.

• dps create date: Date of creation.

• dps update date: Date of update.

• dps finish date: Date of process completion.

• dps users id: Foreign key, linking to auth users.

Following the data access structure explained in the subsection 3.2.2, the next steps are to
implement the DAO, Service and add its accessible methods to the IDatabaseAccess interface
with the respective implementations. In the anote2daemon, it is also necessary to add the
bean for the process data status service and a controller.

IDataProcessStatusAccess is the interface with data accessible methods related to data pro-
cess status, extended by IDataAccess. A brief description on each method, or group of similar
methods, follows:

• addDataProcessStatus: adds an element to the database, forces the AuthUser to be
the session logged user.

3.5. Processes 42

• updateDataProcessStatus updates the entity, with the parameters in the object re-
ceived as input. The exceptions are the creation date and AuthUser that should only
be defined when the entity is created.

• Get and count methods: Get methods return one or more entities of type IDataPro-
cessStatus; count methods return an integer, the number of results of the query. These
methods have names correlated to the query, as follows:

– byId: Find the entity using its id.

– User: Find entities related to the logged user.

– Recent: Entities are filtered by a SIGDATERANGE value applied to the date of
update.

– Sorted: Entities are sorted by id, in ascending order.

– OfType: Filter the results by the type of process, types are defined at the enum
ProcessStatusResourceTypesEnum.

– WLimit: Only returns the first N results, the number is given as input.

– AdminPrivileges: If the logged user has role admin, no further filter is applied.
However if the user is not an admin only entities related to him are returned.

– Paginated: With a pagination size and index returns the requested sub-list of
results.

3.5.2 Corpus creation

The anote2daemon has an entry point responsible for running processes. Each process gets
an unique identifier, which the entry point method uses to switch between the methods
that execute in a thread the process. We added two additional methods for corpus cre-
ation, one for a global search query, and the other for a Lucene query on publications using
ISearchProperties for its configuration.

The creation of a corpus has an auxiliary class (CorpusCreateConfigurationImpl), to store
and manipulate data that can be fetched when it is required. As the new methods have
additional information related to the search method, we implemented two classes extending
CorpusCreateConfigurationImpl. Figure 14 is a class diagram representation exposing the
relations, attributes and interface.

Figures 15 and 16 are sequence diagrams on the creation process of corpus from the entry
point to run processes of anote2daemon for global search query and lucene query, respectively.
They show how DataProcessStatus is used on each phase of the process to store its progress.

3.6. @Note web 43

Figure 14.: Corpus configuration classes diagram

3.6 @note web

The @Note web application is a tool with a friendly interface that allows an easy and fast
access to information. It also contains some management features: to delete items, change
permissions and see the state of running/finished jobs, among others.

3.6.1 @Note web structure

To create the application, the first step was to use the command, ng new, of the @Note CLI
API. It is responsible for starting a project creating a folder structure with configuration
files and the root module. Core modules for any Angular application are also added to the
node modules folder, additional modules are added with the npm install command.

File structure

The src folder contains the main page, index.html, the global styles, the assets folder which
holds configurations used by the application, such as images and translation files, and also,
the app folder that contains the application’s modules. Figure 17 is a tree representation of
the web application’s folder file structure for modules with pages.

Unlike the shared folder, other folders contain modules with pages associated to a specific
context of the application. They all follow the structure presented in figure 18.

The main function of the module.routes.ts is to define the routes of the module. Each route
is an object with: the name of the route; the component to show; the service that controls the
access to the route, when needed (e.g. a route that can only be accessed by authenticated
users, needs a Service to control the access). Another function of the module.routes.ts file

3.6. @Note web 44

Figure 15.: Create corpus from global search query sequence diagram

3.6. @Note web 45

Figure 16.: Create corpus from a publications lucene query sequence diagram

3.6. @Note web 46

Figure 17.: @Note web file structure

Figure 18.: @Note web module main structure

allows to store components associated with the model in two separate lists: module components
and shared components. The components in the module components list are declared by the
module. The components in the shared components list are imported by the model. The shared
folder contains Services, pipes, directives and modules with no routes defined, their purpose
being to be incorporated in other modules.

Configuration files

The @Note web application has two types of information read from files, in the assets folder:

• Configurations for the application that can change from build to build.

• Language files with translations on specific elements of the application.

Configuration files define the following parameters:

• baseURL: the path to the anote2daemon server.

• mainLoader: the name of the main loader type of the application.

• singleLoader: the name of the loader usually smaller, used in specific content.

• processLoader: the name of the loader type used in the processes running.

3.6. @Note web 47

• resourcesTypes: the names of the resources present in the @Note database.

• permissionIcon: the path to the icon representing the permissions configuration button.

• defaultAvatarIcon: the path to the icon of the default avatar given to all users when
none is present in the database.

• version: the current version of the web application.

A language configuration file with translations to a language has a JSON object, the keys
are all upper case, its value can be a string representing a translation or another object
following the same structure.

3.6.2 Data access

All the information related to the BTM domain of the @Note web angular implementation
is requested to an anote2daemon web service. The methods that make requests are defined
in Services mirroring the anote2daemon controlers. For example, in the anote2daemon controller
package it contains a package called publications with a PublicationsController and a Queri-
esController, each defining the respective domain entry points. The angular application has
in the services a mirror folder that must contain a PublicationsService and a QueriesService
Services that implement the methods to access entry points implemented at their ”mirror”
controller. In this communication, the format used is JSON, and it is taken into considera-
tion when parsing the response. The types of the object received are defined as interfaces,
which are also a ”mirror”, in this case of the Java objects defined at Core and returned by
the anote2daemon entry points. Components then use this Services to populate their views and
request operations like the change of a permission or to create a corpus.

Authentication

The authentication in the @Note web application is not just a simple exchange, where the
credentials are sent. The anote2daemon has security measures that ensure the messages
following the login belong to the authenticated user while the session is active. The first
security measure is to exchange a token JSESSIONID used on communications for that
session. This is defined at spring-security.xml. This measure is simple to comply for the web
implementation, if in the requests the parameter withCredentials:true is received, Angular
automatically stores the session identity and/or sends the one it has stored in the message.

The second security measure is a Cross-origin resource sharing (CORS) implementation.
This prohibits Asynchronous JavaScript And XML (AJAX) calls to resources residing outside
the current origin. In a scenario where a person is authenticated in their bank’s website,
with CORS security, scripts from a website open in another tab should not be able to make

3.6. @Note web 48

AJAX to the bank’s API. CORS is a World Wide Web Consortium (W3C) specification im-
plemented by most browsers that allows to specify in a flexible way what kind of cross
domain requests are authorized (spr, b). To enable requests from the web application to the
anote2daemon, we implemented a CorsFilter class where all the domains allowed to request
are defined. This class is used in the CORS filter security declaration at web.xml. In the
Angular implementation, it is required to provide in the application main module a Cook-
ieXSRFStrategy with the cookie and the cross-site request forgery header names defined at the
anote2daemon.

3.6.3 Modules

This subsection contains the modules implemented, starting with a simple overview and
explaining in detail the modules with higher relevance.

Models overview

As stated in section 3.6.1, models can either have routes to pages in the application or be
defined at the shared folder, to have their components reused by multiple models. To better
understand the scope of the application, the following enumeration contains the modules
that incorporate pages with a succinct explanation for each page:

• Manager modules have pages related to an entity:

– corpora-manager: has a page to list the Corpora available to a user, a page for a
single corpus and a page with information on a IEProcess of a Corpus.

– processes-manager: has a single a page displaying all the available IEProcesses to
the user. Since an IEProcess must be run on a corpus, the page for a single IEPro-
cess is handled by the corpora-manager.

– publication-manager: has pages directly related to documents and pages of queries
that search for documents. It has the page with all documents, the single document
view page, all queries available to the user page and the page for a single query.

– resources-manager: has two pages, one for all resources available to the user and
the other for a single resource.

• authentication: This module has the pages responsible for authenticating the user, the
page for user details edition and administration.

• curator: This module has the page to see a document annotated by at least one IEProcess,
allowing the user to visualize those annotations on the document, and also a page with
a form with document identifier and IEProcess identifier to reach the curator page for
that document with the annotations for that process already visible.

3.6. @Note web 49

• global-search: This module has a page responsible for the search operation that allows
the user to find resource elements and manipulate them to build a Boolean expression
to query annotated documents. The other two pages are related to the results of the
query.

• home: Module with some informative pages for the application. It contains the home
page and the contacts page.

The shared modules enumeration contains a succinct explanation on the module and/or
the reusable components they contain:

• corpora:

– corpus-notes: responsible for displaying notes associated to a corpus; if the user
has permission, enables the edition.

– create-corpus: has a form with metadata for the corpus and methods for each type
of corpus creation submit operation.

• data-process-status:

– data-process-status-table: table with the data process status processes the user has
access.

– running-process-status: data process status with some visualization options; period-
ically updates the state on the status of running processes.

– show-data-report: displays the report on a data process status.

• footer: has a component with the application’s footer.

• navbar: module of the application navigation bar.

• privileges: module for components related to changing permissions. Contains a com-
ponent of a table that can be applied for multiple entities to change permissions for
users on that entity.

• processes : has a component displaying details of a IE process.

• publications:

– publication-informations: displays information on a document like meta-data and
notes. The latter can also be edited.

– publications-table: table for documents reusable with different applications. Exam-
ple: the documents’ table for documents on a query shows the document relevance
to the query; Documents’ table for corpus must only show the documents associated
to that corpus.

3.6. @Note web 50

– query-relevance: display of document relevance to a query with the ability to change
the relevance.

• queries: has a component that displays details of a query.

• resources: has two components that display details, one for a resource and the other for
a resource element.

• search:

– search: component with the several search options like text search and filtering
results. Knows how to make the request and returns the results. It is applied on
tables to enable search.

– show-marked: component that highlights text based on a search.

• table: module responsible for displaying data in a table used in many of the other com-
ponents of the application. Some operations of the table are: pagination, expandable
rows, select visible columns, text search provided by a search component integration
and sort by column.

Data tables

The focus of the current state of the @Note web application is primarily focused on visualiza-
tion of information. Like the desktop application, many contents use paginated tables with
search options. Tables on the web application use the DataTableModule module, which was
first imported from npm, the world’s largest software registry that developers can use npm
to share packages (npm). It was integrated as an application module, to enable the addition
of new features.

Input Type Description

ITEMS any Content displayed on the table rows,
it is dynamic changing based on ta-
ble operations.

ITEMCOUNT number Number of rows displayed on the ta-
ble.

HEADERTITLE string Title of the table.

HEADER boolean Defines if the table shows a title.

PAGINATION boolean Defines if the table has pagination
operations.

INDEXCOLUMN boolean Defines if the table has a column
where each row shows its cardinal-
ity.

3.6. @Note web 51

INDEXCOLUMNHEADER string The text shown at the index column
header.

SELECTCOLUMN boolean Defines if the table has a column
where each row has a check box

MULTISELECT boolean Defines if the select column header
has a check box

EXPANDABLEROWS boolean Defines if the table has rows that can
be expanded to show more informa-
tion.

EXPANDABLEROWSHEADER string The text shown at the expandable
rows header

EXPANDABLEWIDTH number—string Defines the width of the expandable
column.

TRANSLATIONS DataTable - Trans-
lations

Translation for elements of the table
like pagination.

SELECTONROWCLICK boolean Defines if the row is selected by click-
ing on it.

AUTORELOAD boolean Defines if the items are reloaded
when the table component starts.

EXPANDCOLUMNVISIBLE boolean Defines if the table expandable col-
umn starts as visible

SERVICE string Service to be used on the search com-
ponent embedded on the table.

SHOWSEARCH boolean Defines if the table has search opera-
tion.

BLOCKLIMIT boolean Defines if the number of rows can be
altered.

STARTLIMIT number Number of maximum starting rows.

TABLEPARAMS TableParams Defines the column by which ele-
ments are sorted by, if it is ascending
or descending order, the offset and
the maximum number of displayed
rows.

INITIALSEARCHPROPERTIES SearchProperties A search to start the table on.

SORTBY string Defines the column where elements
are sorted by.

3.6. @Note web 52

Input Type Description
header string Text on the column header.
sortable boolean Defines if the column is sortable.
resizable boolean Defines if the size of the column can be altered.
property string Defines the property the column is associated to,

of the items object.
styleClass string The class of the cells.
cellColors CellCallback Colors of the associated cells.
width number — string The width of the column.
visible boolean Defines if the column starts visible.

Table 10.: DataTable Columns Input

Figure 19.: DataTable Header of publications

SORTASC boolean Defines if it is ascending or descend-
ing order.

OFFSET number Defines the offset.

LIMIT number Defines the maximum number of
displayed rows.

Table 9.: DataTable inputs

A data table is divided into Header, Columns, Rows and pagination, each with their
component, template (view) and style. However, the data table module also contains a main
component (DataTable) (table 9 contains the inputs available for this component). There are
many variables that control different aspects of the table that can be manipulated, allowing
for plentiful customization. Many elements that integrate the table are optional, however it
is also possible to have a well-defined starting state of the table when first loading a page.
Columns’ component can also be tailored for the situation, the input variables in the table 10

explain what properties can be manipulated.
The header can hold the title of the table, text search field, search related buttons and

table related buttons. Figure 19 shows, for the header of the publications’ table, the four
groups of components. The title gives a textual representation on the contents of the table;
the text search field allows free text input; the search related and table related buttons have
suggestive icons for their function. Table 11 has a description for each button.

3.6. @Note web 53

Button Pressed Description

When pressed shows a list of selectable fields, at
least one field selected is mandatory. The search
will be on the fields selected.

When pressed opens a modal with filters that can
be added to the search.

When pressed opens a modal with a date range
selector.

When pressed shows a list of configurations that
can be selected, applicable to the search. The
possible configurations are: Whole sentence, Key-
words, Case-sensitive, Filters, Year, Suggestions
and Expression. Whole sentence, Keywords and
Expression define how the text given as input on
the text field is processed.

When hovered offers a small hint of how the text
search will be processed based on the selected op-
tion of the configurations button.

Refreshes the table

When pressed shows list of columns, the selected
columns are shown on the table.

Table 11.: DataTable Header buttons

3.6. @Note web 54

Table fields that the search can be based on use the component show-marked to highlight
words/sentence corresponding to a search. The component has as input the text of the
field, the object searchProperties that contains search related properties, like text search and
configurations, and finally the name of the field. The component has a method based on
regular expressions to find matching expressions to be highlighted. The algorithm takes
into consideration the search options selected.

For example, on the input text ”Norisoprenoids from Ulva lactuca.” with the text search
field with ”ulva lactuca”, there are some variations on search options, underlining what is
highlighted:

• Only Whole sentence selected: Norisoprenoids from Ulva lactuca.

• Only Keywords selected: Norisoprenoids from Ulva lactuca.

Columns headers that can be clicked to sort results by the field they represent have a
visual indication. This visual indication is a symbol comprised by one or two caret icons
at the right of the column header. Clicking on it will sort table elements based on the
chosen column. Two carets, one faced up on top of another faced down means that the
table isnt sorted based on that column, clicking on it will sort the table by descending order
represented by the caret faced down icon, clicking on it again will sort by ascending order
and is represented by the caret faced up icon.

Rows can have the option to be expanded by double click, which will create a space
between the clicked row and the row below containing more information. On both the
cardinality and expandable column there is a caret icon that is faced right, if the row can be
expanded but is collapsed; when it is expanded the icon changes to caret faced down. The
pagination of data tables is located on the bottom of the table, the layout is shown in figure
20. From left to right, the list explains what is displayed and the user input options:

• Results: Elements currently on the table and the total of elements.

• Limit: Maximum number of elements displayed, this number can be edited by focus-
ing the current number and typing a new number, using the up and down arrows on
the keyboard or using the caret icons.

• Page navigation: Current page and last page; can be changed by focusing the current
page number and typing the desired page or by using the intuitive buttons on both
sides of this number.

Curator

A curator in BTM is an environment with a biomedical text with annotations clearly iden-
tified on the text. It should allow to manually curate the document and validate entities

3.6. @Note web 55

Figure 20.: DataTable pagination

annotated by BTM processes. To give context to generated annotations, it is necessary to
show some information on the BTM process and the resources it used. When a document
is annotated by multiple processes the view should also link the annotation to the process.

The current curator of @Note web doesn’t allow manipulation of annotations in the docu-
ment or has visual relation cues between entities. The problem addressed is, for a document
annotated by N IE processes, how to clearly identify annotations of each process and the
context of that annotation.

The first consideration to solve this problem is that documents have an abstract and if
available the full text and only one of them could contain annotations. We decided the
solution would be to have a separation by these types of texts, allowing the user to change
between an abstract and full text view.

To build the curator, it requires from the server:

• Publication:

– Metadata to give context on the document (e.g. the title).

– The abstract to show annotations on the abstract view.

• The full text to show annotations on the full text view.

• IEProcess:

– Text type of the process to know if it annotates the abstract or full text.

– Metadata of the process (e.g. the name of the algorithm).

• Resource:

– Metadata of the resource like its name.

– The type of resource, example: dictionary.

• ResourceElement:

– The term, the name used to represent the element.

– Synonyms.

– The external identifiers of the element.

• AnoteClass:

– The name of the class.

– The color that represents the class.

3.6. @Note web 56

Figure 21.: Method ngOnInit of curatorViewComponent component

• EntityAnnotation:

– Annotation value.

– Start and end offsets to locate the annotated entity on the text.

Figure 21 goes through the most relevant steps of the ngOnInit method of curatorView-
Component component. It is in this method that the majority of the information is requested
and stored in structures that can be shared with the view to allow the display of informa-
tion and control over annotated entities shown on the text. These structures are filled as the
information is requested, for example when each IE process is iterated, and they are associ-
ated with a color. If the component has a process identifier as input, the function changeText
is called to show the entities of that IE process on the text.

3.6. @Note web 57

The process of showing annotated entities on text can be described with the steps:

1. Define a reference variable in the template (e.g. <div #dataContainer).

2. Use angular ViewChild 9 decorator, as defined by Angular’s property decorator that
configures a view query. The change detector looks for the first element or the directive
matching the selector in the view DOM to access the element in the DOM from the
component (e.g. @ViewChild(’dataContainer’) dataContainer: ElementRef ;).

3. Build a string with HTML tags and style that displays the annotations properly.

4. Assign the attribute innerHTML to the element referenced in the template with the
string.

The first and second step on the enumeration are defined once, while the third and
fourth steps are used whenever it is necessary to change the annotated text annotations.
With ngOnInit, we get all the building blocks necessary to mark and style the text. However
before tackling this process, it is necessary to address a major difference the abstract and
full text views have.

When the function to annotate entities of a IE process in the abstract is called, it will locate
and mark entities of that IE process through all of the abstract text extent. First, this was also
valid for full text. However, we noticed the length on many of these documents caused an
extended waiting period to annotate the text. The solution implemented is to only annotate
entities within a certain range of the portion of text that is visible. A range is used for
two reasons, the calculated offsets are estimations and to reduce the number of times the
scroll experience is aggravated by the application annotation process to a chunk of text. The
annotation of the text while scrolling has the following implementations:

• On the view: The div with the annotated text has an identifier the controller can use
to reach the element, allow scrolling of the text and call a method defined in the
component on scroll events.

• On the controller: With informations from the element defined in the template(scrollWidth,
scrollHeight, scrollTop, offsetHeight) (Figure 22) and the length of the text, calculate the
offsets where entities can be marked between:

1. topVolume ∗ textLength/totalVolume = isInInd defines the estimation of the in-
dex in the text length of the first visible character: by multiplying scrollWidth
with scrollHeight, we get the total volume of the element; By multiplying scroll-
Width with scrollHeight we get the volume of text not shown on the top, the top
volume. If we correlate the total volume to the text length we can estimate the
text length of the top volume.

9 https://angular.io/api/core/ViewChild#usage-notes

https://angular.io/api/core/ViewChild#usage-notes

3.6. @Note web 58

Figure 22.: Scroll properties

2. visibleVolume ∗ textLength/totalVolume = charsInVisible defines the estimation
of number of characters visible in the text: the visible volume can be calculated
by multiplying the offsetHeight with scrollWidth.

3. The start offset is estimated by subtracting a range value to the estimated isInInd.
If the result is lower or equal to zero the start offset used is zero.

4. The end offset is estimated by adding charsInVisible to isInInd plus the range. If
this value is superior to the text length the value used is the text length.

There are multiple operations to add annotations to the text, however the method responsi-
ble to add them, buildAnnotatedText, only annotates on text the annotations received as input.
When on full text view methods that call buildAnnotatedText, with a subset of annotations
between the offset values explained above.

The method buildAnnotatedText builds a string adding to the text b HTML elements rep-
resenting the annotation. The b HTML tag is used at the start of the annotation offset, at the
end offset is placed the respective closing tag. This HTML element is built with five vari-
ables each applied to a attribute,attributes provide additional information about the element:

1. annotId: references the annotation, applied to the id attribute.

2. color: color of the class, applied to the style attribute, parameter color.

3. borderbottom: thickness of the border, applied to the style attribute, parameter border-
bottom.

3.6. @Note web 59

4. processColor: color of the process, applied to the style attribute, parameter border-
bottom.

5. padding: distance of the line to text, applied to the style attribute, parameter padding-
bottom.

This element will color the text and create a line below it, allowing the representation
of multiple IE processes by changing the padding for each line. However, for the padding
not to interfere with the text below, only three levels of padding are allowed. This also
limits an entity to be represented by the color of a single class, it will be of the resource
in the last process selected, that isn’t included in a previously annotated text. The curator
component also has the feature to see informations about the annotated terms when hovering
over them in a tooltip. The information displayed when applicable is: class; term; id; number
of annotated synonyms in the text; synonyms; external identifiers. In the view the divs that
can contain annotations call a function on mouseover and mouseleave events, that controll the
display of the information described. The method receives data on the event in an input
variable. The information is presented in a div created in the controller, with a span element
for each term. The span elements have opacity and a black background to contrast with
the annotated text. The html hovered can be accessed in the DOM information received as
input. With that is known the annotation id and with the process color it simple to know
the process. This allows to locate in the structures of the component, the data necessary to
populate the tooltip. Since tooltips can have relevant information to copy, (e.g. an external
database identifier), we decided the tooltip should stay visible even after the mouse leaves
the annotation on the text. The implemented solution is: when the element is hovered
the tooltip is generated. However it waits a small amount of time before it is added to
the view and if the mouse pointer leaves before that time elapses the element is destroyed
therefore not displayed. This allows the user to only access the annotation information when
is intended preventing tooltips from blocking the text, when moving the cursor pointer and
it hovers annotations in its path. When a tooltip is added to the view, it will remain until the
user clicks anywhere outside of the tooltip. Only one section of annotations can be displayed
at a time.

3.6.4 Global search

The global search module provides the users the ability to build a Boolean query using resource
elements as building blocks, fetch the documents that match the query displaying them in a
table. If the results are satisfying, a corpus can be created to run IE processes on that set of
documents.

3.6. @Note web 60

Global search query building

Building a query in global search is an interaction between the search for resource elements
and the association of selected resource elements trough Boolean operators.

The search for resource elements uses the shared search component, with the respective
configurations:

• Search fields: Resource elements can be searched by the term name, a synonym or by an
identifier of an external database.

• Search configuration: The query can be executed as keywords, whole sentence or sugges-
tions. It can also be specified if the query is case-sensitive or not.

• Filters: The filter is based on resources and classes.

The results of a search are added to a structure implemented using an external project,
angular-tree-component. It allows to present the data in a tree structure, with features such
as: keyboard navigation, expand/collapse/select nodes and drag & drop. These features
are particularly useful for building the Boolean expression, the search results are also imple-
mented with the angular-tree-component to enable the addition of resource elements from the
search results model to the query builder model using the drag & drop feature. The list of re-
sults are shown in pages with a maximum of ten resource elements with the usual navigation
options.

The query builder builds its model by allowing nodes from the resource elements results list
and nodes from an available logic operators list to be dragged and dropped to the query
builder space in the view. Nodes from the logical operators list (and, or), can have children
nodes (when another node is dropped on top of it) and if it is double clicked it changes the
logical operator (e.g. if the node has the and operator it changes to or and vice-versa). When
the query is requested to be executed, the nodes in the query builder model are converted into
a string written in the language explained at sub-subsection 3.4.2.

3.6.5 Navigation

Table 12 contains all the pages in the web application, with the respective routes. If an
element in the Navbar column is different from None, it means it has a link in the web
application navbar. The tableParams in route parameters coupled with their components in-
teraction, allows to ”save” and load the page with the table in a defined state (e.g. a table’s
results page advanced to page three, when opening a row element changing the route, after
checking the content and clicking the back browser button, the table loads already in the
results’ page three).

3.6. @Note web 61

Route Route parameters Description Navbar

/ None Home page Home icon

/queries tableParams All queries the
user has access

Queries

/queries/:id id ->query id View of a single
query with the id
on the route pa-
rameter

None

/copus tableParams All corpus the
user has privi-
leges

Corpus

/corpus/processes/:id id ->corpus id Corpus processes
the user has priv-
ileges

None

/corpus/processes/:id/:pId Id->corpus id;
pId->process id;
tableParams

Process details
and associated
documents

None

/documents tableParams All documents
view

Documents

/publications/:type/:id type->type of
identifier e.g.
id, doi etc. id-
>publication id
of the given type

Document view None

/processes tableParams All processes the
user has access

Processes

/resources tableParams All resources the
user has access

Resources

/resources/:resourceName/:classId resourceName-
>resource name
classId->resource
id

Resource view None

/curator None Document form
to open curator
view

Curator

3.6. @Note web 62

/curatorview processId-
>process id
documentId-
>document id

processId-
>process id
documentId-
>document id

None

/globalSearch None Boolean search of
resource elements
on all annotated
documents

Global search

/globalSearch/queryResult/:query query->Boolean
query

Temporary page
that makes the
query request

None

/globalSearch/showResult None Shows the pub-
lications that
comply with the
query

None

/user None Edit personal in-
formation and ad-
ministration

Profile icon
and user-
name

/login None Login Login

Table 12.: Web application page routes

.

4

R E S U LT S

This chapter is dedicated to showing the web application running over an existing database.
Each subsection will go through a domain of information or a major operation referencing
the pages they are included in. It will go through the @Note web interface showing how
the information is displayed and explaining the user interactions. To better illustrate user
interactions, this chapter will have some examples of user inputs.

4.1 queries

Queries are IR processes that fetch a set of documents of an external source given specific
parameters. The @Note platform has several processes defined to query external databases,
such as the PubmedSearch, that queries the Pubmed database. Such a query (query1) is the
first element in the queries table shown in figure 23. Inspecting the first row of the table
(query1), it was executed in the date: 2016-04-19, has the name query1, both the keyword
and organism are Treponema, it has the identifier to its query type of PUBMED and it selected
1397 relevant documents. In the expanded row, it has more details on the query configuration,
in the example, also showing a text encompassing the configurations related with Boolean
operators at Complete Query. The query example doesn’t have, however, additional configu-
rations such as the inclusion of a date range. When the user has the respective permissions
as a logged user, the name of the query can be edited.

The text search can be based on Name, Keywords and Organism, the three parameters used
on this query (organism is an optional parameter). The available options are Whole sentence,
Keywords and Case-sensitive.

Opening query1 changes to a page as presented by figure 24, it contains a header with
the query name, a collapsible titled Query informations, which when it is expanded shows
the same information of the associated expanded row on the query table, and a publications
table, with the publications associated to the query. The unique property of the publications
table on a query page is the relevance of the publication to the query, relevance has four levels
of magnitude from lowest to greater they are: None, Irrelevant, Related, Relevant. Relevance
levels are represented by the number of filled star icons, one filled icon means that the

63

4.2. Corpora 64

Figure 23.: @Note web Queries interface

Figure 24.: @Note web Query interface

relevance is None the number than follows the sequence. The user can edit the relevance
by selecting the number of filled stars.

4.2 corpora

Corpora are structures with documents associated over which information extraction pro-
cesses can be applied. A Corpus, like many other entities, has a page with a tabular rep-
resentation for its information. Figure 25 shows a table for acorpus, where the first row
contains a corpus named PMC full texts (NXML), as the name implies the text type is Full-
Text, contains 2212167 documents associated to it and one IE process run on those documents.
By expanding the row, it provides access to a tabbed menu with three options: Notes, Pub-
lications, Corpus processes. In Notes, if the authenticated user has the respective permissions,
she/he can edit the corpus’ notes for future reference. In the example presented, the user
only has read permission so only the text is shown. The Publications tab will contain a table
with the documents contained by this corpus, similarly the Corpus processes tab contains a
table, but instead of containing documents it has the run IE processes. By opening a corpus,

4.3. Processes 65

Figure 25.: @Note web Corpus interface

the application presents a page with the processes run on that corpus (the table for processes
is explored in the next section). The text search can be based on Name and Notes, and its
available options are Whole sentence, Keywords and Case-sensitive.

4.3 processes

Processes are BTM processes, that use resources to extract relevant information from natural
text. They can be divided into two types: NER or RE. The @Note platform has several
processes with different algorithms and configuration parameters. Figure 26 has a table
for processes, focused on displaying the first row. In the row it displays that this process
is called Linnaeus Tagger plus the date the process executed. It is an NER process and
used the Linnaeus Tagger process configuration. In the expanded row space, it contains more
information on how the process was configured. Continuing to explore the Linnaeus Tagger
process in figure 26, it informs that the annotations accept abbreviations and words smaller
than two characters are not annotated. It also shows resources used referencing its id, for
example this process used a Stop Words Resource with the id: 3102121930612798438. The
example shown does not display all the information, it misses some resource elements ids
and a configurable parameter, Disambiguation that can be set to ON or OFF. The text search
can be based on Name, Type, Process Origin and Notes, and its available options are Whole
sentence, Keywords and Case-sensitive.

The page presented when opening a process is illustrated by figure 27, it has a collapsible
titled Process details, which when expanded shows the same information of the associated
expanded row on the processes table and a table with columns unique to processes named
Annotations. The Annotations column contains a list of annotated entities with the respective
number of times the entity is annotated in the document. In the example presented, all
annotations are of proteins, the first document has 441, the second 7 and the third 488. The
documents table is properly explained in the following section.

4.3. Processes 66

Figure 26.: @Note web Processes interface

Figure 27.: @Note web Process interface

4.4. Documents 67

Figure 28.: @Note web Document filter modal interface

4.4 documents

Documents are the base from where BTM processes extract knowledge. As the number for
relevant documents increases rapidly over the years, a powerful search engine is valuable
to quickly check the database on a study subject. The implemented search engine does not
consider synonyms of words or tries to correctly guess abbreviations, however it can give a
rough approximation and it is easy to iterate multiple search operations. Publications tables
text search can be based on Title, Authors, Journal, Abstract Section, Category, Type, Notes, Full
Text Content. The available options are Filters, Year, Whole sentence, Keywords, Case-sensitive
and Expression. The available filters are Type (currently documents can be divided into three
types: Patent, Publication, Book) and Category (examples of categories are: Journal Article,
English Abstract and Case Reports). Figure 28 shows the filter modal interface with the
Patent Type selected.

By expanding a row or clicking on the Open button, document metadata is available.
In the example presented in the figure 29, we have a publication of the Endocrine journal
released in the year 2015, issue 1, authored by Kakudo et al. From the title and abstract, we
get to know this is a review about patient classification related to thyroid carcinoma and
ki-67 labeling index. The labels can help to quickly understand the content of the document.
The page also contains external identifiers of the document, in this case we have the identifier
for the pubmed database and it’s DOI. Also, a there is a place to view and edit notes when
applicable and an external link (that can be updated by clicking on the icon on its side).

In each publications table, it is possible to create a corpus after a search by pressing the
button Create corpus that will appear as presented in figure 30. Then the corpus name and
notes can be filled and, finally, submitted to start the corpus creation process. Processes

4.5. Curator 68

Figure 29.: @Note web Document interface

Figure 30.: @Note web Corpus creation by document expression search interface

progress are shown on the top of the page. Figure 31 illustrates how this information is
displayed. If a related process to the page is running, the progress bar fills accordingly to
the current percentage of progress. The report also changes with the state of the process,
which when finished provides additional information.

4.5 curator

The curator page, in its current state, does not allow for any editing of information. However,
it has the information on annotated terms, resources and processes on the document visually
integrated with the text. By clicking on a process, in the processes’ list at the right, under it
will have the associated corpus and classes involved, each class with its defined color. Both

Figure 31.: @Note web running process on top of page interface

4.6. Resources 69

Figure 32.: @Note curator abstract interface

the process and colors can be selected to interact with the text coloring and underlining the
respective entities.

Figure 32 shows the curator page for a document on abstract view. It has the Linnaeus Tagger
process selected, to show the annotated organisms. Similar to the process details on processes
tables, if the advanced button is clicked, it shows information on the configurations and
resources used (e.g. this process uses a Chebi Ontology to find metabolites and a Linnaeus
Species Dictionary for organisms).

In the text since only one process is selected all annotated entities have a blue underline
matching the process’ color. The text color of the annotations on text facilitates in identifying
entities of interest, its also evident which of these are metabolites or organisms. In the
example the organism C.fragile is hovered, displaying a tooltip with black background and
white text. The information on the term and it’s synonyms can be particularly useful, when
the hovered entity is an abbreviation or a name the user doesn’t recognize. With the Ncbi
taxonomy id, the user can go to the Ncbi website and learn more on this organism.

Figure 33 has the same document, in the full text view, in the processes list it shows that the
process is also named Linnaeus Tagger (different date), a referencing the same algorithm.
However it also shows that this process is applied to a different corpus. This the FullText
type corpus, used in the example on section 4.2. In the full text view the process managed to
annotate diseases, enzymes and biomass, class types the process in the process in the abstract
view didn’t.

4.6 resources

Resources are fundamental pieces to BTM processes, and they usually need to be updated
to cope with new discoveries or changes. The web application gives access to five types of
resources: Dictionary, Lookup table, Rule Set, Ontology and Lexical words. The resources of

4.6. Resources 70

Figure 33.: @Note web curator full text interface

Figure 34.: @Note web Resources interface

each type are divided in a tab menu, containing a search data table with the resources of the
corresponding type. The data table columns are: Name, Information, ID, Permission - button
with the permissions configurations panel for resources, Remove - operation to remove the
resource, Open - opens a view associated to the selected resource. The expanded row contains
information on the number of terms and synonyms in the resource, and a list of all classes
with their id. The text search can be based on Name and Information; its available options
are Whole sentence, Keywords and Case-sensitive.

In figure 34, the tab menu is set on the resource type Dictionary, as such the search data
table contains resources of that type. In the Uniprot dictionary, the row is expanded show-
ing that it contains 147198 terms and 143374 synonyms, all proteins. Opening a resource
changes to a page illustrated by figure 35, that contains a table for a resource, its columns
are: Term, Class, Synonyms. The expandable row gives information on the synonyms and
external Ids.

4.7. Global Search 71

Figure 35.: @Note web Resource interface

Figure 36.: @Note web global search initial state interface

4.7 global search

The globalSearch page is dedicated to form a Boolean expression of resource elements con-
tained in resources. The expression can be evaluated returning the publications with anno-
tated terms that match the query.

As presented in figure 36 at the top, we have a search field on resource elements, where
the fields available are: Name, Synonyms and External Ids, with the available options Filters,
Whole sentence, Keywords, Suggestions and Case-sensitive. The filters model contains a tab
menu with the available resource types, each containing a search data table of resource,
with the option to select a resource for the filter. If the resource has multiple classes, by
expanding its row classes, each class can be selected individually for the filter. In the
example presented in figure 37, the results will be filtered by organism.

The search results will show on the left empty space as a list, each row containing the
term followed by the class with parenthesis finished by a maximum of two synonyms (if
the term has any). Rows can be expanded showing all other names and external identifiers.
In figure 38, the Ulva lactuca organism (an algae) in the resource elements list, was added to
the query builder by pressing and holding, and dragged to the dedicated space for the query

4.7. Global Search 72

Figure 37.: @Note web global search Filters interface

building at its right. At the far right are the available Boolean operators that can also be
dragged and dropped into the query building space. The building space works as a tree
with levels, the empty space is the first level and works as an OR operator where terms and
operators can be added. Terms already present in a level will not be possible to add (the
cursor icon will change to ”forbidden operation”). When operators have other elements
attached to them, they will have the option to be collapsed or extended. All elements have
the option to be selected, while term elements have the same option to be expanded as they
were in the list of resource elements.

As an example, we show how to find documents containing Ulva lactuca and cisplatin,
used in cancer treatment. The query is executed by pressing the button Execute query. A new
tab opens in the browser with the page that contains a table with the resulting documents of
the query. These results are shown in figure 39. The first document is a study that evaluates
the toxicity and bioaccumulation of cisplatin in the marine environment using Ulva lactuca.
In the second, we have a study related to cancer and algae. Both are relevant to the domain
of the search, however they can be irrelevant to more specific subjects of study. This query
had 11 results; it can be refined to either narrow the results even further or broaden them
(e.g. add more cancer related entities, or other algae). It is possible to create a corpus with
these documents by pressing the Create corpus button.

4.7. Global Search 73

Figure 38.: @Note web global search interface building a query

Figure 39.: @Note web global search results interface

4.8. User 74

Figure 40.: @Note web User administration management interface

Figure 41.: @Note web User administration process data status interface

4.8 user

On the @Note web platform, users can edit their personal information by accessing the user
page like updating their address, photo or change the password. The page also contains the
administration menu where the admin can create new users, and all users can access queries,
corpus, resources and processes available to him and change permissions when applicable
(figure 40). The last option is to check the running and finished processes on the process
data status table, as shown in figure 41.

5

C O N C L U S I O N S A N D F U T U R E W O R K

In this chapter, we will cover the main conclusions of this work, the limitations of the
application developed and the prospects for future work.

5.1 summary of the work

This work is based on the BTM @Note project, which provides the most important tasks
of IR and IE. The IR methods select relevant documents, that can be grouped in a corpus.
Documents in a corpus can have knowledge extracted by IE processes.

The supporting @Note Java libs were developed using several frameworks, such as Hiber-
nate Search, Hibernate ORM, and Spring. To develop the @Note web application, we started by
studying the relevant technologies (including Angular for front-end web development) and
the Java libs implementation for the back-end.

The @Note web application developed focuses on the visualization and navigation of the
main entities and results of BTM tasks. It also implements two IR methods that select docu-
ments by building a Boolean query. It uses recognizable icons and buttons to communicate
their function, coupled with organized information in tables with varied manipulation of
data options. Global search provides an intuitive searching and building system to use re-
source elements to search for relevant documents. The curator uses colors and tooltips to
communicate relevant information on the annotations. It also addresses some management
issues, such as allowing to change permissions and check the progress of running processes.

5.2 prospects for future work

Since @Note web focuses on the visualization aspect of the @Note framework, it lacks the
implementation of many operations. Some of the operations that can be added are: the
addition of new resources and their resource elements; queries to an external database; config-
uration of IE processes; a pipeline covering IR, NER and RE; manual curation of documents,
and validation of annotations generated by IE processes.

75

5.2. Prospects for future work 76

On the search aspect of the application, it lacks fields to search by suggestions, the only
implementation is in global search. This should be added to fields containing a few text. We
could also expand on the configuration of the search, (e.g. provide the user with the ability
to sort the importance of keywords or phrases that have an impact on the sorting of results).
Another possibility would be to add a list of words on the domain of the search that boost
results based on the quantity of words they contain.

On the visualization of annotated entities in documents, we could add visual cues for
relations.

On data process status, possible improvements are: to add to running process methods a
record of their progress and report on the error/success. For this, they need to interact with
the IDataProcessStatusAccess interface (e.g. corpus creation explained at subsection 3.5.2).

On global search, we could consider the addition of more Boolean operators (or), a proper
method to save and load Boolean queries, and a paginated method for global search query
results.

B I B L I O G R A P H Y

Hibernate orm. https://hibernate.org/orm/, a. Accessed: 2019-10-19.

Hibernate search. https://hibernate.org/search/, b. Accessed: 2019-10-19.

npm about. https://docs.npmjs.com/about-npm/. Accessed: 2019-10-22.

Spring cache tutorial. https://www.baeldung.com/spring-cache-tutorial, a. Accessed:
2019-10-21.

Spring cors support. https://spring.io/blog/2015/06/08/

cors-support-in-spring-framework, b. Accessed: 2019-10-22.

w3 html/css. https://www.w3.org/standards/webdesign/htmlcss. Accessed: 2019-10-22.

Olivier Bodenreider. Lexical, Terminological and Ontological Resources for Biological Text
Mining. Text Mining for Biology and Biomedicine, (Icd):43–66, 2006. doi: 10.1.1.76.1953.

Allen C Browne, Guy Divita, Alan R Aronson, and Alexa T Mccray. UMLS Language and
Vocabulary Tools AMIA 2003 Open Source Expo. AMIA 2003 Symposium Proceesings, page
798, 2003.

David Campos, Jóni Lourenço, Tiago Nunes, Rui Vitorino, Pedro Sérgio Matos Domingues,
and José Luı́s Oliveira. Egas - Collaborative Biomedical Annotation as a Service. Fourth
BioCreative Challenge Evaluation Workshop, pages 254–259, 2013.

K. Bretonnel Cohen and Lawrence Hunter. Getting started in text mining. PLoS Computa-
tional Biology, 4(1):0001–0003, 2008. ISSN 1553734X. doi: 10.1371/journal.pcbi.0040020.

Maria Cristina ENACHE. Web Application Frameworks. Economics and Applied Informatics,
(3):82–86, 2015.

K Fukuda, T Tsunoda, A Tamura, and T Takagi. Information Extraction: {I}dentifying
Protein Names from Biological Papers. Proceedings of the 3rd Pacific Symposium on Biocom-
puting, pages 707–718, 1998. ISSN 1793-5091.

GeneOntologyConsortium. The Gene Ontology (GO) database and informatics resource.
Nucleic Acids Research, 32(Database issue):258D–261, 2004. ISSN 1362-4962. doi: 10.1093/
nar/gkh036.

77

https://hibernate.org/orm/
https://hibernate.org/search/
https://docs.npmjs.com/about-npm/
https://www.baeldung.com/spring-cache-tutorial
https://spring.io/blog/2015/06/08/cors-support-in-spring-framework
https://spring.io/blog/2015/06/08/cors-support-in-spring-framework
https://www.w3.org/standards/webdesign/htmlcss

Bibliography 78

James Gosling and Henry McGilton. The Java Language Environment. Language, (May):4,
1995.

J. D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii. GENIA corpus - A semantically annotated
corpus for bio-textmining. Bioinformatics, 19(SUPPL. 1):180–182, 2003. ISSN 13674803.
doi: 10.1093/bioinformatics/btg1023.

Glenn E Krasner and Stephen T Pope. A Description of the Model-View-Controller User
Interface Paradigm in the Smalltalk-80 System. Journal of object oriented programming, 1(3):
26–49, 1988. ISSN 0896-8438. doi: 10.1.1.47.366.

Peder Olesen Larsen and Markus von Ins. The rate of growth in scientific publication and
the decline in coverage provided by science citation index. Scientometrics, 84(3):575–603,
2010. ISSN 01389130. doi: 10.1007/s11192-010-0202-z.

Anália Lourenço, Rafael Carreira, Sónia Carneiro, Paulo Maia, Daniel Glez-Peña, Florentino
Fdez-Riverola, Eugénio C. Ferreira, Isabel Rocha, and Miguel Rocha. @Note: A work-
bench for Biomedical Text Mining. Journal of Biomedical Informatics, 42(4):710–720, 2009.
ISSN 15320464. doi: 10.1016/j.jbi.2009.04.002.

George a. Miller. WordNet: a lexical database for English. Communications of the ACM, 38

(11):39–41, 1995. ISSN 00010782. doi: 10.1145/219717.219748.

Chikashi Nobata, Philip Cotter, Naoaki Okazaki, Brian Rea, Yutaka Sasaki, Yoshimasa Tsu-
ruoka, Jun’ichi Tsujii, and Sophia Ananiadou. Kleio: a knowledge-enriched information
retrieval system for biology. SIGIR ’08: Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in information retrieval, pages 787–788, 2008.
doi: 10.1145/1390334.1390504.

Elizabeth O’Neil. Object/Relational mapping 2008: Hibernate and the entity data model
(EDM). Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 1351–1356, 2008. ISSN 07308078. doi: 10.1145/1376616.1376773.

Carolina Perez-Iratxeta, Peer Bork, and Miguel A Andrade. XplorMed: a tool for exploring
MEDLINE abstracts. Trends in Biochemical Sciences, 26(9):573–575, sep 2001. ISSN 09680004.
doi: 10.1016/S0968-0004(01)01926-0.

Pivotal. Spring Framework Reference Documentation. 2017.

Piotr Przybyła, Matthew Shardlow, Sophie Aubin, Robert Bossy, Richard Eckart de Castilho,
Stelios Piperidis, John McNaught, and Sophia Ananiadou. Text mining resources for the
life sciences. Database : the journal of biological databases and curation, 2016:1–15, 2016. ISSN
1758-0463. doi: 10.1093/database/baw145.

Bibliography 79

Rafal Rak, Andrew Rowley, William Black, and Sophia Ananiadou. Argo: An integrative,
interactive, text mining-based workbench supporting curation. Database, 2012:1–7, 2012.
ISSN 17580463. doi: 10.1093/database/bas010.

Raul Rodriguez-Esteban. Biomedical text mining and its applications. PLoS Computational
Biology, 5(12):1–5, 2009. ISSN 1553734X. doi: 10.1371/journal.pcbi.1000597.

Hagit Shatkay and Mark Craven. Mining the Biomedical Literature Computational Molecular
Biology. 2012. ISBN 9780262017695.

Lauren Wood and D O M Level. Document Object Model (DOM) Level 3 Core Specification.
(April):1–216, 2004.

A
I M P L E M E N T E D @ F I E L D S F O R L U C E N E I N D E X I N G

This Annex has tables with the column names in data persistence classes with the name of
the @Fields declared for Lucene indexation.

80

81

Columns Fields
qu query date • quDateSort

qu keywords • q keywordsCS

• q keywordsNCS

qu organism • q organismCS

• q organismNCS

qu matching publications • quMatchingPublicationsSort

qu query name • q query nameCS

• q query nameNCS

• quNameSort

Table 13.: Queries’ @Fields

Columns Fields
crp corpus name • crp nameCS

• crp nameNCS

• crpNameSort

crp notes • crp notesCS

• crp notesNCS

• crpNotesSort

Table 14.: Corpus’ @Fields

82

Columns Fields
au username • auUsernameCS

• auUsernameNCS

• auUsernameSort

au fullname • auFullNameCS

• auFullNameNCS

• auFullNameSort

au email • auEmailCS

• auEmailNCS

• auEmailSort

au location • auLocationCS

• auLocationNCS

• auLocationSort

Table 15.: AuthUsers’ @Fields

Columns Fields

pro name • pro nameCS

• pro nameNCS

• proNameSort

pro notes • pro notesCS

• pro notesNCS

Table 16.: Processes’ @Fields

83

Columns Fields

po description • pro po descriptionCS

• pro po descriptionNCS

• pro po descriptionSort

Table 17.: ProcessOrigins’ @Fields

Columns Fields

pt process type • pro pt typeCS

• pro pt typeNCS

• pro pt typeSort

Table 18.: ProcessTypes’ @Fields

84

Columns Fields

pub title • titleCS

• titleNCS

• pubTitleSort

pub authors • authorsCS

• authorsNCS

• pubAuthorsSort

pub category • categoryCS

• categoryNCS

• pubCategorySort

pub journal • journalCS

• journalNCS

pub abstract • abstractCS

• abstractNCS

pub fullcontent • fullContentCS

• fullContentNCS

pub notes • notesCS

• notesNCS

pub type • typeCS

• typeNCS

• pubTypeSort

Table 19.: Publications’ @Fields

85

Columns Fields

res element

• keywordEdgeNGram res element

• tokenEdgeNGram res element

• res elementCS

• res elementNCS

Table 20.: ResourceElements’ @Fields

Columns Fields

reso resource name • reso resource nameCS

• reso resource nameNCS

• resoNameSort

reso notes • reso notesCS

• reso notesNCS

• resoNotesSort

Table 21.: Resources’ @Fields

Columns Fields

syn synonym • keywordEdgeNGram syn synonym

• tokenEdgeNGram syn synonym

• syn synonymCS

• syn synonymNCS

Table 22.: SynonymsId’s @Fields

	1 Introduction
	1.1 Context
	1.2 Objectives
	1.3 Structure of the thesis

	2 State of the art
	2.1 Biomedical text mining
	2.1.1 Information retrieval
	2.1.2 Named entity recognition
	2.1.3 Relation extraction
	2.1.4 Tools
	2.1.5 Resources

	2.2 The @Note project
	2.2.1 @Note application

	3 Web application development
	3.1 Technologies and languages
	3.1.1 Java
	3.1.2 Hibernate ORM
	3.1.3 Hibernate Search and Lucene
	3.1.4 Spring framework
	3.1.5 Web-based technologies

	3.2 @Note Architecture
	3.2.1 @NoteLibs
	3.2.2 @Note data access
	3.2.3 @Note domain model

	3.3 Cache
	3.4 Search
	3.4.1 Hibernate Search
	3.4.2 Boolean search

	3.5 Processes
	3.5.1 Process data status
	3.5.2 Corpus creation

	3.6 @Note web
	3.6.1 @Note web structure
	3.6.2 Data access
	3.6.3 Modules
	3.6.4 Global search
	3.6.5 Navigation

	4 Results
	4.1 Queries
	4.2 Corpora
	4.3 Processes
	4.4 Documents
	4.5 Curator
	4.6 Resources
	4.7 Global Search
	4.8 User

	5 Conclusions and future work
	5.1 Summary of the work
	5.2 Prospects for future work

	A Implemented @Fields for Lucene indexing

