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Abstract

Let R be an associative ring with unity 1 and let a, b, c ∈ R. In this paper,
several characterizations for left and right hybrid (b, c)-inverses of a are de-
rived. Moreover, their formulae are given by regularities of certain element.
Then, we give characterizations of right (b, c)-inverses and right annihila-
tor (b, c)-inverses of the product of three elements. Finally, relations among
the right hybrid (b, c)-inverses of paq, right (qb, c)-inverses of aq and right
annihilator (b, cp)-inverses of aq are given.
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1. Introduction

In 2012, Drazin [2] introduced a type of outer generalized inverses, called
“hybrid (b, c)-inverses” in rings, this can be seen as an extension of outer
generalized inverses for n by n complex matrices, given by Ben-Israel and
Greville ([1]). Recently, Drazin [4] renamed the original notion “hybrid (b, c)-
inverses” to “right hybrid (b, c)-inverses”. Also, he introduces the notion of
left hybrid (b, c)-inverses. Moreover, an existence criterion of right hybrid
(b, c)-inverses, stated without proof in [2, page 1922], now is explicitly given.
Since the hybrid (b, c)-inverse was introduced, few papers focus on this kind
of generalized inverses.
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In this paper, we mainly investigate characterizations and representations
of right hybrid (b, c)-inverses in rings. The paper is organized as follows. In
Section 2, several existence criteria and representations for right (left) hybrid
(b, c)-inverses are given. As a special case, the existence criteria for the inverse
along an element [5] is obtained. In section 3, we present existence criteria of
right (b, c)-inverse and right annihilator (b, c)-inverse of the product of three
elements. Furthermore, we derive relations among right hybrid (b, c)-inverse
of paq, right (qb, c)-inverse of pa and right annihilator (b, cp)-inverse of aq in
rings.

Let R be an associate ring with unity 1. Let us now recall several defi-
nitions of generalized inverses. An element a ∈ R is called (von Neumann)
regular if there exists x in R such that a = axa. Such an x is called an inner
inverse or a 1-inverse of a, and is denoted by a−. We use the symbol a{1} to
denote the set of all inner inverses of a. For any a ∈ R, the right annihilator
and left annihilator of a are defined by a0 = {s : s ∈ R and as = 0} and
0a = {t : t ∈ R and ta = 0}, respectively.

Let a, b, c ∈ R. An element a is hybrid (b, c)-invertible [2] if there exists
some y ∈ R such that yay = y, yR = bR and y0 = c0. Such an y is called the
hybrid (b, c)-inverse of a. It is unique if it exists. The hybrid (b, c)-inverse now
is called the right hybrid (b, c)-inverse [4] by Drazin. The present definition
is more suitable since it is just defined by right ideals and right annihilators.
Dually, Drazin defined the left hybrid (b, c)-inverse of a by the existence of
z ∈ R such that zaz = z, Rz = Rc and 0z = 0b. The left hybrid (b, c)-inverse

of a is unique if it exists. By symbols ha
(b,c) and a

(b,c)
h we denote the left

hybrid (b, c)-inverse and the right hybrid (b, c)-inverse of a, respectively.

2. Left and right hybrid (b, c)-inverses

In this section, we derive existence criteria of left (right) hybrid (b, c)-
inverse in a ring R. Herein, we first give several lemmas, which play an
important role in the sequel.

Lemma 2.1. [4, Theorem 2.2] Let a, b, c ∈ R. Then a is right hybrid (b, c)-
invertible if and only if c ∈ cabR and (cab)0 ⊆ b0.

Lemma 2.2. [6, Proposition 2.1] Let a, b, c, y ∈ R. Then the following con-
ditions are equivalent:

(i) y is the right hybrid (b, c)-inverse of a.
(ii) yab = b, cay = c, yR ⊆ bR and c0 ⊆ y0.

2



Lemma 2.3. Let a, b, c ∈ R. Then the following conditions are equivalent:
(i) (cab)0 ⊆ b0.
(ii) (ca)0 ∩ bR = {0}.
(iii) (cab)0 ⊆ (b− cab)0.

Proof. (i) ⇒ (ii) Suppose (cab)0 ⊆ b0. For any x ∈ (ca)0 ∩ bR, we have
cax = 0 and x = by for some y ∈ R. Consequently, caby = 0, i.e. y ∈
(cab)0 ⊆ b0 and x = by = 0.

(ii)⇒ (iii) For any s ∈ (cab)0, i.e. cabs = 0, we have bs ∈ (ca)0∩bR = {0},
and hence (b− cab)s = 0, as required.

(iii) ⇒ (i) As (cab)0 ⊆ (b− cab)0, then for any t ∈ (cab)0, (b− cab)t = 0
implies bt = 0 since cabt = 0. Thus, t ∈ b0 and (cab)0 ⊆ b0. �

Dually, we have the following result 0(cab) ⊆ 0c ⇔ 0(ab) ∩ Rc = {0} ⇔
0(cab) ⊆ 0(c− cab) for any a, b, c ∈ R.

Lemma 2.4. [4, Lemma 5.3] Let c, h ∈ R. Then
(i) c ∈ chR if and only if R = hR + c0.
(ii) hR ∩ c0 = {0} if and only if (ch)0 ⊆ h0.

Lemma 2.5. Let a, b, c ∈ R and let a be right hybrid (b, c)-invertible. Then
b and ab are both regular. In particular, if c = cabw for some w ∈ R, then
(ab)−a ∈ b{1} and w ∈ ab{1}.

Proof. As a is right hybrid (b, c)-invertible, then, by Lemma 2.1, c = cabw
for some w ∈ R. We hence have cab(1−wab) = 0. From (cab)0 ⊆ b0, it follows
that b = bwab and ab = abwab. So, w ∈ ab{1} and wa = (ab)−a ∈ b{1}. �

It was proved in [6, Theorem 2.8] that a is right hybrid (b, c)-invertible
if and only if ab is group invertible, under the hypothesis a0 = b0 = c0. The
following example 2.7 can illustrates this fact.

It follows from Lemma 2.5 that a is right hybrid (b, c)-invertible implies
that ab is regular. Motivated by [6, Theorem 2.8], we next consider a fur-
ther characterization of the existence of the right hybrid (b, c)-inverse by the
regularity of ab, avoiding its group inverse without additional assumptions.

Theorem 2.6. Let a, b, c ∈ R. Then the following conditions are equivalent:
(i) a is right hybrid (b, c)-invertible.
(ii) (ca)0 ∩ bR = {0} and c ∈ cabR.

3



(iii) (cab)0 ⊆ (b− cab)0 and c ∈ cabR.
(iv) (ca)0 ∩ bR = {0} and R = abR + c0.
(v) (cab)0 ⊆ (b− cab)0 and R = abR + c0.
(vi) (ca)0 ∩ bR = {0} and R = abR⊕ c0.
(vii) (cab)0 ⊆ (b− cab)0 and R = abR⊕ c0.
(viii) ab is regular, c = cab(ab)− and (ca)0 ∩ bR = {0}.
In this case, a

(b,c)
h = b(ab)−, where (ab)− is an inner inverse of ab.

Proof. (i) ⇔ (ii) ⇔ (iii)⇔ (iv)⇔ (v) follow from Lemmas 2.1 and 2.3.
(i)⇒ (vi) From Lemma 2.3 and Lemma 2.4, it suffices to verify abR∩c0 =

{0}. For any s ∈ abR ∩ c0, we have cs = 0 and s = abt for some t ∈ R.
Hence, cabt = 0 and bt ∈ (ca)0 ∩ bR = {0}. So, s = 0, as required.

(vi) ⇒ (i) Clearly, (vi) implies (iv), and (vi) ⇒ (iv) has been proved.
(i) ⇒ (vii) is similar to (i) ⇒ (vi).
(i) ⇒ (viii) Suppose that a is hybrid (b, c)-invertible. Then, by Lemma

2.5, ab is regular, and c = cabw for some w ∈ R, then w ∈ ab{1}. Therefore,
c = cab(ab)−.

The condition (ca)0 ∩ bR = {0} follows from Lemma 2.1 and 2.3.
(viii)⇒ (i) As ab is regular, then ca(b− b(ab)−ab) = 0 and b− b(ab)−ab ∈

(ca)0 ∩ bR = {0}. Set y = b(ab)−. Then b = yab, c = cab(ab)− = cay
and yR ⊆ bR. Next, it is sufficient to show c0 ⊆ y0 by [6, Proposition
2.1]. Let cv = 0 for any v ∈ R. Then 0 = cayv = cab(ab)−v, whence
yv = b(ab)−v ∈ (ca)0 ∩ bR = {0}, that is, v ∈ y0 and c0 ⊆ y0. Hence, is right

hybrid (b, c)-invertible by Lemma 2.2. Moreover, a
(b,c)
h = b(ab)−. �

From the proof of Theorem 2.6, one can see that if a is right hybrid
(b, c)-invertible then b and ab are regular. However, c may not be regular in
general. The following example illustrates this fact.

Example 2.7. Let R = Z be the ring of all integers. Take a = 1, b = 1,
c = 2 ∈ R, then a is right hybrid (1, 2)-invertible, Indeed, y = 1 is the right
hybrid (1, 2)-inverse of a as yab = 1 · 1 · 1 = 1 = b, cay = 2 · 1 · 1 = 2 = c,
yR = R = bR and c0 = y0. However, there exists no x ∈ R such that
2 · x · 2 = 4x = 2 holds. Hence, c is not regular.

Following [2], a is (b, c)-invertible if there exists some y ∈ R such that
yab = b, cay = c, y ∈ bR ∩ Rc. Example 2.7 above also shows that the
right hybrid (b, c)-invertible element may not be (b, c)-invertible in general
as Ry = Z � 2Z = Rc.
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Suppose a is right hybrid (b, c)-invertible. If c is regular, then ca and
cab are both regular. Indeed, if c is regular, then a is (b, c)-invertible. The
regularity of ca and cab follows immediately from the proof of [2, Theorem
2.2]. Conversely, the regularity of either ca or cab implies the regularity of
c, under the assumption that a is right hybrid (b, c)-invertible. Indeed, if ca
is regular, then there exists some s ∈ R such that ca = caxca. Note that
c = cay. Then post-multiplying ca = caxca by y gives c = caxc. If cab is
regular, then cab = cabtcab for some t ∈ R. By Lemma 2.1, we derive that c
is regular as c ∈ cabR. Hence, we can conclude that if one of the sets {c, ca,
cab} is regular, then they are all regular.

We next present several characterizations of left hybrid (b, c)-inverses of
a in a ring whose proofs are left to the reader.

Theorem 2.8. Let a, b, c ∈ R. Then the following conditions are equivalent:
(i) a is left hybrid (b, c)-invertible.
(ii) b ∈ Rcab and 0(cab) ⊆ 0c.
(iii) b ∈ Rcab and 0(ab) ∩Rc = {0}.
(iv) R = Rca+ 0b and 0(ab) ∩Rc = {0}.
(v) R = Rca+ 0b and 0(cab) ⊆ 0(c− cab).
(vi) R = Rca⊕ 0b and 0(ab) ∩Rc = {0}.
(vii) R = Rca⊕ 0b and 0(cab) ⊆ 0(c− cab).
(viii) ca is regular, b = (ca)−cab and 0(ab) ∩Rc = {0}.
In this case, ha

(b,c) = (ca)−c, where (ca)− is an inner inverse of ca.

Recall that a is hybrid (b, c)-invertible [4] if it is both left and right hybrid
(b, c)-invertible. Combing with Theorem 2.6 and 2.8, we obtain the following
result.

Corollary 2.9. Let a, b, c ∈ R. Then a is hybrid (b, c)-invertible if and only
if it is both (b, c)-invertible and annihilator (b, c)-invertible.

Given any a, d ∈ R, a is called invertible along d (see [5, Definition 4]) if
there exists an element x ∈ R such that xad = d = dax and x ∈ dR ∩ Rd.
Such an x is the inverse of a along d. It is unique if it exists, and is denoted
by a‖d. Note that the implication that d0 ⊆ x0 yields x ∈ Rd, provide that d
is regular. Hence, we have

Corollary 2.10. Let a, d ∈ R. Then the following conditions are equivalent:
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(i) a is left hybrid (d, d)-invertible.
(ii) a is right hybrid (d, d)-invertible.
(iii) a is invertible along d.

In this case, ha
(d,d) = a

(d,d)
h = a‖d.

The group inverse of a ∈ R is defined as an x ∈ R satisfying ax = xa,
xax = x and axa = a. Such an x is unique if it exists, and is denoted by a#.
Note that a‖a exists if and only if a# exists. By Corollary 2.10, one can get

ha
(a,a)=a

(a,a)
h =a#.

It follows from [5, Theorem 7] that a is invertible along d if and only
if dR = daR and (da)# exists if and only if Rd = Rad and (ad)# exists.
In this case, a‖d = d(ad)# = (da)#d. The following result gives necessary
and sufficient conditions of the existence of a‖d. Moreover, a‖d = d(ad)− =
(da)−d, where (ad)−, (da)− are inner inverses of ad and da, respectively.

Corollary 2.11. Let a, d ∈ R. Then the following conditions are equivalent:
(i) a is invertible along d.
(ii) (da)0 ∩ dR = {0} and d ∈ dadR.
(iii) (dad)0 ⊆ (d− dad)0 and d ∈ dadR.
(iv) (da)0 ∩ dR = {0} and R = adR + d0.
(v) (dad)0 ⊆ (d− dad)0 and R = adR + d0.
(vi) (da)0 ∩ dR = {0} and R = adR⊕ d0.
(vii) (dad)0 ⊆ (d− dad)0 and R = adR⊕ d0.
(viii) 0(ad) ∩Rd = {0} and R = Rda+ 0d.
(ix) 0(dad) ⊆ 0(d− dad) and R = Rda+ 0d.
(x) 0(ad) ∩Rd = {0} and R = Rda⊕ 0d.
(xi) 0(dad) ⊆ 0(d− dad) and R = Rda⊕ 0d.
(xii) ad is regular, d = dad(ad)− and (da)0 ∩ dR = {0}.
(xiii) ad is regular, Rd ⊆ Rad(ad)− and (da)0 ∩ dR = {0}.
(xiv) da is regular, d = (da)−dad and 0(ad) ∩Rd = {0}.
(xv) da is regular, dR ⊆ (da)−daR and 0(ad) ∩Rd = {0}.
In this case, a‖d = d(ad)− = (da)−d, where (ad)−, (da)− are inner in-

verses of ad and da, respectively.

Proof. (xii) ⇒ (xii) is clear.
(xiii) ⇒ (xii) As Rd ⊆ Rad(ad)−, then d = xad(ad)− for some x ∈ R,

and d = xad(ad)−ad(ad)− = dad(ad)−.
(xiv) ⇔ (xv) can be referred to(xii) ⇔ (xiii). �
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Remark 2.12. In Corollary 2.11 above, it should be noted that the formula
of a‖d can be expressed by some inner inverses (ad)− of ad, which need not
be the group inverse of ad. Such as, let R = M2(R) be the ring of all 2 by

2 matrices over the field of real numbers R. Take A = D =

[
1 0
1 0

]
∈ R,

then, A‖D = (AD)# =

[
1 0
1 0

]
by the fact that A‖A exists if and only if

A ∈ R#. Note that all inner inverses of AD can be written as the form[
1 1− x
∗ ∗

]
, where x ∈ R. Take (AD)− =

[
1 0
2 3

]
	= (AD)#, then D(AD)− =[

1 0
1 0

] [
1 0
2 3

]
=

[
1 0
1 0

]
= A‖D.

3. Left and right hybrid (b, c)-inverses of the product of three ele-
ments

In this section, we mainly investigate the existence criterion of the right
hybrid (b, c)-inverse of paq in R, where p, a, q, b, c ∈ R. Several characteriza-
tions of the left hybrid (b, c)-inverse of paq can be also given similarly. Here,
we omit them.

Following [3], a is called right (b, c)-invertible if there exists y ∈ bR such
that cay = c. Such a y is called a right (b, c)-inverse of a. Moreover, it is
shown that such y exists if and only if c ∈ cabR. In particular, it there is an
element s ∈ R such that c = cabs then bs is a right (b, c)-inverse of a.

An element a ∈ R is called right annihilator (b, c)-invertible if there exists
some x ∈ R such that xab = b and c0 ⊆ x0. By Lemma 2.2, one knows that
a is right hybrid (b, c)-invertible if it is both right (b, c)-invertible and right
annihilator (b, c)-invertible.

We next derive the characterization of right (b, c)-inverses and right an-
nihilator (b, c)-inverses of the product of paq. Herein, an auxiliary lemma is
firstly given.

Lemma 3.1. Let a, s, t, p ∈ R. Then
(i) If a0 = s0, then (at)0 = (st)0.
(ii) If p is right invertible and (ap)0 = (sp)0, then a0 = s0.

Proof. (i) For any x ∈ (at)0, we have atx = 0 and tx ∈ a0 = s0, which
imply stx = 0, i.e. x ∈ (st)0, and consequently (at)0 ⊆ (st)0. A dual proof
gives (st)0 ⊆ (at)0.
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(ii) As p ∈ R is right invertible, then there exists some p′ ∈ R such that
pp′ = 1. Applying (i), the result follows. �

Theorem 3.2. Let p, a, q, b, c ∈ R. Then the following conditions are equiv-
alent :

(i) paq is right (b, c)-invertible with inverses x ∈ R.
(ii) pa is right (qb, c)-invertible with inverses y ∈ R.
In this case, x = bs and y = qx, where s ∈ R satisfies y = qbs.

Proof. It is known that paq is right (b, c)-invertible if and only if c ∈ cpaqbR
if and only if pa is right (qb, c)-invertible. the result follows.

As x is a right (b, c)-invertible of paq, then cpaqx = c and x ∈ bR, and
consequently, cpaqx = c and qx ∈ qbR, i.e. qx is a right (qb, c)-inverse of pa.

If pa is right (qb, c)-invertible with inverses z, then cpay = c and y ∈ qbR,
which give y = qbs for some s ∈ R. We hence have cpaqbs = c, it is not
difficult to verify that x = bs is a right (b, c)-inverse of paq. �

Theorem 3.3. Let p, a, q, b, c ∈ R with p invertible. Then the following
conditions are equivalent :

(i) paq is right annihilator (b, c)-invertible with inverse x ∈ R.
(ii) aq is right annihilator (b, cp)-invertible with inverse z ∈ R.
In this case, x = zp−1 and z = xp.

Proof. (i)⇒ (ii) Let x ∈ R be a right annihilator (b, c)-inverse of paq. Then
xpaqb = b and c0 ⊆ x0. Set z = xp, then we zaqb = b and (cp)0 ⊆ (xp)0 = z0

by Lemma 3.1, hence xp is a right annihilator (b, cp)-inverse of aq.
(ii)⇒ (i) As z ∈ R is a right annihilator (b, cp)-inverse of aq, then zaqb = b

and (cp)0 ⊆ z0. Set x = zp−1. Then xpaqb = zp′paqb = zaqb = b, and
applying Lemma 3.1, it follows x0 = (zp′)0 ⊇ (cpp′)0 = c0, as required. �

Combing Theorem 3.2 and Theorem 3.3, one can get the following char-
acterizations about right hybrid (b, c)-inverses of paq.

Theorem 3.4. Let p, a, q, b, c ∈ R. Then the following conditions are equiv-
alent :

(i) paq is right hybrid (b, c)-invertible.
(ii) pa is right (qb, c)-invertible and aq is right annihilator (b, cp)-invertible.
In particular, if x ∈ R is the right hybrid (b, c)-inverse of paq, y ∈ R is a

right (qb, c)-inverse of pa and z ∈ R is a right annihilator (b, cp)-inverse of
aq, then x = bs, y = qx and z = xp, where s ∈ R satisfies y = qbs.
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Proof. (i) ⇒ (ii) Applying Theorem 3.2 and Theorem 3.3.
(ii) ⇒ (i) As pa is right (qb, c)-invertible, then c ∈ cpaqbR. If aq is

right annihilator (b, cp)-invertible with right annihilator (b, cp)-inverse z, then
zaqb = b and (cp)0 ⊆ z0, and consequently, (cpaqb)0 ⊆ b0, indeed, for any
t ∈ (cpaqb)0, we have cpaqbt = 0 and aqbt ∈ (cp)0 ⊆ z0, hence 0 = zaqbt = bt,
which guarantees t ∈ b0 and (cpaqb)0 ⊆ b0. It follows from Lemma 2.1 that
paq is right hybrid (b, c)-invertible.

The formula y = qx and z = xp can be obtained by Theorem 3.2 and
Theorem 3.3. The representation of the right hybrid (b, c)-inverse of paq, i.e.

a
(b,c)
h = bs follows from [6, Proposition 2.3]. �

Given any a, b, c ∈ R, then a is right (b, c)-invertible implies that it is
right (b, qc)-invertible, for any q ∈ R. Indeed, if y is the right (b, c)-inverse
of a, then cay = c and y ∈ bR. Hence, one can get qcay = qc and a is right
(b, qc)-invertible. Similarly, if a is right annihilator (b, c)-invertible, then it is
also right annihilator (bq, c)-invertible.

Applying Theorem 3.4, then paq is right hybrid (b, c)-invertible guar-
antees that pa is right (qb, qc)-invertible and aq is right annihilator (bp, cp)-
invertible. We next show, under some conditions, that the converse statement
also holds.

Theorem 3.5. Let p, a, q, b, c ∈ R. Suppose b ∈ bpR and c ∈ Rqc. Then the
following conditions are equivalent:

(i) paq is right hybrid (b, c)-invertible.
(ii) pa is right (qb, qc)-invertible and aq is right annihilator (bp, cp)-invertible.
In particular, if x ∈ R is the right hybrid (b, c)-inverse of paq, y ∈ R is

a right (qb, qc)-inverse of pa and z ∈ R is a right annihilator (bp, cp)-inverse
of aq, then x = bs, y = qx and z = xp, where s ∈ R satisfies y = qbs.

Proof. It suffices to prove (ii)⇒ (i).
Suppose that aq is right annihilator (bp, cp)-invertible. Then by a direct

calculation, we have (cpaqbp)0 ⊆ (bp)0. It follows from b ∈ bpR that b = bpp′

for some p′ ∈ R, and hence (cpaqb)0 = (cpaqbpp′)0 ⊆ (bpp′)0 = b0. As pa
is right (qb, qc)-invertible, then qc ∈ qcpaqbR, which implies c ∈ cpaqbR.
Applying Lemma 2.1, it follows that paq is right hybrid (b, c)-invertible. In
virtue of [6, Proposition 2.3], x = bs is the right hybrid (b, c)-inverse of paq,
where s ∈ R satisfies y = qbs.
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Suppose that p and q are invertible in Theorem 3.5. Then we have the
following corollary.

Corollary 3.6. Let p, a, q, b, c ∈ R and let p and q be invertible. Then the
following conditions are equivalent:

(i) paq is right hybrid (b, c)-invertible.
(ii) pa is right (qb, qc)-invertible and aq is right annihilator (bp, cp)-invertible.
In particular, if x ∈ R is the right hybrid (b, c)-inverse of paq, y ∈ R is

a right (qb, qc)-inverse of pa and z ∈ R is a right annihilator (bp, cp)-inverse
of aq, then x = bs, y = qx and z = xp, where s ∈ R satisfies y = qbs.
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