
Universidade do Minho
Escola de Engenharia
Departamento de Informática

José Diogo Lago Viana

Monitoring and Real-time Simulation
of an Industrial Production Pipeline

December 2020

Universidade do Minho
Escola de Engenharia
Departamento de Informática

José Diogo Lago Viana

Monitoring and Real-time Simulation
of an Industrial Production Pipeline

Master dissertation
Master Degree in Integrated Master’s in Informatics Engineering

Dissertation supervised by
António Luís Sousa

December 2020

C O P Y R I G H T N O T I C E

This is an academic work that can be used by third parties provided that internationally ac-
cepted rules and good practice concerning copyright and related rights are respected. Conse-
quently, this work may be used in accordance with the license Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0) — https://creativecommons.org/licenses/by-
nc/4.0/.

If one needs permission to make use of the work under conditions not foreseen in the
indicated license, the author should be contacted through RepositóriUM of Universidade do
Minho.

i

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
http://repositorium.sdum.uminho.ptM
https://www.uminho.pt/PT
https://www.uminho.pt/PT
https://creativecommons.org/licenses/by-nc/4.0/

A C K N O W L E D G M E N T S

To my friends and family.

ii

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of Universi-
dade do Minho.

Braga, 16th November 2020

iii

A B S T R A C T

There is a shortage of manufacturing management software solutions for businesses with
various manual processes, and that offer a wide range of products. Existing solutions can
become very expensive for small and medium-sized enterprises, and can discourage them to
take the next step towards the 4th Industrial Revolution.

This dissertation consists of joint work with Tipoprado, Artes Gráficas, to develop a package
tracking and production performance analysis platform.

The company has a notable number of different clients and offers different types of
services. This way, different packages may go through different paths on the production
pipeline. Given this, to offer a more close and customized service, Tipoprado, wants to
develop a package tracking platform. This tracking is not geographical (delivery case), but
about the package location over the production pipeline, giving clients the possibility to
consult, in real-time, the actual state of their orders.

Apart from this, implementing this platform produces a significant level of data about
packages and clients. One of the main goals is to treat, process and analyze this data, to
improve production efficiency and be able to help the its managers make crucial decisions
about the referred pipeline. Production planning and predictions on delivery dates is the
ultimate goal.

This dissertation studies and implements the tracking method that best applies to Tipoprado
production pipeline, together with data analysis, and prediction options.

The given platform will transport the company to a tech production vision, and kick start
its journey through the fourth industrial revolution. It is also expected to increase customer
engagement levels, which correlate with a higher number of sales.

Keywords: Web Application, Web Development Architecture, Queuing Theory and
Simulations, Production line

iv

R E S U M O

Existe uma falta de soluções de software de gestão de manufatura para empresas com vários
processos manuais, e que oferecem uma vasta gama de produtos. As soluções existentes
podem-se tornar bastante dispendiosas para pequenas e médias empresas, e desencorajar as
mesmas para dar o próximo passo em direção à 4a Revolução Industrial.

Esta dissertação consiste num trabalho conjunto com Tipoprado, Artes Gráficas, para desen-
volver uma plataforma de tracking de encomendas e análise de desempenho de produção.

A empresa possui um número notável de clientes diferentes e oferece diferentes tipos
de serviços. Dessa forma, encomendas diferentes podem seguir caminhos diferentes na
linha de produção. Dado isso, para oferecer um serviço mais próximo e personalizado, a
Tipoprado, deseja desenvolver uma plataforma de tracking de encomendas. Esse tracking não é
geográfico (caso de entrega), mas sobre a localização da encomenda no pipeline de produção,
oferecendo aos clientes a possibilidade de consultar, em tempo real, o estado atual dos seus
pedidos.

Além disso, a implementação desta plataforma produz um nível significativo de dados
sobre encomendas e clientes. Um dos principais objetivos é tratar, processar e analisar esses
dados, melhorar a eficiência da produção e ajudar os responsáveis da empresa a tomar
decisões cruciais sobre o referido pipeline. O planeamento da produção e as previsões nas
datas de entrega é o objetivo final.

Esta dissertação estuda e implementa o método de tracking que melhor se aplica à linha
de produção da Tipoprado, junto com a análise de dados e opções de previsão.

A plataforma fornecida transportará a empresa para uma visão de produção tecnológica e
iniciará sua jornada na quarta revolução industrial. Também é esperado que aumente os
níveis de envolvimento do cliente, que se correlacionam com um número maior de vendas.

Palavras-chave: Aplicação Web, Arquiteturas de desenvolvimento Web, Teoria de Filas e
Simulações, Linha de Produção

v

C O N T E N T S

1 introduction 1

2 state of the art 3
2.1 Related Products 5

2.1.1 DHL - Tracking System 5
2.1.2 HiveTracker 6
2.1.3 Productoo 7

2.2 Tracking Methods 8
2.3 Queuing Theory and Predictions on a production pipeline 10
2.4 Technologies 14

2.4.1 Web Development Architectures 15
2.4.2 Web Development Languages/Frameworks 16

2.5 Summary 18

3 the problem and its challenges 21
3.1 Proposed Approach - solution 23

3.1.1 Solution Overview 23
3.1.2 Simulation Algorithm for predicting delivery dates (Sub-module) 24

4 development 28
4.1 Decisions 28
4.2 Implementation 29

4.2.1 Database and API 29
4.2.2 Critical Zone and Websockets for real-time interactions 32
4.2.3 Statistics and Metrics for production analysis 37
4.2.4 Delivery dates - Simulation 42

4.3 Outcomes and Summary 53

5 case study / experiments 56
5.1 Experiment setup 56
5.2 Results 57
5.3 Discussion and Summary 62

6 conclusion and future work 63
6.1 Conclusions 63
6.2 Prospect for future work 64

a support material 72
a.1 Other relevant Frontend pages 72

vi

contents vii

a.2 Email Examples 79

L I S T O F F I G U R E S

Figure 1 Customer engagement process. [1] 4
Figure 2 Productoo - Production Control success story example. [42] 8
Figure 3 Tipoprado’s production method. 9
Figure 4 1D vs 2D barcodes. [44] 10
Figure 5 Package flow inside production line example. 13
Figure 6 Simulation Engine Logic. [56] 14
Figure 7 Solution overview scheme. 24
Figure 8 A pipeline workstation inputs and outputs. 25
Figure 9 Database Logic Model. 29
Figure 10 Production Line page for package tracking. 36
Figure 11 Heatmap for mean times in the production line queues. 39
Figure 12 Vertical bar plot for availability, performance and workstation OEE. 41
Figure 13 Calculate approximate paths by Client flow. 44
Figure 14 Filtering paths for simulation. 45
Figure 15 Setup clocks and pop events from list. 47
Figure 16 Workstation updating clocks and informing SimMan of next event. 50
Figure 17 Simulation only uses business hours defined by the platform admin-

istrator. 51
Figure 18 Memory distribution of backend application. 54
Figure 19 Heat-map of packages in each workstation. 60
Figure 20 Number of packages at each workstation (paused and active). 60
Figure 21 Package list page. Quick view information or click to open detailed

page. 72
Figure 22 New package page. 73
Figure 23 Calendar with weekly view for delivery dates. 73
Figure 24 Package public view page. Information available to the end client. 74
Figure 25 Number of package statistics page. 74
Figure 26 Workstation statistics page. 75
Figure 27 Waiting time in queue statistics page. 76
Figure 28 Ratings received from end clients page. 77
Figure 29 Example of a survey answer by a end client. 78
Figure 30 Automatic report page. 78
Figure 31 New package registered confirmation example email. 79

viii

list of figures ix

Figure 32 Package completed warning example email. 80

L I S T O F TA B L E S

Table 1 Asset tag types and applications. [18] 8
Table 2 Web Development Architectures comparison. [2] 16
Table 3 Related products comparison. 18
Table 4 Resources’ CRUD operations by user type. 31
Table 5 Email delivery statistics by quarter. 57
Table 6 Mean customer reviews rating by quarter. 58
Table 7 Percentage of packages delivered on time by quarter. 58
Table 8 Company’s workstations overall availability and performance by

quarter. 59
Table 9 Average waiting times by packages stopped in a queue, by quarter. 59
Table 10 Employees overall opinion on the platform. 61

x

1
I N T R O D U C T I O N

After some inquiries with the company’s managers and some employees, we got to know the
primary reason that motivates the need to start this partnership and develop the platform.

Tipoprado offers a wide range of services, from Business to Client or Business to Business
solutions. It is normal in this industry to sub-contract other industries to do part of product
processing, due to high product variety. This way, other clients or businesses also have a
schedule to follow and need to know how their work will be affected by orders placed on
Tipoprado.

Almost every day, fifteen to twenty clients call the company’s office, to know the state
of their packages. Being various the reasons that make them call, it forces the employee
(receiving the calls) to spend about 10-15 minutes, searching for the respective package
inside the production space. As expected, the company wants to minimize this wasted time
to the maximum. So, the need to implement a production pipeline tracking platform became
real. The key objective is to allow clients to consult the current and previous locations of
each of their packages. Resulting, not only, in reducing time spent in searching for packages
across the three pavilions significantly, but also, reducing the number of received calls in the
office.

On the other hand, this kind of tracking produces relevant data, that can reveal important
information about each client, and the efficiency/bottlenecks of the production pipeline.
With this dissertation, one of the objectives is to conclude if the analysis of the data produced,
can cause any positive impact on company production.

There are on the market various tracking applications, but according to the company, none
enables clients to check the current state/history of the package. The most known, and almost
everybody has come across it, at any point in his life, is DHL and other logistics/delivery
enterprises. However, as explained before, it is a different type of tracking. So, the first step
of this dissertation is to search for related software.

The state of the art methods for tracking packages is one of the essential aspects of this
work, as it will help us to select the one that applies best to Tipoprado’s case. We will analyze
some of the most known/used methods, and see how they fit with the company’s production
characteristics and habits.

1

2

After this, queuing theory will also be studied for understanding best the referred pipeline.
Queuing theory deals with problems that involve queuing (or waiting). As is known, a
production line, can be broken into smaller individual subsystems. These subsystems consist
of a queue to a specific activity, and the activity itself. With this study, we want to do
a system modelling (arrival process, service mechanisms and queue characteristics), and
retrieve reliable/accurate conclusions about the company’s methods.

The ultimate goal consists in giving an approximate delivery date for a newly registered
package or packages already inside the production pipeline. This prediction is, ideally,
adaptable to the company’s occupation and business hours. In this part, we will make a
comparison between some of the most used and known methods/options, to understand
each one, and conclude which can respond best to the given problem.

The solution to the challenge, presented by Tipoprado, is to join the best of both worlds
(tracking system and data analysis) and develop a platform that can help the company
reduce the time spent in client support, and improve production efficiency.

During this dissertation we want to expose and discuss some implementation decisions,
like the technologies used, the system characteristics and performance problems. In a final
phase, we will conclude on the platform usability (inquiring company employees or its
clients) and validate its effects.

It is hoped to have a working product with modular characteristics that allow it to evolve,
continuing to add new features, new design and also new members to work on it.

2
S TAT E O F T H E A RT

According to a Bernard Marr’s [5] article on Forbes, "Why Everyone Must Get Ready For The
4th Industrial Revolution", first came steam and water power; then electricity and assembly
lines; then computerisation. . . So what happens next? It is based on smart factories in which
machines have web connectivity and are connected to a system that can virtually analyse
the entire production floor and make decisions on its own.

Founder and Executive Chairman of the World Economic Forum, Professor Klaus Schwab,
published a book entitled "The Fourth Industrial Revolution" [57], in which he describes how
this fourth revolution is different from the previous three, as he claims that those were
characterised mainly by advances in technology.

The idea of Industry 4.0 (or whatever you call it) might seem almost perfect on paper;
employees and machines all interconnected in harmony, to increase efficiency and productiv-
ity. However, Schwab outlines his concerns that businesses could be unable or unwilling to
adapt to these new technologies. Why wouldn’t industries leap into tech-based production?
[63]

• Economic Challenges;

– High economic costs;

– Business model adaptation;

– Unclear economic benefits/excessive investment.

• Social Challenges.

– Privacy concerns;

– Surveillance and distrust;

– General reluctance to change by stakeholders;

– Threat of redundancy of the corporate IT department;

– Loss of many jobs to automatic processes and IT-controlled processes, especially
for blue-collar workers.

3

4

Many experts are suggesting that this revolution will benefit the rich much more than the
poor, especially as low-skill, low-wage jobs disappear in favour of automation.

Schwab said in his book, "The changes are so profound that, from the perspective of
human history, there has never been a time of greater promise or potential peril. My
concern, however, is that decision-makers are too often caught in traditional, linear (and
non-disruptive) thinking or too absorbed by immediate concerns to think strategically about
the forces of disruption and innovation shaping our future."

As referred in the quote below, and the present state of change, industries are in current
demand for optimisation of their services, and to reach this, they need to go digital and
tech-oriented.

"Around the world, and in practically every sector, manufacturing facilities are
undergoing a major transformation. Digitisation is changing the way we process
materials and make products, and data is becoming the golden key that can
open a door to technological possibilities with the power to completely reshape
manufacturing.

The traditional manufacturing model is evolving into what is referred to as a
"smart factory" or Factory 4.0 – a connected system that links machinery, person-
nel, maintenance activity, and analytics for a completely integrated approach to
factory management." - Seebo, "How factory 4.0 is transforming production" [58],.

On the other hand, one of Tipoprado’s objectives is to increase customer engagement by
allowing them to be "involved" with their package orders through the whole process. Firstly,
what is customer engagement? It is all about interactions between the customer and the
brand. That simple. Why is it important? Finding ways to engage with customers in between
purchases/orders strengthens their emotional connection to the brand, helping retain them
while sustainably growing the business.

Figure 1: Customer engagement process. [1]

In fact, a study by Hall and Partners’ “Engager”, described by MaryLou Costa in Marketing-
Week [34] shows that up to 2

3 of a brand’s profits may rely on effective customer engagement.
Another customer engagement study by Ray Wang of Constellation Research [46], in 2016,
found that

". . . companies who have improved engagement increase cross-sell by 22%, drive
up-sell revenue from 13% to 51%, and also increase order sizes from 5% to 85%."

2.1. Related Products 5

With these values in mind, it’s easy to see that there is a direct correlation between how
engaged customers are and how profitable the business is.

Being said, the reasons and objectives that drive Tipoprado to adopt this new model are
valid and relevant.

Introducing the path to the rest of this dissertation, the act of tracking a package inside
a production line, requires some sort of system (automatic or not) that registers each
process/state. So in this chapter, the goal is to search for related products on the market,
analyse their tracking systems, methods, and conclusions retrieved automatically by the
respective software. A comparing review between predictions through Queueing Theory,
Machine Learning (ML) or Simulation Algorithms is also pretended.

2.1 related products

2.1.1 DHL - Tracking System

As it was mentioned in the introduction, the first related product to be talked about is from
the delivery giant DHL1. After a quick analysis on this platform we conclude that it is a
Web Application, accessible by everyone on every system with access to the internet and a
browser. It also has a homepage where any client can manually search for their packages by
a unique code, received previously.

Due to this platform’s main features (package tracking) are only accessible to clients that
have "active" packages, the rest of this description is based on previous use and public
examples made available by DHL itself.

One of the key features of this tracking system is that clients do not need to register on
the platform. This results in a simple use and less "bureaucracy" that most users don’t want
to experience, just to know the location of a package. When a client places an order for a
product that is shipped and registered under DHL, he is notified (generally by email) with a
unique reference code to the respective package. With this code, only known by the client,
he can search for the package and check its state.

In this platform, there is no relation between client/package, so, if someone has more
than one package registered, it has to check for them separately.

Using some of the examples present in this page2, we can check some of the "core" features
of the platform.

A client can view the package destination, description, and the full history/process
through the company system.

1 https://www.dhlparcel.pt/en/private-customers/receiving-a-parcel/track-and-trace.html
2 https://www.logistics.dhl/pt-en/home/tracking/id-labels.html

2.1. Related Products 6

Viewing the same example page again is possible to conclude that the tracking method
used to register each state, is barcode-based.

2.1.2 HiveTracker

This product is still a geographical tracking just like the previous one (it offers real-time
product supply chain monitoring at item level from End to End (E2E).) But, it provides new
management possibilities, making it similar to one of the main goals of Tipoprado - statistics
and other efficiency-related problems.

There is not much available about this product, but in HiveTracker’s website3, are described
some of the main features and the goals of the platform. The main objective is to "Bring light
to the dark spots of the supply chain", to improve efficiency, margins, and sales. Regardless of
having a different application, the ultimate purpose is the same as production line tracking
for optimisation.

According to HiveTracker the benefits of real-time item-level monitoring include; faster
release of the product, cost-saving, increased customer satisfaction, the possibility of imme-
diate intervention, unrivalled compliance management, real-time loss or fraud detection,
real-time customer behaviour insights and maximised stock control.

HiveTracker’s provides a Platform as a Service (PaaS) for data visualisation and reporting
combined with prescriptive analytics means visibility, agility and unprecedented maximisa-
tion of a company (client) supply chain.

Some interesting and related features found on the website:

• All products identified, authenticated and monitored in real-time throughout their life;

• Control and analysis of Product Flows from production to end consumer;

• Real-time monitoring and tracking, anywhere, anytime, fully autonomous with no
external human action;

• Reports produced from measured data gives the image of the situation without any
interpretation;

• Prescriptive analytics-based reports provided by business intelligence and machine
learning indicate in real-time alerts, corrections and predictions of the supply chain for
each transport.

Opposing to DHL system, HiveTracker uses a set of small connected sensors (size of a
2 Euro coin), that measure, log and transmit in real time: global position, temperature,
humidity, light exposure and other customized data. Concluding, this is a more Industry 4.0
(Internet of Things (IoT)) oriented solution.

3 https://www.hivetracker.io/

2.1. Related Products 7

2.1.3 Productoo

Provides solutions for a complete digital transformation of production and maintenance
planning, execution, tracking, and reporting. Comparing it with the previously presented
products, Productoo has the most similar use case (a production line). According to their
website4, Productoo main goal is to drive company’s Return on Investment (ROI) and boost
performance. To do so, they offer a series of different products, such as Maintenance Control,
Production Control, and Factory Cockpit.

Some of the main advantages of using their products are:

• creating paperless environments for better traceability;

• improving Overall Equipment Effectiveness (OEE) by 10-30%;

• optimising planning to meet current demand (demand-driven strategy);

• reducing lead time and changeovers;

• spending less time reporting, making better decisions faster.

Focusing more on Production Control, Productoo offers:

• production planning and scheduling;

• connection to third party Enterprise Resource Planning (ERP), Manufacturing Execu-
tion System (MES) and OEE software;

• production tracking, live dashboards of the production line and report generation.

It has also available some success cases using this product, as can be seen in one example
in Figure 2. The analysis of this case and other examples proves the concept and validates
that the process of tracking and monitoring a production a line, has positive impacts on the
company efficiency, enabling it to have a ROI shortly.

According to specifications, their products are modular and are cloud-based (Web and
Mobile Applications).

For Maintenance Control, the tracking method of the inventory/machinery is barcode
readers, however for Production Control, it uses MES connectors and operates with the
real manufacturing data. This solution is less error-prone and more accurate than manual
input or barcode readers. Still, it is necessary for the machinery used to be "high tech",
and compatible (more common in highly robotised systems that only produce one kind of
material/product, as seen in the example above - automotive company).

4 https://www.productoo.com/

2.2. Tracking Methods 8

Figure 2: Productoo - Production Control success story example. [42]

2.2 tracking methods

As it was lightly introduced before, there are various methods to track assets. In this case,
assets correspond to the packages (orders) inside the production pipeline. So, we will explore
some possibilities and its viability, such as IoT sensors, Radio Frequency Identification (RFID)
and barcodes. The following table, presented by Hardcat, represents a quick comparison
between the four methods.

Tag Type Asset value ($) Tag cost Advantage Disadvantage

Barcode Low Low Minimal cost No tracking
ability

RFID Medium - High Medium - High Basic tracking Tracking at
certain points only

GPS High Medium - High Real-time
tracking

Only outside
buildings/cover

WIFI High Medium - High Real-time
tracking

Only outside
buildings/cover

Table 1: Asset tag types and applications. [18]

The use of GPS or WIFI sensors will be discarded right away since its applications are for
high-value assets, and mainly for outside (great distance) tracking. With RFID we achieve
the same goal with probably fewer costs, for inside monitoring.

RFID is possibly a viable option because of the following characteristics:

2.2. Tracking Methods 9

• Tags are cheaper to purchase;

• Readers are more powerful with longer read range;

• Fixed and hand-held readers are cheaper to purchase;

• Tags are less sensitive concerning surface placement.

Comparing it with barcodes, many tags can be scanned at once, and the scanner only
needs to be within the range of the tag to read it. Also, RFID is faster, more durable and
more accurate than barcodes.

Nevertheless, RFID asset management is not a matter of one size fits all. Its tags and
readers depend upon the environment, asset types and the outcome required.

On the other hand, barcode labels are a valuable and viable choice for businesses looking
to improve efficiency and reduce overheads. Both cost-effective and reliable, barcodes have
the following characteristics:

• Barcodes reduce the possibility of human error;

• A barcode scan is fast and reliable;

• Barcodes are inexpensive to design and print;

• Barcodes are extremely versatile and user-friendly.

For Tipoprado, an asset/package can, possibly, be seen as a whole paper sheet pallet or a
final product pallet.

Pallets can be easily tracked. However, due to production methods, a pallet does not
necessarily identify a package. Analysing Figure 3 that represents how a package is processed
through most pipeline places is understandable that a pile of sheets is picked from one
pallet, processed and placed on a new pallet on the other side.

This is necessary, because every machinery consumes (raw or not) individual paper sheets
on one side, and delivers them on the other. That way, a pallet never follows through a
package full "life cycle".

Figure 3: Tipoprado’s production method.

2.3. Queuing Theory and Predictions on a production pipeline 10

As pallets cannot identify a package, the only way to do it would be through every single
sheet that is processed. Still, this is not possible due to extreme costs marking each one.

Example: an order of 10000 A5 books, needs a minimum of 40000 sheets. A printer
machine, like the ones owned by Tipoprado, can easily print 5000 sheets/hour. That way, it
would be necessary for someone/something to mark each sheet, faster than the printing
rate, to not waste valuable time.

Also, a single sheet has varying values, depending on quality; nevertheless, it still has a
low value, relative to the cost of marking it.

According to the company responsible, for each package/order placed, it is printed a
"description" page that accompanies the respective package for the full path on the pipeline.
This page is managed by their ERP and has a barcode referring the package unique number
(like a Universal Product Code (UPC)).

For this reason, RFID is not a viable option for Tipoprado, making the use of barcodes
the best solution for this case. Barcodes can be 1D, 2D (Figure 4). These types depend on
product/asset size and data requirements. [36]

Figure 4: 1D vs 2D barcodes. [44]

1D barcodes are typically used for identifying items or assets that are associated with
variable information that resides in a database. A good example is an item marked with a
UPC code that is linked to frequently changing information in a pricing database.

2D barcodes can be used to mark very small items. In some cases, these types of codes
have been directly etched into auto parts or aeroplane components, or even tiny surgical
instruments. While 1D barcodes were traditionally scanned with laser scanning technology,
2D codes require an imager (which can scan both 1D and 2D codes). The cost of imaging
scanners has fallen so that they are now price competitive with laser scanners.

2.3 queuing theory and predictions on a production pipeline

Queuing theory studies the process/act of waiting lines, and it enables the mathematical
analysis of several related processes, including arrivals at the queue, waiting in the queue,
and being served by the server. Queues are basic to both external and internal business

2.3. Queuing Theory and Predictions on a production pipeline 11

processes, which include staffing, scheduling and inventory levels. For this reason, businesses
often utilise queuing theory as a competitive advantage.

The problem in almost every queuing situation is a trade-off decision. A manager must
decide on the added cost of providing a more efficient/quick service (add more checkout
places, more staff, etc.) against the inherent cost of waiting in line. If employees spend too
much time manually entering data on a platform, a business manager could compare the
price of investing in barcode scanners against the benefits of increased productivity. Likewise,
if customers are unhappy because of late delivery dates, the business managers could analyse
the cost of hiring more staff relative to the value of possibly increasing revenues and ensuring
the retainment of customers. Those are the kind of conclusions/decisions that the platform
aims to help Tipoprado in its production pipeline.

To modulate a queuing system is necessary to know these major components:

1. How packages arrive;

2. How packages are serviced.

Arrivals are divided into two types:

• Constant: the same period between successive arrivals (i.e., machine-controlled);

• Variable: random arrival distributions, which is a much more common form of arrival.

Servicing consists of the line(s) and the available number of servers for that subsystem.
To modulate a queue servicing, is necessary to consider, the line length (number of items
waiting), number of lines (number of servers) and the queue discipline. An essential feature
of the waiting structure is the time the customer spends "inside" the server, also seen as
service time. It can also be referred to as the service rate: the number of items that server will
process per period (i.e., ten packages per hour).

Another crucial point on a servicing subsystem is to know the line structure or the overall
system. By that, we need to identify if the respective line is single or multi channel and single
or multi phase. The simplest type is the single-channel, single-phase, where there is only
one channel for arriving customers and one phase of the service system. An example is the
checkout counter at a supermarket, only one step and customers coming only from inside it
(the supermarket). On the other side, we have multi-channel, multi-phase. Tipoprado’s case is
this one, but we will enter in more details later.

Some of the performance measures that can be answered by assessing and improving a
production line, through the use of Queuing Theory, include:

• Utilization factor; (r)

• Number of packages in system; (Ls)

2.3. Queuing Theory and Predictions on a production pipeline 12

• Number of packages in queue; (Lq)

• Time spent in queue; (Wq)

• Time spent in system; (Ws)

• Service times;

• Efficiency of each workstation.

Yet, such measures can be calculated with the data collected from the tracking on the
production pipeline, so there’s no direct need to use Little’s Law. (L = lW) [31]

Like it was introduced before, one of the requirements set by Tipoprado is the possibility to
predict delivery dates for each package. At the moment ML is the most popular method to
make all sorts of predictions. Nonetheless, it raises doubts about being the one that best
applies here.

Queuing Theory models try to estimate the behaviour of a queue system given several
assumptions. This reveals a big flaw of these models: they only produce valid results if the
queue follows the assumed distributions of inter-arrival and servicing times.

Josefin Stintzing and Frederik Norrman made a study about the use of data from queue
systems to provide a prediction with artificial neural networks [62]. During this study, we
observe the results obtained and how they got to them, using ML algorithms. They compare
these results with the real data that the network was trained on, and with results using
Queuing Theory methods.

One of their conclusions shows that while Queuing Theory may tell/respond to more
specific problems about queue systems, given that the assumptions above are known and
approximate, ML algorithms, such as the ones used, can give what rate customers arrive
and how long to serve them. Yet, they tell nothing on how to use that information.

This way, if we can accurately modulate the production pipeline into one queuing system
(arrival and servicing rates that follow a known distribution), and assuming a "steady-state"
system, is possible to give an approximation of "total time inside the system" (delivery date)
using Little’s Law, referenced above.

However, since Tipoprado is looking for a "dynamic" prediction (not "steady-state"), this
problem is not First Come First Served (FCFS). Also, company managers are not sure about
arrival distribution, meaning that the use of Queuing Theory may not produce an accurate
result.

Due to high variety of services that the company provides, a package may take different
paths inside the production line, depending on what type of processing it needs. This way,
two packages that leave a Server X and a Server Y can "race for service" in Server Z. Checking
Figure 5 this is evidenced by green, red, yellow and orange packages. Each one has a
defined path and being, apparently, in different stages, they can meet in S4 and/or S5.

2.3. Queuing Theory and Predictions on a production pipeline 13

This queue state is in constant shifting with different packages arriving at different places
with different future paths, making the system a multi-channel/multi-phase one.

Figure 5: Package flow inside production line example.

So, it is also possible, to develop a simulation algorithm and have a dynamic prediction,
with the actual state of the company in mind (real number of packages in each queue and
processing times). This way, packages coming from different workstations to the same queue
would interfere with each other’s waiting/total times.

There are two different types of simulation, Discrete Event Simulation (DES) and Continuos
Simulation (CS).

DES models the operation of a system as a (discrete) sequence of events in time [35],
having two approach possibilities:

• Next-event Time Progression: it is assumed that there are no changes in the system
between consecutive events. Thus, the simulation time can jump to the start time of
the next event;

• Fixed-increment Time Progression: where time is incremented at a fixed rate and the
simulation state is updated according to the events happening in that time slice.

Both forms of DES contrast with CS in which the system state is changed continuously
over time, based on a set of differential equations defining the rates of change of state
variables. [9]

This way, to create a DES (which is the one we need), it is necessary to keep track of:

• State: a set of variables that represent the properties of the system to be studied. The
state evolution over time can be mathematically represented by a step function whose
value can change whenever an event occurs;

2.4. Technologies 14

• Clock: the simulation must keep track of the current simulation time. The units in
which it is represented are irrelavent and must be chosen in a suitable way for the
system. In DES, as opposed to CS, time "hops" because events are instantaneous and
do not occur in a continuous form. This way, the clock skips to the next event start
time, each time an event is completed, as the simulation proceeds;

• Events list: the simulation maintains at least one list of simulation events.

It is also necessary to be aware of a stopping condition for the simulation to reach an end.
In a book by Vladimir Rykov and Dmitry Kozyrev, where Figure 6 is present, it is explained

how to model the logic of a DES algorithm.

Figure 6: Simulation Engine Logic. [56]

2.4 technologies

After analysing the following two main topics:

• clients with the possibility to check on their packages’ state.

2.4. Technologies 15

• several employees using different computers as input/access points.

We can conclude that the solution must be cloud oriented. Currently, the most common
approach and possibly the one that offers more resources is to develop a Web Application.
Related products use the same approach and with it, we can meet all requirements imposed
by Tipoprado.

In a first phase, we will start by comparing different web development architectures,
and later, study some technologies (programming languages/frameworks) to develop a
maintainable and scalable platform, with the ability to add new features with ease.

2.4.1 Web Development Architectures

Three "main" architectures are widely used by developers/industries. These consist of
Monolithic [7] vs Service-Oriented Architecture (SOA) [22] vs Microservices [6].

The monolithic architecture is seen as the traditional way of building web applications.
Usually, it consists of a client interface, server backend and a database (all three main
components in one single unit). All functions are managed in one place.

Typically, monolithic applications have one large codebase and lack modularity. For
example, if developers want to update or change something, they are always modifying the
same code base. This way, every time there is a new update, the whole stack is updated at
once. This way, it might be difficult and take time to find and alter the respective code that
needs adjusting. As it is all connected in one single module, anything that goes wrong will
most likely affect the entire application.

A monolith’s code can follow software architecture and code organisation patterns like
Model-View-Controller (MVC) [61] or Model-View-View-Model (MVVM) [27]. Applications
that use this type of architecture are mostly used to create Minimum Viable Products (MVPs),
also known as proof of concepts. However, when these applications start to grow, they
usually become more sophisticated and complex. For this reason, a more modular approach
is required for these platforms to be sustainable.

A SOA is essentially a collection of services that communicate with each other. Nev-
ertheless, some means of connecting services to each other is needed, such as message
protocols.

The microservice architectural style (or "fine-grained SOA"), is in short, an approach to
develop a single application as a set of various small services, each running in its process
and communicating with lightweight mechanisms, often an Hypertext Transfer Protocol
(HTTP) [45] resource Application Programming Interface (API) [51].

These services are independently deployable, and there is a bare minimum of centralised
management of these services. Each microservice can be written in different programming
languages and use diverse data storage technologies.

2.4. Technologies 16

According to Martin Fowler and James Lewis, one main reason for using services as
components (rather than libraries, as seen in monoliths) is that services are independently
deployable ("Componentization via Services" [15]). Having an application that consists of
multiple libraries in a single process, a change to any individual component results in having
to redeploy the entire application. However, if that application is decomposed into various
services, you can expect many single service changes to only require that service to be
redeployed.

"You want to use Node.js to standup a simple reports page? Go for it. C++ for
a particularly gnarly near-real-time component? Fine. Do you want to swap in
a different flavour of a database that better suits the reading behaviour of one
component? We have the technology to rebuild him.

Of course, just because you can do something, doesn’t mean you should - but
partitioning your system in this way means you have the option." - Fowler and
Lewis, Decentralized Governance [15].

Checking Table 2, we can observe a "final" comparison on web development architectures.
This table will help make a decision, based on Pros and Cons of each architecture, on what to
use in the platform.

Architectures Pros Cons

Monolith

Simpler development
and deployment
Fewer cross-cutting concerns
Better performance

Codebase gets cumbersome
over time
Difficult to adopt new technologies
Limited agility

SOA

Reusability of services
Better maintainability
Higher reliability
Parallel development

Complex management
High investment costs
Extra overload

Microservices
Easy to develop, test, and deploy
Increased agility
Ability to scale horizontally

Complexity
Security concerns
Different programming languages

Table 2: Web Development Architectures comparison. [2]

2.4.2 Web Development Languages/Frameworks

As for Programming Languages/Frameworks used to develop web applications, we can
observe some of the most used.

Java [24], by being a versatile programming language, is popular in the enterprise develop-
ment environment. One of the main advantages is the ability and simplicity to combine and

2.4. Technologies 17

rely on its native tools and frameworks for creating applications. A great base of documen-
tation and support across the entire spectrum, from simple to more complex applications,
makes Java very appealing. One of the most used web development framework is Java Spring
[60].

Python [43] can be used to build server-side web applications. While a web framework is
not required, it’s rare not use one speed up development. Django [8] is a high-level Python
web framework that encourages rapid development and clean, pragmatic design. It includes
dozens of extras to handle common web development tasks. Django takes care of user
authentication, content administration, site maps, and many more tasks — right out of the
box.

PHP [41] is a popular general-purpose scripting language that is especially suited to web
development. Has been widely ported and can be deployed on most web servers on almost
every operating system and platform.

Node.js [38] relies on an entity-relationship which helps to ensure that the application
runs seamlessly, through data systematisation, breaking logic into modules, processing
valuable insights from logs and dividing the code. Also helps build scalable web apps.

Ruby on Rails [54] achieves high productivity and makes it a common choice for startups
who aim for a running start. Designed to be user-friendly and quite easy to use, with short
and readable code. Unfortunately, that sometimes means lower efficiency compared to other
programming languages – but it also means higher productivity.

Elixir [11], inspired by Erlang [12], a language developed back in the ‘80s by Ericsson for
better development and stability of telephony applications, and that was made open source
in 1998 [23].

Erlang was made to allow phone switch system to run continuously and supports hotswap-
ping: software updates while the software is running. Elixir ’s author José Valim said that he
loved Erlang, but noticed some things could use a bit of improvement [37]. This way, all
areas addressed in Erlang are also present in Elixir, together with its package management
system, macros, an easy to use build tool and Unicode handling.

ReactJS [50] is a JavaScript [25] library to develop frontend applications. React makes it
painless to create interactive User Interfaces (UIs). With the capability to design simple
views for each state in an application, React will efficiently update and render only the
components that need to be updated when data changes. Declarative views make the code
more predictable and easier to debug.

It is also possible to build encapsulated components that manage their state, and then
compose them to make complex UIs. Since component logic is written in JavaScript instead

2.5. Summary 18

of templates, we can easily pass data through the app and keep the components’ state out of
the Document Object Model (DOM), [39].

2.5 summary

Regarding the research on related products, the platform that Tipoprado needs, differs from
the others as it is visible in Table 3. Tracking systems like DHL and other delivery businesses
offer the possibility to clients track their packages, but this kind of tracking is not the
same. Usually, these products are also custom made for that company and not available to
interested parties. Productoo focuses on the production line; however, it doesn’t enable client
tracking and is aimed for different pipelines.

Products Client Tracking Analysis Report Production Pipeline
DHL Tracking 4 ? 8
HiveTracker 8 4 8
Productoo 8 4 4
Tipoprado 4 4 4

Table 3: Related products comparison.

As for tracking methods, the conclusions are the following:

• There is no "one size fits all" tracking method. Each problem needs to be analysed before
making any decisions;

• The one that applies best to this case is barcode scanners.

On Queuing Theory matter, a lot of work has been made about the optimisation of
businesses/industries through the use of it. Checking M. Marsudi and H. Shafeek’s work, on
optimising a company’s production line it is possible to understand what kind of measures
are retrieved from the business data, and what information each one can provide [32]. This
way, it is expected to serve the future platform with some of these vital statistics.

However, this kind of research/work, as many others found, it is mostly a "one timer", that
means, a single analysis on the business is made to solve its efficiency problems. In this case,
Tipoprado wants to have a continuous analysis/status on its product pipeline.

Concerning the prediction methods observed above, currently, the use of a DES is the best
solution to Tipoprado’s problem, in detriment of Queuing Theory, using Little’s Law or any
arrival/service rate assumption based method, and ML. A simulation engine can be single-
threaded or multi-threaded. In both cases, there are several problems with synchronisation
between current events. Chapter 3 will detail some synchronisation problems that might
occur.

2.5. Summary 19

The pending event set is typically organised as a priority queue, sorted by event time.
That is, we can order events (packages) according to its delivery dates, so regardless of
the order that events are added to the event queue, they will always be removed in the
same chronological order. Various priority queue implementations have been studied in the
context of discrete-event simulation [26].

Finally, addressing the architecture and technologies, having the previous information in
mind, and also some of the Best Practices for Good Web App Architecture, by Angela Stringfellow
[3], such as:

• Solves problems consistently and uniformly;

• Is as simple as possible;

• Offers fast response times;

• Utilises security standards to reduce the chance of malicious penetrations;

• Does not crash;

• Heals itself;

• Does not have a single point of failure;

• Scales out easily;

• Allows for easy creation of known data;

• Errors logged in a user-friendly way;

• Automated deployments.

We decided that this platform will consist of an API backend, built with Elixir, using
Phoenix framework and a ReactJS frontend.

It was opted to separate backend from frontend to follow up the Microservices architecture.
With this choice, the application is ready for new modules in the future, such as an IoT
solution for Tipoprado, or integration with other ERP/MES, which are present in the similar
products previously studied.

Regarding backend, the API will be RESTful [53]. Is based on Representational State
Transfer (REST) technology, an architectural style and approach to communications often
used in web services development. RESTful systems aim for fast performance, reliability,
and the ability to grow by reusing components. These components can be updated through
time without affecting the system as a whole, even while it is in production. The term REST
was introduced and defined by Roy Thomas Fielding in his doctoral dissertation. [53]

2.5. Summary 20

Elixir was chosen because it is a language that runs on the Erlang Virtual Machine (VM).
This way, it has all of the benefits of the battle-proven system, and it is possible to use the
existing Erlang libraries with no performance penalty. Another strong point for Elixir is
concurrency, which, in most languages, is a bit of a pain, not only beeing dangerous and
hard to achieve synchronisation. In Elixir it is effortless to create a new process, and it
performs very well. It is a core feature of the platform and does not require a separate library.
Note that Erlang/Elixir processes are not native processes; they are much more lightweight
and are scheduled by the Erlang BEAM virtual machine. [13]

Phoenix [40] is the most popular web framework for Elixir right now. One great feature is
the real-time capabilities with channels between Javascript on the client and Elixir on any
of the servers in the cluster. Every single visitor to a website can have its process on the
server and its real-time connection, achieving a sort of "hybrid" platform. This enables some
possibilities that are not present in other common web frameworks.

Virtual DOM in ReactJS makes user experience better and developer’s work faster. With
this, it updates even minimalist changes applied by the user but does not affect other parts
of the interface. (Check reconciliation in ReactJS documentation, What is the Virtual DOM?
[48]). Managing updates is easy for developers because all ReactJS components are isolated,
and a change in one doesn’t affect others. This allows for reusing components that do not
produce changes in and off themselves to make programming more precise, ergonomic, and
comfortable for developers.

It is an open-source library developed by Facebook and in constant update. At the moment,
ReactJS is in 3rd place of Github’s most stared repositories, with over 141k stars [16]. And
more than 1300 open-source contributors are working with the library.

3
T H E P R O B L E M A N D I T S C H A L L E N G E S

After all the research endured for the "State of the Art" Chapter, it’s necessary to describe the
problem and requirements imposed by Tipoprado. Some questions (business requirements)
were already explained/addressed before, such as:

• Client interactions;

• Production methods;

• Pipeline characteristics.

About the specific tasks that the platform must respond to, some meetings were arranged
with the company responsible in a first approach phase. The refined requirements were
separated in different categories (user requirements), to improve development efficiency.

Users:

• Admin: has access to all CRUD1 operations and extra features;

• Employee: has limited access to CRUD operations and limited to the main features of
the platform;

• Client: only has access to public information such as own packages, and related. (no
registered account necessary)

Employee Features:

• Register new packages/orders in the platform;

• View, edit and delete packages;

• Register/Complete/Pause/Resume a package state inside the production line;

• Mark packages as concluded;

1 Create, Read, Update, Delete [33]

21

22

• Consult a "production calendar" with package delivery dates, and automatic predicted
dates.

Client Features:

• Consult own orders status/history;

• Answer a satisfaction survey after package conclusion.

Admin Features:

• All Employee features;

• Consult Statistics/Performance measures about the production pipeline and other
business sensitive data;

• Consult reviews given by clients about their orders;

• Platform settings:

– User management (add/remove employee accounts);

– Pipeline management (add/edit places of the production line);

– Client satisfaction survey question management (add/edit questions of the auto-
matic package survey).

Concerning how the system must behave to fulfil the company’s expectations (system
requirements), we got the following:

• Clients must receive an email when a package is registered or concluded. This email
needs to forward them to the package public information page on the platform, or to a
satisfaction survey;

• Package state management inside the pipeline must be ready for manual and barcode
scanners input. (This process has to be simple and as much little time consuming as
possible).

As for the statistics that will be calculated and shown to Admin user, consists of a set of
performance measures used in queuing theory and other metrics that Tipoprado requested.
Composing the following list:

• Time evolution of the number of registered packages;

3.1. Proposed Approach - solution 23

• Time evolution of the number of completed packages;

• Time evolution of percentage of on time package deliveries;

• Overall percentage of on time package deliveries;

• Number of packages active in a place (workstation);

• Number of packages stopped after being active in a place (workstation);

• Heatmap of number of packages passing on a place;

• Mean service time by place;

• Mean waiting time by place X to place Y;

• Place OEE;

• Time evolution of client rating reviews.

The final goal of this data treatment is to be able to generate automatic reports analysing
each one of these measures and inform, as simple as possible, Tipoprado’s responsible about
positive or negative evolution, according to the previously selected time counterpart.

3.1 proposed approach - solution

3.1.1 Solution Overview

Collecting and analysing all information about the desired platform an architecture scheme
is necessary to complete the development roadmap. As said before, this web application will
be divided into different modules initially (frontend and backend). This allows an easy affix
of separate services such as a Simple Mail Transfer Protocol (SMTP) [29] Server for email
delivery, or a possible IoT [52] solution in the future (also referenced above).

Since the production pipeline status (adding and completing packages on a workstation),
is the "critic zone" with constant data flowing through frontend and backend, websockets [21]
will be used. The use of websockets enables an almost "real-time" feel, ensuring that every
endpoint (computer of the company) has the same visual state. The rest of the information
will be passed with HTTP requests through a REST API. This way, an unauthenticated user
(Tipoprado’s end client), can not use websockets through the frontend module.

3.1. Proposed Approach - solution 24

Figure 7: Solution overview scheme.

A Tipoprado’s employee, authenticated user, can add new information by manual input or
barcode scanners. Also, can interact with backend module through HTTP or websockets (for
pipeline information).

In Figure 7, we see the different entities that will use the platform inside the squared
boxes. The round boxes represent the various modules that compose the application.

3.1.2 Simulation Algorithm for predicting delivery dates (Sub-module)

Considering all the requirements and the architecture defined, the simulation sub-module
will constitute the "the cherry on top of the cake", and it deserves a preview of the algorithm-
s/techniques that will be used.

As it was referenced in the State of the Art, the algorithm used will be based in Figure 6.
This way, it is necessary to define:

• how data used in the simulation will be retrieved (list of packages and places/work-
stations that compose the pipeline);

• how the simulation engine will keep track of events and data updates

To give the best user experience, each time a user consults the integrated calendar, it
should have an overall idea if packages are predicted to be delivered on time or not, and
the respective predicted date. This means that this information will be asked for, fairly
frequently, corroborating Figure 7 and the necessity for this to be a separate sub-module.

3.1. Proposed Approach - solution 25

With the possibility of a separate component from the API, instead of calculating each
time an HTTP request is received, a simulation will run periodically (starting with a 1 hour
period) and update the respective database table.

Given that a package has a defined path, and it may vary, each workstation also has
a different number of "items" to process, receiving from one and delivering to another
workstation. It can also be the starting or finishing point of a package. So, we can think of a
workstation as an individual actor inside of the simulation engine. (Figure 8).

Figure 8: A pipeline workstation inputs and outputs.

Continuing with the same thought, we identify some Actor Model [20] programming
characteristics. In response to a message it receives, an actor can:

• make local decisions;

• create more actors;

• send more messages;

• determine how to respond to the received message.

Actors may modify their private state, but can only affect each other indirectly through
messaging. An actor is also a light-weight entity unlike Operating System (OS) processes or
threads, and was introduced in 1973 by Carl Hewitt. [20]

One of the selling points of Elixir is its support for concurrency. The concurrency model
relies on Actors. So, implementing the initial idea, where each workstation is an actor
part of the simulation, should not be a problem with the selected language for backend
development.

After a small research, we can verify that actor-based programming is present in some
simulation problems, and that constitutes a viable solution for this platform. Citybound is a
city building game that uses microscopic models to vividly simulate the organism of a city
arising from the interactions of millions of individuals. This simulation engine is based on
actors and message passing. It is implemented in Rust [55]. According to Anselm Eickhoff,
creator and developer of Citybound, the main inspiration for his approach was his previous
experience with Erlang. [4]

Having this into consideration, the first take on a pseudo algorithm can be the following:

3.1. Proposed Approach - solution 26

1. Periodically, an Actor is spawned. This will be the Simulation Manager and is responsible
for spawning an Actor for each workstation that composes the pipeline;

2. Each of these actors will collect the list of packages in their queue, and order it by the
delivery date. Announcing to the manager when the next event will occur. The next
event is calculated by the processing time of the first package in queue;

3. When the manager gets all announcements, orders them, and advances clock time to
the next event, warning the respective actor where the event will occur;

4. Actor receives a message from the manager and completes "event" (package processed).
If the package is concluded, it will update the database value for expected delivery
time. Else, it will send a message with the package to the next workstation (actor). It
also warns the manager, that needs to wait for a next event update from itself and the
next workstation;

5. The intervening workstation actor will recalculate the next event time and announce it
to simulation manager (null in case that there is no package in the queue), to continue
the simulation;

6. The simulation stops when the manager doesn’t have more "next events".

Now, we can formulate a more fine-grained approach to this algorithm.
The pseudo-algorithm bellow, represents the flow of interactions in an imperative ap-

proach, with functions receiveMessage() and sendMessage() as being blocking functions.
However, this is just a method to better explain how the simulation will work. As said, the

actual implementation will be Actor Model based, transforming this algorithm in a distributed
and asynchronous one, and that’s why some of the announcements are needed (intended to
keep message order between all actors). This can be seen as a simple sequential consistency
problem [30]. We must ensure that the Manager only fast forwards the clock when it has all
the updated values from the actors affected by the previous event, keeping "timed events"
from overlapping. The existence of a centralised actor (simulation manager) simplifies this
problem and potentially increases efficiency due to less metadata and extra messages in a
peer-to-peer case.

The portions of code (logic) that will be executed separately from the simulation manager
are outlined by "actor p execution" blocks.

3.1. Proposed Approach - solution 27

Data: SimMan as the Simulation Manager
begin

PList getWorkstations()
for p 2 PList do

spawnActor(p)
actor p execution

PackList getPackagesInQueue(p)
orderByDeliveryDate(PackList)
nextEvent getNextEvent(PackList)
sendMessage(SimMan, nextEvent)

end
end
while 9p /2 receivedEventList & nextEvent receiveMessage() do

insertOrdered(receivedEventList, nextEvent)
end
while receivedEventList 6= [] do

{p, time} popHead(receivedEventList)
sendMessage(p, time)
actor p execution

newUpdate receiveMessage()
if isFromManager(newUpdate) then

package popHead(PackList)
if isCompleted(package) then

updateDBDeliveryTime(clockTime)
sendMessage(SimMan, [])

else
m getNextWorkstation(pack)
sendMessage(SimMan, [p, m])
sendMessage(m, pack)

end
else

insertOrdered(PackList, newUpdate)
end
nextEvent getNextEvent(PackList)
sendMessage(SimMan, nextEvent)

end
a f f ectedList receiveMessage()
for p 2 a f f ectedList do

nextEvent receiveMessage()
insertOrdered(receivedEventList, nextEvent)

end
end
terminateSimulationActors()

end

4
D E V E L O P M E N T

4.1 decisions

Starting the development phase, it is important to make a summary of the technology
decisions, previously referenced.

Regarding Backend, Elixir is the selected language, together with Phoenix to develop a
REST API, and we already went through their great advantages. To simplify development
and smooth the process, we will also use Ecto [10]. It is a database wrapper and query
generator for Elixir. Ecto provides a standardised API and a set of abstractions for talking to
all the different kinds of databases so that Elixir developers can query whatever database
they’re using by employing similar constructs.

As for Frontend, since component development/design is not the goal of this dissertation,
the use of Semantic-UI [59], together with React, takes an important role. It offers a declarative
API, controlled components [47], and other features. Looking to the list of components
offered by Semantic-UI is visible that data visualization components, such as plots and
charts are missing. Like it was explained, data analysis by the company managers simply
and intuitively is a key feature of the whole platform. This way, after some research, the
React-vis [49] library was chosen. Developed by Uber, React-vis is React-friendly, high-level,
customizable and expressive.

Recalling the tracking method (barcode readers), to update each package state inside
the production line, it is crucial to say that one of its main benefits, is that it allows the
user to scan barcodes into any application as if the data was being keyed in by the user. It
means, that a common barcode reader works like a keyboard. Just scan a barcode and the
data will appear wherever the cursor is placed. This way, it’s not necessary for any extra
library/software to support this feature.

28

4.2. Implementation 29

4.2 implementation

4.2.1 Database and API

Firstly, given the requirements stated in Chapter 3, the database conceptual model, and
consequently, the logical model was developed, which resulted in the following Figure 9.

Figure 9: Database Logic Model.

Some important notes on the database:

• User: The User table is only to represent authenticated users (admins and employees).
Public users, such as Tipoprado’s end clients, do not need authentication to consult
their packages. Only required unique code, generated through Base 64 encoding of
number (sent by email only to Package’s owner_email);

• Package: quantity and path can be null. The path attribute is the expected path
that the package will undergo in the production line. Used mainly for Simulation
purposes. It was chosen to not make them required after talking with Tipoprado’s
employees who felt this could be too time-consuming and don’t have a direct impact
in the package tracking flow. The Path table serves only to store frequent or favourite

4.2. Implementation 30

paths, and associate them with a description, to simplify a package’s path definition
process. They are not directly referenced in Package table;

• Place: debit_per_hour can be null. If this is the case it means that the type of work
performed by the respective workstation is somewhat manual. Therefore, this attribute
will be seen as unquantifiable;

• Pause: has a description attribute in case a package is paused due to a reason worth
mentioning to the end client. This way, when a client consults a paused package, has
the chance to see a reason. Pauses also enable a better understanding of production
methods. Will see later why;

• Question: questions to appear in the satisfaction survey for each package;

• Shift: used to represent the working (business) hours of the company. Used to measure
performance, and simulate delivery dates with better result approximations.

Using Elixir and Ecto, it is very simple to define the table migrations and resources (maps)
to be used across the whole code. For example the user model (not table migration), bellow:

1 schema "users" do
2 field :email, :string
3 field :password_hash, :string
4 field :level, Pipe.EctoEnums.TypesEnum, default: 1
5 field :password, :string, virtual: true
6

7 field :reset_password_token, :string
8 field :reset_token_sent_at, :utc_datetime
9

10 timestamps()
11 end

Having explained the basis of the platform database will look into the operations that each
user (admin, employee, public) can perform to each resource, according to the requirements
specified. This way, Table 4 was generated. With it, it is possible to retrieve the first part of
the REST API routes.

Note: Depending on the type of user or type of action, the result can be different. For
example, a package index for an authenticated user has a different output than an index
performed by an unauthenticated one. The resource operated over is still the same, but each
user sees a treated result for its type.

4.2. Implementation 31

Resource Admin Employee Public
User index, create, show, delete index, show ——
Package index, create, show, update, delete Equal to Admin index, show
Place index, create, show, update index, show ——
State index, create, show, update, delete Equal to Admin ——
Pause create, update Equal to Admin ——
Question index, create, show, update index, show index
Reply index, show —— show, create
Shift index, create, show, update, delete index, show ——
Path index, create, delete Equal to Admin ——

Table 4: Resources’ CRUD operations by user type.

Looking at the platform requirements again, we can conclude that some of the features are
still missing from the basic CRUD operations. So, the rest of the available routes, that don’t
operate over/return a unique database model, and therefore require their own Controllers
and Views, can be seen below.

• Production Line, (Pipeline) route is somewhat "duplicated", since the main access
point is through websockets, though it is still possible to request it through the API.
Nevertheless this route returns a list of active package states, grouped by current
workstation;

• Statistics receives a query identifier, and it is also possible to pass date periods as filter;

• Report generates an automatic summary of a default period of time, or can receive a
period as filter like Statistics;

• Calendar receives year and week as identifiers, in order to show all packages due to
deliver that respective week; Week perspective is the only available. Filter to view
already completed packages is also an option.

1 get "/pipeline", PipelineController, :index
2 get "/calendar/:year/weeks/:week", CalendarController, :show
3 get "/stats/:query", StatController, :show
4 post "/report", ReportController, :create

The authentication process is performed through the use of JSON Web Token (JWT) [28],
handled by the Elixir library Guardian [17]. With this library it is very simple to manage and
authenticate users/connections, having access to two key functions like:

• Guardian.Plug.current_resource(conn): returns a User resource, through the
token present in the connection’s headers;

4.2. Implementation 32

• Guardian.encode_and_sign(user): encodes a User resource, and returns the respec-
tive JWT.

4.2.2 Critical Zone and Websockets for real-time interactions

As it was explained before, there is a "critical zone" in the platform where it’s important
to ensure that every authenticated user is seeing the same thing (some sort of real-time
experience). This page is the one where employees will track packages inside the production
line.

• Backend Perspective

The problem with using the current API routes is that to keep the wanted equal visu-
alization is necessary to keep requesting to the backend server. However, this solution is
very inefficient and can cause unnecessary load. Besides, it still is a "pseudo-real-time"
interaction.

All of this can be overcome with websockets. And Phoenix has all the right tools to
implement them. Phoenix.Socket is a socket implementation that multiplexes messages
over channels. Once connected to a socket, incoming and outgoing events are routed to
channels, this way, it possible to easily abstract different "lobbies" inside the same socket.

Bellow, we can observe the socket module, more specific on line 3, events are routed by
topic to channels. Socket parameters are passed from the client and can be used to verify
and authenticate a user. Socket id’s are topics that allow us to identify all sockets for a given
user, returning nil makes the socket anonymous.

1 defmodule PipeWeb.UserSocket do
2 ## Channels
3 channel "pipeline:*", PipeWeb.PipelineChannel
4

5 def connect(_params, socket, _connect_info) do
6 {:ok, socket}
7 end
8

9 def id(_socket), do: nil
10 end

In the code snippet above, there is no user authentication. That is done inside the
respective channel. Every time a user joins a channel needs to choose which particular topic

4.2. Implementation 33

he wants to listen to. The topic is just an identifier, but by convention, it is often made of
two parts: topic:subtopic. By using a splat (the * character) as the last character in the
topic, allows matching on all topics starting with a given prefix pattern.

Bellow, there is the join function, that receives as an argument, the channel the user wants
to join and the user’s JWT token for authentication. If the token is valid, it will be granted
access to the channel, or else the user will receive an unauthorized reply. (Line 14 of the code
snippet).

1 def join("pipeline:lobby", %{"token" => token}, socket) do
2 case Socket.authenticate(socket, Pipe.Guardian, token) do
3 {:ok, authed_socket} ->
4 {:ok, authed_socket}
5 {:error, _} ->
6 send(self(), :unauthorized)
7 {:ok, socket}
8 end
9 end

10

11 def handle_info(:unauthorized, socket) do
12 push(socket, "unauthorized", %{})
13 {:noreply, socket}
14 end

Seen above, the function handle_info(msg, socket) handles received messages from
other processes or the channel itself (like in line 8 with send() to self()). Likewise, there is
an handle_in function that is responsible to handle incoming messages to the channel via
the socket. For example, handle incoming message to request full production line (occurs
after successful join).

1 def handle_in("full_pipeline", _message, socket) do
2 pipelines = Production.get_states_pipeline()
3 view = PipelineView.render("index.json", pipelines: pipelines)
4 push(socket, "full_pipeline", %{data: view})
5 {:noreply, socket}
6 end

Looking at handle_in, it takes as arguments a "message event", the "message" itself, and
the connected socket. In this case, as it isn’t necessary to send any message, the "event" name

4.2. Implementation 34

is sufficient. The pipeline is built, transformed into JSON and then sent back to the socket
through push(). This function also needs an "event" name, for the frontend client to be able
to treat the given message expectedly.

This way, there are the following "events" to be handled:

• full_pipeline: described above;

• new_state: receives as message the new state data, equal to post /states;

• delete_state: receives as message the state id to delete, equal to delete /states/:id;

• complete_state: receives as message the state id to update its status, equal to patch
/states/:id;

• new_pause: receives as message the new pause data (marks a state as paused in
production line), equal to post /pauses;

• resume_pause: receives as message the pause id to update (marks a state pause as
completed - resumed), equal to patch /pauses/:id;

• complete_package: receives as message the current state id to complete and the
package id to also mark as complete. This update is atomic, therefore, if one of this
updates fails, the other fails too;

• default: default handler that pattern matches all the rest of "message events". It
returns an error for invalid event.

Excluding the events full_pipeline, default and error handling, every backend re-
sponse is broadcast to all sockets connected. This way, every time a new event occurs, every
employee will get that update in a near real-time experience. As it is visible in the code
snippet below, this function receives the connected socket, the event message and data
necessary for the frontend client to treat it the correct way. These hooks receive a function
callback as an argument, to treat the response obtained from the backend.

1 broadcast(socket, "<event_message>", %{data: view})

4.2. Implementation 35

• Frontend Perspective

On the frontend side, it was used the Phoenix Channels JavaScript client. This way, it is
possible to keep the same level of abstraction used in the backend, even with two completely
different languages, making the overall development and maintenance much easier.

When the page is open and the React component mounts, the client tries to connect to the
socket with empty parameters. Afterwards, socket hooks are defined for handling any error
or a successful connection established.

1 componentDidMount() {
2 this.socket = new Socket(
3 ‘${process.env.REACT_APP_SOCKET}/socket‘,
4 {},
5);
6 this.socket.connect();
7 this.socket.onOpen(this.socketRequestInfo);
8 this.socket.onError(this.handleErrorSocket);
9 }

In case of a successful connection to the socket, the callback function then tries to enter the
defined channel, pipeline:lobby, passing the JWT token as a parameter for authentication,
as seen in the backend side. Channel hooks are also defined for error handling, in this case,
and call a custom defined function registerSocketMessages that defines hooks for all
valid "events" seen before. A hook registers a handler with a function callback to be executed
when a specific "event message" arrives from the other end of the socket, homologous to
what happens in the backend.

Then, the "event" full_pipeline is pushed to the channel and the rest we’ve seen it
already. When the response arrives, the hook has already been registered and the callback
will be executed.

4.2. Implementation 36

1 socketRequestInfo() {
2 this.channel = this.socket.channel(’pipeline:lobby’, { token:

localStorage.getItem(’token’) });
3 this.channel.join();
4 this.channel.on(’unauthorized’, this.handleUnauthorized);
5 this.channel.onError(this.handleErrorChannel);
6 this.registerSocketMessages();
7 this.channel.push(’full_pipeline’, null);
8 }

In Figure 10, it is visible the main layout for this page. The design is a continuous devel-
opment together with Tipoprado’s employees, to enable an easy registering and manipulation
of package states. Spending the least time possible with inserting new data, was the main
concern with this page.

For every action performed, or "event message" there is a confirmation modal, to guaranty
some sort of a second step and reducing mistakes caused by neglect. The backend also deals
with possible errors that may pass through frontend verification.

Figure 10: Production Line page for package tracking.

4.2. Implementation 37

4.2.3 Statistics and Metrics for production analysis

All statistics and metrics, described in Chapter 3, were implemented, however, we will only
look in detail to the two most complex and interesting. Final results of every statistics page
can be found in Figures 25, 26, 27 and 28 of Other relevant Frontend pages.

• Mean waiting time in queue

This statistic demonstrates the mean time a package stays in a queue before starting a
given process (enter a new workstation). Due to the fact of variability of products, packages
waiting in a workstation queue, can have different predecessing paths (Figure 5). So, it is
necessary to take into account all the possible combinations:

a! b, f ora, b 2Workstation_List (1)

To calculate this, it is necessary to get all packages registered between the filter dates
and their state list. Each state of the list represents when a package entered and left a
given workstation. This way, if we travel through this list and calculate the time passed
after a package left a Workstation A and started the next process (Workstation B), we get the
time difference of two workstations for a package (time spent in queue workstationA !
workstationB).

Doing this for all the packages, we obtain all the possible path combinations that exist in
the company’s production pipeline.

In the following code snippet, it is visible the function that produces the list of time
queue’s time of a given package state list.

• previous is a tuple that is composed by the workstation order number and the
timestamp of when it ended processing in that place;

• next will be previous in the next recursive call.

The edge case where the time difference is less than zero is taken into account, because
sometimes, due to production characteristics, a package could start being processed in a
workstation before being completed finished in the previous one. This would generate a
negative number, and produce wrong results in the long run.

4.2. Implementation 38

1 defp queue_time_diff([], _previous, times), do: times
2 defp queue_time_diff([state | tail], previous, times) do
3 next = {state.place.order, state.timestamp_end}
4 time_diff =
5 Timex.diff(state.timestamp_start, elem(previous, 1), :seconds)

/ 3600
6 time_diff = if time_diff < 0 do 0.0001 else time_diff end
7 queue_time_diff(
8 tail,
9 next,

10 [{elem(previous, 0), state.place.order, time_diff} | times]
11)
12 end

The function above is tail-call recursive. Tail-recursive functions are considered better than
non-tail-recursive functions as tail-recursion can be optimized by the compiler. The idea
used by compilers to optimize tail-recursive functions is simple since the recursive call is
the last statement, there is nothing left to do in the current function, so saving the current
function’s stack frame is of no use. This way, guaranteeing that a stack overflow will never
occur.

The output is then grouped by workstation and the mean values are calculated and the re-
sulting output is a list of tuples {previous_workstation, next_workstation, mean_waiting_time}.

On the frontend side, the data received is transformed into a matrix like the one below.

M =

0

BBBB@

a b ... n

a qaa qab ... qan

b qba qbb ... qbn

...
n qna qnb ... qnn

1

CCCCA

Where:

qaa = mean_waiting_time(a� > a)

qab = mean_waiting_time(a� > b)

qnn = mean_waiting_time(n� > n)

The first argument of mean_waiting_time represents the previous workstation and the
second argument, the next one.

4.2. Implementation 39

To represent this information, as mentioned at the beginning of this chapter, React-vis was
used and the Heatmap Series the type of plot selected.

Figure 11: Heatmap for mean times in the production line queues.

The color ranges are the following:

[green; yellow] =]0; max ⇤ 0.45]

]yellow; red] =]max ⇤ 0.45; max ⇤ 0.95]

]red, red] =]max ⇤ 0.95; max]

These values represented are in hours and truncated to one decimal case.

• Workstation OEE (Overall Equipment Effectiveness)

To best understand what this plot shows, it is necessary to know what OEE is. It is the gold
standard for measuring manufacturing productivity and measuring it is a manufacturing
best practice. OEE is calculated as a combination of three different metrics.

• Availability (A): takes into account unplanned and planned stops. A score of 100%
means the process is always running during the planned production time;

• Performance (P): takes into account slow cycles and small stops. A score of 100%
means that when the process is running it is running as fast as possible;

• Quality (Q): takes into account defects. A score of 100% means there are no Defects
(only Good Parts are being produced).

4.2. Implementation 40

This way OEE = A ⇤ P ⇤Q, and a score of 100% means the workstation is manufacturing
only good parts, as fast as possible, with no stop time.

Due to production methods and some platform limitations, the number of defects is not
counted and stored. This way, we will only use A ⇤ P.

The first step is to calculate the availability of a workstation. For this, we need to get the
expected production time and the real production time for the selected date period.

• The expected production time is the sum of all business hours (shifts defined by the
admin in the platform settings) for the selected period;

• The real production time is the sum of all package states that were active in that
workstation during the same period.

After having the two, since the workstation might have more that one server, and therefore
should be producing total_time ⇤ n_servers we multiply the total time by the number of
servers and then obtain the relation of real/expected.

1 def utilization_factor(min_date, max_date) do
2 total_production = total_production_time(min_date, max_date)
3

4 Stats.real_time_place(min_date, max_date)
5 |> Enum.map(fn x ->
6 {elem(x, 1), elem(x, 0), calc_work_time(elem(x, 2)), elem(x, 4)}
7 end)
8 |> Enum.map(fn x -> real_expected_relation(x, total) end)
9 end

10

11 defp real_expected_relation({id, name, real, n_servers}, total) do
12 if total * n_servers != 0 do
13 {id, name, real / (total * n_servers)}
14 else
15 {id, name, 0}
16 end
17 end

In the end, we get a list of tuples identifying each workstation and with respective relation
of availability.

As for the performance metrics calculation, a workstation performance is given by:

4.2. Implementation 41

real_debit = (quantity_prod/prod_time)/n_servers

per f ormance = real_debit/expected_debit

The real_debit is calculated as an aggregation of all the n servers that the workstation
offers, and the expected debit is defined by the platform admin as the expected quantity
produced per hour per server. However, there are some special cases where there isn’t an
expected debit defined. This is due to the fact that some workstations represent manual and
non-countable production rates since there are a lot of variables that influence this number.
So, the platform admin can leave the expected debit for that workstation as unquantifiable.

When this occurs, the approximate debit is calculated with the number of packages
processed inside that time period and the expected debit is the mean time duration of
a package being processed in that respect workstation. Note that this is not an "official
alternative", this is just a way to best approximate the OEE metric for such variate production
methods of this industry that can’t be automated or countable.

approximate_debit = (n_packages/prod_time)/n_servers

expected_debit = mean_time_duration(workstation_id)

per f ormance = approximate_debit/expected_debit

In the end, in a very similar way of the availability metric, we get a list of tuples with the
same composition. This allows easy workstation grouping and calculation of the final OEE
values. On the frontend side, this time the Bar Series was the selected type of plot provided
by React-vis, and the final result can be seen below in Figure 12.

Figure 12: Vertical bar plot for availability, performance and workstation OEE.

4.2. Implementation 42

4.2.4 Delivery dates - Simulation

Remembering Chapter 3 and Figure 8 together with the suggested algorithm, the first step
for this implementation was to create the base structure of actors that intervene in the
simulation. Therefore, it starts with the creation of the simulation manager and workstation
actors.

Both simulation manager and workstations are GenServers1. They are lightweight pro-
cesses that can execute code, keep states and send messages to others, asynchronously.
SimMan (the simulation manager) starts with the following state, defined in the Sim-

Man.start_link/0 function:

1 pids: active_places,
2 clock: Timex.now(),
3 events: [],
4 awaiting: []

Where:

• pids: is a map which the keys are the company’s workstation ids, and the values are
the pids returned when an actor is started with GenServer;

• clock: will synchronise all workstation actors and keep track of each timestamp when
a package advances in the simulation;

• events: the list of events (packages’ new states) that each workstation actor will
"report" to the simulation manager. The simulation ends when this list is empty.
However, starting empty, the verification is post-initialization;

• awaiting: together with clock has the purpose to synchronise all of the simulation
processes. It’s a list of workstations ids that the manager is awaiting answer from.
While this list is not different from empty, the simulation will not advance;

Also when calling GenServer.start_link/3, the option name is passed as an argument.
This will register the manager process under the name of SimMan, and other processes
(workstation actors) will be able to send messages to the manager through the registered
name, without knowing its pid.

After the simulation manager and all of the workstation processes are started, the manager
sends each workstation 3 messages with the following contents:

1 https://hexdocs.pm/elixir/GenServer.html

4.2. Implementation 43

1. Info about other workstation pids. Before, a workstation process only knows about
itself, but to implement the algorithm described before, it has to know the others also.
It was chosen to not register named processes for the workstations, so it is necessary
to pass the extra data structure (pids map) between all of them;

2. Each workstation will receive its own mean processing time of a package, calculated by
the manager previously. This is needed to give an approximation of an event timestamp
for packages that don’t possess info about quantities or workstations that don’t have
quantifiable output performance. (This was referenced before in Workstation OEE);

3. Active packages at the moment, in any state of processing (not started yet or mid
processing). The complete list is sent to all workstation processes, and then each one
will filter the packages that will start/are active in their own place. The best solution
here would be that each process access the database and retrieve only the respective
packages. But having about 15 processes (for this case) consulting the database, plus
normal users, would most likely exceed the maximum number of database connections
available in the plan that will be used in Heroku (20) [19] when deployed. Causing
some delays and/or unexpected errors. So, this way all the work is done in memory
with only one process (simulation manager) accessing the database.

With the Erlang and GenServer characteristics, a process has a First In First Out (FIFO)
"mailbox", ensuring the ordering of the messages received by each workstation.

To calculate the mean processing time for each workstation, are used the same functions
described in the OEE plot. Reusing code/functions simplifies all of this process.

The third message, active packages in the production line is the one to focus now. As
it was referenced before at the beginning of this chapter, the same way quantity is not
required when registering a new package in the platform, the production path it will go
through can also be nil. This creates the following problem: "How to simulate all factory
production if we don’t know packages will be processed?".

The answer to this question is to obtain an approximate path for packages that don’t
have one defined. After some inquiries with the company’s responsible and employees, to
discover the best way to approximate those paths, the following pattern was discovered:

Recurring clients order packages with the same processing path most of the
times. So if Client A requests a book/magazine, most likely, next time will order
something similar but with different contents. However, processing methods
remain the same.

This way, tracing a pattern of each client associated with a package will give us an
approximated path for all those packages that don’t have one defined and are entering

4.2. Implementation 44

the simulation. Verifying this with some plots when in production would be interesting.
Though, that won’t be done for now.

1 defp send_active_packages(pids) do
2 packages = Models.list_all_active_packages()
3 grouped = Enum.group_by(packages, & !is_nil(&1.path))
4

5 approximate_paths = approximate_paths(packages)
6 with_path = Enum.map(grouped.true, & filter_rest_places/1)
7

8 without_path =
9 Enum.map(grouped.false,

10 & filter_rest_places(&1, approximate_paths))
11

12 total = with_path ++ without_path
13 # for packages that don’t have enough info (path or client history)
14 filtered = Enum.reject(total, & is_nil/1)
15 Enum.each(pids,
16 fn {_place, pid} -> send(pid, {:packages, filtered}) end)
17 end

In the code snippet above, we start from obtaining all active packages at the moment
(packages that are completed), and then separate them in two different groups: the ones
with path defined (grouped.true) and the ones without path (grouped.false). To trace a
client pattern and approximate a path for a package the following flow is done:

Figure 13: Calculate approximate paths by Client flow.

After calculating every approximate paths for every client with active packages (function
approximate_paths/1), all paths are filtered. In other words, the simulation will take into
account previous states that have already been processed, removing the past ones from the
full defined path.

4.2. Implementation 45

Figure 14: Filtering paths for simulation.

The awaiting list in the simulation manager state is set with all the workstation ids.
This way, for the simulation to proceed, the manager has to receive a response from every
workstation process, indicating the next event to simulate or nil in case there are no
packages in that workstation at the moment.

On the workstation process side (SimPlace), each process starts with the following state:

1 self_info: {name, id, order, debit, servers}
2 pids: %{},
3 clocks: [],
4 events: [],
5 mean_time: 0

Where,

• self_info: is a tuple with the information that identifies that workstation process.
Every process has its own information since there is only one process for each work-
station;

• pids: info about the other workstation’s pids;

• clocks: each workstation process has a list of clocks. A clock will identify the
timestamp for the next events, and a process has as many clocks as the number of
servers. With this approach, we can easily simulate various packages being processed
in the same workstation, synchronously;

4.2. Implementation 46

• events: the list of packages in the queue to be processed in this workstation. When
this list empty, the process is listening for new events coming from other processes.
Packages are removed from this list and placed in clocks together with a next event
timestamp;

• mean_time: this represents the mean processing time for this workstation. It doesn’t
belong in the self_info tuple, because this information is sent separately by the
simulation manager.

After state initialization, each process receives the messages sent by the simulation manager
(referenced before) and updates the state with the new information. When the workstation
process receives the last message from SimMan (referring package list), the process filters
this list, keeping only packages that are in the queue for it. Using the example in Figure 14,
workstation S4 would only keep Package A and S3 keep Package B, because those are the
next places in production line for that package.

In the previous example, the final list has only one element, but in real cases, there’s a
great chance of existing more than one package in the queue for a certain workstation. So,
that resulting list of packages is ordered by deliver_date, with packages that have a closer
delivery date having priority over the others.

The next step is to set up the workstation clocks. As said before, a workstation process
will have as many clocks as the number of servers, so we can simulate processing several
packages at the same time. Assuming a workstation S1 with 2 servers, will have 2 clocks,
that identify a package and the expected completion timestamp. (Will look into how to
calculate the expected timestamp later.) After this setup, the events (packages) that make it
into processing, are popped from the events list, because they are no longer in the queue
for that workstation.

Finally, the SimPlace process calculates which package, in clocks will finish first, and
sends a message to SimMan with the next event information.

Check Figure 15 bellow for a visual example of how this is handled. In that case, SimMan
would receive a message with {Package B, 2020-07-20 14:34:57.981960Z}, since this
is first active in process package, to be completed.

4.2. Implementation 47

Figure 15: Setup clocks and pop events from list.

Every time the simulation manager receives a :next_event from a workstation process, it
adds this event to its events list. The insertion is ordered, meaning that it is ordered by the
timestamp received. When it has received all answers, it pops the first event from the list
and warns the respective workstation to "advance the clock". In the following code snippet, it
is visible how the simulation manager handles these :next_event messages.

First, it checks if the message received is from a valid workstation (its id is member of
the awaiting list). This being true, the event received is inserted, ordered by timestamp of
completion, and the id of the workstation is removed from the list.

1 def handle_info({:next_event, event, sender}, state) do
2 if Enum.any?(state.awaiting, fn place -> place == sender end) do
3 ordered = insert_event_ordered(state.events, event, sender)
4 awaiting = state.awaiting -- [sender]
5 {rest_events, new_awaiting} = advance_clock(state.pids, ordered,

awaiting)
6 ...
7 end

4.2. Implementation 48

In advance_clock/3 it is checked if all workstations have reported their next event, in
other words if awaiting is empty. If this is the case, the first event in line is popped and the
respective workstation holding that event is warned. The clock has "ticked" and can advance
the simulation. This side will be explained in more detail. If not all workstations have sent
their message to the simulation manager, no one is warned to advance, because we can’t
ensure synchrony between all processes, otherwise.

If advance_clock/3 returns that there are no missing messages from workstation pro-
cesses and there are no events in the list also, it means the simulation has ended. There’s no
more work to do, so SimMan orders every process to terminate sending a :finish message.

1 if rest_events == [] && new_awaiting == [] do
2 Logger.info("Finished Simulation")
3 Enum.each(state.pids, fn {_place, pid} -> send(pid, :finish) end)
4 {:stop, :normal, []}
5 end

Now, on SimPlace side, when a :advance message is received, given the conditions above,
it retrieves the clock information about the package (event) to advance in simulation. With
this package’s information, the workstation process verifies if there are more workstations
in the rest of the path, for this package to go through. If the rest_path list is empty, it
means this package is now fully completed and can be removed from the simulation. A
database line is created or updated with this new delivery date prediction for this package.
If there are more workstations to process, the current one gets the id of the next in line and
warns the simulation manager to wait for both their :next_event messages, also sending
the package information with updated simulation clocks and updated remaining path to the
next workstation respective process, with a :next_step message.

With the extra message sent to the simulation manager, :wait_for we ensure that the
next event to be simulated is, in reality, the next event. Meaning that a workstation with
a free server to process a new package can, for example, calculate that its next event is at
timestamp X. If the first event in line in SimMan is at timestamp Y and X < Y, then the
simulation must take into account this new value. So, no wrong results with overlapping
clocks will be produced as the manager only advances the simulation when both intervening
workstations in an event, reply. Also, if there are no more events in the list, the respective
SimPlace sends a :next_event message as nil to SimMan. This message is discarded since
it doesn’t change the simulation current status.

4.2. Implementation 49

1 case tl(rest_path) do
2 [] ->
3 # Update DB Value
4 Models.create_or_update_prediction(
5 %{package_id: event.package, delivery: at})
6

7 path ->
8 next_place = List.first(path)
9 new_event = Map.put(event, :rest_path, path)

10 send(SimMan, {:wait_for, [self_id, next_place]})
11 send(pids[next_place], {:next_step, %{at: at, event: new_event}})
12 end

As explained before, a workstation process is also listening to incoming messages from
other workstations with information for a new package to process or place in the queue. It
is possible to look at this the same way as an employee moving the package from one place
to another in the production pipeline.

When a workstation process receives a :next_step message with package information
for a new event, the first thing it does is to check if there are available clocks. By this, it
means that if not all workstation servers are taken, the new arrival can occupy a place in the
clocks list. If there are no free servers (clocks list positions all occupied), then this new
package will have to wait in line.

It is possible to see below how the process deals with the message if there are no available
servers. In this case, as there as no spots free, the next event for this process won’t change, so
it only adds the event to the full list and warns the simulation manager that its next_event
is nil. This way, SimMan will just ignore this message, remove this workstation from the
awaiting list and proceed with the simulation if possible.

1 index = available_server(state.clocks)
2

3 if is_nil(index) do
4 updated_events = insert_event_ordered(state.events, new_event)
5 send(SimMan, {:next_event, nil, elem(state.self_info, 1)})
6 new_state = Map.put(state, :events, updated_events)
7 {:noreply, new_state}
8 end

4.2. Implementation 50

If there is a clock available (server) for the new package to start processing, the workstation
process has to calculate the prediction of completion and verify if there is any change to
the last next event announced to the simulation manager. To keep all processes synched,
the process has to send a message to SimMan, even if it is just nil for it to ignore and
proceed. This flow is presented below in Figure 16. In case of the new arrival has the smaller
timestamp, SimMan is warned that this workstation next event has changed.

Figure 16: Workstation updating clocks and informing SimMan of next event.

Thanks to the GenServer characteristics and message ordering from Erlang, referenced
before, we have guarantees that the SimMan always receives :next_event messages after
receiving a :wait_for one.

• Calculating the workstation process completion timestamp

Having a way to calculate when a package will be completed inside a workstation that
gives the most approximate value is more important than all the process described before,
because, without a good estimation, this simulation is irrelevant.

The first step is to calculate how many hours of work is needed to process a given package
in a given workstation. The following equation takes care of that:

total_time = quantity/workstation_debit

As said before, it is possible that quantity and/or debit to be nil, so when this happens,
its when the mean time production time is used to approximate total_time value.

One of the strongest points in calculating the processing time for a package in a workstation
is that not only total production time is accounted for, but also the real business/working

4.2. Implementation 51

hours of the company, and that added a bit of complexity to the simulation itself. In Figure
17 we have a visual representation of what was said. The simulation engine must behave like
a real production pipeline. So, for example, if the company’s shifts are 9h-13h and 14h-18h,
and Package A starts processing at 16h, with a predicted total time of 10h, the completion
timestamp should be at 18h of the next day. If this wasn’t the way deliveries were calculated,
the simulation engine would simply predict a conclusion at 24h of the same day, making all
possible predictions invalid.

In summary, first, it is calculated the total processing time for a certain workstation but
then it is necessary to transform that value in how many shifts that correspond.

Figure 17: Simulation only uses business hours defined by the platform administrator.

In code snippet bellow it is possible to see how this process is done. It is a recursive
function that receives timestamp and hours as arguments. timestamp represents the
moment the simulation and hours is the total amount of processing time. As the calculation
goes on, timestamp increases, with total hours decreasing. When the current shift has more
available hours than the ones remaining, the function returns with the final timestamp
value, with the rest of hours added.

If there are no sufficient remaining hours in the current shift, this function gets the next
one (same day or not), and shifts timestamp to the start of it. Timezone is taken into account
here because every datetime timestamp in the platform is in Universal Time Coordinated
(UTC). However, platform users should see predictions according to their timezone.

4.2. Implementation 52

The recursive call, subtracts the remaining hours of the current shift are to hours, like the
processing time was complete, passing timestamp also.

1 def total_hours_for_work(timestamp, hours) do
2 rest_of_shift = rest_hours_shift(timestamp)
3

4 if rest_of_shift >= hours do
5 Timex.shift(timestamp, seconds: hours)
6 else
7 next_shift = get_next_shift(timestamp)
8 new_hour = next_shift.timestamp_start.hour
9 new_minute = next_shift.timestamp_start.minute

10

11 update_shift_day(timestamp, next_shift)
12 |> Timex.set(hour: new_hour, minute: new_minute)
13 |> Timex.shift(seconds: -timezone_offset())
14 |> total_hours_for_work(hours - rest_of_shift)
15 end
16 end

With this, all of the simulation engine development is now detailed and explained.

• Scheduling hourly simulations

Since simulations need to run every hour, it is necessary to implement/use a scheduler
that can handle that. For that, Quantum2 was the solution chosen. With this package we can
define recurring tasks as they were cronjobs. For example, the configuration for it to run the
hourly simulation:

1 config :pipe, Pipe.Scheduler,
2 overlap: false,
3 jobs: [
4 delivery_simulation: [
5 schedule: "0 * * * *",
6 task: {Pipe.RecurringTasks, :delivery_simulation, []}
7]
8]

2 https://hexdocs.pm/quantum/readme.html#content

4.3. Outcomes and Summary 53

It is easy to understand that is possible to add more jobs to the list, completly independent
from each other. The crontab format is minute, hour, day of month, month and day of week,
being possible to also use second in special cases. The configuration above runs the function
delivery_simulation() of the Pipe.RecurringTasks module every hour. Not running
during nights or weekends could also be a good approach, and save some resources during
that time. Despite being simple to configure, it was decided to run at every hour.

The function that is called every time, is as simple as starting the simulation manager
(SimMan), and the rest we have already detailed. The duration of the simulation is logged
for debug and future analysis purposes.

1 def delivery_simulation do
2 time =
3 fn -> SimMan.start_link() end
4 |> :timer.tc()
5 |> elem(0)
6 |> Kernel./(1_000_000)
7

8 Logger.info("Simulation Duration: #{time}s")
9 end

On the Pipe.Application module Pipe.Scheduler was added to the children list that
will passed as argument to Supervisor.start_link(children, opts). This means that
the scheduler has the Application as supervisor and it will be restarted if some error occurs.

4.3 outcomes and summary

After implementing and developing all proposed features, (pages and features not referenced
in this chapter can be found in Support Material Other relevant Frontend pages), some
conclusions can be retrieved and analysed.

One of the major goals was to develop a platform that could be modular and with the
capability to add new features in the future. This was made possible by a separation of the
backend and frontend, which can be developed and modified in parallel. Integration with
external platforms such as the email server, database or deployment are generic and don’t
depend directly on the ones that are currently used.

On the other hand, heavier requests to the API were optimized through data processing
whenever possible. These optimizations don’t reflect directly on response times but on
preventing some associated problems with functional programming such as stack overflows.
This problem was addressed previously in this chapter with the use of tail-recursive calls, but

4.3. Outcomes and Summary 54

sometimes streams were also used to process data. Due to their laziness, streams are useful
when working with large (or even infinite) collections. Functions in the Stream module
work in linear time. This means that the time it takes to operate grows at the same rate as
the length of the list, just like the homologous eager versions found in the Enum module.

All of the points presented here contribute to a lightweight code with fast response times
and low memory usage (even with the hourly simulations) with the value normally bellow
80MB for the complete backend application.

Figure 18: Memory distribution of backend application.

Some other metrics will be referenced in the next chapter, as part of the case study analysis.
The selected distributed approach for the delivery simulations account also for low

memory usage, since Erlang processes are very lightweight, and fast calculation times for
some relevant numbers of active packages inside the production line.

Choosing a distributed approach for the delivery simulation, can introduce some extra
complexity and errors to the codebase. Nevertheless, the Erlang philosophy of "let it crash"
was used here. Since every SimPlace is started with a link3 to SimMan, when one of these
processes crashes, the link to SimMan is broken and the simulation manager process will also
stop, propagating to the rest of workstation processes, halting every single process related
to the simulation. Erlang has a limit of simultaneously alive Erlang processes of 32768, by
default. But this limit can be raised to at most 268435456 processes [14]. So, in the worst-case
scenario, memory leaks with badly terminated/blocked simulation processes need about
32768/(n + 1) hours until memory shortage. n being the number of workstations of the
pipeline plus 1 for the simulation manager, giving plenty of time to resolve the problem
before the system becomes completely unusable.

This is a valid approach since the simulation runs every hour and the process that manages
this scheduling is independent of the simulation ones. It is also supervised by the Application
and if something very wrong happens, the scheduler is restarted. Users will still have the
possibilty to consult the last updated prediction value until the next simulation runs.

Some extra problems not accounted in the proposed algorithm for the simulation engine,
due to the distributed approach, add more complexity to the platform and the engine itself.

3 https://hexdocs.pm/elixir/GenServer.html#start_link/3

4.3. Outcomes and Summary 55

For this, and as it is known in other distributed projects, the extra complexity in the code
can introduce aditional challenges on future changes or understanding of why some things
are done like that.

There are, also, some limitations such as not being able to count defected products and
use a more "automatic", less error-prone, tracking method. Integration with the company’s
ERP is also a problem. Office employees need to register the order twice (on the ERP on and
this platform). Nonetheless, the current one used by Tipoprado does not offer a cloud version
and also doesn’t provide a public API for integration.

5
C A S E S T U D Y / E X P E R I M E N T S

As expected, the case study for this dissertation is the implementation of the platform in
Tipoprado’s production line. In this Chapter, we will explaine and detaile the following:

• how the platform was put into use;

• the impact of using the platform by the company’s employees;

• the impact of the platform in the production line;

• the impact of the platform with customer engagement and relationship.

5.1 experiment setup

The platform was deployed on Heroku1 that simplifies a lot of the process. The server
used has 512MB of Random-access memory (RAM) and 10 process types. For database
PostgreSQL2 was the selected one, and the database used in production has a limit of 20
simultaneous connections.

As for mail server, Mailgun3 is the solution opted and offers a lot features to analyse
email delivery and user interaction that will have a major role in the final conclusions of the
platform.

Note that these options can be changed with small configuration changes, and the
developed platform is not bound to use any of them in particular.

Started collecting some initial data in September 2019, with a limited prototype of the
platform. The goal was to obtain the most data as early as possible, so in the end, could be
possible to analyse the evolution with as much information as possible.

The configuration for the production line set by Tipoprado’s managers, has a total of 13
workstations with a total of 16 computers spread across the office and production floor,

1 https://www.heroku.com/home
2 https://www.postgresql.org/
3 https://www.mailgun.com/

56

5.2. Results 57

using the platform (excluding external clients accessing it). 4 of those computers have a
barcode reader to introduce data more quickly and less error-prone than manual input.

5.2 results

Before starting reviewing the real impact in the company, we will examine how the business
clients adhered to this new platform and method of communication/engagement. For this,
let’s scrutinize email information given by Mailgun, where it is possible to see how many
emails were sent and how the receivers (end clients) interacted with them. The whole period
from which we have data (raging from 1 September 2019 to 30 September 2020), was broken
into quarters and the values are presented in Table 5.

Sep-Dec (2019) Jan-Mar (2020) Apr-Jun (2020) Jul-Sep (2020)
Sent 2616 2177 1166 1735

Delivered 99% 99% 100% 99%
Opened 227% 240% 231% 186%
Clicked 66% 45% 37% 33%

Table 5: Email delivery statistics by quarter.

Analysing Table 5 we can conclude that there was a big adhesion by end clients and the
emails sent, with emails being opened more than once (as the rates above 100% show), and
a mean of about 50% of them being clicked. By clicking an email, as defined in the Table
5, it means that the client clicked in a button or link that redirected him/her to the web
application. A client can click in a link to consult the package current state or to answer a
satisfaction survey, however, these two types of clicks are not distinguished here.

Lower values after the second quarter can be mostly explained by the COVID-19 pandemic
that affected the company’s production in about 70% during March, April and May, with slow
recovery after June. With less production, fewer packages were registered and consequently
fewer emails sent, and clients were less interactive.

Clients can also consult and access the platform directly from the link provided, after
accessing the first time or searching for the package using the provided unique code, in the
application homepage. Although looking at the logs these two methods were not very used
compared to simply clicking buttons in emails.

Taking a look at the data produced by the platform and also using some of the developed
plots together with a company’s employees survey, to support conclusions, let’s analyse
some of the following topics:

5.2. Results 58

• Customer engagement and satisfaction

As part of customer engagement, according to Tipoprado’s managers, during the year
previous to start using the platform, (September 2018 to September 2019) about 50 reviews
were received from end clients. And these were personally requested to them. Since the
beginning they received 141, resulting in a 282% increase compared to the homologous
period.

Observing Table 6 we can check on the evolution of the mean ratings received from clients.
In these satisfaction surveys, clients were questioned about price, quality, and delivery
schedule, and others, in a 1-5 rating.

Sep-Dec (2019) Jan-Mar (2020) Apr-Jun (2020) Jul-Sep (2020)
Overall Rating 4.53 4.40 4.45 4.67

Table 6: Mean customer reviews rating by quarter.

Just looking at the previous table we can’t conclude if the platform had any positive impact
on those specific topics since the variations are small. Also, we don’t possess meaningful
answers before the platform implementation, to compare these results with.

Through this automatic survey end clients were also enquired about what they thought
about this tracking platform, and 4.8 is the mean rating.

• Packages delivered on time

Another key value to present here in the results topic is how the percentage of packages
delivered on time evolved through the year. Similarly to the customer reviews, these values
are analysed by quarter. Observing the next table, although we don’t have relevant data for
the first quarter, there is a clear positive evolution of the percentage of packages delivered
on time.

Sep-Dec (2019) Jan-Mar (2020) Apr-Jun (2020) Jul-Sep (2020)
Delivered on time — 53% 88% 96%

Table 7: Percentage of packages delivered on time by quarter.

At first sight, this can be correlated with higher levels of organization within the company
and production. However, the reduced number of new orders during the global pandemics
from March to June might have a major role here. It is expected that with more information,
scrutinized next, will be possible to have a more concrete explanation.

5.2. Results 59

• Performance and Efficiency (OEE)

These metrics were one of the mentioned in the implementation Chapter and have a direct
relation with how a production line performs. The objective is to maximize the OEE, as
OEE = A ⇤ P (in this case), and observing Table 8 there is a clear negative evolution through
the year.

Sep-Dec (2019) Jan-Mar (2020) Apr-Jun (2020) Jul-Sep (2020)
Availability 68% 56% 36% 40%

Performance — 108% 109% 108%
OEE — 61% 40% 46%

Table 8: Company’s workstations overall availability and performance by quarter.

Again, we don’t have sufficient data to calculate Performance and OEE for the first 3 months,
but the noticeable decrease can be easily explained by the reduced values of Availability,
caused by the pandemics. Workstations had less active time, but Performance kept stable
and slightly above expected values through that period. Note that as there are many
manual processes, expected performance values (maximum debit) were approximated by
the company’s managers. These values can be adjusted in the platform.

• Queue waiting times

The other measure referenced in the implementation Chapter was the waiting time in
queue for a package to start being processed in a certain workstation. When a company can
reduce these "dead times", it’s a great step towards increased production levels.

In order to keep it simple and easy to understand the values presented in the matrix
provided by the platform’s plots page, were treated as a whole, instead of a A ! B one.
After this, the following approximations were achieved:

Sep-Dec (2019) Jan-Mar (2020) Apr-Jun (2020) Jul-Sep (2020)
Waiting Time (days) 3.7 2.2 1.7 1.35

Table 9: Average waiting times by packages stopped in a queue, by quarter.

• Production pattern and bottlenecks

Being able to identify a production pattern and bottleneck is also a good achievement of
this platform. Looking at Figure 19, which represents a heat-map of where packages pass
trough their production processes, and it is easy to understand the workstations that are
more required and the ones that might compensate in investing more or not.

5.2. Results 60

Figure 19: Heat-map of packages in each workstation.

Figure 19 is complemented by 20. In the figure bellow, red bars represent packages that
have left that workstation and are waiting in line to start the next process, and blue represent
the ones that are active at that moment in each workstation. The first column, as the name
states, are the ones that haven’t been picked up yet.

Here, the first 3 workstations present a clear bottleneck with about 80% of packages
accumulating in this area. Figure 19 confirms this, as these workstations are the most
required ones.

Figure 20: Number of packages at each workstation (paused and active).

Note: both Figure 19 and 20 are screenshots from the platform implemented at Tipoprado.

5.2. Results 61

• Delivery dates simulation

Looking at the delivery dates simulation it’s not possible to access the proximity of the
expected values provided by the simulation engine. These predictions are dynamic and
changing every hour, as said before, so the values at one moment are merely indicative to
Tipoprado’s managers and employees.

The analysis that can be made is on how the engine behaves in a real-world situation,
and with values provided by logs, we get an average of 0,00384975s with a total of about
160 packages being simulated through the 13 different workstations, on the day measured
(04/08/2020). Meaning that these simulations are almost instantaneous and with almost
none to little effect on the platform’s overall performance.

• Employees impact and opinions

Since Tipoprado’s employees have great implications if the validity of the platform devel-
oped, it was decided to enquire all of them on its impact on the business. A total of 20
workers were part of an anonymous survey, with six questions to rate 1-5. These were the
following:

• P1: The use of this platform had a positive impact on the general organization of the
company;

• P2: The use of this platform had a positive impact on the production and efficiency of
the company;

• P3: The use of this platform had a positive impact on the relationship with clients;

• P4: The extra time spent on registering data in the platform makes up in the long run;

• P5: The ease of use of the platform;

• P6: Overall analysis of the platform.

Below, the average value of the answers provided enables to retrieve a fairly positive
opinion on the platform by the people that are using it every day, for the last year (since
September 2019).

P1 P2 P3 P4 P5 P6
Average 4 3.9 3.7 4 4.5 4.2

Table 10: Employees overall opinion on the platform.

Analysing P3 in particular, since it’s based on the employees’ idea of how this platform
impacted end clients, with the values provided by email information and the overall rating
of the platform answered by these clients, it is safe to say that one of the major goals of this
dissertation was accomplished.

5.3. Discussion and Summary 62

5.3 discussion and summary

With all this detailed information retrieved from the platform itself and Tipoprado’s employees,
it’s possible to reach some conclusions.

Unfortunately, the current global pandemics affected the company’s production pipeline,
as it was explained before. And that made it more difficult to identify some positive points.
However, merging information coming from end-clients, the platform and the company’s
employees, we can state that:

• End clients had a good interaction with the platform, having rated it with a very
positive value (4.6);

• The number of calls received in the office decreased drastically. About 2-5 per day,
compared with the previous 15-20 daily;

• The company is effectively more organized and efficient, accordingly to what its
employees feel. Despite values produced from the platform’s statistics pages not
showing that directly, since these values were "distorted" by the pandemics;

• The final result of the Web Application is simple to use and that reflects on the users’
opinion;

• Production patterns and production line’s bottlenecks were identified and will help
the business managers taking future decisions when involving where to invest or not.

6
C O N C L U S I O N A N D F U T U R E W O R K

6.1 conclusions

Having completed this dissertation, it can be concluded that companies embracing Industry
4.0 are the future. The tech-based production and planning is a great plus and a differentia-
tion point from the competition. This, alongside improving customer engagement is set to
have a great impact on Tipoprado’s.

Research for related products also proved that this platform is a different take on opti-
mizing production efficiency. It has a client-package orientation (queue theory performance
measures and expected delivery dates simulations), opposing to a product orientation
(constant production of just one product/raw material), used in similar services.

The choice of tracking methods was based not only on the cost/effect relation but also
on Tipoprado’s production characteristics, for this application to be less intrusive as possible
for employees. However, the selected one keeps an open door for future implementation
of new tracking methods, since this one (barcode readers) still requires manual use and
is more error-prone than a more IoT approach. The fact that the platform was built with
micro-services in mind, it is also prepared to receive these different approaches. More
features can be added to the core ones, as building blocks.

This platform, as hinted before throughout the document, has a lot of customizable
features and can be configured to adapt to the evolution of Tipoprado’s business. However,
these same characteristics still apply to similar industries with various products and manual
processes. Workstations, employee accounts, satisfaction survey, statistics, and many others
can change at a distance of a few clicks, so a possible next step is to validate it in other
businesses.

After developing the entire platform and put it into use in the company’s production floor
and offices, data was collected for almost a year. With this information, relevant conclusions
were reached. Both employees and clients made a very positive evaluation of the platform in
different aspects. With the second ones having a major role in the platform’s use, reducing
significantly the number of calls to the office asking how their orders were.

63

6.2. Prospect for future work 64

Goals of helping the business managers taking future decisions based on production
patterns and flows can also be checked off, thanks to an insightful statistics page with broad
analysis.

As part of the simulation for delivery dates, despite the values being merely representative,
they provide a good amount of knowledge on production, as well.

6.2 prospect for future work

Two features can, possibly, be developed in the future. These were suggested by different
employees after chatting with some of them and would have a big impact on the organization
and less time expended.

1. Integration with the company’s ERP. Resulting in a unique order registry instead of
two (a separate registry for this platform only);

2. Implementing stock management. This feature is already present in a lot of ERPs or
MES and would be a great addition to the web application developed.

Registering which employee started/completed a given state is also something to take
into account since it can provide more important information. Initially, this wasn’t part of
the platform’s objective, but it can unroll this way in the future.

A lot of new things can appear too since this is an area that it is still in growth, and will
be watchful to how things evolve.

B I B L I O G R A P H Y

[1] Alex McEachern. Why you should care about customer engagement. https://blog.
smile.io/what-is-customer-engagement-and-why-is-it-important, 2019. Ac-
cessed: 2019-11-26.

[2] Anastasia D. Best Architecture for an MVP: Monolith, SOA, Microservices, or Server-
less? https://rubygarage.org/blog/monolith-soa-microservices-serverless,
2019. Accessed: 2019-12-19.

[3] Angela Stringfellow. What is Web Application Architecture? How It Works, Trends,
Best Practices and More. https://stackify.com/web-application-architecture/,
2017. Accessed: 2019-12-19.

[4] Anselm Eickhoff. Citybound - Engine Technology. https://aeplay.org/citybound.
Accessed: 2020-01-02.

[5] Bernard Marr. Why everyone must get ready for the 4th Industrial
Revolution. https://www.forbes.com/sites/bernardmarr/2016/04/05/
why-everyone-must-get-ready-for-4th-industrial-revolution. Accessed:
2019-11-26.

[6] Chris Richardson. Pattern: Microservice Architecture. https://microservices.io/
patterns/microservices.html. Accessed: 2020-10-25.

[7] Chris Richardson. Pattern: Monolithic Architecture. https://microservices.io/
patterns/monolithic.html. Accessed: 2020-10-25.

[8] Django. Why Django? https://www.djangoproject.com/start/overview/. Ac-
cessed: 2020-10-26.

[9] Wouter Duivesteijn. Continuous Simulation. 2006.

[10] Ecto Docs. Getting Started. https://hexdocs.pm/ecto/getting-started.html#
content. Accessed: 2019-01-10.

[11] Elixir. The Elixir programming language. https://elixir-lang.org/. Accessed:
2020-10-25.

[12] Erlang. Getting Started with Erlang User’s Guide. https://erlang.org/doc/
getting_started/users_guide.html. Accessed: 2020-10-25.

65

https://blog.smile.io/what-is-customer-engagement-and-why-is-it-important
https://blog.smile.io/what-is-customer-engagement-and-why-is-it-important
https://rubygarage.org/blog/monolith-soa-microservices-serverless
https://stackify.com/web-application-architecture/
https://aeplay.org/citybound
https://www.forbes.com/sites/bernardmarr/2016/04/05/why-everyone-must-get-ready-for-4th-industrial-revolution
https://www.forbes.com/sites/bernardmarr/2016/04/05/why-everyone-must-get-ready-for-4th-industrial-revolution
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/monolithic.html
https://microservices.io/patterns/monolithic.html
https://www.djangoproject.com/start/overview/
https://hexdocs.pm/ecto/getting-started.html#content
https://hexdocs.pm/ecto/getting-started.html#content
https://elixir-lang.org/
https://erlang.org/doc/getting_started/users_guide.html
https://erlang.org/doc/getting_started/users_guide.html

bibliography 66

[13] Erlang - Ericsson AB. Getting Started with Erlang - Concurrent Programming. https:
//erlang.org/doc/getting_started/conc_prog.html. Accessed: 2019-12-19.

[14] Erlang - Ericsson AB. System limits - Processes. http://erlang.org/documentation/
doc-5.8.4/doc/efficiency_guide/advanced.html. Accessed: 2020-07-28.

[15] Martin Fowler and James Lewis. Characteristics of a microservice architecture. 2014.

[16] Github. Github’s most stared Repositories. https://github.com/search?q=stars%
3A%3E1&s=stars&type=Repositories. Accessed: 2019-12-19.

[17] Guardian Docs. Create implementation module. https://hexdocs.pm/guardian/1.2.
1/tutorial-start.html#create-implementation-module. Accessed: 2019-01-11.

[18] Hardcat - Asset Management Software. RFID asset management - expectations vs reality.
https://www.hardcat.com/2019/02/07/rfid-asset-management. Accessed: 2019-
10-18.

[19] Heroku Postgres. Plans Pricing. https://elements.heroku.com/addons/
heroku-postgresql. Accessed: 2020-10-24.

[20] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A universal modular actor
formalism for artificial intelligence. In IJCAI, pages 235–236, 1973.

[21] A. Melnikov Isode Ltd. I. Fette, Google Inc. The WebSocket Protocol. https://tools.
ietf.org/html/rfc6455. Accessed: 2019-10-17.

[22] IBM Cloud Education. SOA (Service-Oriented Architecture). https://www.ibm.com/
cloud/learn/soa. Accessed: 2020-10-25.

[23] Jane Walerud. Erlang/OTP Released as Open SourceTM. https://web.archive.org/
web/19991009002753/http://www.erlang.se/onlinenews/ErlangOTPos.shtml,
1998. Accessed: 2019-12-19.

[24] Java - Oracle. JDK 15 Documentation. https://docs.oracle.com/en/java/javase/
15/. Accessed: 2020-10-25.

[25] Javascript - Pluralsight. Learn Javascript. https://www.javascript.com/learn. Ac-
cessed: 2020-10-25.

[26] Douglas W. Jones. An Empirical Comparison of Priority-queue and Event-set Imple-
mentations. pages 300–311, 1986.

[27] Josh Smit. Patterns - WPF Apps With The Model-View-ViewModel Design Pattern.
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/

https://erlang.org/doc/getting_started/conc_prog.html
https://erlang.org/doc/getting_started/conc_prog.html
http://erlang.org/documentation/doc-5.8.4/doc/efficiency_guide/advanced.html
http://erlang.org/documentation/doc-5.8.4/doc/efficiency_guide/advanced.html
https://github.com/search?q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?q=stars%3A%3E1&s=stars&type=Repositories
https://hexdocs.pm/guardian/1.2.1/tutorial-start.html#create-implementation-module
https://hexdocs.pm/guardian/1.2.1/tutorial-start.html#create-implementation-module
https://www.hardcat.com/2019/02/07/rfid-asset-management
https://elements.heroku.com/addons/heroku-postgresql
https://elements.heroku.com/addons/heroku-postgresql
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://www.ibm.com/cloud/learn/soa
https://www.ibm.com/cloud/learn/soa
https://web.archive.org/web/19991009002753/http://www.erlang.se/onlinenews/ErlangOTPos.shtml
https://web.archive.org/web/19991009002753/http://www.erlang.se/onlinenews/ErlangOTPos.shtml
https://docs.oracle.com/en/java/javase/15/
https://docs.oracle.com/en/java/javase/15/
https://www.javascript.com/learn
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern

bibliography 67

patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern, 2009.
Accessed: 2020-10-25.

[28] JWT Docs. Introduction to JSON Web Tokens. https://jwt.io/introduction/.
Accessed: 2019-01-11.

[29] J. Klensin. Simple Mail Transfer Protocol. https://tools.ietf.org/html/rfc5321,
2008. Accessed: 2020-10-25.

[30] L. Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess programs. IEEE Trans. Comput., pages 690–691, 1979.

[31] Little, J. D. C. A Proof for the Queuing Formula: L =
lW.OperationsResearch, pages383��˘387, 1961.

[32] M. Marsudi and H. Shafeek. The application of queuing theory in multi-stage produc-
tion line. 2014.

[33] J. Martin. Managing the Data Base Environment. A James Martin book. Pearson Education,
Limited, 1983.

[34] MaryLou Costa. Customer engagement improves brand profits. https://www.
marketingweek.com/customer-engagement-improves-brand-profits, 2010. Ac-
cessed: 2019-11-26.

[35] Norm Matloff. Introduction to Discrete-Event Simulation and the SimPy Language.
pages 3–6, 2008.

[36] Miles Data Technologies. 1D vs. 2D Barcodes - When and
Why to Use Each Type. https://www.milesdata.com/blog/
1d-vs-2d-barcodes-when-and-why-to-use-each-type. Accessed: 2019-10-18.

[37] Nihal Sahu. An Interview with Elixir Creator José Valim. https://www.sitepoint.
com/an-interview-with-elixir-creator-jose-valim/, 2015. Accessed: 2019-12-
19.

[38] Node.js. About Node.js. https://nodejs.org/en/about/. Accessed: 2020-10-25.

[39] W3C Philippe Le Hégaret. The W3C Document Object Model (DOM). https://www.
w3.org/2002/07/26-dom-article, 2002. Accessed: 2020-01-02.

[40] Phoenix Docs. Guides - Overview. https://hexdocs.pm/phoenix/overview.html.
Accessed: 2019-12-19.

[41] PHP. History of PHP and Related Projects. https://www.php.net/manual/en/
history.php. Accessed: 2020-10-26.

https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://jwt.io/introduction/
https://tools.ietf.org/html/rfc5321
https://www.marketingweek.com/customer-engagement-improves-brand-profits
https://www.marketingweek.com/customer-engagement-improves-brand-profits
https://www.milesdata.com/blog/1d-vs-2d-barcodes-when-and-why-to-use-each-type
https://www.milesdata.com/blog/1d-vs-2d-barcodes-when-and-why-to-use-each-type
https://www.sitepoint.com/an-interview-with-elixir-creator-jose-valim/
https://www.sitepoint.com/an-interview-with-elixir-creator-jose-valim/
https://nodejs.org/en/about/
https://www.w3.org/2002/07/26-dom-article
https://www.w3.org/2002/07/26-dom-article
https://hexdocs.pm/phoenix/overview.html
https://www.php.net/manual/en/history.php
https://www.php.net/manual/en/history.php

bibliography 68

[42] Productoo. Boost your factory performance with Productoo. https://www.slideshare.
net/PavlaDolealov1/boost-your-factoryperformance8roidrivers. Accessed:
2019-10-17. page 14.

[43] Python. About. https://www.python.org/about/. Accessed: 2020-10-26.

[44] QRcodesHowTo.com. 2d Barcode versus 1d Barcode. http://www.qrcodeshowto.com/
what-is-a-qr-code/2d-barcode-versus-1d-barcode-with-pictures/. Accessed:
2019-10-17.

[45] R. Fielding, UC Irvine, J. Gettys, Compaq/W3C, J. Mogul, Compaq, H. Frystyk,
W3C/MIT, L. Masinter, Xerox, P. Leach, Microsoft, T. Berners-Lee . Hypertext Transfer
Protocol – HTTP/1.1. https://www.ietf.org/rfc/rfc2616.txt, 1999.

[46] Ray Wang. Why Live Engagement Marketing Supercharges Event Marketing. 2016.

[47] React. Controlled Components. https://reactjs.org/docs/forms.html#
controlled-components. Accessed: 2019-01-02.

[48] React Docs. Virtual DOM and Internals. https://reactjs.org/docs/faq-internals.
html. Accessed: 2020-01-02.

[49] React-vis. React visualization library. https://uber.github.io/react-vis/. Ac-
cessed: 2019-01-14.

[50] ReactJS. React - A JavaScript library for building user interfaces. https://reactjs.
org/. Accessed: 2020-10-25.

[51] Red Hat. What is an API? https://www.redhat.com/en/topics/api/
what-are-application-programming-interfaces. Accessed: 2020-10-25.

[52] Rouse, Margaret. internet of things (iot).

[53] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software
Architectures. pages 76–105, 2000.

[54] Ruby on Rails. Imagine what you could build if you learned Ruby on Rails. . . . https:
//rubyonrails.org/. Accessed: 2020-10-25.

[55] Rust. Learn Rust. https://www.rust-lang.org/learn. Accessed: 2020-10-24.

[56] Vladimir Rykov and Dmitry Kozyrev. On Sensitivity of Steady-State Probabilities of a Cold
Redundant System to the Shapes of Life and Repair Time Distributions of Its Elements. 2018.

[57] Klaus Schwab. The Fourth Industrial Revolution. Currency, 2017. ISBN-10: 9781524758868.

https://www.slideshare.net/PavlaDolealov1/boost-your-factoryperformance8roidrivers
https://www.slideshare.net/PavlaDolealov1/boost-your-factoryperformance8roidrivers
https://www.python.org/about/
http://www.qrcodeshowto.com/what-is-a-qr-code/2d-barcode-versus-1d-barcode-with-pictures/
http://www.qrcodeshowto.com/what-is-a-qr-code/2d-barcode-versus-1d-barcode-with-pictures/
https://www.ietf.org/rfc/rfc2616.txt
https://reactjs.org/docs/forms.html#controlled-components
https://reactjs.org/docs/forms.html#controlled-components
https://reactjs.org/docs/faq-internals.html
https://reactjs.org/docs/faq-internals.html
https://uber.github.io/react-vis/
https://reactjs.org/
https://reactjs.org/
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://rubyonrails.org/
https://rubyonrails.org/
https://www.rust-lang.org/learn

bibliography 69

[58] Seebo. How Factory 4.0 is transforming production. https://www.seebo.com/
factory-4-0. Accessed: 2019-10-14.

[59] Semantic-UI. Semantic-UI React. https://react.semantic-ui.com/. Accessed: 2019-
01-10.

[60] Spring. Why Spring? https://spring.io/why-spring. Accessed: 2020-10-26.

[61] Steve Burbeck. Applications Programming in Smalltalk-80(TM): How to use Model-
View-Controller (MVC). https://web.archive.org/web/20120729161926/http://
st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html, 1992. Accessed: 2020-
10-25.

[62] Josefin Stintzing and Frederik Norrman. Prediction of queuing behaviour through the use of
artificial neural networks. 2017.

[63] Marc Ingo Wolter, Anke Mönnig, Markus Hummel, Christian Schneemann, Enzo Weber,
Gerd Zika, Robert Helmrich, Tobias Maier, and Caroline Neuber-Pohl. Industrie 4.0 und
die Folgen für Arbeitsmarkt und Wirtschaft. 2015. ISSN 2195-2655.

https://www.seebo.com/factory-4-0
https://www.seebo.com/factory-4-0
https://react.semantic-ui.com/
https://spring.io/why-spring
https://web.archive.org/web/20120729161926/http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
https://web.archive.org/web/20120729161926/http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

G L O S S A RY

API Application Programming Interface. 15, 19, 23, 25, 28, 30–32, 53, 55

CS Continuos Simulation. 13, 14

DES Discrete Event Simulation. 13, 14, 18
DOM Document Object Model. 18, 20

E2E End to End. 6
ERP Enterprise Resource Planning. 7, 10, 19, 55, 64

FCFS First Come First Served. 12
FIFO First In First Out. 43

HTTP Hypertext Transfer Protocol. 15, 23–25

IoT Internet of Things. 6, 8, 19, 23, 63

JWT JSON Web Token. 31–33, 35

MES Manufacturing Execution System. 7, 19, 64
ML Machine Learning. 5, 12, 18
MVC Model-View-Controller. 15
MVPs Minimum Viable Products. 15
MVVM Model-View-View-Model. 15

OEE Overall Equipment Effectiveness. 7, 23, 39, 41, 43, 59
OS Operating System. 25

PaaS Platform as a Service. 6

RAM Random-access memory. 56
REST Representational State Transfer. 19, 23, 28, 30
RFID Radio Frequency Identification. 8–10
ROI Return on Investment. 7

SMTP Simple Mail Transfer Protocol. 23
SOA Service-Oriented Architecture. 15

UIs User Interfaces. 17

70

Glossary 71

UPC Universal Product Code. 10
UTC Universal Time Coordinated. 51

VM Virtual Machine. 20

A
S U P P O RT M AT E R I A L

a.1 other relevant frontend pages

Figure 21: Package list page. Quick view information or click to open detailed page.

72

A.1. Other relevant Frontend pages 73

Figure 22: New package page.

Figure 23: Calendar with weekly view for delivery dates.

A.1. Other relevant Frontend pages 74

Figure 24: Package public view page. Information available to the end client.

Figure 25: Number of package statistics page.

A.1. Other relevant Frontend pages 75

Figure 26: Workstation statistics page.

A.1. Other relevant Frontend pages 76

Figure 27: Waiting time in queue statistics page.

A.1. Other relevant Frontend pages 77

Figure 28: Ratings received from end clients page.

A.1. Other relevant Frontend pages 78

Figure 29: Example of a survey answer by a end client.

Figure 30: Automatic report page.

A.2. Email Examples 79

a.2 email examples

Figure 31: New package registered confirmation example email.

A.2. Email Examples 80

Figure 32: Package completed warning example email.

	1 Introduction
	2 State of the art
	2.1 Related Products
	2.1.1 DHL - Tracking System
	2.1.2 HiveTracker
	2.1.3 Productoo

	2.2 Tracking Methods
	2.3 Queuing Theory and Predictions on a production pipeline
	2.4 Technologies
	2.4.1 Web Development Architectures
	2.4.2 Web Development Languages/Frameworks

	2.5 Summary

	3 The problem and its challenges
	3.1 Proposed Approach - solution
	3.1.1 Solution Overview
	3.1.2 Simulation Algorithm for predicting delivery dates (Sub-module)

	4 Development
	4.1 Decisions
	4.2 Implementation
	4.2.1 Database and API
	4.2.2 Critical Zone and Websockets for real-time interactions
	4.2.3 Statistics and Metrics for production analysis
	4.2.4 Delivery dates - Simulation

	4.3 Outcomes and Summary

	5 Case Study / Experiments
	5.1 Experiment setup
	5.2 Results
	5.3 Discussion and Summary

	6 Conclusion and Future Work
	6.1 Conclusions
	6.2 Prospect for future work

	A Support material
	A.1 Other relevant Frontend pages
	A.2 Email Examples

