Characterizations and representations of left and right hybrid (b, c)-inverses in rings

Huihui Zhu ${ }^{\text {a }}$, Liyun Wu ${ }^{\text {a }}$, Fei Peng ${ }^{\text {a }}$, Pedro Patrício ${ }^{\text {b }}$
${ }^{a}$ School of Mathematics, Hefei University of Technology, Hefei 230009, China.
${ }^{b}$ CMAT-Centro de Matemática and Departamento de Matemática, Universidade do Minho, Braga 4710-057, Portugal.

Abstract

Let R be an associative ring with unity 1 and let $a, b, c \in R$. In this paper, several characterizations for left and right hybrid (b, c)-inverses of a are derived. Moreover, their formulae are given by regularities of certain element. Then, we give characterizations of right (b, c)-inverses and right annihilator (b, c)-inverses of the product of three elements. Finally, relations among the right hybrid (b, c)-inverses of paq, right $(q b, c)$-inverses of $a q$ and right annihilator ($b, c p$)-inverses of $a q$ are given.

Keywords: (b, c-inverses, hybrid (b, c-inverses, annihilators, ideals, rings 2010 MSC: 15A09, 15A27, 16U80

1. Introduction

In 2012, Drazin [2] introduced a type of outer generalized inverses, called "hybrid (b, c)-inverses" in rings, this can be seen as an extension of outer generalized inverses for n by n complex matrices, given by Ben-Israel and Greville ([1]). Recently, Drazin [4] renamed the original notion "hybrid (b, c)inverses" to "right hybrid (b, c)-inverses". Also, he introduces the notion of left hybrid (b, c)-inverses. Moreover, an existence criterion of right hybrid (b, c)-inverses, stated without proof in [2, page 1922], now is explicitly given. Since the hybrid (b, c)-inverse was introduced, few papers focus on this kind of generalized inverses.

[^0]In this paper, we mainly investigate characterizations and representations of right hybrid (b, c)-inverses in rings. The paper is organized as follows. In Section 2, several existence criteria and representations for right (left) hybrid (b, c)-inverses are given. As a special case, the existence criteria for the inverse along an element [5] is obtained. In section 3, we present existence criteria of right (b, c)-inverse and right annihilator (b, c)-inverse of the product of three elements. Furthermore, we derive relations among right hybrid (b, c)-inverse of paq, right $(q b, c)$-inverse of $p a$ and right annihilator $(b, c p)$-inverse of $a q$ in rings.

Let R be an associate ring with unity 1 . Let us now recall several definitions of generalized inverses. An element $a \in R$ is called (von Neumann) regular if there exists x in R such that $a=a x a$. Such an x is called an inner inverse or a 1 -inverse of a, and is denoted by a^{-}. We use the symbol $a\{1\}$ to denote the set of all inner inverses of a. For any $a \in R$, the right annihilator and left annihilator of a are defined by $a^{0}=\{s: s \in R$ and $a s=0\}$ and ${ }^{0} a=\{t: t \in R$ and $t a=0\}$, respectively.

Let $a, b, c \in R$. An element a is hybrid (b, c)-invertible [2] if there exists some $y \in R$ such that yay $=y, y R=b R$ and $y^{0}=c^{0}$. Such an y is called the hybrid (b, c)-inverse of a. It is unique if it exists. The hybrid (b, c)-inverse now is called the right hybrid (b, c)-inverse [4] by Drazin. The present definition is more suitable since it is just defined by right ideals and right annihilators. Dually, Drazin defined the left hybrid (b, c)-inverse of a by the existence of $z \in R$ such that $z a z=z, R z=R c$ and ${ }^{0} z={ }^{0} b$. The left hybrid (b, c)-inverse of a is unique if it exists. By symbols ${ }_{h} a^{(b, c)}$ and $a_{h}^{(b, c)}$ we denote the left hybrid (b, c)-inverse and the right hybrid (b, c)-inverse of a, respectively.

2. Left and right hybrid (b, c)-inverses

In this section, we derive existence criteria of left (right) hybrid (b, c) inverse in a ring R. Herein, we first give several lemmas, which play an important role in the sequel.

Lemma 2.1. [4, Theorem 2.2] Let $a, b, c \in R$. Then a is right hybrid (b, c)invertible if and only if $c \in c a b R$ and $(c a b)^{0} \subseteq b^{0}$.

Lemma 2.2. [6, Proposition 2.1] Let $a, b, c, y \in R$. Then the following conditions are equivalent:
(i) y is the right hybrid (b, c)-inverse of a.
(ii) $y a b=b$, cay $=c, y R \subseteq b R$ and $c^{0} \subseteq y^{0}$.

Lemma 2.3. Let $a, b, c \in R$. Then the following conditions are equivalent:
(i) $(c a b)^{0} \subseteq b^{0}$.
(ii) $(c a)^{0} \cap b R=\{0\}$.
(iii) $(c a b)^{0} \subseteq(b-c a b)^{0}$.

Proof. (i) \Rightarrow (ii) Suppose $(c a b)^{0} \subseteq b^{0}$. For any $x \in(c a)^{0} \cap b R$, we have cax $=0$ and $x=b y$ for some $y \in R$. Consequently, caby $=0$, i.e. $y \in$ $(c a b)^{0} \subseteq b^{0}$ and $x=b y=0$.
(ii) \Rightarrow (iii) For any $s \in(c a b)^{0}$, i.e. cabs $=0$, we have $b s \in(c a)^{0} \cap b R=\{0\}$, and hence $(b-c a b) s=0$, as required.
(iii) \Rightarrow (i) As $(c a b)^{0} \subseteq(b-c a b)^{0}$, then for any $t \in(c a b)^{0},(b-c a b) t=0$ implies $b t=0$ since $c a b t=0$. Thus, $t \in b^{0}$ and $(c a b)^{0} \subseteq b^{0}$.

Dually, we have the following result ${ }^{0}(c a b) \subseteq{ }^{0} c \Leftrightarrow{ }^{0}(a b) \cap R c=\{0\} \Leftrightarrow$ ${ }^{0}(c a b) \subseteq{ }^{0}(c-c a b)$ for any $a, b, c \in R$.

Lemma 2.4. [4, Lemma 5.3] Let $c, h \in R$. Then
(i) $c \in c h R$ if and only if $R=h R+c^{0}$.
(ii) $h R \cap c^{0}=\{0\}$ if and only if $(c h)^{0} \subseteq h^{0}$.

Lemma 2.5. Let $a, b, c \in R$ and let a be right hybrid (b, c)-invertible. Then b and $a b$ are both regular. In particular, if $c=$ cabw for some $w \in R$, then $(a b)^{-} a \in b\{1\}$ and $w \in a b\{1\}$.

Proof. As a is right hybrid (b, c)-invertible, then, by Lemma 2.1, $c=c a b w$ for some $w \in R$. We hence have $c a b(1-w a b)=0$. From $(c a b)^{0} \subseteq b^{0}$, it follows that $b=b w a b$ and $a b=a b w a b$. So, $w \in a b\{1\}$ and $w a=(a b)^{-} a \in b\{1\}$.

It was proved in [6, Theorem 2.8] that a is right hybrid (b, c)-invertible if and only if $a b$ is group invertible, under the hypothesis $a^{0}=b^{0}=c^{0}$. The following example 2.7 can illustrates this fact.

It follows from Lemma 2.5 that a is right hybrid (b, c)-invertible implies that $a b$ is regular. Motivated by [6, Theorem 2.8], we next consider a further characterization of the existence of the right hybrid (b, c)-inverse by the regularity of $a b$, avoiding its group inverse without additional assumptions.

Theorem 2.6. Let $a, b, c \in R$. Then the following conditions are equivalent:
(i) a is right hybrid (b, c)-invertible.
(ii) $(c a)^{0} \cap b R=\{0\}$ and $c \in c a b R$.
(iii) $(c a b)^{0} \subseteq(b-c a b)^{0}$ and $c \in c a b R$.
(iv) $(c a)^{0} \cap b R=\{0\}$ and $R=a b R+c^{0}$.
(v) $(c a b)^{0} \subseteq(b-c a b)^{0}$ and $R=a b R+c^{0}$.
(vi) $(c a)^{0} \cap b R=\{0\}$ and $R=a b R \oplus c^{0}$.
(vii) $(c a b)^{0} \subseteq(b-c a b)^{0}$ and $R=a b R \oplus c^{0}$.
(viii) $a b$ is regular, $c=c a b(a b)^{-}$and $(c a)^{0} \cap b R=\{0\}$.

In this case, $a_{h}^{(b, c)}=b(a b)^{-}$, where $(a b)^{-}$is an inner inverse of $a b$.
Proof. (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) \Leftrightarrow (v) follow from Lemmas 2.1 and 2.3.
(i) \Rightarrow (vi) From Lemma 2.3 and Lemma 2.4, it suffices to verify $a b R \cap c^{0}=$ $\{0\}$. For any $s \in a b R \cap c^{0}$, we have $c s=0$ and $s=a b t$ for some $t \in R$. Hence, cabt $=0$ and $b t \in(c a)^{0} \cap b R=\{0\}$. So, $s=0$, as required.
(vi) \Rightarrow (i) Clearly, (vi) implies (iv), and (vi) \Rightarrow (iv) has been proved.
(i) \Rightarrow (vii) is similar to (i) \Rightarrow (vi).
(i) \Rightarrow (viii) Suppose that a is hybrid (b, c)-invertible. Then, by Lemma 2.5, $a b$ is regular, and $c=c a b w$ for some $w \in R$, then $w \in a b\{1\}$. Therefore, $c=c a b(a b)^{-}$.

The condition $(c a)^{0} \cap b R=\{0\}$ follows from Lemma 2.1 and 2.3.
$($ viii $) \Rightarrow\left(\right.$ i) As $a b$ is regular, then $c a\left(b-b(a b)^{-} a b\right)=0$ and $b-b(a b)^{-} a b \in$ $(c a)^{0} \cap b R=\{0\}$. Set $y=b(a b)^{-}$. Then $b=y a b, c=c a b(a b)^{-}=c a y$ and $y R \subseteq b R$. Next, it is sufficient to show $c^{0} \subseteq y^{0}$ by [6, Proposition 2.1]. Let $c v=0$ for any $v \in R$. Then $0=c a y v=c a b(a b)^{-} v$, whence $y v=b(a b)^{-} v \in(c a)^{0} \cap b R=\{0\}$, that is, $v \in y^{0}$ and $c^{0} \subseteq y^{0}$. Hence, is right hybrid (b, c)-invertible by Lemma 2.2. Moreover, $a_{h}^{(b, c)}=b(a b)^{-}$.

From the proof of Theorem 2.6, one can see that if a is right hybrid (b, c)-invertible then b and $a b$ are regular. However, c may not be regular in general. The following example illustrates this fact.

Example 2.7. Let $R=\mathbb{Z}$ be the ring of all integers. Take $a=1, b=1$, $c=2 \in R$, then a is right hybrid (1,2)-invertible, Indeed, $y=1$ is the right hybrid (1,2)-inverse of a as $y a b=1 \cdot 1 \cdot 1=1=b$, cay $=2 \cdot 1 \cdot 1=2=c$, $y R=R=b R$ and $c^{0}=y^{0}$. However, there exists no $x \in R$ such that $2 \cdot x \cdot 2=4 x=2$ holds. Hence, c is not regular.

Following [2], a is (b, c)-invertible if there exists some $y \in R$ such that $y a b=b$, cay $=c, y \in b R \cap R c$. Example 2.7 above also shows that the right hybrid (b, c)-invertible element may not be (b, c)-invertible in general as $R y=\mathbb{Z} \nsubseteq 2 \mathbb{Z}=R c$.

Suppose a is right hybrid (b, c)-invertible. If c is regular, then $c a$ and $c a b$ are both regular. Indeed, if c is regular, then a is (b, c)-invertible. The regularity of $c a$ and $c a b$ follows immediately from the proof of [2, Theorem 2.2]. Conversely, the regularity of either $c a$ or $c a b$ implies the regularity of c, under the assumption that a is right hybrid (b, c)-invertible. Indeed, if $c a$ is regular, then there exists some $s \in R$ such that $c a=c a x c a$. Note that $c=c a y$. Then post-multiplying $c a=c a x c a$ by y gives $c=c a x c$. If $c a b$ is regular, then $c a b=c a b t c a b$ for some $t \in R$. By Lemma 2.1, we derive that c is regular as $c \in c a b R$. Hence, we can conclude that if one of the sets $\{c, c a$, $c a b\}$ is regular, then they are all regular.

We next present several characterizations of left hybrid (b, c)-inverses of a in a ring whose proofs are left to the reader.

Theorem 2.8. Let $a, b, c \in R$. Then the following conditions are equivalent:
(i) a is left hybrid (b, c)-invertible.
(ii) $b \in R c a b$ and ${ }^{0}(c a b) \subseteq{ }^{0} c$.
(iii) $b \in R c a b$ and ${ }^{0}(a b) \cap R c=\{0\}$.
(iv) $R=R c a+{ }^{0} b$ and ${ }^{0}(a b) \cap R c=\{0\}$.
(v) $R=R c a+{ }^{0} b$ and ${ }^{0}(c a b) \subseteq{ }^{0}(c-c a b)$.
(vi) $R=R c a \oplus^{0} b$ and ${ }^{0}(a b) \cap R c=\{0\}$.
(vii) $R=R c a \oplus^{0} b$ and ${ }^{0}(c a b) \subseteq{ }^{0}(c-c a b)$.
(viii) $c a$ is regular, $b=(c a)^{-} c a b$ and ${ }^{0}(a b) \cap R c=\{0\}$.

In this case, ${ }_{h} a^{(b, c)}=(c a)^{-} c$, where $(c a)^{-}$is an inner inverse of $c a$.
Recall that a is hybrid (b, c)-invertible [4] if it is both left and right hybrid (b, c)-invertible. Combing with Theorem 2.6 and 2.8, we obtain the following result.

Corollary 2.9. Let $a, b, c \in R$. Then a is hybrid (b, c)-invertible if and only if it is both (b, c)-invertible and annihilator (b, c)-invertible.

Given any $a, d \in R, a$ is called invertible along d (see [5, Definition 4]) if there exists an element $x \in R$ such that $x a d=d=d a x$ and $x \in d R \cap R d$. Such an x is the inverse of a along d. It is unique if it exists, and is denoted by $a^{\| d}$. Note that the implication that $d^{0} \subseteq x^{0}$ yields $x \in R d$, provide that d is regular. Hence, we have

Corollary 2.10. Let $a, d \in R$. Then the following conditions are equivalent:
(i) a is left hybrid ($d, d)$-invertible.
(ii) a is right hybrid (d, d)-invertible.
(iii) a is invertible along d.

In this case, ${ }_{h} a^{(d, d)}=a_{h}^{(d, d)}=a^{\| d}$.
The group inverse of $a \in R$ is defined as an $x \in R$ satisfying $a x=x a$, $x a x=x$ and $a x a=a$. Such an x is unique if it exists, and is denoted by $a^{\#}$. Note that $a^{\| a}$ exists if and only if $a^{\#}$ exists. By Corollary 2.10, one can get ${ }_{h} a^{(a, a)}=a_{h}^{(a, a)}=a^{\#}$.

It follows from [5, Theorem 7] that a is invertible along d if and only if $d R=d a R$ and $(d a)^{\#}$ exists if and only if $R d=R a d$ and $(a d)^{\#}$ exists. In this case, $a^{\| d}=d(a d)^{\#}=(d a)^{\#} d$. The following result gives necessary and sufficient conditions of the existence of $a^{\| d}$. Moreover, $a^{\| d}=d(a d)^{-}=$ $(d a)^{-} d$, where $(a d)^{-},(d a)^{-}$are inner inverses of $a d$ and $d a$, respectively.

Corollary 2.11. Let $a, d \in R$. Then the following conditions are equivalent:
(i) a is invertible along d.
(ii) $(d a)^{0} \cap d R=\{0\}$ and $d \in d a d R$.
(iii) $(d a d)^{0} \subseteq(d-d a d)^{0}$ and $d \in d a d R$.
(iv) $(d a)^{0} \cap d R=\{0\}$ and $R=a d R+d^{0}$.
(v) $(d a d)^{0} \subseteq(d-d a d)^{0}$ and $R=a d R+d^{0}$.
(vi) $(d a)^{0} \cap d R=\{0\}$ and $R=a d R \oplus d^{0}$.
(vii) $(d a d)^{0} \subseteq(d-d a d)^{0}$ and $R=a d R \oplus d^{0}$.
(viii) ${ }^{0}(a d) \cap R d=\{0\}$ and $R=R d a+{ }^{0} d$.
(ix) ${ }^{0}(d a d) \subseteq{ }^{0}(d-d a d)$ and $R=R d a+{ }^{0} d$.
(x) ${ }^{0}(a d) \cap R d=\{0\}$ and $R=R d a \oplus^{0} d$.
(xi) ${ }^{0}(d a d) \subseteq{ }^{0}(d-d a d)$ and $R=R d a \oplus^{0} d$.
(xii) ad is regular, $d=d a d(a d)^{-}$and $(d a)^{0} \cap d R=\{0\}$.
(xiii) ad is regular, $R d \subseteq R a d(a d)^{-}$and $(d a)^{0} \cap d R=\{0\}$.
(xiv) $d a$ is regular, $d=(d a)^{-}$dad and ${ }^{0}(a d) \cap R d=\{0\}$.
$(\mathrm{xv}) d a$ is regular, $d R \subseteq(d a)^{-} d a R$ and ${ }^{0}(a d) \cap R d=\{0\}$.
In this case, $a^{\| d}=d(a d)^{-}=(d a)^{-} d$, where $(a d)^{-},(d a)^{-}$are inner inverses of ad and da, respectively.

Proof. (xii) \Rightarrow (xii) is clear.
(xiii) \Rightarrow (xii) As $R d \subseteq \operatorname{Rad}(a d)^{-}$, then $d=\operatorname{xad}(a d)^{-}$for some $x \in R$, and $d=x a d(a d)^{-} a d(a d)^{-}=\operatorname{dad}(a d)^{-}$.
(xiv) \Leftrightarrow (xv) can be referred to(xii) \Leftrightarrow (xiii).

Remark 2.12. In Corollary 2.11 above, it should be noted that the formula of $a^{\| d}$ can be expressed by some inner inverses $(a d)^{-}$of $a d$, which need not be the group inverse of $a d$. Such as, let $R=M_{2}(\mathbb{R})$ be the ring of all 2 by 2 matrices over the field of real numbers \mathbb{R}. Take $A=D=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right] \in R$, then, $A^{\| D}=(A D)^{\#}=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ by the fact that $A^{\| A}$ exists if and only if $A \in R^{\#}$. Note that all inner inverses of $A D$ can be written as the form $\left[\begin{array}{cc}1 & 1-\dot{x} \\ * & *\end{array}\right]$, where $x \in \mathbb{R}$. Take $(A D)^{-}=\left[\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right] \neq(A D)^{\#}$, then $D(A D)^{-}=$ $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]=A^{\| D}$.

3. Left and right hybrid (b, c)-inverses of the product of three elements

In this section, we mainly investigate the existence criterion of the right hybrid (b, c)-inverse of paq in R, where $p, a, q, b, c \in R$. Several characterizations of the left hybrid (b, c)-inverse of paq can be also given similarly. Here, we omit them.

Following [3], a is called right (b, c)-invertible if there exists $y \in b R$ such that cay $=c$. Such a y is called a right (b, c)-inverse of a. Moreover, it is shown that such y exists if and only if $c \in c a b R$. In particular, it there is an element $s \in R$ such that $c=c a b s$ then $b s$ is a right (b, c)-inverse of a.

An element $a \in R$ is called right annihilator (b, c)-invertible if there exists some $x \in R$ such that $x a b=b$ and $c^{0} \subseteq x^{0}$. By Lemma 2.2, one knows that a is right hybrid (b, c)-invertible if it is both right (b, c)-invertible and right annihilator (b, c)-invertible.

We next derive the characterization of right (b, c)-inverses and right annihilator (b, c)-inverses of the product of paq. Herein, an auxiliary lemma is firstly given.

Lemma 3.1. Let $a, s, t, p \in R$. Then
(i) If $a^{0}=s^{0}$, then $(a t)^{0}=(s t)^{0}$.
(ii) If p is right invertible and $(a p)^{0}=(s p)^{0}$, then $a^{0}=s^{0}$.

Proof. (i) For any $x \in(a t)^{0}$, we have $a t x=0$ and $t x \in a^{0}=s^{0}$, which imply stx $=0$, i.e. $x \in(s t)^{0}$, and consequently $(a t)^{0} \subseteq(s t)^{0}$. A dual proof gives $(s t)^{0} \subseteq(a t)^{0}$.
(ii) As $p \in R$ is right invertible, then there exists some $p^{\prime} \in R$ such that $p p^{\prime}=1$. Applying (i), the result follows.

Theorem 3.2. Let $p, a, q, b, c \in R$. Then the following conditions are equivalent :
(i) paq is right (b, c)-invertible with inverses $x \in R$.
(ii) pa is right $(q b, c)$-invertible with inverses $y \in R$.

In this case, $x=b s$ and $y=q x$, where $s \in R$ satisfies $y=q b$.
Proof. It is known that paq is right (b, c)-invertible if and only if $c \in c p a q b R$ if and only if $p a$ is right $(q b, c)$-invertible. the result follows.

As x is a right (b, c)-invertible of paq, then cpaqx $=c$ and $x \in b R$, and consequently, $c p a q x=c$ and $q x \in q b R$, i.e. $q x$ is a right $(q b, c)$-inverse of $p a$.

If $p a$ is right $(q b, c)$-invertible with inverses z, then $c p a y=c$ and $y \in q b R$, which give $y=q b s$ for some $s \in R$. We hence have cpaqbs $=c$, it is not difficult to verify that $x=b s$ is a right (b, c)-inverse of paq.

Theorem 3.3. Let $p, a, q, b, c \in R$ with p invertible. Then the following conditions are equivalent :
(i) paq is right annihilator (b, c)-invertible with inverse $x \in R$.
(ii) aq is right annihilator $(b, c p)$-invertible with inverse $z \in R$.

In this case, $x=z p^{-1}$ and $z=x p$.
Proof. (i) \Rightarrow (ii) Let $x \in R$ be a right annihilator (b, c)-inverse of paq. Then $x p a q b=b$ and $c^{0} \subseteq x^{0}$. Set $z=x p$, then we $z a q b=b$ and $(c p)^{0} \subseteq(x p)^{0}=z^{0}$ by Lemma 3.1, hence $x p$ is a right annihilator ($b, c p$)-inverse of $a q$.
(ii) \Rightarrow (i) As $z \in R$ is a right annihilator $(b, c p)$-inverse of $a q$, then $z a q b=b$ and $(c p)^{0} \subseteq z^{0}$. Set $x=z p^{-1}$. Then $x p a q b=z p^{\prime} p a q b=z a q b=b$, and applying Lemma 3.1, it follows $x^{0}=\left(z p^{\prime}\right)^{0} \supseteq\left(c p p^{\prime}\right)^{0}=c^{0}$, as required.

Combing Theorem 3.2 and Theorem 3.3, one can get the following characterizations about right hybrid (b, c)-inverses of paq.

Theorem 3.4. Let $p, a, q, b, c \in R$. Then the following conditions are equivalent :
(i) paq is right hybrid (b, c)-invertible.
(ii) pa is right ($q b, c$)-invertible and aq is right annihilator ($b, c p$)-invertible.

In particular, if $x \in R$ is the right hybrid (b, c)-inverse of paq, $y \in R$ is a right $(q b, c)$-inverse of pa and $z \in R$ is a right annihilator ($b, c p$)-inverse of $a q$, then $x=b s, y=q x$ and $z=x p$, where $s \in R$ satisfies $y=q b s$.

Proof. (i) \Rightarrow (ii) Applying Theorem 3.2 and Theorem 3.3.
(ii) \Rightarrow (i) As $p a$ is right $(q b, c)$-invertible, then $c \in c p a q b R$. If $a q$ is right annihilator $(b, c p)$-invertible with right annihilator $(b, c p)$-inverse z, then $z a q b=b$ and $(c p)^{0} \subseteq z^{0}$, and consequently, $(c p a q b)^{0} \subseteq b^{0}$, indeed, for any $t \in(c p a q b)^{0}$, we have cpaqbt $=0$ and $a q b t \in(c p)^{0} \subseteq z^{0}$, hence $0=z a q b t=b t$, which guarantees $t \in b^{0}$ and $(c p a q b)^{0} \subseteq b^{0}$. It follows from Lemma 2.1 that $p a q$ is right hybrid (b, c)-invertible.

The formula $y=q x$ and $z=x p$ can be obtained by Theorem 3.2 and Theorem 3.3. The representation of the right hybrid (b, c)-inverse of paq, i.e. $a_{h}^{(b, c)}=b s$ follows from [6, Proposition 2.3].

Given any $a, b, c \in R$, then a is right (b, c)-invertible implies that it is right $(b, q c)$-invertible, for any $q \in R$. Indeed, if y is the right (b, c)-inverse of a, then cay $=c$ and $y \in b R$. Hence, one can get $q c a y=q c$ and a is right ($b, q c$)-invertible. Similarly, if a is right annihilator (b, c)-invertible, then it is also right annihilator ($b q, c$)-invertible.

Applying Theorem 3.4, then paq is right hybrid (b, c)-invertible guarantees that $p a$ is right $(q b, q c)$-invertible and $a q$ is right annihilator ($b p, c p$)invertible. We next show, under some conditions, that the converse statement also holds.

Theorem 3.5. Let $p, a, q, b, c \in R$. Suppose $b \in b p R$ and $c \in R q c$. Then the following conditions are equivalent:
(i) paq is right hybrid (b, c)-invertible.
(ii) pa is right $(q b, q c)$-invertible and aq is right annihilator ($b p, c p$)-invertible.

In particular, if $x \in R$ is the right hybrid (b, c)-inverse of paq, $y \in R$ is a right $(q b, q c)$-inverse of pa and $z \in R$ is a right annihilator ($b p, c p$)-inverse of aq, then $x=b s, y=q x$ and $z=x p$, where $s \in R$ satisfies $y=q b$.

Proof. It suffices to prove (ii) \Rightarrow (i).
Suppose that $a q$ is right annihilator ($b p, c p$)-invertible. Then by a direct calculation, we have $(c p a q b p)^{0} \subseteq(b p)^{0}$. It follows from $b \in b p R$ that $b=b p p^{\prime}$ for some $p^{\prime} \in R$, and hence $(c p a q b)^{0}=\left(c p a q b p p^{\prime}\right)^{0} \subseteq\left(b p p^{\prime}\right)^{0}=b^{0}$. As $p a$ is right $(q b, q c)$-invertible, then $q c \in q c p a q b R$, which implies $c \in c p a q b R$. Applying Lemma 2.1, it follows that paq is right hybrid (b, c)-invertible. In virtue of [6, Proposition 2.3], $x=b s$ is the right hybrid (b, c)-inverse of paq, where $s \in R$ satisfies $y=q b s$.

Suppose that p and q are invertible in Theorem 3.5. Then we have the following corollary.

Corollary 3.6. Let $p, a, q, b, c \in R$ and let p and q be invertible. Then the following conditions are equivalent:
(i) paq is right hybrid (b, c)-invertible.
(ii) pa is right $(q b, q c)$-invertible and aq is right annihilator ($b p, c p$)-invertible.

In particular, if $x \in R$ is the right hybrid (b, c)-inverse of paq, $y \in R$ is a right $(q b, q c)$-inverse of pa and $z \in R$ is a right annihilator ($b p, c p$)-inverse of aq, then $x=b s, y=q x$ and $z=x p$, where $s \in R$ satisfies $y=q b s$.

ACKNOWLEDGMENTS

This research is supported by the National Natural Science Foundation of China (No. 11801124), the Natural Science Foundation of Anhui Province (No. 1808085QA16), the Fundamental Research Funds for the Central Universities (No. JZ2018HGTB0233) and was partially financed by Portuguese Funds through FCT (Fundação para a Ciência e a Tecnologia) within the Projects UIDB/00013/2020 and UIDP/00013/2020.

References

References

[1] A. Ben-Israel, T. N. E. Greville, Generalized inverses: Theory and Applications, 2nd ed. Springer, New York(2003).
[2] M.P. Drazin, A class of outer generalized inverses, Linear Algebra Appl. 436 (2012) 1909-1923.
[3] M.P. Drazin, Left and right generalized inverses, Linear Algebra Appl. 510 (2016) 64-78.
[4] M.P. Drazin, Hybrid (b, c)-inverses and three finiteness properties in rings and semigroups, for submission.
[5] X. Mary, On generalized inverses and Green's relations, Linear Algebra Appl. 434 (2011) 1836-1844.
[6] H.H. Zhu, Further results on several generalized inverses, Comm. Algebra 46 (2018) 3388-3396.
[7] H.H. Zhu, J.L. Chen, P. Patrício, Further resulst on the inverse along an element in semigroups and rings, Linear Multilinear Algebra 64 (2016) 393-403.

[^0]: Email addresses: hhzhu@hfut.edu.cn (Huihui Zhu), wlymath@163.com (Liyun Wu), pfmath@163.com (Fei Peng), pedro@math.uminho.pt (Pedro Patrício)

