
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Cláudia Sofia Mendonça de Sá Correia

PRISMA: A Prefetching Storage Middleware
for Accelerating Deep Learning Frameworks

February 2021

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Cláudia Sofia Mendonça de Sá Correia

PRISMA: A Prefetching Storage Middleware
for Accelerating Deep Learning Frameworks

Master dissertation
Integrated Master in Informatics Engineering

Dissertation supervised by
João Tiago Medeiros Paulo
António Luís Pinto Ferreira Sousa

February 2021

C O P Y R I G H T A N D T E R M S O F U S E F O R T H I R D PA RT Y W O R K

This dissertation reports on academic work that can be used by third parties as long as the
internationally accepted standards and good practices are respected concerning copyright
and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorisation conditions not provided for in the indicated licensing should
contact the author through the RepositóriUM of the University of Minho.

License granted to users of this work:

CC BY
https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or
falsification of results along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University
of Minho.

ii

A C K N O W L E D G E M E N T S

This dissertation is the culmination of five years of hard work, along with new and rewarding
experiences. It would not have been possible without the help of a diverse group of people,
both in and out of the academic environment, to whom I could not fail to express my
gratitude.

First of all, I would like to thank my supervisor, Professor João Paulo, for the opportunity
of working on this project, for always guiding me in the right direction, and for all the
encouraging words throughout this journey. I would also like to thank my co-supervisor,
Ricardo Macedo, for all the advice and support, and for always being available to help with
any obstacle that might appear. This dissertation would not be concluded if it were not
for the countless meetings and discussions, which were crucial to achieve the best possible
results. Furthermore, I would like to thank Professor António Sousa for supporting this
project.

Thank you to Cláudia Brito, whose help and knowledge were vital to outline the first
steps of this dissertation, and to Marco Dantas for taking the time to contribute to the project.
I would also like to thank all my colleagues in HASLab for being welcoming and providing
an amazing work environment.

To the National Institute of Advanced Industrial Science and Technology (AIST) team,
especially Doctor Jason Haga and Doctor Yusuke Tanimura, I would like to express my
gratitude for all the relevant input and for providing the opportunity of conducting the
experiments on the AI Bridging Cloud Infrastructure (ABCI).

A special thank you to Armando Santos, the person who has accompanied me from day
one, who supported me unconditionally, and who had the patience to listen and help me
whenever I needed to. This would certainly not be possible without you.

To my sister, thank you for the never-ending advice and encouragement and for always
supporting me in the most difficult moments.

To my family, I would like to express my endless gratitude for the opportunities they have
provided me, both academically and personally, and for the constant concern and affection
throughout these years.

I would also like to thank my friends for all the memorable times we shared and for
making these five years an unforgettable experience.

Last but not least, I would like to thank the Portuguese funding agency, Fundação para a
Ciência e a Tecnologia (FCT), for financing this work within project UIDB/50014/2020.

iii

A B S T R A C T

Deep Learning (DL) is a widely used technique often applied to many domains, from
computer vision to natural language processing. To avoid overfitting, DL applications
have to access large amounts of data, which affects the training performance. Although
significant hardware advances have already been made, current storage systems cannot keep
up with the needs required by DL techniques. Considering this, multiple storage solutions
have already been developed to improve the Input/Output (I/O) performance of DL training.
Nevertheless, they are either specific to certain DL frameworks or present drawbacks, such as
loss of accuracy. Most DL frameworks also contain internal I/O optimizations, however they
cannot be easily decoupled and applied to other frameworks. Furthermore, most of these
optimizations have to be manually configured or comprise greedy provisioning algorithms
that waste computational resources.

To address these issues, we propose PRISMA, a novel storage middleware that employs
data prefetching and parallel I/O to improve DL training performance. PRISMA provides
an autotuning mechanism to automatically select the optimal configuration. This mechanism
was designed to achieve a good trade-off between performance and resource usage. PRISMA
is framework-agnostic, meaning that it can be applied to any DL framework, and does not
impact the accuracy of the training model. In addition to PRISMA, we provide a thorough
study and evaluation of the TensorFlow Dataset Application Programming Interface (API),
demonstrating that local DL can benefit from I/O optimization.

PRISMA was integrated and evaluated with two popular DL frameworks, namely Tensor-
Flow and PyTorch, proving that it is successful under different I/O workloads. Experimental
results demonstrate that PRISMA is the most efficient solution for the majority of the scenar-
ios that were studied, while for the other scenarios exhibits similar performance to built-in
optimizations of TensorFlow and PyTorch.

Keywords: Deep Learning, Storage Systems, I/O, TensorFlow, PyTorch, Prefetching, Parallel I/O

iv

R E S U M O

Aprendizagem Profunda (AP) é uma área bastante abrangente que é atualmente utilizada em diversos
domínios, como é o caso da visão por computador e do processamento de linguagem natural.
A aplicação de técnicas de AP implica o acesso a grandes quantidades de dados, o que afeta
o desempenho de treino. Embora já tenham sido alcançados avanços significativos em termos
de hardware, os sistemas de armazenamento atuais não conseguem acompanhar os requisitos de
desempenho que os mecanismos de AP impõem. Considerando isto, foram desenvolvidas várias
soluções de armazenamento com o objetivo de melhorar o desempenho de Entrada/Saída (E/S) do
treino de AP. No entanto, as soluções existentes possuem certas desvantagens, nomeadamente perda
de precisão do modelo de treino e o facto de serem específicas a determinadas plataformas de AP. A
maioria das plataformas de AP também possuem otimizações de E/S, contudo essas otimizações
não podem ser facilmente desacopladas e aplicadas a outras plataformas. Para além disto, a maioria
destas otimizações tem que ser configurada manualmente ou contém algoritmos de provisionamento
gananciosos, que desperdiçam recursos computacionais.

Para resolver os problemas anteriormente mencionados, esta dissertação propõe o PRISMA, um
middleware de armazenamento que executa pré-busca de dados e paralelismo de E/S, de forma a
melhorar o desempenho de treino de AP. O PRISMA providencia um mecanismo de configuração
automática para determinar uma combinação de parâmetros ótima. Este mecanismo foi desenvolvido
com o objetivo de obter um bom equilíbrio entre desempenho e utilização de recursos. O PRISMA é
independente da plataforma de AP e não afeta a precisão do modelo de treino. Além do PRISMA,
esta dissertação providencia um estudo e uma avaliação detalhados da Interface de Programação de
Aplicações (API) Dataset do TensorFlow, provando que AP local pode beneficiar de otimizações de
E/S.

O PRISMA foi integrado e avaliado com duas plataformas de AP amplamente utilizadas, o
TensorFlow e o PyTorch, demonstrando que este middleware tem sucesso sob diferentes cargas de
trabalho de E/S. Os resultados experimentais demonstram que o PRISMA é a solução mais eficiente
na maioria dos cenários estudados, e possui um desempenho semelhante às otimizações internas do
TensorFlow e do PyTorch.

Palavras-chave: Aprendizagem Profunda, Sistemas de Armazenamento, E/S, TensorFlow, PyTorch,
Pré-busca, E/S Paralela

v

C O N T E N T S

1 introduction 1

1.1 Problem 3

1.2 Objectives and Contributions 4

1.3 Document structure 5

2 state of the art 6

2.1 Background 6

2.1.1 Artificial Neural Networks 6

2.1.2 Types of Learning 8

2.1.3 Training Process 8

2.1.4 Avoiding Overfitting 9

2.1.5 Parallel Deep Learning Training 10

2.1.6 Optimized Data Formats 11

2.2 Related work 12

2.2.1 Storage I/O Performance Studies 12

2.2.2 Storage I/O Optimizations 13

2.3 Summary 16

3 preliminary studies 18

3.1 TensorFlow Dataset API 18

3.1.1 Prefetch 18

3.1.2 Interleave 19

3.1.3 Map 20

3.1.4 Autotuning 21

3.1.5 Input Pipeline 21

3.2 Evaluation 22

3.2.1 Experimental setup 22

3.2.2 Models 22

3.2.3 Dataset 23

3.2.4 TensorFlow Input Pipeline 24

3.2.5 Results 24

4 prisma 30

4.1 Architecture Overview 30

4.2 Module Design and Workflow 32

4.2.1 Prefetch Order 33

4.2.2 Initialization 34

4.2.3 Data Prefetching and Parallel I/O 35

4.2.4 Configuration Parameters 35

4.2.5 Autotuning Mechanism 36

4.2.6 Profiling 38

4.2.7 Client-Server 39

vi

contents vii

4.3 Implementation 40

4.3.1 Integration with TensorFlow 40

4.3.2 Integration with PyTorch 41

4.4 Summary 42

5 case studies and experimental evaluation 43

5.1 TensorFlow 43

5.1.1 Methodology and Experimental Setup 43

5.1.2 Results 44

5.2 PyTorch 55

5.2.1 Methodology and Experimental Setup 55

5.2.2 Results 56

5.3 Discussion 63

6 conclusion 66

6.1 Future Work 67

a appendix 78

a.1 Resource Usage 78

a.1.1 TensorFlow 78

a.1.2 PyTorch 80

L I S T O F F I G U R E S

Figure 2.1 Architecture of an Artificial Neural Network (ANN). 7

Figure 2.2 Operations that occur in one neuron. 7

Figure 2.3 Deep Learning (DL) training process. 9

Figure 2.4 Difference between overfitting, underfitting and appropriate fitting. 10

Figure 2.5 Data and model parallelism for Deep Neural Network (DNN) training. 11

Figure 3.1 Interleave high-level example. 19

Figure 3.2 TensorFlow input pipeline example. 21

Figure 3.3 Training time of the LeNet, AlexNet, and ResNet-50 models under the
baseline and optimized versions of the TensorFlow input pipeline. 25

Figure 3.4 Average disk read throughput for TensorFlow with LeNet, AlexNet and
ResNet-50. 26

Figure 3.5 Average GPU usage for TensorFlow with LeNet, AlexNet and ResNet-50. 26

Figure 3.6 Average memory usage for TensorFlow with LeNet, AlexNet and ResNet-
50. 26

Figure 3.7 Average CPU usage for TensorFlow with LeNet, AlexNet and ResNet-50. 26

Figure 3.8 Strategy used to obtain the number of concurrent threads executed by
TensorFlow parallel interleave transformation. 27

Figure 3.9 Time percentage of each number of TensorFlow concurrent threads. 28

Figure 4.1 PRISMA high-level architecture. 31

Figure 4.2 PRISMA workflow and interactions. 34

Figure 4.3 PRISMA client-server architecture. 39

Figure 5.1 Average training time of PRISMA and TensorFlow with LeNet. 45

Figure 5.2 Average training time of PRISMA and TensorFlow with AlexNet. 45

Figure 5.3 Average training time of PRISMA and TensorFlow with ResNet-50. 45

Figure 5.4 Average disk read throughput for TensorFlow and PRISMA setups with
LeNet. 47

Figure 5.5 Average disk read throughput for TensorFlow and PRISMA setups with
AlexNet. 47

Figure 5.6 Average disk read throughput for TensorFlow and PRISMA setups with
ResNet-50. 47

Figure 5.7 TensorFlow and PRISMA disk read throughput over time with a batch size
of 256. 47

Figure 5.8 Average Graphical Processing Unit (GPU) usage for TensorFlow and PRISMA
setups with LeNet. 48

Figure 5.9 Average GPU usage for TensorFlow and PRISMA setups with AlexNet. 48

Figure 5.10 Average GPU usage for TensorFlow and PRISMA setups with ResNet-50. 48

Figure 5.11 TensorFlow and PRISMA GPU usage over time with a batch size of 256. 48

viii

list of figures ix

Figure 5.12 Average memory usage for TensorFlow and PRISMA setups with the LeNet
model. 49

Figure 5.13 Average memory usage for TensorFlow and PRISMA setups with AlexNet. 49

Figure 5.14 Average memory usage for TensorFlow and PRISMA setups with ResNet-
50. 49

Figure 5.15 TensorFlow and PRISMA memory usage over time with a batch size of
256. 49

Figure 5.16 Average CPU usage for TensorFlow and PRISMA setups with LeNet. 50

Figure 5.17 Average CPU usage for TensorFlow and PRISMA setups with AlexNet. 50

Figure 5.18 Average CPU usage for TensorFlow and PRISMA setups with ResNet-50. 51

Figure 5.19 TensorFlow and PRISMA CPU usage over time with a batch size of 256. 51

Figure 5.20 Buffer size selected by the PRISMA autotuning mechanism with Tensor-
Flow. 51

Figure 5.21 Number of threads selected by the PRISMA autotuning mechanism with
TensorFlow. 51

Figure 5.22 Training time of the PRISMA autotuning mechanism compared to manual
settings with TensorFlow. 52

Figure 5.23 Time percentage of each number of TensorFlow and PRISMA concurrent
threads. 53

Figure 5.24 PRISMA buffer usage over time. 54

Figure 5.25 Average training time of PyTorch and PRISMA with LeNet. 57

Figure 5.26 Average training time of PyTorch and PRISMA with AlexNet. 57

Figure 5.27 Average disk read throughput for PyTorch and PRISMA setups with LeNet. 58

Figure 5.28 Average disk read throughput for PyTorch and PRISMA setups with AlexNet. 58

Figure 5.29 PyTorch and PRISMA disk read throughput over time with LeNet for 0, 4,
and 16 workers. 58

Figure 5.30 Average GPU usage for PyTorch and PRISMA setups with LeNet. 59

Figure 5.31 Average GPU usage for PyTorch and PRISMA setups with AlexNet. 59

Figure 5.32 PyTorch and PRISMA GPU usage over time with LeNet for 0, 4, and 16
workers. 59

Figure 5.33 Average memory usage for PyTorch and PRISMA setups with LeNet. 60

Figure 5.34 Average memory usage for PyTorch and PRISMA setups with AlexNet. 60

Figure 5.35 PyTorch and PRISMA memory usage over time with LeNet for 0, 4, and 16
workers. 60

Figure 5.36 Average CPU usage for PyTorch and PRISMA setups with LeNet. 61

Figure 5.37 Average CPU usage for PyTorch and PRISMA setups with AlexNet. 61

Figure 5.38 PyTorch and PRISMA CPU usage over time with LeNet for 0, 4, and 16
workers. 61

Figure 5.39 Buffer size selected by the PRISMA autotuning mechanism with PyTorch. 62

Figure 5.40 Number of threads selected by the PRISMA autotuning mechanism with
PyTorch. 62

Figure 5.41 Training time of the PRISMA autotuning mechanism compared to manual
settings with PyTorch. 63

list of figures x

Figure A.1 TensorFlow and PRISMA disk read throughput over time with a batch size
of 64. 78

Figure A.2 TensorFlow and PRISMA disk read throughput over time with a batch size
of 128. 78

Figure A.3 TensorFlow and PRISMA GPU usage over time with a batch size of 64. 79

Figure A.4 TensorFlow and PRISMA GPU usage over time with a batch size of 128. 79

Figure A.5 TensorFlow and PRISMA memory usage over time with a batch size of
64. 79

Figure A.6 TensorFlow and PRISMA memory usage over time with a batch size of
128. 79

Figure A.7 TensorFlow and PRISMA CPU usage over time with a batch size of 64. 80

Figure A.8 TensorFlow and PRISMA CPU usage over time with a batch size of 128. 80

Figure A.9 PyTorch and PRISMA disk read throughput over time with LeNet for 2 and
8 workers. 80

Figure A.10 PyTorch and PRISMA GPU usage over time with LeNet for 2 and 8 work-
ers. 80

Figure A.11 PyTorch and PRISMA memory usage over time with LeNet for 2 and 8
workers. 81

Figure A.12 PyTorch and PRISMA CPU usage over time with LeNet for 2 and 8 work-
ers. 81

Figure A.13 PyTorch and PRISMA disk read throughput over time with AlexNet. 81

Figure A.14 PyTorch and PRISMA GPU usage over time with AlexNet. 81

Figure A.15 PyTorch and PRISMA memory usage over time with AlexNet. 82

Figure A.16 PyTorch and PRISMA CPU usage over time with AlexNet. 82

L I S T O F TA B L E S

Table 1 Specifications of the evaluation environment. 23

Table 2 Top-1 accuracy of the ResNet-50 model. 54

xi

L I S T O F L I S T I N G S

3.1 TensorFlow input pipeline transformations for ResNet-50. 24

4.1 PRISMA API. 32

4.2 Changes made to the TensorFlow POSIX implementation. 41

xii

A C R O N Y M S

A

ABCI AI Bridging Cloud Infrastructure.

AI Artificial Intelligence.

AIST National Institute of Advanced Industrial Science and Technology.

ANN Artificial Neural Network.

API Application Programming Interface.

C

CDF Cumulative Distribution Function.

CNN Convolutional Neural Network.

CPU Central Process Unit.

CTL Custom Training Loop.

D

DL Deep Learning.

DNN Deep Neural Network.

DTT Data tracking tool.

E

EOO Entropy-aware Opportunistic Ordering.

G

GPFS General Parallel File System.

GPU Graphical Processing Unit.

H

HDD Hard Disk Drive.

HDF5 Hierarchical Data Format version 5.

HPC High-Performance Computing.

HTTP Hypertext Transfer Protocol.

I

xiii

Acronyms xiv

I/O Input/Output.

ILSVRC2012 ImageNet Large Scale Visual Recognition Challenge 2012.

K

KV Key-Value.

L

LMDB Lightning Memory-Mapped Database.

M

ML Machine Learning.

N

NVM Non-Volatile Memory.

NVME Non-Volatile Memory Express.

O

OS Operating System.

P

POSIX Portable Operating System Interface.

R

RAM Random-Access Memory.

RDMA Remote Direct Memory Access.

RELU Rectified Linear Unit.

REST Representational State Transfer.

RNN Recurrent Neural Network.

S

SDS Software-Defined Storage.

SELU Scaled Exponential Linear Unit.

SGD Stochastic Gradient Descent.

SSD Solid-State Drive.

T

TACC Texas Advanced Computing Center.

TANH Hyperbolic Tangent.

TBB Threading Building Blocks.

TPU Tensor Processing Unit.

1
I N T R O D U C T I O N

Artificial Intelligence (AI) has been subject of great attention in the past few years [106]. When we
hear of AI, we immediately think about chatbots and self-driving cars, and imagine a utopian future
where most of our daily tasks are handled by robots. Although there is no universal definition of AI,
we can ultimately describe it as the development of computer systems capable of simulating activities
that usually require human intelligence [99].

Contrarily to popular belief, AI has been around for over 60 years, since it was first coined in 1956
by the computer scientist John McCarthy, and has experienced both optimistic and disappointing
periods along the way [25, 80]. Today this field is expanding substantially and, as a matter of
fact, from January 2015 to January 2018, active AI startups increased by 113% [106]. Furthermore,
multinational companies such as Google, Microsoft, Facebook, and Amazon are also investing in AI,
representing a huge boost for its growth. Apart from rising as a research field, AI has a significant
economic impact, with contributions to the global economy estimated to reach up to $15.7 trillion by
2030 [93].

Throughout its history, AI research has been branched into a variety of subfields, according
to specific goals (e.g., computer vision, robotics) and tools (e.g., Artificial Neural Network (ANN),
probabilistic reasoning) [99]. Machine Learning (ML) is one of the AI subfields, which focus on building
algorithms that allow computer systems to automatically learn and improve from experience [72].
Unlike human learning, when we discuss about a machine’s ability to learn, we are referring to finding
a mathematical formula which, when applied to a collection of inputs (training data), produces
the desired output [13]. Under this design, there are three main types of learning: supervised,
unsupervised, and reinforcement. Supervised learning trains the model with labeled data, while
unsupervised learning uses unlabeled datasets. On the other hand, reinforcement learning uses
occasional positive and negative feedback to reinforce behaviors [33].

ML was grounded on mathematical concepts, long before the emergence of computers. Since the
breakthroughs regarding Bayes’ theorem in the 18th century [5], there have been great victories in the
ML field. One of the most recent achievements was AlphaGo [107], a computer program that plays
the ancient board game Go, combining supervised and reinforcement learning.

From content filtering (e.g., e-mail spam filtering [100], fraud detection [34]) to online recommen-
dations based on user’s interests (e.g., shopping suggestions [21], targeted advertising [84]), ML
technology is present in our day-to-day life without we even noticing. Most of these applications use
a specialized form of ML called Deep Learning (DL) [60].

1

2

Inspired by the design of the human brain, DL is a technique suitable for automatically recognizing
patterns in sound, text, or images, using ANNs and a large amount of data. The term neural network
is a reference to neuroscience and indicates a set of layers that are chained together. Each layer is
composed of neurons with specific parameters (weights and biases). All networks share a common
structure, consisting of an input layer, one or more hidden layers and an output layer. ANNs are fed
data through the input layer, process that information and provide an output. During training, the
network adapts itself by updating the neuron parameters, to produce a more accurate output [60].

Depending on the network dimension, the training process may require extensive computations to
calculate and update millions of parameters in runtime. DL models also rely on large and diverse
volumes of data to improve the accuracy of their predictions. Consequently, although DL was first
theorized in the 1980s, at the time the hardware and data requirements could not be met.

When it comes to data scarcity, the rise of the Internet was the turning point, making it possible
to collect all kinds of data (e.g., image, video, natural-language datasets). Moreover, the Internet
also helped to promote data labeling (e.g., using Flickr image tags and Google reCAPTCHA service),
which is crucial for training DL models [33]. Similarly, recent advances in hardware have been
triggered by the video game industry, which required high computing power to render photorealistic
3D scenes in real-time. To address this issue, companies like NVIDIA and AMD invested billions of
dollars in developing high-performance graphics chips (GPUs) [33]. As a result of these advances,
DL has been growing at an accelerated pace, and is expected to become the most influential ML
approach [104].

There are several DL architectures, such as Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs), which have been applied in multiple domains, including computer vision
[94, 53], speech recognition [36, 39] and natural language processing [131]. With its capability of
performing predictions, DL has also been used to address real world problems, achieving remarkable
results in terms of image classification [22] and cancer detection [63], and even surpassing human
expertise when playing video games [73].

Despite being possible to develop DL solutions from scratch, there are some ANNs that turn out
to be quite challenging to implement, due to their large and detailed structure [23, 124]. Existing
DL frameworks (e.g., TensorFlow [1], PyTorch [83], Caffe [46]) abstract the underlying algorithms by
offering built-in components that ease the development of complex models and the loading of training
data. Additionally, most frameworks also support pre-trained models, allowing inexperienced users
to take advantage of DL applications. Since these tools are optimized to improve model training
performance and to efficiently manage computational resources, they provide a more productive and
safe way of using DL techniques.

Given that DL training is a time-consuming task, DL frameworks usually comprise a fault
tolerance mechanism, which allows resuming training upon failures [1, 91]. Furthermore, most
of these frameworks also provide optimized data loading features, such as TensorFlow tf.data

Application Programming Interface (API) [112] and PyTorch DataLoader class [90], since Input/Output
(I/O) represents a major bottleneck in DL training [129, 78, 88].

Although DL frameworks are widely employed by the science community, they are also of interest
for several organizations (e.g., Twitter [64], Airbus [15]).

1.1. Problem 3

1.1 problem

One of the most common obstacles in DL is overfitting [14]. This phenomenon occurs when a model
learns the details and noise of the training dataset, almost "memorizing" the data instead of learning
from it. Regardless of achieving great accuracy with the training dataset, an overfitted model does
not generalize well to unseen data. The smaller the training dataset is, the more models can fit the
data, therefore being more likely to occur overfitting [32]. Considering this, models should be trained
with large and diverse datasets [111]. Another strategy to avoid overfitting is to use shuffling [8],
which consists of reading the data multiple times in a random order, creating batches representative
of the overall dataset.

To keep pace with the increasing complexity of DNN models and accelerate their execution,
numerous advances have been made to provide enhanced computing power. From high-performance
processors (e.g., NVIDIA GPUs [125], Google Tensor Processing Units (TPUs) [47], Arm Cortex-M
Microcontrollers [108]) to fast storage devices (e.g., Non-Volatile Memory (NVM) [134], Persistent
Memory devices [43]) and low-latency networks (e.g., Mellanox InfiniBand [109], Intel OmniPath
[11]), most efforts are based on hardware improvements. Since DL model training requires significant
amounts of data, it does not only depend on computing power but also demands fast I/O. Although
advanced computing units are supposed to accelerate training, slow data loading will often keep
processors idle, extending the training time. Ultimately, if the data loading stages of the DL pipeline
are not as efficient as the computational ones, it can lead to a waste of resources.

While small datasets (e.g., CIFAR-10/100 [52], MNIST [58]) can be cached, larger ones (e.g.,
ImageNet [30], YouTube-8M [2], Open Images [56]) do not always fit in memory. Since the entire
dataset is fetched multiple times during training, in case there is not enough memory to cache all
the samples, some data must be read from backend storage systems. When it comes to random
file access, none of the storage devices (e.g., Solid-State Drive (SSD), Hard Disk Drive (HDD)) are as
fast or efficient as Random-Access Memory (RAM) [44]. Therefore, having to access backend storage
using conventional file systems (e.g., Ext4 [67], XFS [110]) adds a significant overhead to the training
process. This is even more noticeable on distributed infrastructures, such as the ones provided by
High-Performance Computing (HPC) centers, where shared file systems like General Parallel File System
(GPFS) [103] and Lustre [127] have to deal with massive concurrent I/O. For example, in one of its
research projects [135], Texas Advanced Computing Center (TACC) highlighted this issue:

"As the dataset grows larger, the metadata and data traffic of thousands of directories and millions of files can
easily saturate the existing shared file system due to the high access frequency, concurrency, and the sustained

I/O behavior."

Thus, fully training a DNN until convergence is reached is an extremely slow process that can take
days or even weeks [136]. To address this issue, DL frameworks support a variety of file systems and
take advantage of optimized data formats (e.g., TFRecord [120]) and structures (Lightning Memory-
Mapped Database (LMDB) [20]). Several frameworks also provide I/O optimizations (e.g., TensorFlow
tf.data API [112], PyTorch DataLoader class [90]) that minimize the data loading overhead. These
optimizations are embedded in the framework itself and cannot be decoupled and applied to other
frameworks. This monolithic approach demands a wide understanding about the framework internal
operation model, to be able to extend and adapt its features, causing this to be a complex and
time-consuming task.

1.2. Objectives and Contributions 4

Having multiple I/O optimizations for the same problem, generates redundant code and prevents
the sharing of efficiency gains from optimizations between different frameworks [9]. Moreover, most
I/O optimizations have to be manually configured, which requires additional time to understand
each configuration parameter (e.g., number of parallel calls, prefetch factor) and to find the optimal
configuration. Other optimizations, such as TensorFlow tf.data.experimental.AUTOTUNE feature
[113], comprise greedy provisioning algorithms that allocate resources based on the hardware capacity,
instead of taking into account the I/O requirements of the workload. Such an approach may lead to
shared file system saturation, due to excessive concurrent metadata access [19, 135, 19].

To fully address these challenges, we would require an I/O optimized framework-agnostic
middleware that provides an autotuning mechanism to determine the optimal configuration. This
strategy would prevent the user from unnecessary system tuning and waste of computational
resources.

1.2 objectives and contributions

The main goal of this dissertation is to improve the current design of I/O optimizations used by DL
frameworks. First, I/O optimizations should be decoupled from the framework itself, to improve
their extensibility (i.e., extend existing mechanisms with innovative features) and adaptability (i.e.,
to attend the requirements of diverse DL workloads). Second, due to the current monolithic design
of DL frameworks, it is increasingly challenging to reuse I/O optimizations between different DL
frameworks. As such, exporting these mechanisms outside the DL framework would also allow
them to be applied to other DL systems. Third, as several I/O optimizations require different tuning
parameters for distinct workloads and use cases, these should be self-tuned and dynamically adapted
throughout time, preventing waste of computational resources.

This dissertation proposes a novel framework-agnostic storage middleware that improves the
I/O performance of local DL applications. To achieve this, this dissertation makes the following
contributions:

• As a first contribution, we have conducted a thorough study of the I/O optimizations that
impact the performance of local DL training. Being one of the most widely used DL frameworks,
TensorFlow features an extensive range of data loading optimizations that are provided by
its Dataset API. Thus, an in-depth analysis of the TensorFlow Dataset API was carried out,
followed by its evaluation on a local setup using diverse training workloads. This study proved
that local DL applications, depending on the model used for training, can benefit significantly
from parallel I/O and data prefetching.

• As a second contribution, based on the insights of the conducted study, we propose PRISMA,
a novel storage middleware that decouples existing I/O optimizations of DL frameworks,
performing parallel I/O and data prefetching to accelerate DL training. Furthermore, PRISMA
provides an autotuning mechanism to define the number of threads used for reading data and
the size of the buffer where prefetched data is stored. This algorithm was designed to achieve
a good trade-off between the performance of DL training and resource usage. PRISMA is
framework-agnostic, meaning that it can be easily extended and applied to other frameworks,
which prevents the production of redundant code.

1.3. Document structure 5

• The third contribution of this dissertation consists of integrating a PRISMA prototype with
TensorFlow and PyTorch, proving that PRISMA design allows to apply I/O optimizations to
different frameworks and storage contexts.

• As a final contribution, we conducted an extensive experimental evaluation comparing PRISMA
with TensorFlow and PyTorch under different workloads. The experiments were carried out on
the AI Bridging Cloud Infrastructure (ABCI), as part of a collaboration that has been established
with the National Institute of Advanced Industrial Science and Technology (AIST), regarding the
optimization of storage systems to improve the performance of HPC infrastructures. The
evaluation was conducted using the ImageNet Large Scale Visual Recognition Challenge 2012
(ILSVRC2012) [98] dataset, as well as several training models, namely LeNet [59], AlexNet
[53], and ResNet-50 [38], which are classified as being either I/O-bound or compute-bound.
Results demonstrate that PRISMA outperforms the baseline version of TensorFlow by up to
54%. Additionally, it performs similarly to an I/O optimized version of TensorFlow, with the
benefit of consuming less 15% of Central Process Unit (CPU) and allocating fewer threads. When
compared to PyTorch, PRISMA achieves a performance advantage of up to 63%, for a typical
configuration with less than 8 worker processes.

1.3 document structure

The rest of this document is organized as follows. Chapter 2 surveys the basic concepts of DL as
well as the impact of the current I/O operation mode, and describes existing related work on I/O
optimizations for DL. Chapter 3 describes the preliminary study that was performed concerning
the I/O operation model of TensorFlow. Chapter 4 presents the PRISMA storage middleware,
providing both design and implementation details about the developed prototype, and describing the
integration process with TensorFlow and PyTorch. Chapter 5 provides a comprehensive experimental
evaluation conducted with PRISMA when applied to the TensorFlow and PyTorch DL frameworks.
Finally, Chapter 6 presents the final remarks of this dissertation and discusses open challenges and
prospects of future work.

2
S TAT E O F T H E A RT

Since the main topics of this dissertation concern DL, I/O optimizations, and storage systems, this
chapter surveys basic concepts of DL as well as the impact of the current I/O operation mode. We
also revisit related work on improving the I/O performance of DL applications, identifying current
problems, and explaining how does our solution differ from existing ones.

2.1 background

As previously stated in the document, DL is a technique suitable for automatically recognizing
patterns in sound, text, or images, using ANNs and a large amount of data. With this in mind, this
section clarifies what an ANN and its training process consist of, as well as describes the implications
of using small datasets. Furthermore, common techniques used to optimize DL training performance
are also presented. The content provided below can easily be skipped by readers who are already
acquainted with these subjects.

2.1.1 Artificial Neural Networks

An ANN is a model inspired on the human brain, commonly represented by a collection of inter-
connected nodes, called artificial neurons, that are organized in layers [33]. Each layer processes the
data fed into it, extracting meaningful features for the problem it is trying to solve. Therefore, all the
layers chained together implement a form of progressive "data distillation" [33]. The first layer of
a network is often called input layer and the last layer is the output layer. All layers in between the
input and output layers are called hidden layers. Neural networks with two or more hidden layers are
usually called DNNs.

Using data, a neural network is capable of training itself to produce a certain output. Figure 2.1
illustrates the architecture of an ANN with 4 layers and 14 neurons.

What a layer does to its input data is specified by a set of attributes, called parameters. Every
connection of the neural network, commonly referred to as synapse, has a weight value associated
with it that can either be a negative or a positive number. Essentially, the weight represents how
much influence the input carried by that connection will have on the output, i.e., the importance of
the input for the problem at hand. Changing an input whose weight is almost zero will not affect the
output result. On the other hand, increasing an input with negative weight will decrease the output
whereas increasing one with positive weight will do the opposite.

The output of the network is defined by an activation function. Each neuron uses this activation
function to define the output that will pass on to the next layer of neurons. These functions also

6

2.1. Background 7

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

Input 1

Input 2

Input 3

Output 1

Output 2

Figure 2.1: Architecture of an ANN.

determine whether the neuron should be activated or not, based on its inputs and parameters.
Activation functions also help normalize the output of the neurons to a certain range. Rectified Linear
Unit (ReLU) [133], Scaled Exponential Linear Unit (SELU) [50] and Hyperbolic Tangent (TanH) [132] are
three activation functions frequently used in the DL industry.

Apart from the weights, another parameter is called bias. Bias is simply a constant value that is
added to the product of inputs and weights, guaranteeing that even when all the inputs are zero, the
neuron is still going to be activated. This is used, for instance, when we want our model to return
a positive value, although it received zero as input. This parameter can be seen as an extra input
neuron, which simply stores the value ‘ 1 ’. Similarly to other neurons, each connection with the bias
neuron has its own weight. Consequently, as ‘ 1 ’ is the absorbing element for multiplication, the bias
value of each neuron will be equal to the weight of its connection with the bias neuron. Figure 2.2
details the operations that occur in one neuron of the neural network.

Outputx2

x1

x3

f (y)

1

b

 w1

w2

w3

Bias
Neuron

Input Neuron 1

Input Neuron 2

Input Neuron 3

xn Input from neuron n
wn Weight of the connection with neuron n
b Bias
f Activation function
f (y) Neuron output

Figure 2.2: Operations that occur in one neuron.

2.1. Background 8

Considering that the activation function is applied to the weighted sum of its inputs, in the above
example, y can be represented by Equation 1, where N is the number of input neurons.

y =
N=3

∑
i=1

xiwi + b = x1w1 + x2w2 + x3w3 + b (1)

2.1.2 Types of Learning

There are three main types of learning: supervised learning, unsupervised learning and reinforcement
learning.

A supervised learning algorithm maps input data (e.g., images) to known targets (also known as
labels), so the output of the model can be compared with the correct output that should be obtained
[33]. For example, supervised learning can be compared to the typical school learning process, where
a teacher informs whether the students’ responses are correct or incorrect and they learn from it.

In contrast, unsupervised learning uses only unlabeled input data and instead of learning from
targets, it finds similarities or associations between the data samples and organizes them accordingly
[33]. An analogy of unsupervised learning is when a doctor diagnoses a disease based on a patient’s
symptoms. When analyzing the similarities between what the patient described and the common
effects of the disease, the doctor is capable of classifying the patient’s situation. If instead of
concluding on his own the doctor resorted to medical exams that determined what was the patient’s
condition, this would be a case of supervised learning.

Finally, reinforcement learning finds the best possible behavior to maximize the reward in a certain
scenario, i.e., uses positive and negative feedback to determine what actions to perform [33]. As
reinforcement learning has been widely applied to video games [73, 107, 10], this is the best example
to understand how it works. When used on a game, reinforcement learning attempts to find the
actions that allow winning the game or reach the maximum score, depending on the context.

Even though there are different learning methods, the majority of applications that use DL have
adopted supervised learning [33]. As such, the following sections will be described only considering
supervised learning.

2.1.3 Training Process

The diagram presented in Figure 2.3 describes how the training process of a DL application occurs.
To understand how well an ANN can make predictions about a given dataset, a cost function is

used to measure how far the output of the ANN is from the expected one. To achieve this, the cost
function calculates the difference between the obtained predictions and the actual targets, obtaining a
value known as cost. After determining the cost, that value is used as a feedback signal to adjust
the network parameters, which is the responsibility of the optimizer (e.g., Stochastic Gradient Descent
(SGD) [96], Adam [49], RMSProp [122]). The optimizer is usually based on the Gradient Descent
algorithm, consisting of an algorithm that is used to determine the weights and biases that minimize
the cost function. Until finding the optimal parameter values, the optimizer repeatedly computes the
gradient that relates changes in the network parameters to changes in the cost function, and uses
that gradient to find the minimum of the cost function [76]. Backpropagation [97] is the method

2.1. Background 9

Predictions

Targets

Data Cost
Function

Cost

OptimizerWeights

Figure 2.3: DL training process.

employed by the optimizer to efficiently compute gradients, propagating the cost value backward
from the output layer to the input layer.

At the beginning of the training process, the network parameters are assigned random values.
Therefore, at an early stage, most of its predictions will be wrong, presenting a high cost value. As
the network is being trained, i.e., as more samples are processed, the parameters are updated and the
cost decreases, improving the quality of the predictions. Accordingly, a trained model is a network
with a minimal cost, which outputs are as close as possible to the targets [33].

When the dataset used to train the model is so large that there is not enough memory to compute
the gradients, it is divided into smaller batches. A batch consists of a subset of samples taken from
the training dataset. Usually, before training, a batch size is defined, indicating the total number
of training samples present in a single batch. The process of passing the entire dataset through
the network is called a training epoch. Taking this into account, the number of iterations is equal to
the number of batches required to complete an epoch. To clarify this terminology, with a dataset
composed of 5000 samples and a batch size of 100, each epoch would need 50 iterations to go through
all the samples. In addition, the batch size also specifies the number of samples to process before
adjusting the network parameters, hence the parameters are updated at the end of each iteration.
The batch size and the number of epochs used in the training process are configurations external to
the model whose value cannot be estimated from data, therefore they are called hyperparameters.

2.1.4 Avoiding Overfitting

As mentioned in Section 1.1, when the training conditions are not the most adequate, a phenomenon
called overfitting may occur. Overfitting happens when a model "memorizes" the data instead of
learning from it, not generalizing well for new and unseen data. On the other hand, underfitting is
also a problem characterized by extremely simple models, which have negligible variance in their
predictions and exhibit high bias towards wrong outcomes. Figure 2.4 exemplifies the difference
between overfitting, underfitting and appropriate fitting. The batch size, the number of epochs and
the training data are some of the elements that may cause the model to overfit.

There is no ideal number of epochs or batch size to choose for all scenarios. In fact, these
hyperparameters must be selected taking into account the dataset used. However, poorly chosen

2.1. Background 10

Underfitting Appropriate fitting Overfitting

Figure 2.4: Difference between overfitting, underfitting and appropriate fitting.

configurations may cause overfitting. There are certain factors that must be considered when selecting
a dataset, since the quality of the training data is crucial to the success of the model predictions.
First of all, training data must be diverse to cover as many cases as possible, and it must also be
sufficient so the model can learn from it. As a result, small datasets generally are not the best option
for training a neural network. On the other hand, larger datasets usually do not fit in memory, being
necessary to collect training data from the backend storage system during training. Apart from this,
especially when the data is sorted by their class/target, data shuffling is required to obtain batches
representative of the overall dataset. To guarantee that no sequence of samples is repeatedly used
across many iterations, the dataset must be shuffled at the end of each epoch. Specially when the
dataset is composed of small samples, fetching shuffled data is one of the most costly processes of
DL training, since traditional storage systems are designed for large and sequential reads rather than
small and random ones. Ideally, shuffling should be performed using the entire dataset (i.e., global
data shuffling), otherwise the accuracy of the model may be affected.

In summary, although large and diverse datasets must be used to train neural networks, frequently
accessing the backend storage system adds a substantial overhead to the training process. The same
applies to the shuffling mechanism, which is essential to prevent overfitting.

2.1.5 Parallel Deep Learning Training

DNN training can be parallelized using two approaches: data parallelism or model parallelism. Data
parallelism is often used when the dataset is considerably large, i.e., when there is a large number
of batches to process [51]. To speed up the training process, every compute node trains the full
model (i.e., all parameters) with a different portion of the batch. At the end of each iteration, the
compute nodes have to synchronize and communicate with each other, in order to estimate the
average gradient with respect to the whole batch [7]. This process causes communication overhead,
possibly impacting training performance [51].

When the DL model has numerous layers and parameters, being too large and complex to fit in
the GPU memory, it is common to resort to model parallelism [29]. Model parallelism involves the
partition of the neural network across multiple compute nodes. However, unlike data parallelism,
with this method all nodes use the same training batch.

Figure 2.5 describes the two ways of parallelizing training, data parallelism (top) and model
parallelism (bottom).

2.1. Background 11

Node 1 Node 2 Node 3

Data Parallelism

Node 1 Node 2 Node 3

Model Parallelism

Figure 2.5: Data and model parallelism for DNN training.

Given that when using model parallelism each compute node sits idle waiting for data from
previous nodes, there is no actual parallel computation. On the contrary, with data parallelism each
node performs training simultaneously. Given this, and since data parallelism scales better for CNNs
than model parallelism [51], the former approach is currently supported by the vast majority of DL
frameworks [7].

2.1.6 Optimized Data Formats

DL frameworks resort to optimized data formats and structures, such as TFRecords [120], Hierarchical
Data Format version 5 (HDF5) [121], and LMDB [20], to improve the I/O performance of DL training.
Optimized data formats allow multiple samples to be grouped into a single file, promoting sequential
I/O to large files. Since traditional file systems are designed for large and sequential reads rather
than small and random ones, training a model using optimized formats achieves significantly higher
performance than using raw image files [62].

While LMDB and HDF5 were not specifically designed for DL, the TFRecord file format was
created by TensorFlow [1] as its own binary storage format. Binary data can have a positive impact
on training performance since it takes less space to store and can be accessed faster. Nevertheless,
using TFRecords also has downsides. To benefit from TFRecords it is necessary to convert the dataset
to this format in the first place. A TFRecord is a large batched file with several training samples
inside, which allows performing large sequential I/O. However, when the dataset does not fit in
memory, using TFRecords may have a negative impact on the accuracy of the model, since it prevents
from performing global data shuffling. This happens due to the fact that TensorFlow uses a buffer to

2.2. Related work 12

shuffle data, causing the buffer size to be a limiting factor. If the size of the shuffle buffer is not large
enough, only partially shuffled samples are obtained [138].

LMDB consists of a B+ tree based Key-Value (KV) storage, while the HDF5 file format makes
it possible to store multiple samples in a single file. Although LMDB and TFRecord have similar
performances [37], HDF5 falls slightly behind when compared to LMDB [62].

2.2 related work

According to the vision for storage research conducted in 2018 [4], the growing demands of AI
workloads need to be met by more complex and efficient storage technologies. In this regard, there
has been a number of storage solutions to improve the performance of AI applications [61, 68, 102, 48],
however only a few of them focus on a major performance issue: reading large amounts of random
data.

2.2.1 Storage I/O Performance Studies

To understand what may be preventing DL training from being more efficient, several studies have
been conducted concerning the I/O performance and scalability of DL applications. These studies
approach both local and distributed setups, and are mainly focused on HPC environments.

I/O performance of DL applications

Recent studies have shown that the I/O performance of DL applications is non-negligible and can
easily become the bottleneck, especially in single node scenarios [129, 78, 88].

According to Han et al. [37], during training the GPU utilization increases with the number of
layers of the DL model, whereas the throughput decreases. The larger the parameter size of a model,
the more expensive is the communication between the processing units, given that more data has to
be transferred, and a higher percentage of GPU is used.

Han et al. [37] compare the performance of Lustre parallel file system [127] to a local Non-Volatile
Memory Express (NVMe) storage drive. Both storage solutions experienced similar performances while
training DL models with the same dataset, yet NVMe can slightly enhance the training throughput
of DL models where computational overhead is not significant. This can be justified by the fact that
Lustre is accessed by multiple nodes and might create a network bottleneck with the increasing
number of I/O requests. NVMe SSDs are local to each node, so there is no network overhead.

In terms of scalability, training performance improves when increasing the number of GPUs on
each node. Nonetheless, this only happens to a certain extent, as eventually, the communication
overhead between the participating GPUs outweighs the benefits of parallelizing training [37].

A performance characterization of DNN training using TensorFlow and PyTorch [83] was also
carried out in [45]. The experiments showed that the training throughput does not increase linearly
with the batch size and that, generally, increasing the number of worker processes and batch size has
a positive effect on performance. As a result, Jain et al. [45] suggest to use multiple processes even
with a single node setup. Furthermore, in all the conducted experiments, PyTorch outperformed
TensorFlow.

2.2. Related work 13

Analysis of data formats

Training DNNs with raw image files on local file systems revealed to be a major disadvantage [62],
especially when compared to storage solutions with efficient indexing and caching strategies, such
as the LMDB KV store [20]. On the other hand, the TFRecord file format [120] and LMDB KV store
have very similar performances on Lustre file system [37].

Surprisingly, with LMDB the read time, process sleep time, and number of context switches all
increase with the number of application processes [88]. Thus, using LMDB with a multi-processing
approach might lead to performance degradation [88].

I/O characterization of TensorFlow

A study about the I/O performance of TensorFlow was also conducted in [17], showing that
increasing the number of parallel I/O threads also increases the bandwidth utilization for file
ingestion, regardless of storage drive or storage system (e.g., HDD, SSD, Intel Optane, Lustre file
system). Moreover, increasing the batch size reduces the execution time due to a higher utilization of
the GPU. Overlapping I/O and computation using prefetching generally increases the number of
bytes read. However, for more efficient storage devices, the benefits of this technique are less obvious,
as a consequence of its high I/O ingestion rate.

While assessing the performance of BeeGFS [6], some important observations were drawn about
TensorFlow [19]. TensorFlow helps optimize file read time by lessening the read access size, however
the metadata overhead remains high, because the files are required to be opened anyway. Additionally,
the total amount of data read increases proportionally with the number of processes involved in the
application, consequently increasing the bandwidth. As the number of nodes rises, although read
time suffers a minor decrease, the metadata operation latency grows considerably, preventing the
training performance from scaling with the number of nodes. This being said, metadata handling
represents the main bottleneck of TensorFlow input pipeline. It is also important to keep in mind
that a massive amount of small reads eventually impairs the overall throughput of the file system.

2.2.2 Storage I/O Optimizations

Given that I/O represents a major bottleneck in DL training, several solutions have been developed to
address this issue. Therefore, below will be presented existing state of the art optimizations designed
to improve the I/O performance of DL applications. Despite the focus of this dissertation being local
DL training, we also discuss optimizations for distributed scenarios that are worth mentioning.

Data loading pipeline

A commonly used optimization consists of overlapping I/O and model computation by introducing
a data loading pipeline in the training process.

Serizawa and Tatebe [105] developed a method that extends the MultiprocessIterator class of
the Chainer framework [123], by introducing a pipeline with three stages: generating index lists,
prefetching data, and generating mini-batches. Each index presented in the index list refers to a
sample that will be part of the mini-batch. At the prefetching data stage, the samples in the index list

2.2. Related work 14

are retrieved in parallel by multiple processes from the shared storage and placed in the local storage.
At the generating mini-batches stage, the samples are read from local storage and a mini-batch
is created. In the first and second stages, the index lists are queued to be processed in the next
stage and, at the generating mini-batches stage, the resulting mini-batch is placed in a queue to be
consumed for model training. Despite the fact that this solution outperforms reading the dataset
directly from Lustre using Chainer standard class, it cannot be applied to other DL frameworks.

DeepIO [137] also uses a pipeline to overlap data loading and training. However, this framework
was designed for large-scale DL on HPC systems, so it is more focused on scenarios where there are
multiple compute nodes, each storing a subset of the training data. To define which samples will be
part of the next mini-batch, DeepIO uses a method called Entropy-aware Opportunistic Ordering (EOO).
To reduce access to the storage system, EOO uses only samples that are available in an in-memory
cache. If the total memory available in all compute nodes is much smaller than the training dataset,
this mechanism can affect the randomization level of the mini-batches, having a negative impact
on the accuracy of the model. In general, the DeepIO API has better performance than TensorFlow
Dataset API [137]. Nevertheless, DeepIO was implemented as a prototype over TensorFlow, and
although it achieved promising results with this framework, its applicability and success with other
DL frameworks are not guaranteed to be the same.

AIStore [3] is a storage system that provides a Representational State Transfer (REST) interface to
read and write data, relying on Hypertext Transfer Protocol (HTTP) redirects and sharded datasets to
achieve high I/O performance. Once again, this storage system features an integrated data processing
pipeline, only this one can be executed directly on storage, while posting tensors via Remote Direct
Memory Access (RDMA) into GPU memory. A storage format, called WebDataset, was also defined
so that the adoption of sharded sequential storage would be faster. WebDataset is supported by a
Python library that provides a replacement for the built-in PyTorch Dataset class. While training
PyTorch-based ResNet-50 [38] models, AIStore performs worse than reading data directly from a
local SSD [3]. Moreover, AIStore was only tested with PyTorch, being unknown its impact on other
DL frameworks.

Parallel I/O

Many storage solutions focus on parallelizing I/O to maximize throughput performance, therefore
improving data reading efficiency.

PyTorch DataLoader class [27] uses concurrent background worker processes to load multiple
batches in parallel, however within the loading of a batch the individual samples are preprocessed
sequentially by a single thread. Given this, the PyTorch DataLoader implementation was modified
so that each background worker used multiple threads to preprocess samples in parallel [130]. The
experiments performed using this method with different worker/thread combinations when loading
the ImageNet dataset [98] show that, in general, using more threads and workers increases the data
loading rate. Despite this, with 8 or more workers, increasing the number of threads beyond 4 has no
effect on the data loading rate [130]. It is important to mention that during these experiments no
training was performed, only data loading. Since this technique was implemented on PyTorch, it
cannot be applied to other DL frameworks.

Although TensorFlow allows concurrent processing of multiple input files using its map operator,
HDF5 [121] serializes all operations, inhibiting parallel executions. To overcome this problem, the

2.2. Related work 15

multiprocessing Python module was used to enable the concurrent preprocessing of multiple input
files [55]. Although it appears to be effective in improving the reading performance of DL training
files, when using other data formats than HDF5 this optimization is not necessary.

LMDBIO [88] is a plugin designed for optimizing the LMDB KV store for DL. Despite the fact
that LMDBIO provides some innovative strategies (e.g., speculative parallel I/O, I/O staggering,
shared-memory buffers) to take better advantage of I/O parallelism, it was specifically implemented
for LMDB, so it cannot be used when the dataset is stored in other data structure or format.

Replace I/O requests

Discarding delayed I/O requests or replacing them for data that is already available in memory is
also used to improve the training performance of DL workloads.

Quiver [54] is a distributed cache for DL training that reuses data across multiple jobs and users
operating on the same dataset. This storage solution dynamically prioritizes cache allocation to
jobs that benefit the most from caching. To achieve this, Quiver uses controlled probing to measure
the performance of DL jobs with and without caching. In addition, Quiver employs a technique of
replaceable cache hits that allows taking more advantage of the cache content, providing thrash-free
caching. Quiver partitions the datasets into a fixed number of chunks. Even though the chunking of
a dataset ensures randomness of the data within each chunk, this may not be sufficient to prevent
the model from overfitting. Also, Quiver requires an additional processing step before initiating the
training phase for partitioning the datasets. When training the ResNet-50 model, Quiver can achieve
better performance compared to reading data from the remote Azure storage blob [69]. Despite that,
Quiver is implemented in PyTorch and its effect on other DL frameworks is unknown.

Apart from Quiver, another proposed I/O optimization consists of mitigating the effect of I/O tail
latency, by monitoring I/O requests of DL applications and discarding the delayed ones [79].

Data echoing

Data echoing [18] consists of reusing intermediate outputs from earlier data pipeline stages in order
to reduce the upstream computation. To use data echoing an extra stage needs to be added to the
pipeline, repeating data from the previous stage. Data echoing is only efficient if placed after a low
performance stage so, to take advantage of this strategy, it is first necessary to identify the major
bottleneck of the pipeline. When using data echoing there can be duplicate samples in each batch,
possibly leading to model overfitting. To reduce the probability of duplicate samples, the amount of
shuffling can be increased for echoed samples, at the cost of additional memory.

Based on the experiments that were conducted in [18], when training the ResNet-50 model with
ImageNet, performing batch echoing actually requires more fresh samples (i.e., dataset samples read
from disk) than the baseline version with no data echoing. This may delay the training process,
contrary to what would be expected. In addition, data echoing can only be applied to DL frameworks
that support flexible data loading pipelining.

Transfer data directly to GPU

An alternative strategy to improve the I/O performance of DL workloads consists of reducing the
data path from storage to GPUs [57]. This strategy uses GPUDirect RDMA [35] to reduce the CPU

2.3. Summary 16

involvement and the latency of the system by allowing the GPU to read data directly from storage.
To achieve this, a Data tracking tool (DTT) that provides the data pointers for each training iteration
was developed. DTT allocates memory on the GPU to store the batches that are going to be used in
future iterations.

During each training iteration several memory transfers are performed between the host and the
GPU, which can interfere with the memory copies orchestrated by DTT. This interrupts training
until the memory copy is finished, delaying the process. Additionally, two memory copies cannot be
executed simultaneously, even if submitted by different streams. Using DTT with large batch sizes
may also decrease performance, due to saturation of the GPU. Aside from this, when using DTT, no
data preprocessing can occur online, requiring some extra time and storage space to perform the
preprocessing beforehand.

According to [57], when comparing Caffe using DTT with its original version, the former provides
more than a 2× speed up than the latter. However, in the version with DTT there was no online
preprocessing, which practically justifies the performance improvement obtained, since the original
version had the overhead of preprocessing data during training. Identical to other solutions, this one
was also based on a specific framework, Caffe, so its impact on other DL frameworks is unknown.

Metadata Management

The larger the dataset used for training, the more metadata needs to be handled. Metadata manage-
ment proves to be a problem in distributed setups where high access frequency and concurrency
can easily saturate a shared file system [135]. In particular, several parallel file systems, such as
Lustre, are designed with a centralized metadata server (replicated for availability) and multiple
storage servers. Because the metadata server comprises the namespace of the file system, all metadata
requests are destined towards it. This causes the metadata server to receive thousands to millions
of requests per second, thus representing a major point of contention [127]. To address this issue,
numerous solutions provide efficient metadata management by maintaining a copy of the file system
namespace [135, 138] or a metadata snapshot [128] in each compute node. Nevertheless, such an
approach may require specific hardware support and custom design for certain applications and
computing environments.

2.3 summary

Before analyzing the storage optimizations implemented within the scope of DL, it is necessary to
understand that a neural network is composed of several layers that have parameters associated
with them. These parameters define the behavior of the network and need to be updated to improve
the quality of the model predictions. The training stage consists of processing training samples
repeatedly and adjusting the network parameters according to a cost function.

One of the most common obstacles in DL is overfitting. This phenomenon can have multiple
causes, however using a large and diverse dataset and shuffling the dataset before each training
epoch may prevent the issue. Since training complex models with large datasets is a time-consuming
task, numerous techniques can be applied to improve DL training performance, such as adopting
optimized data formats (e.g., TFRecord, LMDB) and using data or model parallelism.

2.3. Summary 17

Multiple studies have been conducted focusing on the performance and scaling of DL applications
[37, 45, 129, 78, 88], which prove that I/O can easily become the bottleneck of DL training. Other
studies analyze the I/O performance of TensorFlow [17, 19] and LMDB [88], as well as present its
scalability limitations. There is also some research about specific data formats, showing that training
DL models with raw image files has a major impact on performance [62].

Data prefetching [105] is one of the I/O optimizations applied in I/O-bound DL workloads.
However, this strategy is only effective if the reading and preprocessing of data are faster than
computation. Moreover, parallelizing I/O operations also revealed to be efficient in speeding up the
training process [88, 130, 55], although the number of concurrent threads/processes may be limited
by the underlying backend storage.

Other optimizations concern data loading pipelining [105, 3, 137], data echoing [18], discarding
[79] or replacing [54] delayed I/O requests, transferring data directly to the GPU [57], and efficiently
managing metadata [135, 138, 128]. Nevertheless, all these strategies present drawbacks.

Most of the optimizations already proposed are specific to certain DL frameworks [105, 130, 55, 57]
or data formats [3, 88], and can cause model overfitting [137, 79, 54, 18]. Other solutions are
designed for scenarios where data is stored in a shared file system, not having an impact on the I/O
performance of local data storage [135, 138, 128]. Additionally, it is often difficult to configure storage
solutions to obtain the best performance possible, without wasting computational resources (e.g.,
memory, CPU), especially for DL users who are less familiar with storage. Therefore, it is necessary
to find a solution that is agnostic of the DL framework and data format used, that does not interfere
with the model accuracy, and that is capable of automatically selecting the optimal configuration.

3

P R E L I M I N A RY S T U D I E S

TensorFlow [1] is a widely used DL framework, being employed in several sectors, such as healthcare
[85], social networks [139], and e-commerce [12]. Due to its vast adoption, TensorFlow is one of
the most I/O optimized DL frameworks [17]. As such, to understand if local DL training could
benefit from improved I/O performance, this chapter presents a thorough analysis and evaluation
of TensorFlow tf.data.Dataset API [113]. The experiments were performed in a local setup using
diverse training models, comprising both I/O-bound and compute-bound workloads.

3.1 tensorflow dataset api

TensorFlow tf.data.Dataset API allows to create efficient input pipelines. Inside a TensorFlow input
pipeline occur multiple I/O operations, known as transformations, that involve reading and further
preprocessing of training data. As these transformations can be performed by different threads while
computation is being handled by the GPU, TensorFlow input pipeline accomplishes the so-called
overlapping of I/O and computation [17, 137]. We now present three main transformations of the
input pipeline, namely prefetch, interleave and map. Furthermore, we also describe the autotuning
algorithm of the TensorFlow input pipeline, that is used to configure the transformations’ parameters.

3.1.1 Prefetch

One of the TensorFlow’s input pipeline transformations is prefetch [117]. This transformation is
performed by a background thread that fetches data from the previous pipeline operation and stores
it in an in-memory buffer. This buffer uses a double-ended queue implementation so that while the
prefetcher thread is buffering elements on one end of the queue, an iterator is consuming those
same elements on the other end of the queue (i.e., similar to a producer-consumer model). As data is
being removed from the buffer, the prefetcher thread is notified, restoring these elements as soon as
data is available from the upstream operation. This allows later elements to be prepared while the
current element is being processed. As a result, prefetch can improve latency and throughput, at
the cost of using additional memory to store prefetched elements [113]. Usually, prefetch should be
executed at the end of the input pipeline, so that there are always batches in the buffer ready to be
consumed by the GPU. This prevents the GPU from having to waste time requesting batches to the
CPU, every time it finishes a training step.

The size of the internal buffer of the prefetch transformation can either be manually set by the
user or automatically tuned by the system using the autotune feature, which will prompt tf.data to

18

3.1. TensorFlow Dataset API 19

tune the value dynamically at runtime [112]. Autotune can be enabled by setting the buffer_size

argument to tf.data.experimental.AUTOTUNE.
To avoid unnecessary processing of elements, prefetch uses a variable called slack_period that

determines how long the thread will sleep before prefetching another element. The slack_period

is based on the time that an element takes to be consumed by the GPU since it was placed in the
buffer. As a result, the slower the elements are being consumed, the greater the slack_period will be,
and the longer the thread will wait until it prefetches another element, therefore preventing wasting
resources [87].

3.1.2 Interleave

Another important transformation of the input pipeline is interleave [115], which maps a function
across the dataset and interleaves the result. Typically, this transformation is used to load training
data. To help understand how interleave works, let us assume that: a dataset is composed of
multiple input elements and each of these consists of several records. Among others, interleave
uses the following arguments:

CYCLE_LENGTH Number of input elements that will be processed concurrently (i.e.,
number of input elements whose results will be interleaved).

BLOCK_LENGTH Number of records to interleave from each input element before cycling
to another input element.

NUM_PARALLEL_CALLS Level of parallelism used to process the input elements.

Figure 3.1 shows a high-level example of how interleave operates, based on the examples
provided in the interleave documentation [115].

Dataset

Element A Element B

Element C Element D

A1 A2 A3

A4 A5 A6

B1 B2 B3

B4 B5 B6

C1 C2 C3

C4 C5 C6

D1 D2 D3

D4 D5 D6

Dataset

 Dataset.interleave(cycle_length=2, block_length=3)

A1 A2 A3

B1 B2 B3

A4 A5 A6

B4 B5 B6

C1 C2 C3

D1 D2 D3

C4 C5 C6

D4 D5 D6

Figure 3.1: Interleave high-level example.

The number of interleave cycles depends on the number of input elements and on the cycle_length:

#cycles =
#elements

cycle_length
(2)

3.1. TensorFlow Dataset API 20

In the example presented in Figure 3.1, two interleave cycles were performed, one to interleave the
records of elements A and B, and another for elements C and D.

If num_parallel_calls is set to None (default value) then sequential interleave [42] will be performed.
On the other hand, if num_parallel_calls is set to 1 or more (or to tf.data.experimental.AUTOTUNE),
parallel interleave [81] will be executed instead. With sequential interleave the elements are synchronously
fetched by a single thread. In contrast, parallel interleave loads elements concurrently using multiple
threads. Similarly to prefetch, interleave supports an autotune feature that delegates the decision
about what level of parallelism to use to the tf.data runtime [112]. The autotune feature can be
enabled by setting num_parallel_calls to tf.data.experimental.AUTOTUNE.

In addition to the number of threads defined by num_parallel_calls, referred to as current_wor-

kers, parallel interleave allocates 2× cycle_length background threads, known as future_workers.
The future_worker threads are responsible for prefetching the first 2× block_length + 1 consecutive
records of each input element, while the current_worker threads fetch the remaining records of
the input elements. Moreover, future_workers store the prefetched elements in a future_elements

buffer. As new interleave cycles start, future_elements are moved to a current_elements buffer,
to be processed by current_workers. Usually, the input elements are composed of a large number
of records, so while a current_worker is expected to be executing constantly, a future_worker is
expected to be short-lived since it only reads a few initial records. The purpose of prefetching
future cycle elements is to overlap expensive initialization (e.g., opening of a remote file) with other
computation [81].

The argument num_parallel_calls controls the maximum number of current_workers that can
be processing concurrently at any given moment. If autotune is enabled, then a maximum of
cycle_length threads can be executed concurrently. Given this, with parallel interleave the maximum
number of parallel threads is given by the following equation:

max_parallelism = 2× cycle_length + min(cycle_length, num_parallel_calls) (3)

With 2× cycle_length being the number of future_worker threads and min(cycle_length, num_pa-
rallel_calls) the number of current_worker threads. Consequently, Equation 3 also represents the
maximum number of concurrent reads that parallel interleave may perform at a given moment.

3.1.3 Map

The map transformation [116] is very similar to interleave, in a way that it also applies a user-defined
function to each element of the dataset, however it does not interleave the result. There are two
implementations of map, sequential map [66], which processes elements sequentially, and parallel map
[82], which processes multiple elements simultaneously. Parallel map also performs prefetching
by storing the results of the parallel invocations in an internal buffer until they are consumed by
the next pipeline stage. The size of the buffer used by parallel map is determined by the level of
parallelism. As with interleave, when using map the num_parallel_calls argument can be set to
tf.data.experimental.AUTOTUNE. While interleave is often used to parallelize I/O, map is used to
preprocess training data.

3.1. TensorFlow Dataset API 21

3.1.4 Autotuning

When using prefetch with the autotune feature enabled, the buffer size is tuned using a legacy
implementation that increases the buffer maximum size up to a (predefined) threshold [86]. However,
parallel transformations (e.g., parallel interleave, parallel map) use a more sophisticated autotuning
technique, that adapts the level of parallelism and the size of the internal buffers used by each
transformation. To achieve this, tf.data gathers runtime information about each input pipeline
transformation, which is later used to divide the available CPU across parallel transformations. The
tuning process is performed periodically by a background task, that minimizes the input pipeline
latency using an analytical model of its performance, while taking into account the CPU and RAM
budget constraints [74]. Initially, the background task is executed every 10 milliseconds, and over time
this interval increases up to a 60 second threshold, using exponential backoff [75]. After performing
the background task, the results are propagated to the actual running pipeline. Naturally, different
executions of the background task can result in different levels of parallelism and buffer sizes, for
each input pipeline transformation.

3.1.5 Input Pipeline

So that the operation model of the TensorFlow input pipeline can be better understood, Figure 3.2
presents a high-level example of an input pipeline. In this example, each element is a TFRecord
composed of 2 records, and each record corresponds to an image.

Images

Batch1

Batch2

Batch3

Batches
Prefetch
Buffer

Shuffled
Filenames

path/to/tfrecordC
path/to/tfrecordA
path/to/tfrecordD
path/to/tfrecordB

Filenames

path/to/tfrecordA
path/to/tfrecordB
path/to/tfrecordC
path/to/tfrecordD

Records

C1

A1

C2

A2

D1

B1

D2

B2

Shuffled
Records

Batch2
imgC1 imgD1 imgA1

Batch3

imgC2 imgB1

Batch1
imgA2 imgB2 imgD2

imgA2

imgB2

imgD2

imgC1

imgD1

imgA1

imgC2

imgB1

C1

A1

C2

A2

D1

B2

D2

B1

1 2 3 4 5 6 7
Shuffle Interleave Shuffle Map Batch Prefetch

Figure 3.2: TensorFlow input pipeline example.

Apart from prefetch, interleave, and map, TensorFlow input pipeline also provides the shuffle

[119] and batch [114] transformations. As the name implies, the shuffle transformation shuffles the
dataset elements, and the batch transformation groups the elements into batches of a certain size.
Briefly, the stages represented in the example are the following:

3.2. Evaluation 22

1. The input pipeline receives a list of filenames corresponding to the TFRecords containing the
training samples.

2. The filenames are then shuffled.

3. The TFRecords are read and its internal records are interleaved with a block_size of 1 and a
cycle_length of 2.

4. The records are shuffled.

5. The records are preprocessed (i.e., decoded, cropped, flipped, and resized) using the map

transformation, resulting in the respective images (and labels, although not represented in the
example).

6. The records are grouped into batches with a size of 3 (except for the last batch, which stores
the remaining elements [114]).

7. Finally, the batches are prefetched and stored in a prefetch buffer.

Since prefetch is the last transformation of the example input pipeline, after being prefetched, the
batches are consumed by the GPU.

For simplicity, the repeat [118] transformation was not represented in the example input pipeline.
This transformation is usually placed after record shuffling, in order to repeat the dataset for the
number of training epochs. The input pipeline presented in Figure 3.2 resembles the one employed
in the TensorFlow Custom Training Loop (CTL) implementation for ResNet-50 [95].

3.2 evaluation

To understand the impact of I/O optimizations in local DL training, we conducted a thorough experi-
mental evaluation of the TensorFlow framework. In this section we will present the methodology
used to perform the experiments as well as discuss the obtained results.

3.2.1 Experimental setup

All experiments were carried out on a single compute node of the ABCI supercomputer. The ABCI
supercomputer, hosted and managed by the AIST research center, is designed upon the convergence
between AI and HPC workloads. Table 1 depicts the hardware and software specification of the
compute node.

The evaluation was performed using the ILSVRC2012 [98] dataset, which is composed of approxi-
mately 144 GB of images. To ensure that the entire dataset would not fit in memory, we used the
Linux Control Groups (cgroups [16]) to limit the Python process that executed TensorFlow to 64 GiB
of memory. Additionally, the overall system resources and GPU utilization were observed using dstat
[31] and nvidia-smi [77], respectively.

3.2.2 Models

According to Sarkar [101], the LeNet [59] and AlexNet [53] networks have high demands in terms of
read throughput, while ResNet-50 [38] requires an intensive computing power. These networks have

3.2. Evaluation 23

Table 1: Specifications of the evaluation environment.

Item Description

CPU
2× Intel Xeon Gold 6148 Processor

2.4 GHz, 20 Cores (40 Threads)
GPU 4× NVIDIA V100 for NVLink 16 GiB HBM2

Memory 384 GiB (12× 32 GiB) DDR4 2666 MHz RDIMM
Disk Intel SSD DC P4600 1.6 TB u.2

Kernel version 3.10
OS CentOS 7.5

File system XFS
TensorFlow version 2.1.0

CUDA Toolkit version 10.1.243
Python version 3.6.5

GCC version 7.4.0

different levels of complexity, considering their number of layers and parameters. Although ResNet-
50 has more layers, AlexNet is the one with the most parameters among the three networks. By
contrast, LeNet is the least complex network, with fewer layers and parameters. As such, these three
models were used to perform the evaluation, with LeNet and AlexNet providing an I/O intensive
workload (i.e., I/O-bound), and ResNet-50 a compute intensive workload (i.e., compute-bound).

3.2.3 Dataset

The models were trained with the ILSVRC2012 dataset, which is a subset of ImageNet [30] that
includes 1.28 million images (approximately 138 GB) for training and 50 thousand images (approxi-
mately 6 GB) for validation, distributed across 1000 classes. On average, each ILSVRC2012 image
contains 115 KB.

The evaluation was conducted using TensorFlow CTL implementation for ResNet-50, which at
the time of the evaluation required the dataset to be converted to the TFRecord format. After the
conversion, the dataset is composed of 1152 TFRecords (1024 for training and 128 for validation),
each with an average size of 135 MB, and has a total size of approximately 144 GB. During the
experiments, the dataset was stored in the local NVMe SSD disk of the compute node.

It is important to mention that LeNet was designed to recognize high-dimensional patterns with
minimal preprocessing, such as handwritten characters [59]. Consequently, to perform this study,
the LeNet network had to be adapted so that it could be trained with the ILSVRC2012 dataset. The
modifications involved using RGB images instead of grayscale, and changing the dimension of the
input samples from 32× 32 to 224× 224 pixels.

3.2. Evaluation 24

3.2.4 TensorFlow Input Pipeline

Among others, the input pipeline used in TensorFlow CTL implementation for ResNet-50 executes
the following transformations:

1# Fetch TFRecords

2dataset = dataset.interleave(tf.data.TFRecordDataset,

3cycle_length=10,

4num_parallel_calls=tf.data.experimental.AUTOTUNE)

5

6# Preprocess samples

7dataset = dataset.map(lambda value: preprocess(value),

8num_parallel_calls=tf.data.experimental.AUTOTUNE)

Listing 3.1: TensorFlow input pipeline transformations for ResNet-50.

Both transformations have its autotune feature enabled (Section 3.1.4). In the case of interleave,
this means that parallel interleave is conducted. Considering that parallel interleave performs both
parallel I/O and data prefetching, this represents the I/O optimized version of the TensorFlow input
pipeline used in the experiments, which will be referred to as TF optimized. In contrast, a baseline
version that performs sequential I/O and no data prefetching was also evaluated. To ensure this, we
set the interleave num_parallel_calls argument to None. The baseline version of the input pipeline
will be referred to as TF baseline.

The prefetch transformation was disabled in all experiments, since it caused TensorFlow to be
silently killed after a few number of epochs, due to the cgroups memory restriction.

3.2.5 Results

For all experiments, we analyzed the impact of the I/O optimizations on the model training time
and overall resource usage. Moreover, we also inspected the number of concurrent reads performed
by parallel interleave. The experiments performed consisted of training LeNet, AlexNet and ResNet-50
on ILSVRC2012 converted to TFRecords. The train was conducted for 10 epochs, with a batch size
of 256. To train with the 4 GPUs available on the compute node, tf.distribute.MirroredStrategy
[71] was used. As this strategy divides the batch across all GPUs, each GPU trained with a batch
size of 64. For each experiment were performed 5 runs. Reported results represent the average and
standard deviation of each metric. It is important to mention that the CPU usage presented in this
section corresponds to the sum of the user-level (application) and the system-level (kernel) usage.

Training Time

Figure 3.3 depicts the training time of the TF baseline and TF optimized versions of the input pipeline,
for each training model. According to the results obtained, using the TF optimized version of the
input pipeline has a positive impact on all I/O intensive models, in terms of training time. Since
ResNet-50 is a compute intensive model, during its training the GPU computation is the bottleneck.

3.2. Evaluation 25

Consequently, ResNet-50 practically does not take advantage of the optimized I/O performance. On
the other hand, under the TF optimized version, LeNet and AlexNet improve their training time by
67% and 62%, respectively, when compared to the TF baseline version. This is due to the fact that
they are I/O-bound models, therefore decreasing data reading time improves the overall training
performance.

The obtained results prove that local DL training with I/O intensive models can, in fact, benefit
from I/O optimization.

0

2000

4000

6000

8000

10000

12000

LeNet AlexNet ResNet-50

Tr
ai

ni
ng

 ti
m

e
(s

)

Model

TF baseline TF optimized

Figure 3.3: Training time of the LeNet, AlexNet, and ResNet-50 models under the baseline and
optimized versions of the TensorFlow input pipeline.

Resource Usage

To evaluate the impact of parallel I/O and data prefetching on resource usage, we measured the
average disk read throughput and CPU, GPU, and memory utilization for all testing scenarios. Disk
write throughput was not included, since the only write operations performed by TensorFlow are
related to the fault tolerance checkpointing mechanism, which is not affected by the I/O optimizations
that are being studied. Figures 3.4 to 3.7 depict the resource usage of both TensorFlow baseline and
optimized versions, for the LeNet, AlexNet, and ResNet-50 models.

As it would be expected, the I/O optimizations significantly increase the read throughput and
GPU usage of the I/O-bound models, contrary to what happens with ResNet-50. This increase on
the throughput and GPU usage reflects in a decrease of training time, justifying the results presented
in Figure 3.3.

In contrast, optimizing I/O has the cost of increasing memory and CPU usage, having a maximum
impact of approximately 5 GiB and 35%, respectively, with I/O-bound models. According to Figure
3.7, compute-bound models do not suffer a significant increase on CPU usage, when employing
I/O optimization, whereas I/O-bound models do. This increase is caused by the number of threads
fetching data from storage and serving the GPU, used for each model.

3.2. Evaluation 26

0
100
200
300
400
500
600
700
800
900

1000

LeNet AlexNet ResNet-50

D
is

k
re

ad
 th

ro
ug

hp
ut

 (M
iB

/s
)

Model

TF baseline TF optimized

Figure 3.4: Average disk read throughput for
TensorFlow with LeNet, AlexNet and

ResNet-50.

0
10
20
30
40
50
60
70
80
90

100

LeNet AlexNet ResNet-50

G
PU

 u
sa

ge
 (%

)

Model

TF baseline TF optimized

Figure 3.5: Average GPU usage for TensorFlow
with LeNet, AlexNet and ResNet-50.

0

5

10

15

20

25

LeNet AlexNet ResNet-50

M
em

or
y

us
ag

e
(G

iB
)

Model

TF baseline TF optimized

Figure 3.6: Average memory usage for TensorFlow
with LeNet, AlexNet and ResNet-50.

0
5

10
15
20
25
30
35
40
45
50

LeNet AlexNet ResNet-50

C
PU

 u
sa

ge
 (%

)

Model

TF baseline TF optimized

Figure 3.7: Average CPU usage for TensorFlow
with LeNet, AlexNet and ResNet-50.

Concurrent Reads

Based on Equation 3, the number of concurrent read operations performed by TF optimized should
not exceed 30, since autotune is enabled and cycle_length was set to 10 (Listing 3.1). Nevertheless,
to better understand how the autotune feature operates, the number of concurrent threads used along
the training process was evaluated.

To determine the periods of time in which each thread was reading data, we extended TensorFlow
Portable Operating System Interface (POSIX) file system implementation to collect the starting (start_ts)
and ending (end_ts) timestamps of each read operation sent to the file system. After having the
timestamps, the following steps were performed:

1. Create a list with all the execution periods (i.e., pairs <start_ts, end_ts>).

2. Find the points of intersection of all execution periods. The points of intersection correspond
essentially to the start_ts and end_ts timestamps of each execution period, since these are the
points where the number of concurrent threads might change. Therefore, the collection of all
intersection points is an ordered set (without repeated values) of all timestamps.

3. Create a list of concurrency intervals by pairing all the points of intersection found.

4. Validate how many execution periods overlap within each concurrency interval.

3.2. Evaluation 27

5. Sum the elapsed time of all concurrency intervals with the same number of concurrent threads.

6. Calculate the time percentage based on the total elapsed time of each number of concurrent
threads and the elapsed time between the first and last timestamps.

Figure 3.8 depicts this process, demonstrating how the number of concurrent threads, on Tensor-
Flow, was captured, and clarifies the concepts of execution period, intersection point, and concurrency
interval.

pread 2

pread 3

pread 1

0 1 2 3 4 5 6 7

A B C D E

Concurrency Intervals

Time

Execution periods
[0, 3], [1, 5], [2, 7]

Intersection points
{0, 1, 2, 3, 5, 7}

Concurrency intervals
A [0, 1]
B [1, 2]
C [2, 3]
D [3, 5]
E [5, 7]

Figure 3.8: Strategy used to obtain the number of concurrent threads executed by TensorFlow parallel
interleave transformation.

According to this strategy, for each concurrency interval, all execution periods had to be covered.
Given that for each training run there were more than 11 million concurrency intervals and 5 million
execution periods, this process is quite time consuming. As such, we developed a simple log analyzer
program (in C++) to parallelize the execution and perform the concurrency analysis as efficient as
possible.

Figure 3.9 depicts a Cumulative Distribution Function (CDF) with the percentage of time spent
by N threads on actively reading data concurrently from the backend storage, where 0 ≤ N ≤ 30.
The results are represented for each training model, namely LeNet, AlexNet, and ResNet-50. The
maximum number of concurrent threads reached by LeNet, AlexNet and ResNet-50 was 29, 30 and
28, respectively, which confirms the veracity of Equation 3.

Based on Figure 3.9, during most of the training, the autotune feature of parallel interleave uses
between 4 and 8 threads for I/O intensive models, namely 55% for LeNet and 46% for AlexNet. On
the other hand, under the ResNet-50 model, parallel interleave uses 0 threads (i.e., is not reading data)
for almost 90% of the training time. This means that when training ResNet-50, the I/O threads are
idle most of the time, proving once again that this is a compute intensive model. Although LeNet
and AlexNet have a high percentage of active threads (concurrent or not), there is still 10% and 20%,
respectively, of idle time. These percentages are relative to time spent performing computation and
processing upstream input pipeline tasks.

3.2. Evaluation 28

0
10
20
30
40
50
60
70
80
90
100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Ti
m

e
pe

rc
en

ta
ge

 (%
)

Number of concurrent threads

LeNet AlexNet ResNet-50

Figure 3.9: Time percentage of each number of TensorFlow concurrent threads.

Discussion

To understand if local DL applications can benefit from I/O optimization, two different versions of
TensorFlow input pipeline were evaluated. The TF baseline version performs sequential I/O, while
the TF optimized version performs data prefetching and parallel I/O. Although ResNet-50 maintains
a very similar training time with both TensorFlow versions, TF optimized improves the training time
of LeNet and AlexNet by 67% and 62%, respectively. This proves that local DL applications benefit
from I/O optimization. In contrast, parallel I/O and data prefetching have an impact on resource
usage, possibly increasing the memory consumption by 5 GiB and the CPU utilization by 35% (under
the evaluated scenarios). The number of concurrent threads used by the autotune feature was also
studied, indicating that with all three models, for the most part of the training process are used
between 4 and 8 concurrent threads. In addition, the values rarely reach the maximum number of
concurrent threads defined by Equation 3. Increasing resource usage is beneficial when it represents
a significant improvement in performance, i.e., a decrease in training time. On the other hand, in a
scenario where the hardware is being shared by multiple applications, it is crucial that the resource
usage performed by one application does not impair the performance of others. In this case, TF
optimized achieves considerably lower training times than TF baseline, justifying the increased use of
resources.

Although the data prefetching and parallel I/O optimizations are effective, they cannot be applied
to other DL frameworks, due to the fact that they are intrinsic to TensorFlow. Given that the workflow
of these I/O optimizations does not depend on the TensorFlow internal operation model, they can be
applied in other scenarios. Based on this, it would be beneficial to decouple these optimizations from
TensorFlow and implement them on a framework-agnostic middleware, that can be applied to any
DL framework. With this strategy, the middleware would be the one responsible for optimizing I/O,
making it possible for the framework to focus entirely on its purpose of optimizing DL techniques.

Despite that the number of TensorFlow concurrent threads barely reached the maximum value
during training, the TensorFlow autotune feature is greedy, since it allocates the maximum number of

3.2. Evaluation 29

threads at the beginning of the training process. This causes the CPU usage to be higher than needed,
causing resources to be wasted. A common use case conducted on ABCI consists of running multiple
TensorFlow applications on the same compute node. In this scenario, TensorFlow performance would
possibly take advantage from using the lower number of threads possible, preventing the compute
node from saturating as easily. That said, an important feature that should also be provided by the
framework-agnostic middleware consists of an automatic provisioning mechanism that finds the
lowest possible resource utilization, while ensuring an optimal I/O performance.

4

P R I S M A

As previously stated, existing DL frameworks comprise internal I/O optimizations that cannot be
decoupled and applied to other frameworks. Moreover, most I/O optimizations have to be manually
configured, which requires additional time to understand each configuration parameter (e.g., number
of parallel calls, prefetch factor) and to find the optimal configuration. Certain frameworks also
encompass greedy provisioning algorithms, that allocate more resources than necessary. Therefore,
DL frameworks could benefit from a framework-agnostic solution that is capable of automatically
selecting the optimal configuration. Furthermore, the solution must not interfere with the model
accuracy. To address these issues, this dissertation proposes PRISMA, a Prefetching Storage Middleware
for Accelerating Deep Learning Frameworks. PRISMA was designed considering four main principles:

GENERIC PRISMA is a generic middleware, meaning that it can be applied to any DL
framework or data format, preventing the development of redundant code.

SIMPLE PRISMA does not imply a steep learning curve and can easily be extended and
adapted for different scenarios, which makes it a simple solution.

LIGHTWEIGHT PRISMA is a lightweight solution that aims at optimizing performance
while spending as few computational resources as possible, providing additional
resources for other applications that may be running on the same compute node.

TRANSPARENT PRISMA does not affect the accuracy of the model, since it does not im-
pair the randomization level of the data reading operations, making it a transparent
solution.

Throughout this section we provide a thorough description of PRISMA’s architecture, describe the
modules and workflow of PRISMA and present the implementation details of a PRISMA prototype.

4.1 architecture overview

Parallel I/O and data prefetching demonstrated to improve the training performance not only of
TensorFlow, but also of other DL solutions previously described in Section 2.2.2. Based on these
insights, PRISMA was designed to provide both parallel I/O and data prefetching in order to optimize
the I/O performance of DL applications.

The main purpose of PRISMA is to bring data to memory before the DL framework requests it.
However, PRISMA is exclusively effective in scenarios where the entire dataset does not fit in memory,
since otherwise the OS stores the dataset in the page cache after reading it the first time. Given that
DL frameworks read shuffled data, the order in which files are accessed varies from epoch to epoch.

30

4.1. Architecture Overview 31

To take full advantage of PRISMA, each time the framework requests a file, it should already be in
PRISMA internal buffer. For this to be possible, PRISMA has to know in advance the order in which
the framework will read the files. More details about how this is accomplished will be provided in
Section 4.2.1.

PRISMA

DL Framework

File System

Consumer 1 Consumer j

Autotuner
select n, k

...

Buffer

f1 f2 f3 ... fn

Producer 1 ...

Thread
Pool

Producer 1...
Producer k

Producer k

Figure 4.1: PRISMA high-level architecture.

PRISMA was designed as a storage middleware that sits between the DL framework and the file
system. Figure 4.1 presents a high-level architecture of the PRISMA middleware. PRISMA receives
requests from the DL framework and reads data from the backend storage. In other words, PRISMA
intercepts read operations, and provides prefetched data to the DL framework. Therefore, instead
of requesting data directly from the backend storage, the DL framework reads data from PRISMA.
Each framework spawns one or more threads/processes to read the training data, which are called
consumers. The total number of consumers, represented as j in the figure, is selected by the framework
itself, and PRISMA has no access to this value. It is important to clarify that PRISMA does not have
any control over the consumer threads.

PRISMA is composed of three different modules:

AUTOTUNER Instead of delegating to the user the responsibility of finding the optimal
combination of maximum number of threads (k) and maximum buffer size (n)
to use, PRISMA comprises an autotuner module. The autotuner selects k and n
automatically to provide a good trade-off between performance and resource usage
(i.e., preventing waste of resources). For this to be possible, the autotuner relies on
an autotuning algorithm.

4.2. Module Design and Workflow 32

THREAD POOL PRISMA performs parallel I/O using multiple threads, called producers,
that read data simultaneously. The producer threads are orchestrated by a thread
pool module, which also manages the producers task queue. More specifically, the
producers task queue stores the read operations to be executed by the producer
threads. PRISMA supports a maximum of k threads executing concurrently, which
can be configured by the user or selected by the autotuner.

BUFFER Each producer prefetches a training file (e.g., TFRecord, image) and stores it
in an in-memory buffer. The buffer has a maximum number of files it can store,
represented in the figure by n. Similarly to k, n can also be set by the user or
selected by the autotuner.

Since the workload of DL frameworks is read-oriented, PRISMA only targets read operations,
therefore it provides an interface with a single method, called read(). Therefore, whenever the
framework needs to read data, it should simply invoke PRISMA read() method. Nevertheless,
PRISMA design principles could also be employed to address write operations.

Fundamentally, PRISMA I/O flow consists of the following steps:

1. The producer threads continuously prefetch data from the backend storage and store the files
in the internal buffer, so that the DL framework always has data available to read.

2. Each consumer thread (e.g., TensorFlow thread) accesses PRISMA internal buffer, using the
read() method, reads a prefetched file and removes it from the buffer (in case no other con-
sumer thread is expected to read that file soon, as described in Section 4.2). The frequency with
which this step is performed depends on the internal operation model of the DL framework.

3. When the buffer reaches its maximum capacity, the producer threads temporarily block waiting
for free space in the buffer.

4. The consumer threads also block temporarily when the files they are looking for are not yet in
the buffer.

In addition to these steps, the buffer size and number of producer threads are periodically tuned
by the autotuner, until an optimal configuration is found.

4.2 module design and workflow

PRISMA provides an API that is merely composed by the read() method, as presented in Listing 4.1.

1ssize_t read(const std::string& fn, char* res, size_t n, uint64_t offset);

Listing 4.1: PRISMA API.

For PRISMA to be seamlessly adopted, the signature of PRISMA read() method resembles that of
the pread() system call. As such, the method reads n bytes from a training file with the filename fn,
starting at offset, and stores the result in the memory address pointed by res. Additionally, the
method returns the number of bytes read, with the return of zero indicating end of file. We decided

4.2. Module Design and Workflow 33

to use the filename as an argument instead of the file descriptor to simplify the usage of the method,
avoiding having to invoke other methods to obtain the file descriptor.

To perform parallel I/O, we opted for a multi-threaded approach, instead of multi-process, since,
contrary to processes, threads share memory. So that the producer threads can be reused between
read operations, PRISMA comprises a thread pool. The size of the thread pool can be automatically
tuned during training, using PRISMA autotuning mechanism. All the read operations that need
to be executed by the producer threads are stored in a queue that is internal to the thread pool.
Furthermore, PRISMA reads data from the backend storage using the pread() system call. Each
pread() operation performed by PRISMA uses a fixed read_block_size, which can be set on the
configurations.

Apart from the thread pool, PRISMA contains an in-memory buffer that stores prefetched data,
mapping the filenames to the file content (Section 4.3). The caching policy used by PRISMA is quite
straightforward: a file is stored in the buffer as soon as it is read by a producer thread, and is then
evicted when a consumer thread fetches that same file. It can happen that when a producer initiates
a read operation for a specific file, that file is still in the buffer because it was prefetched for the
previous epoch and has not yet been consumed. To avoid reading files unnecessarily, each file has a
variable associated with it, called n_reads, that specifies the number of times the file should be read
before it is removed from the buffer. When a consumer thread finishes reading a file, its n_reads

variable is decremented. After the decrement, if the value is equal to zero, then the file is removed
from the buffer, otherwise it means that there are consumers expected to read the file soon, so it
cannot be removed from the buffer. In the same way that the size of the thread pool (i.e., number of
producer threads) can be automatically tuned during training, the maximum capacity of the internal
buffer (i.e., buffer size), can also be tuned using the autotuning mechanism.

The autotuning mechanism provided by PRISMA is responsible for automatically tuning the
number of producer threads and the buffer size. This mechanism is periodically performed by
a background thread, called autotuner, that resorts to an algorithm in order to find the optimal
combination of both parameters. After the optimal configuration is found, the autotuning is disabled,
due to the fact that the workload remains considerably stable throughout the training process.

Figure 4.2 illustrates the workflow and interactions between PRISMA, the DL framework and the
file system.

4.2.1 Prefetch Order

As previously stated, PRISMA has to know in advance the order in which the framework will read
the training files. Typically, the DL framework uses a list containing the filename of each training
file, which defines the order in which the files will be read in each epoch. The list of filenames
must be shuffled for each epoch, to avoid overfitting. If this shuffling process happens inside the
framework, then PRISMA will be dependent on the workflow of the framework to obtain the read
order. For example, if the framework only shuffled the filenames right before each epoch starts, then
PRISMA would have to wait for the beginning of the epoch to prefetch the files (for that epoch). This
would impair the performance of PRISMA since initially the files that the framework would try to
read would not be in memory. Moreover, while waiting to obtain the read order for the next epoch,
PRISMA would probably be paused wasting time, instead of prefetching data. To prevent this, and to

4.2. Module Design and Workflow 34

DL Framework

PRISMA

File System

Autotuner
algorithm:
 set_n_threads();
 set_buffer_size();

Buffer

Filename Content

filename_1
filename_2

...

filename_n

char* content_1
char* content_2

...

char* content_n

Producer k
pread(filename_n)

Consumer 1
Prisma.read(filename_1)

Consumer j
Prisma.read(filename_n)

Producer 1
pread(filename_1)

...

1

2

3

4

5

6

Filenames
List

filename_1
filename_2

filename_m
...

Thread Pool

Queue

Producer 1...
Producer k

Figure 4.2: PRISMA workflow and interactions.

ensure that PRISMA delivers the best possible I/O performance, the shuffling of the filenames must
be performed outside the DL framework. For this to be possible, a list with the shuffled filenames
has to be passed to the framework, so it knows the order in which the files must be read.

As shown in Figure 4.2, both PRISMA and the DL framework share a filenames list. This list dictates
the order in which both the consumers and producers should read the training files. Before training
begins, the DL framework must access the filenames list to obtain the list of files in the correct order
(event 1). It is worth mentioning that if the DL framework is using multiple threads/processes to
perform I/O, then the files may be read in a slightly different order than the one stipulated in the
filenames list. This can happen due to the fact that some threads/processes execute the read requests
faster than others.

Since all the filenames presented in the filenames list are globally shuffled and repeated for each
epoch, this method does not affect the accuracy of the training model.

4.2.2 Initialization

The first time that the DL framework calls Prisma.read(), PRISMA is initialized. The initialization
process consists of the following steps:

1. Read configuration file (Section 4.2.4).

2. Create thread pool (Section 4.2.3).

3. Launch autotuner thread (Section 4.2.5).

4. Launch profiler thread (Section 4.2.6).

5. Enqueue read operations (Section 4.2.3).

4.2. Module Design and Workflow 35

According to Figure 4.2, the initialization process starts after event 2 , where consumer 1 calls
Prisma.read() to read the file that is represented by filename_1.

4.2.3 Data Prefetching and Parallel I/O

PRISMA uses one or more threads to prefetch the files from the backend storage and store them in
the buffer. In the initialization process a thread pool is created (event 3) with one thread, in case
autotune is enabled, or n_threads in case this value was manually set. Then PRISMA goes through
the filenames list (event 4) and for each filename in the filenames list, a read operation is added to
the thread pool queue. The threads in the pool are responsible for executing the enqueued read
operations (event 5) and storing the files in the buffer (event 6). Given this, at any given time
there are at most n_threads reading data from the backend storage.

Every time a consumer wants to read a file, it simply checks if the file is already stored in the buffer.
If it is, then the consumer will read it, otherwise the consumer will block waiting for the producers to
prefetch that file. On the other hand, the producers will block waiting for free space in the buffer,
whenever it is full. As consumers read the files, they remove them from the buffer, so that more
space is available for other files to be prefetched. To wake up consumers that are blocked, whenever a
producer thread stores a file in the buffer, it notifies the consumers that may be waiting for that file.
Similarly, whenever a consumer thread removes a file from the buffer, it notifies the producers that may
be blocked waiting for space to be released in the buffer.

Since different threads execute the operations at different rates, it could happen that files that
appear later in the filenames list are stored first in the buffer. If this was the case, depending on the
number of threads and buffer size, the buffer could get full with out of order files. This would cause
the consumer threads to block waiting for recent files to be prefetched, and the producers to block
waiting for free space in the buffer, causing a deadlock situation. To prevent this from happening,
when the operations are stored in the queue, they are given an identifier that represents the order in
which the respective file should be stored in the buffer. With this strategy, the producer threads may
read the files at its own speed, however they can only store a file in the buffer after all the files with
lower identifiers have already been buffered.

4.2.4 Configuration Parameters

To adapt PRISMA to different I/O workloads and scenarios, the following configuration parameters
can be tuned:

BUFFER_SIZE Maximum number of elements that can be stored in the buffer; if set to
autotune it will be automatically defined using the autotuning mechanism described
in Section 4.2.5.

N_THREADS Number of threads in the thread pool (Section 4.2.3); if set to autotune it
will be automatically defined using the autotuning mechanism described in Section
4.2.5.

READ_BLOCK_SIZE Read block size used by the pread() system call in bytes; the default
value is 64 KB.

4.2. Module Design and Workflow 36

MAX_BUFFER_SIZE Maximum buffer size that can be set by the autotuning mechanism.

MAX_N_THREADS Maximum number of threads that can be set by the autotuning mech-
anism; the default value is equal to the number of concurrent threads supported by
the hardware.

Apart from these parameters, the user can enable or disable the debug and profiling (Section
4.2.6) modes. When debug is enabled a log file is created with information regarding the files that are
being read and the decisions that are being made by the autotuning mechanism.

When choosing the buffer_size (or max_buffer_size in case autotune is enabled) it is important
to take into account the size of each dataset file, so that we can predict the memory that the buffer
will consume. For instance, when training the model with the ILSVRC2012 dataset converted to
TFRecords, each file is around 135 MB, however when using the original dataset with raw images
each file has an average size of 115 KB (Section 3.2.3). Given this, when using TFRecords, a buffer
of size 10 consumes approximately 1.4 GB of memory, while when using raw images, the same
buffer size only consumes around 1.2 MB. This is also important in terms of performance, since an
extremely small buffer causes threads to block continuously, adding overhead to the training process,
whereas a large buffer wastes unnecessary resources.

4.2.5 Autotuning Mechanism

When the buffer_size and n_threads configurations are set to autotune, these values are auto-
matically tuned using an autotuning algorithm. PRISMA uses a background thread (outside of the
thread pool), called autotuner, that is responsible for periodically executing the autotuning algorithm.
Algorithm 1 describes the autotuning algorithm used by PRISMA.

The autotuning algorithm starts with a minimum value for both parameters, represented by
init_buffer_size and init_n_threads in Algorithm 1. Depending on the I/O workload (i.e., I/O intensity
of the training model, dataset dimension, size of each training file), there are initial buffer sizes that
are more efficient than others, in the sense that they allow the autotuning algorithm to converge faster
to the optimal configuration. For instance, in a scenario where the dataset is composed of multiple
small files, and the model is I/O-bound, it would be beneficial to start with a higher buffer size.
On the other hand, with a compute intensive model, and a dataset with huge files, initiating the
process with a large buffer could lead to waste of resources, since compute intensive models do not
rely on I/O efficiency, not requiring much data to be prefetched. For this reason, init_buffer_size and
init_n_threads should be set based on the I/O workload.

After being initialized, the buffer size and number of threads are increased based on the buffer
usage (buffer_usage). The buffer usage represents the percentage of elements (#elements) in the buffer,
compared to its maximum capacity (buffer_size), and can be obtained using Equation 4.

bu f f er_usage =
#elements

bu f f er_size
× 100 (4)

Autotuning is only performed until an optimal configuration is found, due to the fact that the
workload remains considerably stable throughout the training process. An optimal configuration
is considered to be one that allows a relatively high buffer usage to be maintained, preventing
consumers from blocking while waiting for data. So that the autotuning mechanism can be aware

4.2. Module Design and Workflow 37

Algorithm 1 PRISMA Autotuning Algorithm

Require:
init_bu f f er_size > 0
init_n_threads > 0
bu f f er_size_step > 0
n_threads_step > 0

1: bu f f er_size← init_bu f f er_size
2: n_threads← init_n_threads
3: sleep(init_interval)
4: while true do
5: if #records ≥ 10 then
6: avg_bu f f er_usage← get_avg_bu f f er_usage()
7: std_dev← get_std_dev()
8: if avg_bu f f er_usage ≥ 80 and std_dev ≤ 20 then . Optimal condition
9: disable_autotuning()

10: else if avg_bu f f er_usage ≤ 30 or std_dev ≤ 20 then
11: n_threads← n_threads + n_threads_step
12: else
13: bu f f er_size← bu f f er_size + bu f f er_size_step
14: end if
15: end if
16: sleep(loop_interval)
17: end while

of the impact of the configurations it selects, PRISMA collects information about the buffer usage,
between each autotuning run. Before any decision is made, the average buffer usage and standard
deviation are calculated using the information collected since the last autotuning execution (lines 6
and 7 of Algorithm 1). Then, depending on the obtained values, either the buffer size or the number
of threads is increased. In this context, an optimal configuration is considered to be represented by
an average buffer usage of at least 80%, with a standard deviation lower or equal to 20%. As such,
this represents the optimal condition of the autotuning algorithm, specified in line 8 of Algorithm 1.
When the optimal condition is reached, the autotuning algorithm is disabled (line 9 of Algorithm 1).

To reach an optimal configuration, the buffer size and number of threads are increased by a
buffer_size_step (line 13 of Algorithm 1) and a n_threads_step (line 11 of Algorithm 1), respectively.
Similarly to the initial parameter values, the efficiency of the increasing steps are also related to the
I/O workload (i.e., size of each training file and dimension of the dataset). Although increasing the
parameters at an exponential rate would allow to find the optimal configuration faster, this would
converge to higher values, potentially resulting in overprovisioning. To prevent this, the autotuning
algorithm increases each parameter linearly.

When the buffer is too small for the workload production and consumption rates, it is continuously
reaching its maximum and minimum capacity. This causes consumers and producers to block several
times, consequently adding overhead to the process. Given this, the buffer size is considered to be
inadequate when the buffer usage demonstrates high variance values. In this context, a standard

4.2. Module Design and Workflow 38

deviation of more than 20% is considered to be high. Another issue is when the production rate
cannot match the consumption demand, causing the consumers to block waiting for data. This reflects
on a low average buffer usage, since the buffer is empty most of the time. To address this issue, the
number of producer threads should be increased to prefetch data at a higher rate. In this context, a
low buffer usage is assumed to be a value below 30%. In summary, line 10 of Algorithm 1 presents
the necessary condition for the number of threads to be increased.

The period of time between each autotuning cycle, represented by loop_interval in Algorithm 1,
should be brief enough to ensure that an optimal configuration is quickly found. On the other hand,
decisions based on a limited number of values can mislead the algorithm. Once again, the efficiency
of the autotuning interval depends on the I/O workload, in the sense that they allow more or less
buffer usage records to be collected, allowing the autotuning algorithm to make decisions that are
more or less reliable. Since the autotuning interval may not be sufficient to collect a significant
amount of buffer usage records, the configuration is only tuned if at least 10 buffer usage records
have been collected by PRISMA. If the number of collected records from one cycle to another is lower
than 10, these are saved and passed on to the next cycles, until the necessary amount of records is
reached.

As during the initialization of the framework, the consumption rate is inconsistent, before the
autotuning process begins, a brief wait of init_interval milliseconds is performed to allow the system
to stabilize (line 3 of Algorithm 1).

Whilst studying the best strategy for the autotuning algorithm, the number of consumer waits was
also considered. Since an optimal scenario would be one where consumers never have to wait for data,
the number of consumer waits could be an effective metric in which to base the autotuning decisions.
However, as previously stated, when the DL framework uses multiple consumer threads/processes,
the order in which the files are requested may not match the order dictated by the filenames list.
Considering this, a high number of consumer waits does not exactly mean that the configuration used
is inefficient, but that consumers are requesting files in a different order than they are being prefetched.
For this reason, the number of consumer waits is not taken into account by the autotuning algorithm.
On the other hand, the buffer usage was the metric that seemed to best reflect the effectiveness of the
chosen configuration, therefore was the one used in the autotuning algorithm.

It is important to mention that autotuning can be performed exclusively for one of the parameters,
buffer_size or n_threads. This means that, for example, if n_threads is set to 5 by the user, and
buffer_size is set to autotune, then the autotuning mechanism will only be responsible for finding
the optimal value for the buffer_size configuration.

4.2.6 Profiling

In cases where the user decides to manually set the buffer_size, the n_threads, or even the
read_block_size, it can be challenging to choose the optimal values. To help the user understand
the impact that the selected configuration has on PRISMA performance, PRISMA provides a profiling
mode. Profiling is performed by a profiler thread (outside the thread pool) that collects information
during training about the following metrics:

READ DURATION Time it takes to read a single training file in milliseconds.

4.2. Module Design and Workflow 39

#PRODUCER WAITS Number of times a producer was blocked waiting for free space in
the buffer.

#CONSUMER WAITS Number of times a consumer was blocked waiting for a specific file
to be prefetched.

When PRISMA finishes its execution, the profiler thread prints the average values of each of the
collected metrics.

4.2.7 Client-Server

For a DL framework to use PRISMA, it simply needs to create an instance of PRISMA and then
invoke the read() method every time it intends to read a file. When the DL framework uses processes
instead of threads, each process will have its own instance and variables, due to the fact that processes
are isolated (i.e., do not share memory). To overcome this issue, PRISMA also provides a client-server
architecture, where each client sends the read request to the server, and the server forwards the
request to PRISMA. To maintain the parallelism intended by the multi-process scenario, the server
spawns a thread for each client. When using the client-server architecture, each process should
instantiate the client, and invoke the client read method, which has the same signature as the one
presented in Listing 4.1. Figure 4.3 presents the interactions between PRISMA and the DL framework
with the client-server architecture, where the consumers invoke the read() method directly in a client
instance.

Server

PRISMA

Prisma.read(filename_1)
Consumer handler 1

Prisma.read(filename_n)
Consumer handler j...

DL Framework

Consumer j
Client.read(filename_n)

...Consumer j
Client.read(filename_n)

Figure 4.3: PRISMA client-server architecture.

The client-server architecture should exclusively be used in multi-process scenarios, since it adds
communication overhead caused by including an intermediary between the DL framework and
PRISMA. For single-process, single-threaded and multi-threaded applications, the read() method
should be invoked directly in a PRISMA instance.

4.3. Implementation 40

4.3 implementation

We implemented a PRISMA prototype with approximately 1.7 thousand lines of C++ code. The
thread pool used by PRISMA was developed using the CTPL library [26]. Additionally, since the
DL framework may not read the training files exactly in the order dictated by the filenames list, the
PRISMA internal buffer has to provide a way of quickly accessing the content associated with a
specific filename. Thus, the buffer was implemented using a HashMap that maps the filename to
the file content. Because existing structures of the C++ standard are not thread safe, and to allow
multiple threads to concurrently read, write and erase different keys of the HashMap, the data
structure used for the buffer was Intel Threading Building Blocks (TBB) Concurrent HashMap [24]. Intel
TBB Concurrent HashMap maps keys to values in a way that allows multiple threads to concurrently
access values via find, insert and erase methods, using implicit locks [126].

Additionally, we ensured concurrency control over producers and consumers accessing the same file
and accessing the shared variables, thus avoiding race conditions and inconsistent state. Each
HashMap entry was protected with a mutex, so that there would not be more than one pro-
ducer/consumer trying to write/read the same file.

When it comes to PRISMA client-server implementation, the communication between the clients
and the server is performed through UNIX Domain Sockets. Moreover, the configuration parameter
max_n_threads is set by default to the number of concurrent threads supported by the hardware,
using the C++ function std::thread::hardware_concurrency().

The filenames list shared between PRISMA and the DL framework is a file composed of # f iles×
#epochs filenames, that must be created before the training starts. In order to do this, we developed a
simple Python module, called shuffle_filenames, that provides a shuffle_filenames() function.
This function is responsible for creating the filenames list file by performing the following steps:

1. Receives a list with all the training filenames, called filenames.

2. Creates a new file called filenames_list.

3. Shuffles the filenames and writes them to the file.

4. Repeats step 2. for the number of training epochs.

PRISMA configuration parameters can be set using an INI configuration file. For simplicity reasons,
and due to the fact that the relationship between the autotuning parameters and the I/O workload
is not completely known, we decided to assign specific values to these parameters in the PRISMA
prototype implementation. As such, the init_buffer_size and init_n_threads parameters were set to the
minimum values of 10 and 1, respectively. Similarly, buffer_size_step was set to 10 and n_threads_step
to 1. The autotuning interval was set to 100 milliseconds, a value based on the TensorFlow autotune
feature, that uses an initial gap of 10 milliseconds between cycles (Section 3.1.4). Finally, the initial
autotuning wait was set to 15 seconds to allow the DL framework consumption rate to stabilize.

4.3.1 Integration with TensorFlow

Given that one of the case studies of this dissertation consists of evaluating the PRISMA prototype
performance when training DL models with TensorFlow, we integrated PRISMA with this framework.
For this to be possible, TensorFlow required the following adjustments:

4.3. Implementation 41

1. Use the shuffle_filenames() function that was previously described to shuffle the filenames
and create the filenames list.

2. Invoke Prisma.read() instead of the default pread() system call.

To perform the shuffling process outside of TensorFlow, the dataset preprocessing code [41] of the
TensorFlow CTL implementation for ResNet-50 [95] had to be extended. The modifications involved
disabling the shuffle input pipeline transformation applied to the filenames and using a function
called get_shuffled_filenames() instead. The function get_shuffled_filenames() provides a list
with the exact content of the filenames list and writes it to a file. This is achieved by importing
the Python module that was developed, and evoking the shuffle_filenames() function. Given
that shuffle_filenames() already repeats the filenames for each epoch, the repeat input pipeline
transformation was also disabled.

A new TensorFlow file system implementation, called prisma, had to be created to use Prisma.re-

ad() instead of the pread() system call. This implementation is practically the same as the POSIX
file system, only with the following changes:

1// Instantiate PRISMA

2Prisma prisma = Prisma();

3

4// Invoke PRISMA read() method

5// prisma.read() replaces the pread() call

6ssize_t r = prisma.read(filename_, dst, requested_read_length, offset);

Listing 4.2: Changes made to the TensorFlow POSIX implementation.

4.3.2 Integration with PyTorch

Similarly to TensorFlow, another case study of this dissertation consists of evaluating the PRISMA
prototype performance when training DL models with PyTorch. Once again, for this to be possible,
PRISMA had to be integrated with PyTorch.

Since PRISMA is written in C++, for it to be integrated with the Python interface of PyTorch, a
Python binding of PRISMA had to be created using pybind11 [89].

So that PyTorch reads the files in the same order specified in the filenames list, a custom Dataset
and Sampler were implemented. PyTorch uses indexes instead of filenames to determine the order
in which the files will be read. Given this, first the custom Dataset creates an index dictionary
that associates an index with a filename. Then, a function similar to shuffle_filenames(), called
shuffle_indexes(), shuffles the indexes and uses the index dictionary to create the filenames list.
This function is also provided by the shuffle_filenames Python module, and can be invoked after
that same module is imported. The shuffled index list created with shuffle_indexes() is used by
the custom Sampler to provide the Data Loader with an iterator for the shuffled indexes of a given
epoch.

Considering that PyTorch uses processes instead of threads to parallelize I/O, the client-server
implementation of PRISMA had to be employed. However, when no worker processes are used,

4.4. Summary 42

PRISMA standard implementation can still be applied. Thus, when the num_workers argument of
the Data Loader is set to 0, a PRISMA instance is created in the custom Dataset and is later used
by the main process. When multiple workers are used, a PRISMA client instance is created on each
worker process using the worker_init_fn argument of the Data Loader. Each worker process uses
the Client.read() method, instead of the common Prisma.read(). As specified in Section 4.2.7, the
client instances send the read requests to the server, which forwards them to PRISMA.

To evaluate PyTorch with PRISMA, the experiments were performed using PyTorch ImageNet
implementation [40]. According to this implementation, the Sampler iterator with the indexes for each
epoch is only created at the beginning of the epoch. Consequently, PyTorch only starts prefetching
the samples for an epoch when that epoch begins, contrary to what happens with PRISMA, that
prefetches samples independently of the training epoch.

4.4 summary

PRISMA is a storage middleware that was designed to improve the I/O performance of local DL
applications. Contrary to other solutions, PRISMA can be applied to any DL framework and uses
as few computational resources as possible. The I/O optimizations employed by PRISMA are data
prefetching and parallel I/O. To perform parallel I/O, PRISMA uses multiple threads to read data
from the backend storage, called producers. At the same time, the DL framework uses multiple
consumer threads to request data from PRISMA. Data prefetching is conducted by reading the training
files before the DL framework requests them, storing the data in an internal buffer.

So that PRISMA can know in advance the order in which the framework will read the files, a
filenames list is shared between the framework and PRISMA. While PRISMA reads data exactly in
the order dictated by the filenames list, when using more than one consumer, the DL framework may
request the files in a slightly different order.

PRISMA starts executing when the DL framework requests data for the first time. Before beginning
to prefetch data, PRISMA reads a configuration file that allows to set the buffer size (buffer_size)
and number of threads (n_threads) used. Both of these parameters can either be manually set by the
user or automatically tuned by PRISMA, using an autotuning mechanism. The autotuning mechanism
bases its decisions on the percentage of buffer that is being used, between each autotuning cycle.

Since several threads are continuously removing and inserting data in the buffer, concurrency
control strategies, such as locking and concurrent data structures, had to be adopted.

When the user manually sets the buffer_size and n_threads configurations, he can use PRISMA
profiling mode to help him determine if the chosen configuration is being effective or not. Moreover,
PRISMA provides a debug mode, which creates a log with information about the read operations that
are being performed and the decisions made by the autotuning algorithm.

There are DL frameworks, such as PyTorch, that adopt a multi-process scenario, instead of using
multiple threads to perform I/O. Given that processes are isolated, if each process uses its own
instance of PRISMA, it will have an independent buffer, autotuner thread, and other variables. To
prevent this from happening, a client-server architecture is provided by PRISMA, that simply adds a
server as an intermediate between the DL framework and the middleware.

Given that the case studies of this dissertation consist of evaluating the impact of PRISMA on
TensorFlow and PyTorch, the PRISMA prototype was integrated with both of these DL frameworks.

5

C A S E S T U D I E S A N D E X P E R I M E N TA L E VA L UAT I O N

We integrated the PRISMA prototype with two popular DL frameworks, namely TensorFlow and
PyTorch. In this chapter, we perform a thorough experimental evaluation of the PRISMA prototype
and compare its benefits with TensorFlow and PyTorch, under multiple workloads. The conducted
experiments demonstrate the impact that PRISMA introduces in both frameworks, not only in terms
of performance but also on the utilization of computational resources.

5.1 tensorflow

We now discuss the experimental evaluation of the TensorFlow framework. We first describe the
experimental setup and methodology used, and then depict and analyze the results achieved under
different scenarios.

5.1.1 Methodology and Experimental Setup

All experiments were conducted on a single compute node of the ABCI supercomputer. Both
hardware and software specifications were already identified in Table 1.

To ensure that the entire dataset would not fit in memory, we used cgroups to limit the Python
process that executed TensorFlow to 64 GiB of memory. The overall system resources and GPU
utilization were observed using dstat and nvidia-smi, respectively.

models To provide a fair and comprehensive evaluation of PRISMA, we followed a methodology
similar to the one presented in Chapter 3. All experiments were conducted using the LeNet, AlexNet
and ResNet-50 models. Again, these models were selected due to the fact that they present different
I/O workloads. While LeNet and AlexNet are I/O intensive, ResNet-50 is a compute-bound model.

To perform these experiments, the LeNet network used was the one that had to be adapted for the
preliminary studies (Chapter 3).

dataset All models were trained using the ILSVRC2012 dataset, which is the same described in
Section 3.2.3. Similarly to what happened in the preliminary studies, the dataset was converted to
TFRecords instead of using raw images. During the experiments, the dataset was stored in the local
NVMe SSD disk of the compute node.

43

5.1. TensorFlow 44

tensorflow input pipeline The input pipeline used in this experiment was the same as
in Section 3.2.4, which employs parallel interleave to fetch TFRecords and parallel map to preprocess
the training samples. PRISMA was applied to the TF baseline version of TensorFlow, so that its data
prefetching and parallel I/O features could be compared to the ones provided by TF optimized. Since
TF baseline performs sequential I/O, in the experiments there is only one consumer thread requesting
data from PRISMA.

PRISMA was compared to the TF baseline and TF optimized versions of TensorFlow previously
analyzed in Section 3.2. The experiments consisted in training the three models for 10 epochs, with
a variable batch size, namely 64, 128, 256. In addition, the training was distributed across the 4
GPUs of the compute node, using tf.distribute.MirroredStrategy [71]. Unless otherwise stated,
for each experiment were performed 5 runs and the average values of each metric were measured.
PRISMA max_buffer_size and max_n_threads configurations were set to 60 and 80 (value returned
by the C++ function std::thread::hardware_concurrency()), respectively, during the experiments.

Although validation is performed after each epoch, TensorFlow does not read the validation files
right after it finishes reading the training files of each epoch. Given this, as it was not possible to
predict when the validation files were going to be read, PRISMA was only used to optimize the
reading performance of the training files. Consequently, the filenames list shared by TensorFlow
and PRISMA did not contain any validation files. While the TF optimized version used parallel I/O
to prefetch both training and validation files, when using PRISMA the validation files were read
sequentially with no prefetching.

5.1.2 Results

In the upcoming sections we provide an analysis regarding the performance and resource usage of
TensorFlow and PRISMA. Moreover, we compare the autotuning mechanisms of TensorFlow and
PRISMA and present the accuracy achieved for each model.

Training Time

The training time of all models was measured for a batch size of 64, 128, and 256. The tf.distribu-

te.MirroredStrategy performs data parallelism, causing the batch size to be distributed between all
participating GPUs. This requires all GPUs to synchronize at the end of each iteration, in order to
estimate the average gradient (Section 2.5). Increasing the batch size reduces the number of iterations,
consequently decreasing the number of times that the GPUs have to synchronize. As such, a larger
batch size translates into a lower communication overhead between GPUs, therefore accelerating
computation. Given this, when increasing the batch size, it is expected to decrease the execution time
[45, 17].

Figures 5.1 to 5.3 present the training time of the LeNet, AlexNet and ResNet-50 models, using
TensorFlow and PRISMA. With TF baseline the training time remains practically constant with the
LeNet and AlexNet models, regardless of the batch size. This is caused by the fact that, for I/O
intensive models, the overall training time is limited by the I/O performance provided by the system.
As such, since with TF baseline I/O is the bottleneck, enhancing the computing performance (i.e.,
increasing the batch size) does not impact the training time.

5.1. TensorFlow 45

According to the results obtained, PRISMA has a positive effect on the overall training time of both
I/O intensive models, namely LeNet and AlexNet, for all batch sizes. Similarly to what happens
with the TF optimized version, PRISMA does not have an impact on the training time of ResNet-50,
due to the fact that this is a compute intensive model. Contrary to TF baseline, the I/O performance
provided by PRISMA and TF optimized causes the training performance to improve with a larger
batch size. This proves that optimizing I/O, allows the performance of I/O-bound models to scale
with the batch size.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

64 128 256

Tr
ai

ni
ng

 ti
m

e
(s

)

Batch size

TF baseline TF optimized PRISMA

LeNet

Figure 5.1: Average training time of PRISMA
and TensorFlow with LeNet.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

64 128 256
Tr

ai
ni

ng
 ti

m
e

(s
)

Batch size

TF baseline TF optimized PRISMA

AlexNet

Figure 5.2: Average training time of PRISMA
and TensorFlow with AlexNet.

0

2000

4000

6000

8000

10000

12000

14000

16000

64 128 256

Tr
ai

ni
ng

 ti
m

e
(s

)

Batch size

TF baseline TF optimized PRISMA

ResNet-50

Figure 5.3: Average training time of PRISMA
and TensorFlow with ResNet-50.

When compared to TF baseline, both PRISMA and TF optimized are able to improve the training
time by more than 50% and 20%, for LeNet and AlexNet, respectively. This is due to the fact that TF
baseline performs sequential I/O and does not prefetch data.

Interestingly, with a batch size of 64, PRISMA achieves a performance similar to TF optimized.
When we increase the batch size, TF optimized scales better than PRISMA. This difference can be
observed mainly with LeNet, where while PRISMA improves the training time by 54%, TF optimized
manages to achieve an improvement of 67% when using a batch size of 256. Since the validation files
represent approximately 11% of the dataset, the performance discrepancy between PRISMA and TF
optimized is mainly caused by the fact that PRISMA does not optimize the I/O of the validation files,
whereas TF optimized does.

5.1. TensorFlow 46

Resource Usage

The histogram plots provided in this section present the average usage of a given resource, based on
the 5 runs that were performed for each batch size. The time series show the resource usage over
time, and represent a single run with a batch size of 256. The time series relative to the resource
usage with a batch size of 64 and 128 can be found in Section A.1.1 of the Appendix.

disk read throughput The first resource usage analysis to be performed concerns disk
read throughput. Figures 5.4 to 5.6 represent the average read throughput of all models. TF baseline
reaches an average read throughput of approximately 315 MiB/s with the I/O intensive models
(i.e., LeNet and AlexNet), regardless of the batch size. With ResNet-50, TF baseline reaches higher
throughput values with a larger batch size, achieving a maximum of approximately 130 MiB/s.
Additionally, with TF baseline the read throughput does not scale with the batch size, when training
the I/O intensive models. As previously described, this is due to the fact that with TF baseline I/O is
the bottleneck, therefore improving the computing performance does not enhance the overall training
time.

TF optimized reaches higher throughput values with a larger batch size, with both I/O-bound
and compute-bound models. Moreover, TF optimized reaches a maximum read throughput of
approximately 975 MiB/s, when training LeNet, and 850 MiB/s when training AlexNet. With
ResNet-50 the read throughput is significantly lower, reaching a maximum of around 140 MiB/s.

With PRISMA, the read throughput also scales with the batch size, reaching maximum values
of approximately 700 MiB/s for both LeNet and AlexNet, and around 135 MiB/s for ResNet-50.
Therefore, PRISMA reaches a considerably higher read throughput than TF baseline.

Figure 5.7 depicts the disk read throughout over time for all models. According to the time series,
TF baseline and TF optimized achieve more consistent values (i.e., values with less variance) than
PRISMA. Although PRISMA intersects the read operations of the training files, it has no influence
on the validation files I/O. Actually, PRISMA is not even aware when the validation files are read.
Since PRISMA runs on top of TF baseline, the validation files are sequentially read using sequential
interleave. For this reason, at the end of each epoch, when the validation files start being fetched, this
causes the read throughput to drop. Furthermore, this interferes with PRISMA performance, since
temporarily, when the validation files are being read, PRISMA internal buffer reaches its maximum
capacity, what causes the producer threads to sit idle waiting for free space in the buffer. All these
factors contribute to the fact that the read throughput of PRISMA varies more than TF baseline and TF
optimized. The variance of PRISMA read throughput over time reflects on the average results, which
prevents PRISMA from reaching a read throughput as high as TF optimized.

gpu usage Apart from the disk read throughput, the GPU utilization was also assessed. Figures
5.8 to 5.10 depict the average GPU usage of all models. The TF baseline version reaches a higher GPU
usage with smaller batch sizes, when training the I/O intensive models (i.e., LeNet and AlexNet). On
the contrary, with the compute intensive model (i.e., ResNet-50), the GPU usage scales with the batch
size. Given this, TF baseline reaches a maximum GPU usage of around 25%, with LeNet, and 60%
with AlexNet. As expected, the higher GPU usage is achieved with ResNet-50, being approximately
90%.

5.1. TensorFlow 47

0

200

400

600

800

1000

64 128 256

D
is

k
re

ad
 th

ro
ug

hp
ut

 (M
iB

/s
)

Batch size

TF baseline TF optimized PRISMA

LeNet

Figure 5.4: Average disk read throughput for
TensorFlow and PRISMA setups with

LeNet.

0

100

200

300

400

500

600

700

800

900

64 128 256

D
is

k
re

ad
 th

ro
ug

hp
ut

 (M
iB

/s
)

Batch size

TF baseline TF optimized PRISMA

AlexNet

Figure 5.5: Average disk read throughput for
TensorFlow and PRISMA setups with

AlexNet.

0

20

40

60

80

100

120

140

160

64 128 256

D
is

k
re

ad
 th

ro
ug

hp
ut

 (M
iB

/s
)

Batch size

TF baseline TF optimized PRISMA

ResNet-50

Figure 5.6: Average disk read throughput for
TensorFlow and PRISMA setups with

ResNet-50.

0
250
500
750

1000
1250

0 10 20 30 40 50 60 70

D
is

k
re

ad
 th

ro
ug

hp
ut

 (M
iB

/s
)

Training time (min)

LeNet

PRISMA TF optimized TF baseline

0
250
500
750

1000
1250

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

0
250
500
750

1000
1250

0 10 20 30 40 50 60 70
0

250
500
750

1000
1250

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

0
200
400
600
800

0 20 40 60 80 100 120 140 160 180
0

200
400
600
800

0 20 40 60 80 100 120 140 160 180

ResNet-50

Figure 5.7: TensorFlow and PRISMA disk read
throughput over time with a batch size

of 256.

The average GPU usage of TF optimized increases with a larger batch size in all scenarios, except
when training LeNet with a batch size of 256. That said, TF optimized achieves a maximum GPU
usage of around 55% with LeNet, and 80% with AlexNet. With ResNet-50 the maximum GPU usage
rises to approximately 90%.

When training the LeNet model with PRISMA, the GPU usage decreases when increasing the batch
size. With AlexNet, the same happens when increasing the batch size from 128 to 256. However, when
increasing the batch size from 64 to 128, the AlexNet GPU usage increases. Similarly, with ResNet-50,
the GPU usage increases with a larger batch size. Given this, PRISMA achieves a maximum GPU
usage of 45% with LeNet, 70% with AlexNet, and 90% with ResNet-50. According to the results,
PRISMA achieves an advantage of 20% of GPU usage over TF baseline.

With a larger batch size, the GPU usage is expected to increase, however if there is an I/O
bottleneck, it can have the opposite effect. Specifically, a larger batch size means the GPU is going to
train with more data in each iteration, therefore requiring a higher read throughput. If the throughput
is not high enough, the GPU may end up wasting most of the time waiting for batches to consume,

5.1. TensorFlow 48

causing the GPU to be underutilized. This is why, in certain scenarios, GPU usage does not increase
with the batch size.

The time series depicted in Figure 5.11 represents the GPU usage throughout time for all models.
The fluctuations on PRISMA disk read throughput have an effect on the GPU usage. This occurs
due to the fact that when read throughput is lower, the GPUs have to wait more time to receive the
training batches, causing more idle time and, consequently, impacting GPU usage.

0

10

20

30

40

50

60

64 128 256

G
PU

 u
sa

ge
 (%

)

Batch size

TF baseline TF optimized PRISMA

LeNet

Figure 5.8: Average GPU usage for TensorFlow
and PRISMA setups with LeNet.

0

10

20

30

40

50

60

70

80

64 128 256
G

PU
 u

sa
ge

 (%
)

Batch size

TF baseline TF optimized PRISMA

AlexNet

Figure 5.9: Average GPU usage for TensorFlow
and PRISMA setups with AlexNet.

0

20

40

60

80

100

64 128 256

G
PU

 u
sa

ge
 (%

)

Batch size

TF baseline TF optimized PRISMA

ResNet-50

Figure 5.10: Average GPU usage for TensorFlow
and PRISMA setups with ResNet-50.

0
20
40
60
80

0 10 20 30 40 50 60 70

G
PU

 u
sa

ge
 (%

)

Training time (min)

LeNet

PRISMA TF optimized TF baseline

0
20
40
60
80

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

0
20
40
60
80

100

0 10 20 30 40 50 60 70
0

20
40
60
80

100

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

0
20
40
60
80

100

0 20 40 60 80 100 120 140 160 180
0

20
40
60
80

100

0 20 40 60 80 100 120 140 160 180

ResNet-50

Figure 5.11: TensorFlow and PRISMA GPU usage
over time with a batch size of 256.

memory usage We now discuss the impact of each setup on memory usage. The average
memory usage of all models is presented in Figures 5.12 to 5.14. Regardless of the model or batch
size used, the average memory usage remains practically constant. TF baseline uses a maximum
of approximately 20 GiB of memory. TF optimized and PRISMA consume approximately the same
amount of memory, reaching a maximum of around 22 GiB. This means that the autotuning features
of TensorFlow and PRISMA are making similar decisions in terms of buffer size. Based on the results
obtained, in the worst case scenario, using parallel I/O and data prefetching increases the memory
usage by 5 GiB.

5.1. TensorFlow 49

Figure 5.15 depicts the memory usage over time for all models. According to the time series, both
PRISMA and TF optimized appear to have similar behaviors regarding memory usage. While TF
baseline performs a low and consistent use of the available memory throughout time, both PRISMA
and TF optimized present a higher memory usage with slight fluctuations, caused by the number of
elements that are being stored in the prefetching buffer at any given time.

0

5

10

15

20

25

30

64 128 256

M
em

or
y

us
ag

e
(G

iB
)

Batch size

TF baseline TF optimized PRISMA

LeNet

Figure 5.12: Average memory usage for
TensorFlow and PRISMA setups with

the LeNet model.

0

5

10

15

20

25

30

64 128 256

M
em

or
y

us
ag

e
(G

iB
)

Batch size

TF baseline TF optimized PRISMA

AlexNet

Figure 5.13: Average memory usage for
TensorFlow and PRISMA setups with

AlexNet.

0

5

10

15

20

25

30

64 128 256

M
em

or
y

us
ag

e
(G

iB
)

Batch size

TF baseline TF optimized PRISMA

ResNet-50

Figure 5.14: Average memory usage for
TensorFlow and PRISMA setups with

ResNet-50.

10
15
20
25
30

0 10 20 30 40 50 60 70

M
em

or
y

us
ag

e
(G

iB
)

Training time (min)

LeNet

PRISMA TF optimized TF baseline

10
15
20
25
30

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

10

15

20

25

0 10 20 30 40 50 60 70
10

15

20

25

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

10
15
20
25
30

0 20 40 60 80 100 120 140 160 180
10
15
20
25
30

0 20 40 60 80 100 120 140 160 180

ResNet-50

Figure 5.15: TensorFlow and PRISMA memory
usage over time with a batch size of

256.

cpu usage Finally, CPU usage was also analyzed. Figures 5.16 to 5.18 depict the average CPU
usage of all models. It is important to mention that the CPU usage presented corresponds to the
sum of the user-level (application) and the system-level (kernel) usage. Increasing the batch size does
not seem to have an impact on the CPU usage of TF baseline, due to the single I/O thread used for
reading data from storage. With both LeNet and AlexNet, TF baseline uses approximately 15% of
CPU. With ResNet-50, the CPU usage is around 6%.

5.1. TensorFlow 50

TF optimized increases the CPU usage with the batch size, when training the I/O-bound models.
The maximum CPU usage achieved by TF optimized is approximately 47% with LeNet and 42% with
AlexNet. With the ResNet-50 model, TF optimized uses around 7% of CPU.

With the I/O intensive models, PRISMA CPU usage scales with the batch size. The maximum CPU
usage reached by PRISMA is around 32% with the LeNet and AlexNet models. On the other hand,
with ResNet-50, PRISMA achieves a maximum CPU usage of 7%. When training the I/O-bound
models, TF baseline and PRISMA are less intensive than TF optimized in terms of CPU. This is due to
the number of threads that TF optimized uses to read data, as described in Section 5.1.2. While TF
baseline performs I/O using a single thread, and PRISMA uses a maximum of 4 concurrent threads,
TF optimized reaches 30 concurrent threads during training. Consequently, compared to TF baseline,
PRISMA and TF optimized may cause a 17% and 32% increase in CPU usage, respectively. Therefore,
when it comes to CPU utilization, TF optimized is approximately 15% more expensive than PRISMA.
It is important to mention that the increase in CPU usage is also caused by the fact that solutions that
are more efficient in terms of I/O are faster at reading data, keeping the CPU busy more often.

With ResNet-50, the I/O threads are idle most of the time (Section 5.1.2). Similarly, the threads
responsible for performing the remaining tasks of the input pipeline must also be frequently inactive.
As a result, regardless of the setup, ResNet-50 is the model with the lower CPU usage.

Since LeNet is an extremely simple network, it demands low computing power, causing an
intensive I/O workload [101]. Thus, increasing the batch size beyond a certain point fails to improve
compute performance, which may not only be causing the GPU and CPU usage to remain constant,
but can also be the reason why TF optimized and PRISMA cannot improve the training time when
using LeNet with a batch size of 256 (Figure 5.1).

The time series depicted in Figure 5.19 represents the CPU usage over time for all models. The
abrupt drops caused by the fact that PRISMA does not optimize the I/O performance of validation
files also reflect on PRISMA CPU usage. Therefore, throughout the overall execution PRISMA CPU
utilization varies more than TF baseline and TF optimized.

0

10

20

30

40

50

64 128 256

C
PU

 u
sa

ge
 (%

)

Batch size

TF baseline TF optimized PRISMA

LeNet

Figure 5.16: Average CPU usage for TensorFlow
and PRISMA setups with LeNet.

0

5

10

15

20

25

30

35

40

45

64 128 256

C
PU

 u
sa

ge
 (%

)

Batch size

TF baseline TF optimized PRISMA

AlexNet

Figure 5.17: Average CPU usage for TensorFlow
and PRISMA setups with AlexNet.

PRISMA Autotuning

We now discuss the impact of the PRISMA autotuning algorithm, when using the TensorFlow DL
framework. Figure 5.20 depicts the selected buffer size of the autotuning algorithm. For all models

5.1. TensorFlow 51

0

1

2

3

4

5

6

7

8

9

64 128 256

C
PU

 u
sa

ge
 (%

)

Batch size

TF baseline TF optimized PRISMA

ResNet-50

Figure 5.18: Average CPU usage for TensorFlow
and PRISMA setups with ResNet-50.

0
20
40
60
80

0 10 20 30 40 50 60 70

C
PU

 u
sa

ge
 (%

)

Training time (min)

LeNet

PRISMA TF optimized TF baseline

0
20
40
60
80

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

0
20
40
60
80

0 10 20 30 40 50 60 70
0

20
40
60
80

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

0

20

40

60

0 20 40 60 80 100 120 140 160 180
0

20

40

60

0 20 40 60 80 100 120 140 160 180

ResNet-50

Figure 5.19: TensorFlow and PRISMA CPU usage
over time with a batch size of 256.

and batch sizes, the algorithm selects a buffer size of 20 elements, which means that prefetching a
maximum of 20 ILSVRC2012 TFRecords is enough to keep the TensorFlow consumer thread busy.
A buffer size of 20 elements consumes a maximum of 2.7 GB of memory, considering that each
ILSVRC2012 TFRecord has approximately 135 MB (Section 3.2.3).

The number of threads selected by the PRISMA autotuning algorithm is represented on Figure
5.21. Regardless of the model and batch size, PRISMA uses more producer threads for the LeNet
model than for AlexNet and ResNet-50. Similarly, AlexNet uses more producer threads than ResNet-
50. Therefore, the number of threads chosen by the autotuning algorithm scales with the I/O
requirements of the model.

When the batch size increases, the throughput demands are higher, and thus the number of threads
selected by the autotuning algorithm should not decrease with a larger batch size, as occurs with
LeNet. Due to the simplicity of the LeNet model, increasing the batch size beyond 128 does not
seem to have benefits (Figure 5.1). This reflects on the number of threads selected by the autotuning
algorithm, causing it to decrease with a batch size of 256.

0

5

10

15

20

25

LeNet AlexNet ResNet-50

Bu
ffe

r s
iz

e

Model

BS 64 BS 128 BS 256

Figure 5.20: Buffer size selected by the PRISMA
autotuning mechanism with

TensorFlow.

0

1

2

3

4

5

6

7

LeNet AlexNet ResNet-50

N
um

be
r o

f t
hr

ea
ds

Model

BS 64 BS 128 BS 256

Figure 5.21: Number of threads selected by the
PRISMA autotuning mechanism with

TensorFlow.

5.1. TensorFlow 52

To determine if the autotuning mechanism can achieve better results than configuring the buffer
size and number of threads manually, two different PRISMA configurations (Minimum and Maximum)
were compared to the autotuning mechanism. The Minimum configuration consists of manually
setting the buffer size and number of threads to its minimum values, 1 and 10, respectively. In contrast,
the Maximum configuration consists of manually setting the buffer size to 60 (i.e., approximately 8.1
GB of prefetched data) and the number of threads to 30 (i.e., the maximum number of threads used
by TF optimized). Figure 5.22 presents the average training time of LeNet, the most I/O intensive
model, with each PRISMA configuration, while varying the batch size between 64, 128 and 256. The
results were obtained by measuring the average values of 5 runs.

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

64 128 256

Tr
ai

ni
ng

 ti
m

e
(s

)

Batch size

Minimum Autotune Maximum

Figure 5.22: Training time of the PRISMA autotuning mechanism compared to manual settings with
TensorFlow.

According to the results obtained, the Minimum configuration takes approximately 4600 seconds
to finish the 10 training epochs, regardless of the batch size. In contrast, the Maximum configuration
takes a minimum of 2000 seconds. Moreover, the autotuning mechanism achieves a minimum training
time of approximately 1850 seconds, outperforming both the Minimum and Maximum configurations.
This proves that the autotuning mechanism can, in fact, provide successful configurations.

Concurrent Threads

The number of concurrent threads used by PRISMA to prefetch data was evaluated, using the same
strategy described in Section 3.2.5. In this case instead of using the timestamps relative to TensorFlow
pread() system call, the number of concurrent active threads was obtained based on the timestamps
of PRISMA pread() calls.

Figure 5.23 depicts a CDF with the percentage of time spent by N threads actively reading data in
simultaneous from the backend storage, for both TensorFlow and PRISMA autotune features. The
results are represented for each training model, namely LeNet, AlexNet, and ResNet-50.

According to Figure 5.23, while PRISMA uses a maximum of 4 concurrent threads (or 3 in the case
of ResNet-50), TensorFlow reaches approximately 7 times more threads. It is important to mention

5.1. TensorFlow 53

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Ti
m

e
pe

rc
en

ta
ge

 (%
)

Number of concurrent threads

PRISMA + LeNet
PRISMA + AlexNet
PRISMA + ResNet-50

TF optimized + LeNet
TF optimized + AlexNet
TF optimized + ResNet-50

Figure 5.23: Time percentage of each number of TensorFlow and PRISMA concurrent threads.

that, in terms of training time, TF optimized improves the baseline scenario by a maximum of 67%,
while PRISMA falls short behind improving the time by 54%. These values are obtained for the
LeNet model and with AlexNet the difference between the two solutions is even less noticeable. As
for ResNet-50, there is no advantage in using TF optimized instead of PRISMA, proving the extra
25 threads used by TF optimized to be completely useless. Although TF optimized rarely reaches
30 concurrent threads, this resources are unnecessarily allocated. In contrast, PRISMA autotuning
mechanism only allocates the threads that it selects, providing more resources for other applications
that may be running on the same compute node. In a scenario where the dataset is accessed by
several TensorFlow instances, TensorFlow autotune feature will saturate the file system more easily
than PRISMA, since it uses more threads to read from storage at the same time [70, 135].

When using the ResNet-50 model, approximately 85% of the time there are no PRISMA producer
threads reading data. This means that 85% of the time the producer threads are idle waiting for free
space in the buffer, which once again proves that ResNet-50 spends most of the time performing
computation. TF optimized shows a similar behavior for ResNet-50, however it still reaches the
excessive value of 28 concurrent threads. With LeNet and AlexNet, PRISMA producer threads appear
to be idle approximately 35% of the time, a higher value than TF optimized, which reveals an idle time
percentage of approximately 20% and 10% with LeNet and AlexNet, respectively. This difference
may be caused by the fact that PRISMA runs on top of TF baseline, meaning that there is only one
consumer thread requesting data from PRISMA. Due to this, PRISMA production rate is much higher
than the consumption rate, causing the buffer to be full most of the time and, consequently, causing
the producers to block while waiting for free space in the buffer.

Figure 5.23 shows that most of the time ResNet-50 does not perform I/O, i.e., has 0 active I/O
threads. To complement this, Figure 5.24 presents PRISMA buffer usage throughout time for each
model, using a batch size of 256 (the same used to obtain the number of concurrent threads). The
results prove that, in fact, AlexNet and LeNet make similar use of the buffer, hence they have identical
idle time percentages. ResNet-50 shows a consistently higher buffer usage when compared to the

5.1. TensorFlow 54

0
20
40
60
80
100

0 5 10 15 20 25 30
Bu

ffe
r u

sa
ge

 (%
)

Training time (min)

LeNet

0
20
40
60
80
100

0 5 10 15 20 25 30

0
20
40
60
80
100

0 5 10 15 20 25 30 35

AlexNet

0
20
40
60
80
100

0 5 10 15 20 25 30 35

0
20
40
60
80
100

0 20 40 60 80 100 120 140 160 180

ResNet-50

0
20
40
60
80
100

0 20 40 60 80 100 120 140 160 180

Figure 5.24: PRISMA buffer usage over time.

I/O intensive models, repeatedly reaching 100% utilization. This justifies the approximately 85%
of idle time reached by ResNet-50 because the longer the buffer is full, the longer the threads will
be idle (i.e., inactive) waiting for space in the buffer. It is worth noting that the values presented in
Figure 5.24 are relative to a single run, while those in Figure 5.23 represent the average of 5 runs.

Model Accuracy

Given that when using PRISMA, the training filenames are globally shuffled before creating the
filenames list shared between the DL framework and PRISMA, the accuracy of the model is not
affected. To prove this, the accuracy of the ResNet-50 model was measured using TF baseline, TF
optimized and PRISMA. Table 2 presents the top-1 accuracy of each setup after running 10 epochs, for
a batch size of 64, 128, and 256. The results were obtained by measuring the average accuracy of 5
different runs.

Table 2: Top-1 accuracy of the ResNet-50 model.

Batch Size TF baseline TF optimized PRISMA

64 47.4± 0.9% 47.2± 0.8% 47.6± 0.5%
128 46.4± 0.5% 45.2± 2.6% 45.8± 1.9%
256 43.0± 1.2% 44.4± 2.1% 44.4± 1.5%

As expected, PRISMA achieves approximately the same accuracy as TF optimized and TF baseline.

5.2. PyTorch 55

5.2 pytorch

We now discuss the experimental evaluation conducted with the PyTorch framework. We first
describe the experimental setup and methodology used, and then depict and analyze the results
achieved under different scenarios.

5.2.1 Methodology and Experimental Setup

All experiments were conducted on a single compute node of the ABCI supercomputer. Both
hardware and software specifications were already identified in Table 1. PyTorch 1.7.0 was the
version used to perform the experiments.

To ensure that the entire dataset would not fit in memory, we used cgroups to limit the Python
process that executed PyTorch to 64 GiB of memory. The overall system resources and GPU utilization
were observed using dstat and nvidia-smi, respectively.

models Since ResNet-50 does not take advantage of the proposed I/O optimizations, PyTorch
was evaluated only with the I/O intensive models, namely LeNet and AlexNet. Once again, to
perform this experiments, the LeNet network used was the one that had to be adapted for the
preliminary studies (Chapter 3).

dataset The models were trained with the ILSVRC2012 dataset, however this time it was not
converted to TFRecords, but to PyTorch tensors [92]. PyTorch Data Loader has the possibility of using
worker processes to parallelize data loading and to prefetch data [27]. Although with TensorFlow
input pipeline the samples are read and preprocessed simultaneously by different threads, with
PyTorch the worker processes that fetch data are the same ones that perform the preprocessing.
Therefore, while a worker is busy preprocessing data, it cannot perform I/O, thus causing I/O
performance to be dependent on data preprocessing. In other words, no matter how efficient the I/O
is, it will always be limited by the preprocessing time of each sample. Given this, if PRISMA was
compared to PyTorch using raw images, PRISMA would not improve the overall training time, since
the improvement in I/O performance would be concealed by the preprocessing time. To address
this, the images were stored in PyTorch tensors after being preprocessed. With this strategy, the
worker processes only need to load the tensors and no longer need to apply any transformations
(e.g., cropping, resizing). Although this is more fair than comparing PRISMA and PyTorch using raw
images, the I/O performance is still dependent on the tensor loading time.

Each tensor has an average size of 300 KB, opposed to the 115 KB of each raw image. So that the
total dataset size would not exceed the size of the original ILSVRC2012 dataset (144 GB), but at the
same time not allowing the entire dataset to fit into the 64 GiB of memory restricted by cgroups,
only a quarter of the original dataset was converted to tensors. That said, the experiments were
performed with a 94 GB dataset, stored in the local NVMe SSD disk of the compute node. In case the
entire dataset was converted to tensors, the dataset would have a total size of approximately 370 GB,
exceeding the size of the original dataset.

5.2. PyTorch 56

PRISMA was compared to PyTorch while training LeNet and AlexNet for 10 epochs. ResNet-50
was not evaluated due to the fact of being a compute-bound model. The experiments were performed
with a batch size of 256, since this represents the most intensive I/O workload. To train with the
4 GPUs available on the compute node, torch.nn.DataParallel [28] was used. Considering that
this strategy divides the batch across all GPUs, each GPU trained with a batch size of 64. Unless
otherwise stated, for each experiment were performed 5 runs and the average values of each metric
were measured. PRISMA max_buffer_size and max_n_threads configurations were set to 60 and 80
(value returned by std::thread::hardware_concurrency()), respectively, during the experiments.

As previously stated, PyTorch uses worker processes to parallelize I/O and prefetch data. However,
this framework does not provide an autotuning mechanism to select the optimal value for the number
of workers. Given this, PyTorch was evaluated using a variable number of workers, namely 0, 2,
4, 8, and 16 workers. Since the workers are also used for loading tensors, PRISMA was evaluated
with more than one worker to understand the impact of the data loading performance on the overall
training time. When the number of worker processes is set to 0, it is the main process that does all
the work related to loading data, so this represents the baseline scenario of PyTorch. According to
the PyTorch ImageNet implementation [40] used to perform the experiments, the default number of
workers is 4.

PyTorch also offers the possibility of defining the number of samples that each worker prefetches,
using the prefetch_factor argument of the PyTorch Data Loader [27]. In the experiments the
prefetch_factor default value was used, meaning that a total of 2 × #workers samples will be
prefetched by PyTorch.

Similarly to the TensorFlow case study, in these experiments PRISMA was used exclusively to
prefetch training files and not validation files.

5.2.2 Results

Training Time

The training time of PyTorch was measured using only the main process (i.e., 0 workers) and using 2,
4, 8, 16 and 32 workers. Given that PyTorch reaches its peak performance with 16 workers, this was
the maximum number of workers with which PRISMA was evaluated.

Figures 5.25 and 5.26 show the training time of both LeNet and AlexNet, respectively, using
PyTorch and PRISMA. According to the obtained results, PRISMA outperforms PyTorch with 0, 2 and
4 workers, however PyTorch achieves lower training times with 8 and 16 workers. PyTorch reaches
a minimum training time of approximately 750 seconds, and a maximum of approximately 4250
seconds, for both LeNet and AlexNet. On the other hand, PRISMA achieves a minimum training
time of around 1100 seconds, and a maximum of approximately 1500 seconds, for both models.

Since the performance of PRISMA improves with a higher number of workers, this proves that even
with PyTorch tensors, the tensor loading time has an influence on the I/O performance. Nevertheless,
with a higher number of workers, the overhead caused by the concurrency control mechanisms
used by PRISMA ends up overcoming the benefit of parallelizing the loading of tensors, degrading
the performance of PRISMA. This overhead arises from the continuous acquisition and release of
locks, and the wait that each process has to perform while it is unable to acquire the lock. Given

5.2. PyTorch 57

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2 4 8 16

Tr
ai

ni
ng

 ti
m

e
(s

)

Number of worker processes

PyTorch PRISMA

LeNet

Figure 5.25: Average training time of PyTorch and
PRISMA with LeNet.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2 4 8 16

Tr
ai

ni
ng

 ti
m

e
(s

)

Number of worker processes

PyTorch PRISMA

AlexNet

Figure 5.26: Average training time of PyTorch and
PRISMA with AlexNet.

this, PRISMA improves the training performance of the baseline scenario by a maximum of 72% for
LeNet with 16 workers and 75% for AlexNet with 8 workers, while PyTorch improves the training
performance by a maximum of 82% for LeNet and 83% for AlexNet, both with 16 workers. Apart
from this, PRISMA outperforms PyTorch with 2 and 4 workers due to the fact that it prefetches
samples independently of the training epoch, and PyTorch only starts prefetching elements for an
epoch when that epoch begins.

Resource Usage

The figures provided in this section depict the resource usage of PyTorch and PRISMA, when training
LeNet and AlexNet with multiple workers. The histogram plots present the average usage of a given
resource, based on the 5 runs that were performed for a variable number of workers. The time series
show the resource usage over time, and represent a single run with the LeNet model for 0, 4 and
16 workers, since 0 workers represents the baseline scenario, 4 workers is the default value, and 16
workers is the optimal configuration for PyTorch. The time series relative to the resource usage of
LeNet with 2 and 8 workers, as well as for AlexNet with 0, 2, 4, 8, and 16 workers can be found in
Section A.1.2 of the Appendix.

disk read throughput The first resource usage analysis to be performed concerns disk
read throughput. Figures 5.27 and 5.28 represent the average read throughput of the two models, for
multiple workers. With PyTorch, the read throughput scales with the number of worker processes.
That said, PyTorch reaches a maximum read throughput of approximately 1200 MiB/s, for both
models. PRISMA read throughput increases with the number of workers, achieving a maximum
read throughput of approximately 800 MiB/s, for the two models. Moreover, PRISMA reaches a
higher read throughput than PyTorch for a lower number of workers (e.g., 0, 2, 4), however PyTorch
achieves better results with 8 and 16 workers. This is due to the fact that with a higher number of
worker processes, the overhead caused by the concurrency control mechanisms impairs PRISMA
performance.

Figure 5.29 depicts the disk read throughout over time of the two models. When it comes to read
throughput, PyTorch demonstrates more consistent (i.e., less variable) values than PRISMA. PyTorch
only initiates the prefetching process for an epoch, when that same epoch starts. Given this, in the

5.2. PyTorch 58

period of time between the end of one epoch and the beginning of the next, there is a drop in the
framework consumption rate, causing the buffer to reach its maximum capacity more often. This
means that the producer threads do not have to fetch data as often, momentarily affecting the read
throughput. The variability is more accentuated with 0 workers, since with 4 workers the decrease in
the consumption rate is much faster and subtle.

0

200

400

600

800

1000

1200

1400

0 2 4 8 16

D
is

k
re

ad
 th

ro
ug

hp
ut

 (M
iB

/s
)

Number of worker processes

PyTorch PRISMA

LeNet

Figure 5.27: Average disk read throughput for
PyTorch and PRISMA setups with

LeNet.

0

200

400

600

800

1000

1200

1400

0 2 4 8 16

D
is

k
re

ad
 th

ro
ug

hp
ut

 (M
iB

/s
)

Number of worker processes

PyTorch PRISMA

AlexNet

Figure 5.28: Average disk read throughput for
PyTorch and PRISMA setups with

AlexNet.

0
200
400
600
800

0 10 20 30 40 50 60 70

D
is

k
re

ad
 th

ro
ug

hp
ut

 (M
iB

/s
)

Training time (min)

0 workers

PyTorch PRISMA

0
200
400
600
800

0 10 20 30 40 50 60 70

4 workers

16 workers

0
200
400
600
800

1000

0 5 10 15 20 25
0

200
400
600
800

1000

0 5 10 15 20 25

4 workers

16 workers

0
400
800

1200
1600
2000

0 5 10 15 20 25
0

400
800

1200
1600
2000

0 5 10 15 20 25

16 workers

Figure 5.29: PyTorch and PRISMA disk read
throughput over time with LeNet for

0, 4, and 16 workers.

gpu usage Apart from the disk read throughput, the GPU utilization was also assessed. Figures
5.30 and 5.31 depict the average GPU usage of the two models, for multiple workers. Given that read
throughput directly impacts the GPU usage, PRISMA and PyTorch GPU usage show an identical
behavior to the read throughput. PyTorch reaches a maximum GPU usage of approximately 30% for
LeNet and 25% for AlexNet. On the other hand, PRISMA reached a maximum GPU usage of around
20% for LeNet and 15% for AlexNet. In general, PRISMA demonstrates to have a higher GPU usage
than PyTorch with 0, 2 and 4 workers.

5.2. PyTorch 59

The time series depicted in Figure 5.32 represents the GPU usage over time of the two models.
Throughout the overall execution, PyTorch and PRISMA GPU usage demonstrate similar variations.

0

5

10

15

20

25

30

35

40

0 2 4 8 16

G
PU

 u
sa

ge
 (%

)

Number of worker processes

PyTorch PRISMA

LeNet

Figure 5.30: Average GPU usage for PyTorch and
PRISMA setups with LeNet.

0

5

10

15

20

25

30

35

0 2 4 8 16

G
PU

 u
sa

ge
 (%

)

Number of worker processes

PyTorch PRISMA

AlexNet

Figure 5.31: Average GPU usage for PyTorch and
PRISMA setups with AlexNet.

0

20

40

0 10 20 30 40 50 60 70

G
PU

 u
sa

ge
 (%

)

Training time (min)

0 workers

PyTorch PRISMA

0

20

40

0 10 20 30 40 50 60 70

4 workers

16 workers

0

20

40

60

0 5 10 15 20 25
0

20

40

60

0 5 10 15 20 25

4 workers

16 workers

0
20
40
60
80

100

0 5 10 15 20 25
0

20
40
60
80

100

0 5 10 15 20 25

16 workers

Figure 5.32: PyTorch and PRISMA GPU usage
over time with LeNet for 0, 4, and 16

workers.

memory usage We now discuss the impact of each setup on memory usage. The average
memory usage of the two models, for multiple workers, is presented in Figures 5.33 and 5.34. The
average memory consumption of both PyTorch and PRISMA increases with the number of workers.
PyTorch reaches a maximum memory utilization of around 17.5 GiB, and a minimum of 15 GiB, for
both LeNet and AlexNet. In contrast, PRISMA achieves a maximum of nearly 19 GiB, and a minimum
of 17 GiB, for both models. Since PRISMA runs on top of the PyTorch version with which is being
compared, the difference of memory between PyTorch and PRISMA represents the consumption of
memory made by PRISMA. Considering this, PRISMA adds approximately 2 GiB of memory usage
to the PyTorch implementation.

Figure 5.35 depicts the memory usage over time of the two models. During training, both PRISMA
and PyTorch show similar memory usage variations. While with TensorFlow the buffer usage over

5.2. PyTorch 60

time was reflected in small memory consumption fluctuations (Figure 5.15), in the case of PyTorch
this is not noticeable, not only because the buffer is smaller (Section 5.2.2), but also due to the fact
that the training files take up much less space. Whereas in the case of TensorFlow the full buffer
consumes 2.7 GB of memory, with PyTorch the full buffer is only equivalent to 1.2 MB, hence it is not
possible to observe fluctuations in the memory usage time series.

0

5

10

15

20

25

0 2 4 8 16

M
em

or
y

us
ag

e
(G

iB
)

Number of worker processes

PyTorch PRISMA

LeNet

Figure 5.33: Average memory usage for PyTorch
and PRISMA setups with LeNet.

0

5

10

15

20

25

0 2 4 8 16

M
em

or
y

us
ag

e
(G

iB
)

Number of worker processes

PyTorch PRISMA

AlexNet

Figure 5.34: Average memory usage for PyTorch
and PRISMA setups with AlexNet.

10

15

20

0 10 20 30 40 50 60 70

M
em

or
y

us
ag

e
(G

iB
)

Training time (min)

0 workers

PyTorch PRISMA

10

15

20

0 10 20 30 40 50 60 70

4 workers

16 workers

10

15

20

0 5 10 15 20 25
10

15

20

0 5 10 15 20 25

4 workers

16 workers

10

15

20

25

0 5 10 15 20 25
10

15

20

25

0 5 10 15 20 25

16 workers

Figure 5.35: PyTorch and PRISMA memory usage
over time with LeNet for 0, 4, and 16

workers.

cpu usage Finally, CPU usage was also analyzed. Figures 5.36 and 5.37 depict the average CPU
usage of both models, for multiple workers. It is important to mention that the CPU usage presented
corresponds to the sum of the user-level (application) and the system-level (kernel) usage. PyTorch
CPU usage varies from 2% to 6%, with both LeNet and AlexNet. With PRISMA the maximum CPU
usage achieved was approximately 17%, and the minimum 4%. Except for 0 workers, PyTorch and
PRISMA have a very similar CPU usage.

Typically, the better performance the setup has, the more CPU it will use, due to the fact that the
data has to be processed by the CPU before being transferred to the GPU. With 0 workers PyTorch

5.2. PyTorch 61

uses only one process to perform data loading. Moreover, with this setup PRISMA client-server
implementation is not used, therefore PyTorch main process communicates directly with PRISMA
and does not have to wait for the server to intermediate the read operations. Consequently, both
PyTorch main process and PRISMA consumer threads have less wait time, causing the CPU to be
higher than with other setups.

The time series depicted in Figure 5.38 represents the CPU usage over time of the two models.
Throughout the overall execution, the CPU usage is similar to the read throughput, since when
the throughput is lower it means that less threads are actively reading data, therefore less CPU is
consumed.

0

2

4

6

8

10

12

14

16

18

0 2 4 8 16

C
PU

 u
sa

ge
 (%

)

Number of worker processes

PyTorch PRISMA

LeNet

Figure 5.36: Average CPU usage for PyTorch and
PRISMA setups with LeNet.

0
2
4
6
8
10
12
14
16
18
20

0 2 4 8 16

C
PU

 u
sa

ge
 (%

)

Number of worker processes

PyTorch PRISMA

AlexNet

Figure 5.37: Average CPU usage for PyTorch and
PRISMA setups with AlexNet.

0

10

20

30

0 10 20 30 40 50 60 70

C
PU

 u
sa

ge
 (%

)

Training time (min)

0 workers

PyTorch PRISMA

0

10

20

30

0 10 20 30 40 50 60 70

4 workers

16 workers

0

2

4

6

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25

4 workers

16 workers

0
2
4
6
8

10

0 5 10 15 20 25
0
2
4
6
8

10

0 5 10 15 20 25

16 workers

Figure 5.38: PyTorch and PRISMA CPU usage
over time with LeNet for 0, 4, and 16

workers.

PRISMA Autotuning

To prove the validity of PRISMA autotuning mechanism when using PyTorch, we measured the
selected buffer size and number of threads, which are depicted in Figures 5.39 and 5.40, respectively.

5.2. PyTorch 62

The autotuning algorithm was designed based on the TensorFlow case study, i.e., considering the
internal mechanisms of TensorFlow and taking into account that the training samples consisted of
ILSVRC2012 TFRecords. When analyzing the obtained results, with a higher number of workers,
the autotuning decisions exhibit more variation, than with 0 workers. Since the training files used
with PyTorch are approximately 1200 times smaller than the ones used with TensorFlow, the file
production and consumption rates are much higher with PyTorch. Moreover, while TensorFlow
uses only one consumer thread, PyTorch uses multiple workers. Both of these factors are impacting
the autotuning algorithm decisions, causing it to occasionally select a higher buffer size. Thus, the
autotuning algorithm should be fine-tuned to converge to more consistent buffer sizes in scenarios
where consumption and production rates are higher. Nevertheless, according to Figures 5.25 and
5.26, the variance in the selected buffer size does not impact the training performance between runs.

0

10

20

30

40

50

60

70

LeNet AlexNet

Bu
ffe

r s
iz

e

Model

0 workers 4 workers 16 workers

Figure 5.39: Buffer size selected by the PRISMA
autotuning mechanism with PyTorch.

0
1
2
3
4
5
6
7
8
9

10

LeNet AlexNet

N
um

be
r o

f t
hr

ea
ds

Model

0 workers 4 workers 16 workers

Figure 5.40: Number of threads selected by the
PRISMA autotuning mechanism with

PyTorch.

Similarly to TensorFlow (Section 5.1.2), PRISMA autotuning mechanism was compared to a
Minimum and Maximum configurations when training LeNet. Since the autotuning algorithm used
with PyTorch was the same designed for TensorFlow, we decided to use the the same Minimum
and Maximum configurations adopted in Section 5.1.2. As such, the Minimum configuration consists
of manually setting the buffer size to 10 and the number of threads to 1, while the Maximum
configuration comprises a buffer size of 60 elements and 30 threads. The results were obtained by
measuring the average values of 5 runs.

Figure 5.41 presents the training time of each manual setting compared to the autotuning mech-
anism, with the LeNet model. According to the results obtained, although PRISMA performs
significantly better than the Minimum configuration, its training time is worse than the Maximum
configuration. Once again, since the autotuning algorithm was designed based on the TensorFlow
case study, it does not provide the optimal performance in this scenario. Despite that the Maximum
configuration outperforms PRISMA autotuning algorithm by up to 24%, the autotuning algorithm
uses approximately 6 threads, while the Maximum configuration uses 30. Additionally, the autotuning
algorithm has a ramp-up period until reaching the optimal configuration, whereas the Maximum
configuration already starts the training process with the parameters set to the maximum values.

It is worth mentioning that with the Maximum configuration, PRISMA reaches a performance
improvement of 79% with 16 workers, when compared to the baseline scenario. This value is
extremely close to the 82% achieved by PyTorch, when training LeNet (Section 5.2.2).

5.3. Discussion 63

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 4 16

Tr
ai

ni
ng

 ti
m

e
(s

)

Number of worker processes

Minimum Autotune Maximum

Figure 5.41: Training time of the PRISMA autotuning mechanism compared to manual settings with
PyTorch.

Given that PRISMA is a framework-agnostic middleware, to prove that it can be applied to more
than one framework and to demonstrate that different scenarios can benefit from this solution, we
decided to integrate PRISMA with PyTorch. However, to achieve optimal performance with PyTorch,
PRISMA autotuning algorithm would have to be adjusted, more specifically adapting the initial buffer
size and increasing step. Still, with the autotuning algorithm used, PRISMA has a major advantage
over PyTorch for a lower number a workers. More specifically, for 4 workers, which represents the
default value that would be typically selected by the majority of the users, PRISMA can significantly
outperform PyTorch.

5.3 discussion

Adopting a framework-agnostic solution like PRISMA has the advantage of being easily extended
to different scenarios, without having to study the details and complexity of a DL framework. In
contrast, the I/O optimizations currently implemented in DL frameworks are internal to the system
and cannot be reused with other frameworks. TensorFlow and PyTorch case studies prove that
PRISMA can be successfully applied to different DL frameworks.

Compared to TensorFlow baseline scenario, PRISMA can improve the performance of I/O intensive
models by 54%. The I/O optimized version of TensorFlow achieves a higher performance, improving
the baseline training time by 67%. However, while both PRISMA and TF optimized have the same
memory cost, TF optimized consumes more 15% of CPU and allocates more threads than PRISMA. A
scenario where this difference would be noticeable is when executing multiple TensorFlow instances
(or other applications) on the same node, as is the case with the ABCI supercomputer. This is due
to the fact that (i) PRISMA uses fewer concurrent threads, so it will not saturate the storage as
easily; and (ii) PRISMA consumes less CPU, providing more resources for the remaining TensorFlow
applications.

5.3. Discussion 64

In addition, the accuracy of the training model is approximately the same when using TF baseline,
TF optimized, and PRISMA, as demonstrated with the ResNet-50 results, which proves that PRISMA
does not have an impact on the accuracy of the model.

When comparing with the baseline scenario (i.e., PyTorch with 0 workers), PyTorch I/O optimiza-
tions can improve the training time by approximately 80% for both LeNet and AlexNet. On the
other hand, PRISMA improves the baseline training time by approximately 70% for both models.
When up to 4 workers are used, PRISMA significantly outperforms PyTorch. Considering this, for
scenarios where it is advantageous to use less workers, PRISMA is a more favorable option than
PyTorch, although it has an additional cost of 2 GiB of memory. In the event that PyTorch I/O
performance was not dependent on the preprocessing, PRISMA could be applied to the baseline
scenario of PyTorch and possibly outperform PyTorch with a higher number of workers, since there
would be no overhead caused by PRISMA concurrency control mechanisms. In addition, PRISMA
client-server implementation would not need to be used with PyTorch baseline scenario, removing
yet another layer of overhead.

Apart from this, when manually setting a Maximum configuration with 30 producer threads and a
buffer size of 60, PRISMA accomplishes even lower training times, reaching values extremely close
to PyTorch for a larger number of workers (e.g., 8, 16). Since PRISMA autotuning mechanism was
designed based on the TensorFlow case study, it cannot outperform the Maximum configuration with
PyTorch. Therefore, to achieve the best performance possible with PyTorch, PRISMA autotuning
algorithm would have to be fine-tuned.

Compared to PyTorch, when it comes to choosing the optimal configuration, PRISMA has the
upper hand. PRISMA autotuning mechanism automatically selects the optimal combination of
buffer size and number of threads, preventing the user from wasting time looking for an efficient
configuration. On the contrary, PyTorch configurations have to be manually set.

The results of the PyTorch case study (Section 5.2.2) indicate that there is still a margin of
performance optimization for PRISMA, which involves optimizing concurrent access to PRISMA
shared data structures. Regardless of the DL framework used, PRISMA could achieve better
performance if the validation files were also prefetched, since these represent approximately 11% of
the ILSVRC2012 dataset. According to the results presented in Section 5.2.2, PRISMA autotuning
mechanism does not converge to the optimal configuration when using a high number of workers.
Although this issue is partially caused by the concurrency control overhead, a larger initial buffer size
would also be beneficial to improve the autotuning decisions. As such, if the PRISMA autotuning
algorithm could predict an efficient initial buffer size, this would prevent the autotuning from
converging to suboptimal configurations. The initial buffer size of each scenario could be based on
the dimension of the dataset files, since this directly impacts the file production and consumption
rates.

Currently each PRISMA instance is isolated, therefore the autotuning decisions made by one
PRISMA instance are completely independent of other instances that are running on the same
compute node. Thus, considering the previous ABCI use case (i.e., multiple TensorFlow instances
operating concurrently), rather than enforcing local optimizations within each instance, it would be
interesting that PRISMA could have global visibility, allowing all instances to be coordinated. To
achieve this, PRISMA could implement the Software-Defined Storage (SDS) principles [65]. A possible
approach for this would be having PRISMA I/O mechanisms as the data plane, making it responsible

5.3. Discussion 65

for enforcing and implementing the storage optimizations over data; and having the control plane,
which comprises global visibility of the infrastructure, holding the PRISMA autotuning algorithm
and adjusting each individual PRISMA instance according to user-defined objectives.

6
C O N C L U S I O N

I/O has proven to be one of the largest bottlenecks in DL training scenarios where the dataset
does not fit in memory [37, 45, 129, 78, 88]. Thus, multiple DL frameworks have internal I/O
optimizations that are specific to the framework itself and cannot be easily decoupled and applied
to other frameworks. A number of external optimizations has also been proposed, such as data
loading pipelining [105, 3, 137], I/O parallelization [88, 130, 55], data echoing [18], among others
[79, 54, 57, 135, 138, 128]. However, all of these hold certain drawbacks, such as impacting the accuracy
of the training models, being single-purposed and designed to a specific framework. Furthermore, all
the proposed solutions either have to be manually tuned, or comprise greedy algorithms for resource
provisioning.

To prove that the performance of local DL applications could benefit from I/O optimization,
TensorFlow Dataset API was thoroughly studied and evaluated. The results of this preliminary
study demonstrated that, in a single node setup, applying prefetching and I/O parallelization could
improve TensorFlow performance by 67%. Thus, to address the issues previously mentioned, this
dissertation proposes PRISMA, a framework-agnostic prefetching middleware for accelerating local
DL workloads.

PRISMA is a framework-agnostic storage middleware that delivers efficient data prefetching of
training files, and provides an autotuning mechanism for automatically determining the optimal
configuration regarding the number of I/O threads and the internal buffer size, while allocating as
few resources as possible. With this features, PRISMA is able to improve the I/O performance of
different DL frameworks.

PRISMA was employed over TensorFlow and PyTorch, which required a simple custom inte-
gration to be implemented for each framework (more specifically, at the interaction between the
framework and the backend storage). Compared to TensorFlow baseline version, PRISMA achieves a
performance improvement of 54%. Although the TensorFlow I/O optimized version can improve
the baseline training time by 67%, it consumes more 15% of CPU than PRISMA. Regarding the
autotuning mechanisms of both TensorFlow and PRISMA, while PRISMA uses an average of 4
threads, TensorFlow ends up allocating near 30 threads for the same training scenario, although it
only executes between 4 and 8 concurrent threads during training. As such, in a use case similar to
the one conducted on ABCI, which consists of running multiple TensorFlow applications on the same
compute node, PRISMA could have an advantage over TensorFlow in terms of I/O performance and
resource usage.

When it comes to PyTorch, PRISMA performs better for a lower number of worker processes.
Therefore, in a scenario where less workers are required, PRISMA would be more beneficial since it

66

6.1. Future Work 67

reaches lower training times, at the cost of 2 GiB of memory. In a scenario with 16 workers, when
using a manual configuration of 30 threads and a buffer size of 60 elements, PRISMA can improve the
performance of the baseline scenario by 79%, a value extremely close to the 82% achieved by PyTorch.
On the other hand, with the autotuning mechanism, PRISMA outperforms the baseline training
time by 72%, for the same scenario, indicating that there is still room for improving the autotuning
algorithm. In regards to choosing the optimal configuration, PRISMA has the advantage, since it
provides an autotuning mechanism for automatically selecting the best combination of parameters.

To conclude, PRISMA is the most efficient solution in the majority of the scenarios that were
studied, and performs similarly to the I/O optimized setups of both TensorFlow and PyTorch.
Moreover, the case studies demonstrate that there is still a margin of performance enhancement for
PRISMA, proving that with a few future optimizations, PRISMA can outperform both TensorFlow
and PyTorch internal I/O optimizations.

6.1 future work

To improve the I/O performance of PRISMA, there are a few optimizations that could be performed.
First of all, apart from prefetching the training files, PRISMA should be able of prefetching the
validation files as well, since these usually represent a significant portion of the overall dataset.

According to the experiments performed, the overhead caused by the concurrency control mecha-
nisms seem to impact PRISMA performance. Given this, optimizing the concurrent access to PRISMA
shared data structures is another option that could be explored in the future.

When it comes to PRISMA autotuning mechanism, a possible enhancement consists of automati-
cally identifying the optimal initial buffer size (and increasing step) for the I/O workload in question.
This feature could be based on the size of each training sample and on the dimension of the dataset,
since these factors directly impact the production and consumption rates.

As previously described, a common use case of HPC infrastructures, which is also conducted on
ABCI, consists of executing multiple DL applications on the same compute node. Apart from sharing
the compute resources of the node, the applications all have access to the same local device. To ensure
that the provisioning process is as efficient as possible, one application should be aware of all the
others running on the same compute node. At the moment, PRISMA instances are completely isolated,
therefore the autotuning decisions made by one PRISMA instance are completely independent of
the others. So that PRISMA could be successfully applied to the ABCI use case, the autotuning
algorithm should be able to have a global view of all PRISMA instances running on the compute node.
Moreover, the decisions made by the algorithm should take into account the I/O workload of each DL
application, to allow provisioning to be as fair as possible. To achieve this, PRISMA could implement
the SDS principles [65]. A possible approach for this would be having PRISMA I/O mechanisms as
the data plane, making it responsible for enforcing and implementing the storage optimizations over
data; and having the control plane, which comprises global visibility of the infrastructure, holding
the PRISMA autotuning algorithm and adjusting each individual PRISMA instance according to
user-defined objectives.

B I B L I O G R A P H Y

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16), pages 265–283, 2016.

[2] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadarajan, and S. Vijaya-
narasimhan. Youtube-8m: A large-scale video classification benchmark. arXiv preprint
arXiv:1609.08675, 2016.

[3] A. Aizman, G. Maltby, and T. Breuel. High performance i/o for large scale deep learning. In
2019 IEEE International Conference on Big Data (Big Data), pages 5965–5967. IEEE, 2019.

[4] G. Amvrosiadis, A. R. Butt, V. Tarasov, E. Zadok, M. Zhao, I. Ahmad, R. H. Arpaci-Dusseau,
F. Chen, Y. Chen, Y. Chen, Y. Cheng, V. Chidambaram, D. Da Silva, A. Demke-Brown, P. Desnoy-
ers, J. Flinn, X. He, S. Jiang, G. Kuenning, M. Li, C. Maltzahn, E. L. Miller, K. Mohror,
R. Rangaswami, N. Reddy, D. Rosenthal, A. S. Tosun, N. Talagala, P. Varman, S. Vazhkudai,
A. Waldani, X. Zhang, Y. Zhang, and M. Zheng. Data storage research vision 2025: Report on
nsf visioning workshop held may 30–june 1, 2018. Technical report, USA, 2018.

[5] T. Bayes. Lii. an essay towards solving a problem in the doctrine of chances. by the late rev. mr.
bayes, frs communicated by mr. price, in a letter to john canton, amfr s. Philosophical transactions
of the Royal Society of London, 53(53):370–418, 1763.

[6] BeeGFS. BeeGFS. https://www.beegfs.io/content/. Accessed November 25, 2019.

[7] T. Ben-Nun and T. Hoefler. Demystifying parallel and distributed deep learning: An in-depth
concurrency analysis. ACM Computing Surveys (CSUR), 52(4):65, 2019.

[8] Y. Bengio. Practical recommendations for gradient-based training of deep architectures. In
Neural networks: Tricks of the trade, pages 437–478. Springer, 2012.

[9] B. Berg, D. S. Berger, S. McAllister, I. Grosof, S. Gunasekar, J. Lu, M. Uhlar, J. Carrig, N. Beck-
mann, M. Harchol-Balter, et al. The cachelib caching engine: Design and experiences at scale.
In Proceedings of the 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI’20), Banff, AL, Canada, 2020.

[10] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi, Q. Fischer,
S. Hashme, C. Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680, 2019.

[11] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rimmer, K. D. Underwood,
and R. C. Zak. Intel® omni-path architecture: Enabling scalable, high performance fabrics. In
2015 IEEE 23rd Annual Symposium on High-Performance Interconnects, pages 1–9. IEEE, 2015.

68

https://www.beegfs.io/content/

bibliography 69

[12] R. Bonnin. Using tensorflow to predict product weight and dimensions. https://blog.

tensorflow.org/2019/09/using-tensorflow-to-predict-product.html, Sep 2019. Accessed
December 5, 2020.

[13] A. Burkov. The Hundred-Page Machine Learning Book. Andriy Burkov, 2019.

[14] R. Caruana, S. Lawrence, and C. L. Giles. Overfitting in neural nets: Backpropagation, conjugate
gradient, and early stopping. In Advances in neural information processing systems, pages 402–408,
2001.

[15] B. Cece. Ai and aerospace. https://www.airbus.com/newsroom/news/en/2016/12/

Artificial-Intelligence.html, Dec 2016. Accessed November 18, 2019.

[16] cgroups. cgroups. https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt.
Accessed October 23, 2020.

[17] S. W. Chien, S. Markidis, C. P. Sishtla, L. Santos, P. Herman, S. Narasimhamurthy, and E. Laure.
Characterizing deep-learning i/o workloads in tensorflow. In 2018 IEEE/ACM 3rd International
Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems (PDSW-DISCS),
pages 54–63. IEEE, 2018.

[18] D. Choi, A. Passos, C. J. Shallue, and G. E. Dahl. Faster neural network training with data
echoing. arXiv preprint arXiv:1907.05550, 2019.

[19] F. Chowdhury, Y. Zhu, T. Heer, S. Paredes, A. Moody, R. Goldstone, K. Mohror, and W. Yu. I/o
characterization and performance evaluation of beegfs for deep learning. In Proceedings of the
48th International Conference on Parallel Processing, page 80. ACM, 2019.

[20] H. Chu. Mdb: A memory-mapped database and backend for openldap. In Proceedings of the
3rd International Conference on LDAP, Heidelberg, Germany, page 35. Citeseer, 2011.

[21] K. Chung. Generating recommendations at amazon scale with apache
spark and amazon dsstne. https://aws.amazon.com/pt/blogs/big-data/

generating-recommendations-at-amazon-scale-with-apache-spark-and-amazon-dsstne/,
Jul 2016. Accessed November 18, 2019.

[22] D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image
classification. arXiv preprint arXiv:1202.2745, 2012.

[23] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew. Deep learning with cots
hpc systems. In International conference on machine learning, pages 1337–1345, 2013.

[24] concurrent_hash_map. concurrent_hash_map. https://www.threadingbuildingblocks.org/
docs/help/tbb_userguide/concurrent_hash_map.html. Accessed October 28, 2020.

[25] D. Crevier. AI: the tumultuous history of the search for artificial intelligence. Basic Books, 1993.
ISBN 9780465029976. URL https://books.google.pt/books?id=QJNQAAAAMAAJ.

[26] CTPL. CTPL. https://github.com/vit-vit/CTPL, Accessed November 28, 2020.

https://blog.tensorflow.org/2019/09/using-tensorflow-to-predict-product.html
https://blog.tensorflow.org/2019/09/using-tensorflow-to-predict-product.html
https://www.airbus.com/newsroom/news/en/2016/12/Artificial-Intelligence.html
https://www.airbus.com/newsroom/news/en/2016/12/Artificial-Intelligence.html
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://aws.amazon.com/pt/blogs/big-data/generating-recommendations-at-amazon-scale-with-apache-spark-and-amazon-dsstne/
https://aws.amazon.com/pt/blogs/big-data/generating-recommendations-at-amazon-scale-with-apache-spark-and-amazon-dsstne/
https://www.threadingbuildingblocks.org/docs/help/tbb_userguide/concurrent_hash_map.html
https://www.threadingbuildingblocks.org/docs/help/tbb_userguide/concurrent_hash_map.html
https://books.google.pt/books?id=QJNQAAAAMAAJ
https://github.com/vit-vit/CTPL

bibliography 70

[27] DataLoader. torch.utils.data. https://pytorch.org/docs/stable/data.html. Accessed Octo-
ber 20, 2020.

[28] DataParallel. DataParallel. https://pytorch.org/docs/stable/generated/torch.nn.

DataParallel.html, Accessed November 10, 2020.

[29] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, et al. Large scale distributed deep networks. Advances in neural information processing
systems, 25:1223–1231, 2012.

[30] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[31] dstat. dstat(1) - linux man page. https://linux.die.net/man/1/dstat. Accessed December
29, 2019.

[32] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John Wiley & Sons, 2012.

[33] C. Francois. Deep learning with Python. Manning Publications Company, 2017.

[34] S. Ghosh and D. L. Reilly. Credit card fraud detection with a neural-network. In System
Sciences, 1994. Proceedings of the Twenty-Seventh Hawaii International Conference on, volume 3,
pages 621–630. IEEE, 1994.

[35] GPUDirect RDMA. Developing a linux kernel module using gpudirect rdma. https://docs.
nvidia.com/cuda/gpudirect-rdma/index.html. Accessed October 16, 2020.

[36] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural
networks. In 2013 IEEE international conference on acoustics, speech and signal processing, pages
6645–6649. IEEE, 2013.

[37] J. Han, L. Xu, M. M. Rafique, A. R. Butt, and S.-H. Lim. A quantitative study of deep learning
training on heterogeneous supercomputers. In 2019 IEEE International Conference on Cluster
Computing (CLUSTER), pages 1–12. IEEE, 2019.

[38] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[39] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, B. Kingsbury, et al. Deep neural networks for acoustic modeling in speech
recognition. IEEE Signal processing magazine, 29, 2012.

[40] ImageNet example. ImageNet training in PyTorch. https://github.com/pytorch/examples/
tree/master/imagenet, Accessed November 10, 2020.

[41] Imagenet preprocessing. imagenet_preprocessing.py. https://github.com/tensorflow/

models/blob/master/official/vision/image_classification/resnet/imagenet_

preprocessing.py, Accessed November 5, 2020.

https://pytorch.org/docs/stable/data.html
https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html
https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html
https://linux.die.net/man/1/dstat
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/tensorflow/models/blob/master/official/vision/image_classification/resnet/imagenet_preprocessing.py
https://github.com/tensorflow/models/blob/master/official/vision/image_classification/resnet/imagenet_preprocessing.py
https://github.com/tensorflow/models/blob/master/official/vision/image_classification/resnet/imagenet_preprocessing.py

bibliography 71

[42] interleave_dataset_op.cc. interleave_dataset_op.cc. https://github.com/tensorflow/

tensorflow/blob/v2.2.0/tensorflow/core/kernels/data/interleave_dataset_op.cc. Ac-
cessed October 20, 2020.

[43] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. Soh, Z. Wang, Y. Xu, S. R.
Dulloor, et al. Basic performance measurements of the intel optane dc persistent memory
module. arXiv preprint arXiv:1903.05714, 2019.

[44] A. Jacobs. The pathologies of big data. Communications of the ACM, 52(8):36–44, 2009.

[45] A. Jain, A. A. Awan, Q. Anthony, H. Subramoni, and D. K. D. Panda. Performance charac-
terization of dnn training using tensorflow and pytorch on modern clusters. In 2019 IEEE
International Conference on Cluster Computing (CLUSTER), pages 1–11. IEEE, 2019.

[46] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM
international conference on Multimedia, pages 675–678. ACM, 2014.

[47] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers, et al. In-datacenter performance analysis of a tensor processing unit. In
Proceedings of the 44th Annual International Symposium on Computer Architecture, pages 1–12, 2017.

[48] J. K. Kim, Q. Ho, S. Lee, X. Zheng, W. Dai, G. A. Gibson, and E. P. Xing. Strads: a distributed
framework for scheduled model parallel machine learning. In Proceedings of the Eleventh
European Conference on Computer Systems, page 5. ACM, 2016.

[49] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[50] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-normalizing neural networks.
In Advances in neural information processing systems, pages 971–980, 2017.

[51] A. Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

[52] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, Citeseer, 2009.

[53] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[54] A. V. Kumar and M. Sivathanu. Quiver: An informed storage cache for deep learning. In 18th
{USENIX} Conference on File and Storage Technologies ({FAST} 20), pages 283–296, 2020.

[55] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips, A. Mahesh, M. Matheson,
J. Deslippe, M. Fatica, et al. Exascale deep learning for climate analytics. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage, and Analysis,
page 51. IEEE Press, 2018.

https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/core/kernels/data/interleave_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/core/kernels/data/interleave_dataset_op.cc

bibliography 72

[56] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov,
M. Malloci, T. Duerig, et al. The open images dataset v4: Unified image classification, object
detection, and visual relationship detection at scale. arXiv preprint arXiv:1811.00982, 2018.

[57] F. P. Lanaras. Reducing data path from storage to gpus for deep learning, 2018.

[58] Y. LeCun, C. Cortes, and C. J. Burges. The MNIST database of handwritten digits. http:

//yann.lecun.com/exdb/mnist/. Accessed November 19, 2019.

[59] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[60] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[61] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Tachyon: Reliable, memory speed
storage for cluster computing frameworks. In Proceedings of the ACM Symposium on Cloud
Computing, pages 1–15. ACM, 2014.

[62] S.-H. Lim, S. R. Young, and R. M. Patton. An analysis of image storage systems for scalable
training of deep neural networks. 1 2016. URL https://www.osti.gov/biblio/1335300.

[63] Y. Liu, K. Gadepalli, M. Norouzi, G. E. Dahl, T. Kohlberger, A. Boyko, S. Venugopalan,
A. Timofeev, P. Q. Nelson, G. S. Corrado, et al. Detecting cancer metastases on gigapixel
pathology images. arXiv preprint arXiv:1703.02442, 2017.

[64] N. Léonard and C. M. Halasz. Twitter meets tensorflow. https://blog.twitter.com/

engineering/en_us/topics/insights/2018/twittertensorflow.html, Jun 2018. Accessed
November 18, 2019.

[65] R. Macedo, J. Paulo, J. Pereira, and A. Bessani. A survey and classification of software-defined
storage systems. ACM Computing Surveys (CSUR), 53(3):1–38, 2020.

[66] map_dataset_op.cc. map_dataset_op.cc. https://github.com/tensorflow/tensorflow/blob/
v2.2.0/tensorflow/core/kernels/data/map_dataset_op.cc. Accessed October 20, 2020.

[67] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier. The new ext4 filesystem:
current status and future plans. In Proceedings of the Linux symposium, volume 2, pages 21–33.
Citeseer, 2007.

[68] H. Miao, A. Li, L. S. Davis, and A. Deshpande. Towards unified data and lifecycle management
for deep learning. In 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pages
571–582. IEEE, 2017.

[69] Microsoft. Azure blob storage. https://azure.microsoft.com/en-in/services/storage/

blobs/#overview. Accessed December 10, 2020.

[70] C. Min, S. Kashyap, S. Maass, and T. Kim. Understanding manycore scalability of file systems.
In 2016 {USENIX} Annual Technical Conference ({USENIX}{ATC} 16), pages 71–85, 2016.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.osti.gov/biblio/1335300
https://blog.twitter.com/engineering/en_us/topics/insights/2018/twittertensorflow.html
https://blog.twitter.com/engineering/en_us/topics/insights/2018/twittertensorflow.html
https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/core/kernels/data/map_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/core/kernels/data/map_dataset_op.cc
https://azure.microsoft.com/en-in/services/storage/blobs/#overview
https://azure.microsoft.com/en-in/services/storage/blobs/#overview

bibliography 73

[71] MirroredStrategy. tf.distribute.MirroredStrategy. https://www.tensorflow.org/api_docs/

python/tf/distribute/MirroredStrategy, Accessed November 10, 2020.

[72] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., USA, 1 edition, 1997. ISBN 0070428077.

[73] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[74] model.cc. model.cc. https://github.com/tensorflow/tensorflow/blob/master/tensorflow/
core/framework/model.cc. Accessed October 21, 2020.

[75] model_dataset_op.cc. model_dataset_op.cc. https://github.com/tensorflow/tensorflow/

blob/master/tensorflow/core/kernels/data/model_dataset_op.cc. Accessed October 21,
2020.

[76] M. A. Nielsen. Neural networks and deep learning, volume 25. Determination press San Francisco,
CA, USA:, 2015.

[77] nvidia-smi. Nvidia system management interface. https://developer.nvidia.com/

nvidia-system-management-interface. Accessed December 29, 2019.

[78] L. Oden, C. Schiffer, H. Spitzer, T. Dickscheid, and D. Pleiter. Io challenges for human brain
atlasing using deep learning methods-an in-depth analysis. In 2019 27th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP), pages 291–298. IEEE, 2019.

[79] H. Ohtsuji, E. Hayashi, N. Fukumoto, E. Yoshida, T. Okamoto, T. Kuramoto, and O. Tatebe.
Mitigating the impact of tail latency of storage systems on scalable deep learning applications.
Parallel Data Systems Workshop, 2019.

[80] N. R. C. U. C. on Innovations in Computing and C. L. from History. Funding a revolution:
government support for computing research. National Academy Press, 1999. ISBN 9780309062787.
URL https://books.google.pt/books?id=4o1QAAAAMAAJ.

[81] parallel_interleave_dataset_op.cc. parallel_interleave_dataset_op.cc. https://github.

com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/core/kernels/data/parallel_

interleave_dataset_op.cc. Accessed October 20, 2020.

[82] parallel_map_dataset_op.cc. parallel_map_dataset_op.cc. https://github.com/tensorflow/
tensorflow/blob/v2.2.0/tensorflow/core/kernels/data/parallel_map_dataset_op.cc.
Accessed October 20, 2020.

[83] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in pytorch. 2017.

[84] C. Perlich, B. Dalessandro, T. Raeder, O. Stitelman, and F. Provost. Machine learning for
targeted display advertising: Transfer learning in action. Machine learning, 95(1):103–127, 2014.

[85] J. Polzin. Intelligent scanning using deep learning for mri. https://blog.tensorflow.org/

2019/03/intelligent-scanning-using-deep-learning.html, Mar 2019. Accessed December
5, 2020.

https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy
https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/model.cc
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/model.cc
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/data/model_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/data/model_dataset_op.cc
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://books.google.pt/books?id=4o1QAAAAMAAJ
https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/core/kernels/data/parallel_interleave_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/core/kernels/data/parallel_interleave_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/core/kernels/data/parallel_interleave_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/core/kernels/data/parallel_map_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/core/kernels/data/parallel_map_dataset_op.cc
https://blog.tensorflow.org/2019/03/intelligent-scanning-using-deep-learning.html
https://blog.tensorflow.org/2019/03/intelligent-scanning-using-deep-learning.html

bibliography 74

[86] prefetch_autotuner.cc. prefetch_autotuner.cc. https://github.com/tensorflow/tensorflow/
blob/master/tensorflow/core/kernels/data/prefetch_autotuner.cc. Accessed October 20,
2020.

[87] prefetch_dataset_op.cc. prefetch_dataset_op.cc. https://github.com/tensorflow/

tensorflow/blob/r2.1/tensorflow/core/kernels/data/prefetch_dataset_op.cc. Accessed
October 20, 2020.

[88] S. Pumma, M. Si, W.-C. Feng, and P. Balaji. Scalable deep learning via i/o analysis and
optimization. ACM Trans. Parallel Comput, 1(1), 2019.

[89] pybind11. pybind11. https://pybind11.readthedocs.io/en/stable/index.html, Accessed
November 10, 2020.

[90] PyTorch DataLoader. torch.utils.data. https://pytorch.org/docs/stable/data.html, Ac-
cessed October 22, 2020.

[91] PyTorch Elastic. PyTorch Elastic. https://pytorch.org/elastic/0.1.0rc2/index.html, Ac-
cessed November 24, 2020.

[92] PyTorch tensor. torch.Tensor. https://pytorch.org/docs/stable/tensors.html, Accessed
November 10, 2020.

[93] D. A. S. Rao and G. Verweij. Sizing the prize: What’s the real value of AI for your business and
how can you capitalise? PwC Publication, PwC, 2017.

[94] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with
region proposal networks. In Advances in neural information processing systems, pages 91–99,
2015.

[95] ResNet-50 CTL. Custom training loop (CTL) implementation for ResNet-50. https://github.
com/tensorflow/models/tree/master/official/vision/image_classification/resnet, Ac-
cessed October 23, 2020.

[96] H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951.

[97] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. nature, 323(6088):533–536, 1986.

[98] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. Imagenet large scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015.

[99] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall Press, Upper
Saddle River, NJ, USA, 3rd edition, 2009. ISBN 0136042597, 9780136042594.

[100] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A bayesian approach to filtering junk
e-mail. In Learning for Text Categorization: Papers from the 1998 workshop, volume 62, pages
98–105. Madison, Wisconsin, 1998.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/data/prefetch_autotuner.cc
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/data/prefetch_autotuner.cc
https://github.com/tensorflow/tensorflow/blob/r2.1/tensorflow/core/kernels/data/prefetch_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/r2.1/tensorflow/core/kernels/data/prefetch_dataset_op.cc
https://pybind11.readthedocs.io/en/stable/index.html
https://pytorch.org/docs/stable/data.html
https://pytorch.org/elastic/0.1.0rc2/index.html
https://pytorch.org/docs/stable/tensors.html
https://github.com/tensorflow/models/tree/master/official/vision/image_classification/resnet
https://github.com/tensorflow/models/tree/master/official/vision/image_classification/resnet

bibliography 75

[101] S. Sarkar. A scalable artificial intelligence data pipeline for accelerating time to insight. Storage
Developer Conference, 2019. URL https://www.snia.org/sites/default/files/SDC/2019/

presentations/Machine_Learning/Sarkar_Sanhita_A_Scalable_Artificial_Intelligence_

Data_Pipeline_for_Accelerating_Time_to_Insight.pdf.

[102] S. Schelter, J.-H. Böse, J. Kirschnick, T. Klein, and S. Seufert. Automatically tracking metadata
and provenance of machine learning experiments. In Machine Learning Systems workshop at
NIPS, 2017.

[103] F. Schmuck and R. Haskin. Gpfs: A shared-disk file system for large computing clusters. In
Proceedings of the 1st USENIX Conference on File and Storage Technologies, FAST ’02, page 19–es,
USA, 2002. USENIX Association.

[104] T. J. Sejnowski. The deep learning revolution. MIT Press, 2018.

[105] K. Serizawa and O. Tatebe. Accelerating machine learning i/o by overlapping data staging and
mini-batch generations. In Proceedings of the 6th IEEE/ACM International Conference on Big Data
Computing, Applications and Technologies, pages 31–34. ACM, 2019.

[106] Y. Shoham, R. Perrault, E. Brynjolfsson, J. Clark, J. Manyika, J. C. Niebles, T. Lyons,
J. Etchemendy, and Z. Bauer. The ai index 2018 annual report. AI Index Steering Commit-
tee, Human-Centered AI Initiative, Stanford University. Available at http://cdn. aiindex. org/2018/AI%
20Index, 202018, 2018.

[107] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. nature, 529(7587):484, 2016.

[108] N. Suda and D. Loh. Machine learning on arm cortex-m microcontrollers. Arm Ltd.: Cambridge,
UK, 2019.

[109] S. Sur, M. J. Koop, L. Chai, and D. K. Panda. Performance analysis and evaluation of mellanox
connectx infiniband architecture with multi-core platforms. In 15th Annual IEEE Symposium on
High-Performance Interconnects (HOTI 2007), pages 125–134. IEEE, 2007.

[110] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck. Scalability in the
xfs file system. In USENIX Annual Technical Conference, volume 15, 1996.

[111] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer. Efficient processing of deep neural networks: A
tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

[112] Tensorflow input pipeline. tf.data: Build tensorflow input pipelines. https://www.tensorflow.
org/guide/data. Accessed October 20, 2020.

[113] tf.data.Dataset. tf.data.dataset. https://www.tensorflow.org/api_docs/python/tf/data/

Dataset. Accessed August 31, 2020.

[114] tf.data.Dataset.batch. tf.data.dataset.batch. https://www.tensorflow.org/api_docs/python/
tf/data/Dataset#batch. Accessed December 2, 2020.

https://www.snia.org/sites/default/files/SDC/2019/presentations/Machine_Learning/Sarkar_Sanhita_A_Scalable_Artificial_Intelligence_Data_Pipeline_for_Accelerating_Time_to_Insight.pdf
https://www.snia.org/sites/default/files/SDC/2019/presentations/Machine_Learning/Sarkar_Sanhita_A_Scalable_Artificial_Intelligence_Data_Pipeline_for_Accelerating_Time_to_Insight.pdf
https://www.snia.org/sites/default/files/SDC/2019/presentations/Machine_Learning/Sarkar_Sanhita_A_Scalable_Artificial_Intelligence_Data_Pipeline_for_Accelerating_Time_to_Insight.pdf
https://www.tensorflow.org/guide/data
https://www.tensorflow.org/guide/data
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#batch
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#batch

bibliography 76

[115] tf.data.Dataset.interleave. tf.data.dataset.interleave. https://www.tensorflow.org/api_docs/
python/tf/data/Dataset#interleave. Accessed October 20, 2020.

[116] tf.data.Dataset.map. tf.data.dataset.map. https://www.tensorflow.org/api_docs/python/tf/
data/Dataset#map. Accessed October 20, 2020.

[117] tf.data.Dataset.prefetch. tf.data.dataset.prefetch. https://www.tensorflow.org/api_docs/

python/tf/data/Dataset#prefetch. Accessed October 20, 2020.

[118] tf.data.Dataset.repeat. tf.data.dataset.repeat. https://www.tensorflow.org/api_docs/python/
tf/data/Dataset#repeat. Accessed December 2, 2020.

[119] tf.data.Dataset.shuffle. tf.data.dataset.shuffle. https://www.tensorflow.org/api_docs/

python/tf/data/Dataset#shuffle. Accessed December 2, 2020.

[120] TFRecord. TFRecord and tf.Example. https://www.tensorflow.org/tutorials/load_data/

tfrecord, Accessed November 25, 2019.

[121] The HDF Group. Hierarchical data format version 5. http://www.hdfgroup.org/HDF5. Ac-
cessed December 21, 2019.

[122] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.

[123] S. Tokui, K. Oono, S. Hido, and J. Clayton. Chainer: a next-generation open source framework
for deep learning. In Proceedings of workshop on machine learning systems (LearningSys) in the
twenty-ninth annual conference on neural information processing systems (NIPS), volume 5, pages
1–6, 2015.

[124] A. Trask, D. Gilmore, and M. Russell. Modeling order in neural word embeddings at scale.
arXiv preprint arXiv:1506.02338, 2015.

[125] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and Y. LeCun. Fast convolutional
nets with fbfft: A gpu performance evaluation. arXiv preprint arXiv:1412.7580, 2014.

[126] M. Voss, R. Asenjo, and J. Reinders. Pro TBB: C++ parallel programming with threading building
blocks. Apress, 2019.

[127] F. Wang, S. Oral, G. Shipman, O. Drokin, T. Wang, and I. Huang. Understanding lustre
filesystem internals. Oak Ridge National Laboratory, National Center for Computational Sciences,
Tech. Rep, 2009.

[128] L. Wang, S. Ye, B. Yang, Y. Lu, H. Zhang, S. Yan, and Q. Luo. Diesel: A dataset-based distributed
storage and caching system for large-scale deep learning training. In 49th International Conference
on Parallel Processing-ICPP, pages 1–11, 2020.

[129] M. Wang, C. Meng, G. Long, C. Wu, J. Yang, W. Lin, and Y. Jia. Characterizing deep learn-
ing training workloads on alibaba-pai. In 2019 IEEE International Symposium on Workload
Characterization (IISWC), pages 189–202. IEEE, 2019.

https://www.tensorflow.org/api_docs/python/tf/data/Dataset#interleave
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#interleave
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#map
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#map
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#prefetch
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#prefetch
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#repeat
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#repeat
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shuffle
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shuffle
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://www.tensorflow.org/tutorials/load_data/tfrecord
http://www.hdfgroup.org/HDF5

bibliography 77

[130] C.-C. Yang and G. Cong. Accelerating data loading in deep neural network training. arXiv
preprint arXiv:1910.01196, 2019.

[131] T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learning based natural
language processing. ieee Computational intelligenCe magazine, 13(3):55–75, 2018.

[132] B. Zamanlooy and M. Mirhassani. Efficient vlsi implementation of neural networks with
hyperbolic tangent activation function. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 22(1):39–48, 2013.

[133] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le, P. Nguyen, A. Senior,
V. Vanhoucke, J. Dean, et al. On rectified linear units for speech processing. In 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 3517–3521. IEEE, 2013.

[134] Y. Zhang and S. Swanson. A study of application performance with non-volatile main memory.
In 2015 31st Symposium on Mass Storage Systems and Technologies (MSST), pages 1–10. IEEE, 2015.

[135] Z. Zhang, L. Huang, U. Manor, L. Fang, G. Merlo, C. Michoski, J. Cazes, and N. Gaffney.
Fanstore: Enabling efficient and scalable i/o for distributed deep learning. arXiv preprint
arXiv:1809.10799, 2018.

[136] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Jayarajan, A. Phanishayee, B. Schroeder, and
G. Pekhimenko. Benchmarking and analyzing deep neural network training. In 2018 IEEE
International Symposium on Workload Characterization (IISWC), pages 88–100. IEEE, 2018.

[137] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and W. Yu. Entropy-aware
i/o pipelining for large-scale deep learning on hpc systems. In 2018 IEEE 26th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), pages 145–156. IEEE, 2018.

[138] Y. Zhu, W. Yu, B. Jiao, K. Mohror, A. Moody, and F. Chowdhury. Efficient user-level storage
disaggregation for deep learning. In 2019 IEEE International Conference on Cluster Computing
(CLUSTER), pages 1–12. IEEE, 2019.

[139] Y. Zhuang, A. Thiagarajan, and T. Sweeney. Ranking tweets with tensorflow. https://

blog.tensorflow.org/2019/03/ranking-tweets-with-tensorflow.html, Mar 2019. Accessed
December 5, 2020.

https://blog.tensorflow.org/2019/03/ranking-tweets-with-tensorflow.html
https://blog.tensorflow.org/2019/03/ranking-tweets-with-tensorflow.html

A
A P P E N D I X

a.1 resource usage

a.1.1 TensorFlow

0
200
400
600
800

1000
1200

0 10 20 30 40 50 60 70

D
is

k
re

ad
 th

ro
ug

hp
ut

 (M
iB

/s
)

Training time (min)

LeNet

PRISMA TF optimized TF baseline

0
200
400
600
800

1000
1200

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

0
200
400
600
800

1000
1200

0 10 20 30 40 50 60 70
0

200
400
600
800

1000
1200

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

0
200
400
600
800

1000
1200

0 50 100 150 200 250
0

200
400
600
800

1000
1200

0 50 100 150 200 250

ResNet-50

Figure A.1: TensorFlow and PRISMA disk read
throughput over time with a batch

size of 64.

0
200
400
600
800

1000
1200

0 10 20 30 40 50 60 70

D
is

k
re

ad
 th

ro
ug

hp
ut

 (M
iB

/s
)

Training time (min)

LeNet

PRISMA TF optimized TF baseline

0
200
400
600
800

1000
1200

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

0
200
400
600
800

1000
1200

0 10 20 30 40 50 60 70
0

200
400
600
800

1000
1200

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

0
200
400
600
800

0 20 40 60 80 100 120 140 160 180 200
0

200
400
600
800

0 20 40 60 80 100 120 140 160 180 200

ResNet-50

Figure A.2: TensorFlow and PRISMA disk read
throughput over time with a batch

size of 128.

78

A.1. Resource Usage 79

0

20

40

60

0 10 20 30 40 50 60 70

G
PU

 u
sa

ge
 (%

)

Training time (min)

PRISMA TF optimized TF baseline

0

20

40

60

0 10 20 30 40 50 60 70

LeNet

AlexNet

ResNet-50

0
20
40
60
80

0 10 20 30 40 50 60 70
0

20
40
60
80

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

0
20
40
60
80

100

0 50 100 150 200 250
0

20
40
60
80

100

0 50 100 150 200 250

ResNet-50

Figure A.3: TensorFlow and PRISMA GPU usage
over time with a batch size of 64.

0
20
40
60
80

0 10 20 30 40 50 60 70

G
PU

 u
sa

ge
 (%

)

Training time (min)

PRISMA TF optimized TF baseline

0
20
40
60
80

0 10 20 30 40 50 60 70

LeNet

AlexNet

ResNet-50

0
20
40
60
80

0 10 20 30 40 50 60 70
0

20
40
60
80

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

0
20
40
60
80

100

0 20 40 60 80 100 120 140 160 180 200
0

20
40
60
80

100

0 20 40 60 80 100 120 140 160 180 200

ResNet-50

Figure A.4: TensorFlow and PRISMA GPU usage
over time with a batch size of 128.

10

15

20

25

0 10 20 30 40 50 60 70

M
em

or
y

us
ag

e
(G

iB
)

Training time (min)

PRISMA TF optimized TF baseline

10

15

20

25

0 10 20 30 40 50 60 70

LeNet

AlexNet

ResNet-50

10

15

20

25

0 10 20 30 40 50 60 70
10

15

20

25

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

10

15

20

25

0 50 100 150 200 250
10

15

20

25

0 50 100 150 200 250

ResNet-50

Figure A.5: TensorFlow and PRISMA memory
usage over time with a batch size of

64.

10

15

20

25

0 10 20 30 40 50 60 70

M
em

or
y

us
ag

e
(G

iB
)

Training time (min)

PRISMA TF optimized TF baseline

10

15

20

25

0 10 20 30 40 50 60 70

LeNet

AlexNet

ResNet-50

10

15

20

25

0 10 20 30 40 50 60 70
10

15

20

25

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200
10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

ResNet-50

Figure A.6: TensorFlow and PRISMA memory
usage over time with a batch size of

128.

A.1. Resource Usage 80

0
15
30
45
60
75
90

0 10 20 30 40 50 60 70

C
PU

 u
sa

ge
 (%

)

Training time (min)

LeNet

PRISMA TF optimized TF baseline

0
15
30
45
60
75
90

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

0
15
30
45
60
75

0 10 20 30 40 50 60 70
0

15
30
45
60
75

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

0
5

10
15
20
25

0 50 100 150 200 250
0
5

10
15
20
25

0 50 100 150 200 250

ResNet-50

Figure A.7: TensorFlow and PRISMA CPU usage
over time with a batch size of 64.

0
15
30
45
60
75

0 10 20 30 40 50 60 70

C
PU

 u
sa

ge
 (%

)

Training time (min)

LeNet

PRISMA TF optimized TF baseline

0
15
30
45
60
75

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

0
15
30
45
60
75

0 10 20 30 40 50 60 70
0

15
30
45
60
75

0 10 20 30 40 50 60 70

AlexNet

ResNet-50

0
15
30
45
60
75

0 20 40 60 80 100 120 140 160 180 200
0

15
30
45
60
75

0 20 40 60 80 100 120 140 160 180 200

ResNet-50

Figure A.8: TensorFlow and PRISMA CPU usage
over time with a batch size of 128.

a.1.2 PyTorch

0
200
400
600
800

1000

0 5 10 15 20 25 30 35 40

D
is

k
re

ad
 th

ro
ug

hp
ut

 (M
iB

/s
)

Training time (min)

2 workers

PyTorch PRISMA

0
200
400
600
800

1000

0 5 10 15 20 25 30 35 40

8 workers

0
200
400
600
800

1000
1200
1400

0 2 4 6 8 10 12 14 16 18 20
0

200
400
600
800

1000
1200
1400

0 2 4 6 8 10 12 14 16 18 20

8 workers

Figure A.9: PyTorch and PRISMA disk read
throughput over time with LeNet for

2 and 8 workers.

0
10
20
30
40

0 5 10 15 20 25 30 35 40

G
PU

 u
sa

ge
 (%

)

Training time (min)

2 workers

PyTorch PRISMA

0
10
20
30
40

0 5 10 15 20 25 30 35 40

8 workers

0
20
40
60
80

0 2 4 6 8 10 12 14 16 18 20
0

20
40
60
80

0 2 4 6 8 10 12 14 16 18 20

8 workers

Figure A.10: PyTorch and PRISMA GPU usage
over time with LeNet for 2 and 8

workers.

A.1. Resource Usage 81

10

15

20

0 5 10 15 20 25 30 35 40

M
em

or
y

us
ag

e
(G

iB
)

Training time (min)

PyTorch PRISMA

10

15

20

0 5 10 15 20 25 30 35 40

2 workers

8 workers

10

15

20

0 2 4 6 8 10 12 14 16 18 20
10

15

20

0 2 4 6 8 10 12 14 16 18 20

8 workers

Figure A.11: PyTorch and PRISMA memory usage
over time with LeNet for 2 and 8

workers.

0

2

4

6

0 5 10 15 20 25 30 35 40

C
PU

 u
sa

ge
 (%

)

Training time (min)

2 workers

PyTorch PRISMA

0

2

4

6

0 5 10 15 20 25 30 35 40

8 workers

0
2
4
6
8

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

0 2 4 6 8 10 12 14 16 18 20

8 workers

Figure A.12: PyTorch and PRISMA CPU usage
over time with LeNet for 2 and 8

workers.

0
200
400
600
800

0 10 20 30 40 50 60 70 80

D
is

k
re

ad
 th

ro
ug

hp
ut

 (M
iB

/s
)

Training time (min)

0 workers

PyTorch PRISMA

0
200
400
600
800

0 10 20 30 40 50 60 70 80

2 workers

4 workers

8 workers

16 workers

0
200
400
600
800

1000

0 5 10 15 20 25 30 35 40 45
0

200
400
600
800

1000

0 5 10 15 20 25 30 35 40 45

2 workers

4 workers

8 workers

16 workers

0
200
400
600
800

1000

0 5 10 15 20 25 30
0

200
400
600
800

1000

0 5 10 15 20 25 30

4 workers

8 workers

16 workers

0
250
500
750

1000
1250
1500

0 2 4 6 8 10 12 14 16 18
0

250
500
750

1000
1250
1500

0 2 4 6 8 10 12 14 16 18

8 workers

16 workers

0
350
700

1050
1400
1750

0 2 4 6 8 10 12 14 16 18
0

350
700

1050
1400
1750

0 2 4 6 8 10 12 14 16 18

16 workers

Figure A.13: PyTorch and PRISMA disk read
throughput over time with AlexNet.

0
5

10
15
20
25

0 10 20 30 40 50 60 70 80

G
PU

 u
sa

ge
 (%

)

Training time (min)

0 workers

PyTorch PRISMA

0
5

10
15
20
25

0 10 20 30 40 50 60 70 80

2 workers

4 workers

8 workers

16 workers

0
10
20
30
40

0 5 10 15 20 25 30 35 40 45
0

10
20
30
40

0 5 10 15 20 25 30 35 40 45

2 workers

4 workers

8 workers

16 workers

0
10
20
30
40
50

0 5 10 15 20 25 30
0

10
20
30
40
50

0 5 10 15 20 25 30

4 workers

8 workers

16 workers

0
20
40
60
80

0 2 4 6 8 10 12 14 16 18
0

20
40
60
80

0 2 4 6 8 10 12 14 16 18

8 workers

16 workers

0
20
40
60
80

0 2 4 6 8 10 12 14 16 18
0

20
40
60
80

0 2 4 6 8 10 12 14 16 18

16 workers

Figure A.14: PyTorch and PRISMA GPU usage
over time with AlexNet.

A.1. Resource Usage 82

10
12
14
16
18
20

0 10 20 30 40 50 60 70 80

M
em

or
y

us
ag

e
(G

iB
)

Training time (min)

0 workers

PyTorch PRISMA

10
12
14
16
18
20

0 10 20 30 40 50 60 70 80

2 workers

4 workers

8 workers

16 workers

10
12
14
16
18
20

0 5 10 15 20 25 30 35 40 45
10
12
14
16
18
20

0 5 10 15 20 25 30 35 40 45

2 workers

4 workers

8 workers

16 workers

10
12
14
16
18
20

0 5 10 15 20 25 30
10
12
14
16
18
20

0 5 10 15 20 25 30

4 workers

8 workers

16 workers

10
12
14
16
18
20
22

0 2 4 6 8 10 12 14 16 18
10
12
14
16
18
20
22

0 2 4 6 8 10 12 14 16 18

8 workers

16 workers

10
12
14
16
18
20
22

0 2 4 6 8 10 12 14 16 18
10
12
14
16
18
20
22

0 2 4 6 8 10 12 14 16 18

16 workers

Figure A.15: PyTorch and PRISMA memory usage
over time with AlexNet.

0

10

20

30

0 10 20 30 40 50 60 70 80

C
PU

 u
sa

ge
 (%

)

Training time (min)

0 workers

PyTorch PRISMA

0

10

20

30

0 10 20 30 40 50 60 70 80

2 workers

4 workers

8 workers

16 workers

0

2

4

6

0 5 10 15 20 25 30 35 40 45
0

2

4

6

0 5 10 15 20 25 30 35 40 45

2 workers

4 workers

8 workers

16 workers

0

2

4

6

0 5 10 15 20 25 30
0

2

4

6

0 5 10 15 20 25 30

4 workers

8 workers

16 workers

0
2
4
6
8

0 2 4 6 8 10 12 14 16 18
0
2
4
6
8

0 2 4 6 8 10 12 14 16 18

8 workers

16 workers

0
2
4
6
8

10
12

0 2 4 6 8 10 12 14 16 18
0
2
4
6
8

10
12

0 2 4 6 8 10 12 14 16 18

16 workers

Figure A.16: PyTorch and PRISMA CPU usage
over time with AlexNet.

This work is financed by National Funds through the Portuguese funding agency, Fundação para a Ciência e a Tecnologia
(FCT), within project UIDB/50014/2020.

	1 Introduction
	1.1 Problem
	1.2 Objectives and Contributions
	1.3 Document structure

	2 State of the art
	2.1 Background
	2.1.1 Artificial Neural Networks
	2.1.2 Types of Learning
	2.1.3 Training Process
	2.1.4 Avoiding Overfitting
	2.1.5 Parallel Deep Learning Training
	2.1.6 Optimized Data Formats

	2.2 Related work
	2.2.1 Storage I/O Performance Studies
	2.2.2 Storage I/O Optimizations

	2.3 Summary

	3 Preliminary Studies
	3.1 TensorFlow Dataset API
	3.1.1 Prefetch
	3.1.2 Interleave
	3.1.3 Map
	3.1.4 Autotuning
	3.1.5 Input Pipeline

	3.2 Evaluation
	3.2.1 Experimental setup
	3.2.2 Models
	3.2.3 Dataset
	3.2.4 TensorFlow Input Pipeline
	3.2.5 Results

	4 PRISMA
	4.1 Architecture Overview
	4.2 Module Design and Workflow
	4.2.1 Prefetch Order
	4.2.2 Initialization
	4.2.3 Data Prefetching and Parallel I/O
	4.2.4 Configuration Parameters
	4.2.5 Autotuning Mechanism
	4.2.6 Profiling
	4.2.7 Client-Server

	4.3 Implementation
	4.3.1 Integration with TensorFlow
	4.3.2 Integration with PyTorch

	4.4 Summary

	5 Case Studies and Experimental Evaluation
	5.1 TensorFlow
	5.1.1 Methodology and Experimental Setup
	5.1.2 Results

	5.2 PyTorch
	5.2.1 Methodology and Experimental Setup
	5.2.2 Results

	5.3 Discussion

	6 Conclusion
	6.1 Future Work

	A Appendix
	A.1 Resource Usage
	A.1.1 TensorFlow
	A.1.2 PyTorch

