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This paper introduces a notion of equivalence for higher-dimensional automata, called weak equivalence. Weak
equivalence focuses mainly on a traditional trace language and a new homology language, which captures the overall
independence structure of an HDA. It is shown that weak equivalence is compatible with both the tensor product and
the coproduct of HDAs and that, under certain conditions, HDAs may be reduced to weakly equivalent smaller ones
by merging and collapsing cubes.
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1 Introduction
1.1 Higher-dimensional automata
A higher-dimensional automaton (HDA) is an automaton with a supplementary structure consisting of
two- and higher-dimensional cubes linking its states and transitions. The underlying automaton of an
HDA represents a concurrent system. An n-cube in an HDA indicates that the n actions starting at its
origin are independent in the sense that they may be executed in any order, or even simultaneously, without
any observable difference. The notion of higher-dimensional automaton goes back to Pratt [Pra91]. The
concept used in this paper is essentially a generalization of the one defined by van Glabbeek [Gla06]. Our
definition differs from the one of van Glabbeek in that we consider HDAs over concurrent alphabets and
allow labels to be words (see Section 2.10).

1.2 Weak equivalence
The purpose of this paper is to introduce a concept of equivalence for higher-dimensional automata, called
weak equivalence. The adjective weak is meant to emphasize that the structure two HDAs must have in
common to be considered equivalent is reduced to a few essential features. More precisely, two HDAs
must satisfy three conditions to be weakly equivalent. The first condition guarantees that two HDAs are
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not weakly equivalent if one of them has unreachable states but the other does not or if one has bad
features such as deadlocks but the other does not.

The second requirement is that weakly equivalent HDAs must have the same trace language and the
same fundamental monoid. These are defined along traditional lines as subsets of the trace monoid as-
sociated with the concurrent alphabet of the HDAs (see Section 4). Higher-dimensional automata with
the same trace language behave the same with respect to safety properties that are compatible with the
congruence relation induced by the independence relation of the concurrent alphabet.

The third and last condition for weak equivalence concerns primarily the higher-dimensional structure
of HDAs. In [Kah18a], it has been shown that the cubical homology of an HDA can be equipped with a
labeling. In Section 5, this labeling is used to define the homology language of an HDA, which reflects
its global independence structure. Weakly equivalent HDAs are required to have the same homology
language.

1.3 Weak implementation
Weak equivalence is the symmetric closure of a preorder, which we call weak implementation. The defi-
nition of this preorder is obtained from the one of weak equivalence essentially by replacing equalities by
inclusions (see Section 6). Weak implementation is related to morphisms of HDAs in the following way:
if A and B are two HDAs over the same concurrent alphabet and there exists a morphism from A to B
that respects the concurrent alphabet and preserves unreachable and uncoreachable states, then A weakly
implements B. This still holds for the more flexible cubical dimaps of HDAs, which have been introduced
in [Kah18a]. Cubical dimaps permit one to compare HDAs of different atomicity levels, which is not
possible with morphisms: if an HDA is constructed from another one by merging cubes and edge labels,
then there will exist a cubical dimap but no morphism between the two HDAs. Cubical dimaps will be
discussed in Section 3.

1.4 Parallel composition and nondeterministic sum
Higher-dimensional automata may be used in different ways to model concurrent systems. For HDAs
modeling shared-variable systems, two categorical constructions are particularly important: the tensor
product of HDAs, which models the parallel composition of independent concurrent systems, and the
coproduct of HDAs, which corresponds to the nondeterministic sum of concurrent systems. We show that
the relations of weak equivalence and weak implementation are compatible with the tensor product and,
for coaccessible HDAs, with the coproduct (see Section 6.3).

1.5 Reduction of HDAs
In view of the state explosion problem, it is desirable to be able to reduce HDAs to weakly equivalent
smaller ones. In [Kah16], conditions have been established under which a so-called topological abstrac-
tion of an HDA can be constructed by collapsing and merging cubes. Since the relation of topological
abstraction is normally stronger than weak equivalence, it is possible to adapt the results of [Kah16] to
obtain reduction operations that yield weakly equivalent HDAs. This is done in Sections 6.5 and 6.6.

1.6 Background and related work
Higher-dimensional automata have been devised by Pratt and van Glabbeek (see [Pra91, Gla06]). A bib-
liography on HDAs can be found in [Gla06]. Descriptions of how HDAs can be used to model concurrent
systems are contained in [FGH+16, Gau08, Gla06, GM12, Kah19].
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This paper adopts Winskel and Nielsen’s categorical perspective on models for concurrency, according
to which the morphisms in a category of objects modeling concurrent systems represent simulations and
categorical constructions correspond to composition operators [WN95]. From this point of view, weak
equivalence is coarser than a kind of simulation equivalence. As we note in Remark 6.3.4, this does not re-
main true for history-preserving bisimilarity in the sense of [Gla06]. A categorical theory of bisimulation,
which may be used to define a notion of bisimilarity that is stronger than weak equivalence, is developed
in [JNW96]. A comparison of different approaches to simulation is provided in [LV95].

Weak implementation may be considered a coarse precongruence in the spirit of [Gla10]. The main
properties preserved by weak implementation and weak equivalence are the trace language and the ho-
mology language. The trace language fits within the framework of Mazurkiewicz trace theory. The
fundamental material on this subject is contained in [AR88, Die90, DM97, DM11, Maz87, Maz95]. The
definition of the homology language is based on concepts from algebraic topology. Two of the many
textbooks in this area are [Dol80, Hat01].

The existence of connections between concurrency theory and algebraic topology is at the origin of the
field of directed algebraic topology [FGH+16, Gra09]. Since the homology language is invariant under
cubical dimaps that are homotopy equivalences (see Proposition 5.7.2), it may be considered a directed
homotopy invariant of HDAs. However, since it depends on the labeling structure of HDAs rather than on
their directed topology, it is not a concept of directed homology as those considered in the literature (see,
e.g., [Gra09, Kah14a]). A brief account of work on directed homology is given in [FGH+16, p. 153].

Our results on the reduction of HDAs are inspired by but not directly related to work on partial order
reduction [God96, Pel93] and discrete Morse theory [For98].

2 Higher-dimensional automata
This section presents basic material on precubical sets, concurrent alphabets, and higher-dimensional
automata. The definition of higher-dimensional automata is essentially the one of van Glabbeek [Gla06],
with the difference that we consider HDAs over concurrent alphabets and allow labels to be words. It is
not our intention to provide a comprehensive introduction to the material of this section. For more details,
explanations, and examples, the reader is referred to, e.g., [Die90, Maz87, FGH+16, Gla06].

2.1 Precubical sets

A precubical set is a graded set P = (Pn)n≥0 with boundary or face operators dki : Pn → Pn−1

(n > 0, k ∈ {0, 1}, i ∈ {1, . . . , n}) satisfying the relations dki ◦ dlj = dlj−1 ◦ dki (k, l ∈ {0, 1}, i < j).
If x ∈ Pn, we say that x is of degree or dimension n. The elements of degree n are called the n-cubes of
P . The elements of degree 0 are also called the vertices of P , and the 1-cubes are also called the edges
of P . A face dki x is called a front face of x if k = 0 and a back face of x if k = 1. A precubical subset
of a precubical set P is a graded subset of P that is stable under the boundary operators. A morphism of
precubical sets is a morphism of graded sets that is compatible with the boundary operators.

The category of precubical sets can be seen as the presheaf category Set�
op

where � is the small
subcategory of the category of topological spaces whose objects are the standard n-cubes [0, 1]n (n ≥ 0)
and whose nonidentity morphisms are composites of the maps δki : [0, 1]n → [0, 1]n+1 (k ∈ {0, 1}, n ≥ 0,
i ∈ {1, . . . , n+ 1}) given by δki (u1, . . . , un) = (u1, . . . , ui−1, k, ui . . . , un).
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2.2 Tensor product of precubical sets
The tensor product of two graded sets P and Q is the graded set P ⊗Q given by

(P ⊗Q)n =
∐

p+q=n

Pp ×Qq.

If P andQ are precubical sets, then P⊗Q is a precubical set. For an n-cube (x, y) ∈ Pp×Qq (p+q = n),
the boundary operators are defined by

dki (x, y) =

{
(dki x, y), 1 ≤ i ≤ p,
(x, dki−py), p < i ≤ n.

With respect to this tensor product, the category Set�
op

is a monoidal category.

2.3 Precubical intervals
Let k and l be two integers such that k ≤ l. The precubical interval ❲k, l❳ is the precubical set defined
by ❲k, l❳0 = {k, . . . , l}, ❲k, l❳1 = {[k, k + 1], . . . , [l − 1, l]}, d0

1[j − 1, j] = j − 1, d1
1[j − 1, j] = j, and

❲k, l❳n = ∅ for n > 1.

2.4 Precubical cubes
The precubical n-cube is the n-fold tensor product ❲0, 1❳⊗n. Here, we use the convention that ❲0, 1❳⊗0 is
the precubical set ❲0, 0❳ = {0}. The only element of degree n in ❲0, 1❳⊗n will be denoted by ιn. We thus
have ι0 = 0 and ιn = ([0, 1], . . . , [0, 1]

n times

) for n > 0. Given an element x of degree n of a precubical set P ,

there exists a unique morphism of precubical sets ❲0, 1❳⊗n → P that sends ιn to x. This morphism will
be denoted by x]. We say that x is regular if x] is injective and that x is weakly regular if the restrictions
of x] to the graded subsets (❲0, 1❳\{1})⊗n and (❲0, 1❳\{0})⊗n of ❲0, 1❳⊗n are injective. If all elements
of P are (weakly) regular, we say that P is (weakly) regular.

2.5 Paths
A path of length l (l ≥ 0) from a vertex v of a precubical set P to a vertex w is a morphism of precubical
sets ω : ❲0, l❳→ P such that ω(0) = v and ω(l) = w. If ω is a path of length l, we write Lω = l. The set
of paths in P is denoted by P I. The concatenation ω · ν of two paths ω : ❲0, k❳→ P and ν : ❲0, l❳→ P
with ω(k) = ν(0) is defined in the obvious way. Note that every path in P of positive length can be
uniquely written as a finite concatenation of paths of the form x] where x ∈ P1.

2.6 Dihomotopy
Two paths ω and ν in a precubical set P are said to be elementarily dihomotopic if there exist paths
α, β ∈ P I and an element z ∈ P2 such that d0

1d
0
1z = α(Lα), d1

1d
1
1z = β(0) and

{ω, ν} = {α · (d0
1z)] · (d1

2z)] · β, α · (d0
2z)] · (d1

1z)] · β}.

The dihomotopy relation, denoted by ∼, is the equivalence relation generated by elementary dihomotopy
[FGH+16] (see Figure 1 for a picture).
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Fig. 1: Dihomotopic paths

2.7 Free monoids
Let Σ be an alphabet, i.e., a set. The free monoid over Σ will be denoted by Σ∗. The unit element of Σ∗,
which is the empty word, will be denoted by 1. Given a string m ∈ Σ∗, we will write |m| to denote its
length, i.e., the unique integer n such that m ∈ Σn. We say that a string m ∈ Σ∗ contains an element
a ∈ Σ if m /∈ (Σ \ {a})∗.

2.8 Concurrent alphabets
A concurrent alphabet is a pair (Σ, D) where Σ is an alphabet andD is a reflexive and symmetric relation
on Σ (see, e.g., [Die90, Maz95]). The relationD is called the dependence relation of the concurrent alpha-
bet, and the complement of D is called the associated independence relation. A morphism of concurrent
alphabets (Σ, D)→ (Σ′, D′) is a map σ : Σ→ Σ′ such that (σ × σ)−1(D′) ⊆ D.

The category of concurrent alphabets is a symmetric monoidal category with respect to the tensor
product defined by (Σ1, D1)⊗ (Σ2, D2) = (Σ1 q Σ2, D⊗) where D⊗ is the union of the images of the
canonical maps

Di ↪→ Σi × Σi → (Σ1 q Σ2)× (Σ1 q Σ2).

The tensor product is different from the coproduct (Σ1, D1)q (Σ2, D2), which is the concurrent alphabet
(Σ1qΣ2, Dq) whereDq is the union ofD⊗ and the subsets Σ1×Σ2 and Σ2×Σ1 of (Σ1qΣ2)×(Σ1qΣ2).
While an element of Σ1 and an element of Σ2 are independent in the tensor product, they are dependent
in the coproduct.

2.9 Trace monoids
Let (Σ, D) be a concurrent alphabet, and let ≡ denote the congruence relation induced by the asso-
ciated independence relation, i.e., the smallest congruence relation in Σ∗ such that ab ≡ ba for all
(a, b) ∈ (Σ× Σ) \D. The quotient monoid Σ∗/ ≡ is called the trace monoid of (Σ, D) and is denoted
by M(Σ, D) (see, e.g., [Die90, Maz95]). Congruent elements of Σ∗ have the same length. The length of
an element m ∈ M(Σ, D) may thus be defined by |m| = |x| where x ∈ m. A morphism of concurrent
alphabets σ : (Σ, D)→ (Σ′, D′) induces a monoid homomorphism M(σ) : M(Σ, D)→M(Σ′, D′).

Given two concurrent alphabets (Σ1, D1) and (Σ2, D2), the homomorphisms induced by the canon-
ical inclusions (Σi, Di) → (Σ1, D1) ⊗ (Σ2, D2) embed M(Σ1, D1) and M(Σ2, D2) as submonoids
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in M((Σ1, D1) ⊗ (Σ2, D2)). The multiplication (m1,m2) 7→ m1m2 defines a natural isomorphism of
monoids

M(Σ1, D1)×M(Σ2, D2)→M((Σ1, D1)⊗ (Σ2, D2)).

The homomorphisms induced by the inclusions (Σi, Di)→ (Σ1, D1)q (Σ2, D2) induce an isomorphism
from the free product M(Σ1, D1) ∗M(Σ2, D2) (which is the coproduct in the category of monoids) to
M((Σ1, D1)q (Σ2, D2)).

2.10 Higher-dimensional automata
A higher-dimensional automaton (over a concurrent alphabet) is a tuple

A = (PA, IA, FA,ΣA, DA, λA)

where PA is a precubical set, IA ∈ (PA)0 is an initial state, FA ⊆ (PA)0 is a (possibly empty) set of
final states, (ΣA, DA) is a concurrent alphabet, and λA : (PA)1 → Σ∗A is a labeling function. These data
are subject to the following two conditions:

(1) For all x ∈ (PA)2 and i ∈ {1, 2}, λA(d0
ix) = λA(d1

ix).

(2) For all x ∈ (PA)2 and (a, b) ∈ DA, λA(d0
1x) does not contain a or λA(d0

2x) does not contain b.

We say that an HDA B is a sub-HDA of an HDA A and write B ⊆ A if PB is a precubical subset of
PA, IB = IA, FB = FA ∩ (PB)0, ΣB ⊆ ΣA, DB = DA ∩ (ΣB × ΣB), and λB = λA|(PB)1

. An
HDA A is said to be (weakly) regular if the precubical set PA is (weakly) regular. A morphism from an
HDA A to an HDA B is a pair (f, σ) consisting of a morphism of precubical sets f : PA → PB and a
morphism of concurrent alphabets σ : (ΣA, DA) → (ΣB, DB) such that f(IA) = IB, f(FA) ⊆ FB, and
λB(f(x)) = σ∗(λA(x)) for all x ∈ (PA)1.

Our definition of higher-dimensional automata differs in two points from the one of van Glabbeek
[Gla06]: first, we consider HDAs over concurrent alphabets, and second, we allow labels to be words.
Condition (2) above is introduced in the definition of HDAs to guarantee that the independence relation
represented by the cubes of an HDA is compatible with the one associated with the concurrent alphabet.
An HDA in the sense of [Gla06] can be seen as an HDA in our sense, at least if it does not admit squares
where all edges have the same label. Indeed, given such an HDA, one can define a canonical dependence
relation on the alphabet by declaring two actions dependent if there is no square having both of them on
its boundary. Condition (2) is then automatically satisfied. We allow labels to be words in order to be
able to declare sequences of actions atomic. Another possibility opened up by this modification of van
Glabbeek’s definition of HDAs is to use the unit of the free monoid on the alphabet to label invisible
actions.

2.11 Labels of paths
Let A be an HDA. The extended labeling function of A is the map λA : P I

A → Σ∗A defined as fol-
lows: If ω = x1] · · · · · xk] for a sequence (x1, . . . , xk) of elements of (PA)1 such that d0

1xj+1 = d1
1xj

(1 ≤ j < k), then we set λA(ω) = λA(x1)·· · ··λA(xk); if ω is a path of length 0, then we set λA(ω) = 1.
By conditions (1) and (2) in the definition of HDAs, dihomotopic paths have congruent labels.
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2.12 Tensor product of HDAs

The tensor product of two HDAs A and B is the HDA A ⊗ B defined by PA⊗B = PA ⊗ PB, IA⊗B =
(IA, IB), FA⊗B = FA × FB, (ΣA⊗B, DA⊗B) = (ΣA, DA)⊗ (ΣB, DB), and

λA⊗B(x, y) =

{
λA(x), (x, y) ∈ (PA)1 × (PB)0,
λB(y), (x, y) ∈ (PA)0 × (PB)1.

With respect to this tensor product, the category of HDAs is a (nonsymmetric) monoidal category. The
tensor product of HDAs models the parallel composition of independent concurrent systems (for a detailed
discussion, see [Kah19]).

2.13 Coproduct of HDAs

The coproduct of two HDAs A and B is the HDA A + B where PA+B is the precubical subset
PA ⊗ {IB} ∪ {IA} ⊗ PB of PA ⊗ PB, IA+B = (IA, IB), FA+B = FA × {IB} ∪ {IA} × FB,
(ΣA+B, DA+B) = (ΣA, DA)q (ΣB, DB), and

λA+B(x, y) =

{
λA(x), (x, y) ∈ (PA)1 × {IB},
λB(y), (x, y) ∈ {IA} × (PB)1.

The coproduct of HDAs models the nondeterministic sum of concurrent systems, i.e., the combined sys-
tem where initially one of the constituent systems is chosen nondeterministically (for more details, see
[Kah19]).

3 Cubical dimaps
In their categorical approach to models of concurrency, Winskel and Nielsen [WN95] emphasize the
importance of the morphisms in a category of objects modeling concurrent systems as a means to express
relationships between systems. Unfortunately, the morphisms of HDAs defined in the previous section
are too rigid for this purpose in at least two respects. First, they do not permit one to relate HDAs of
different atomicity levels. For example, although the HDAs ◦ a−→ ◦ b−→ ◦ and ◦ ab−→ ◦ clearly model the
same system, there does not exist any morphism between them. Second, there is normally no morphism
and, in particular, no isomorphism between the tensor products A ⊗ B and B ⊗ A. This is inconsistent
with the fact that the tensor product of HDAs models the parallel composition of independent systems,
which is a symmetric operation. In order to address these problems, cubical dimaps (directed maps) have
been introduced in [Kah18a]. Roughly speaking, a cubical dimap between two HDAs is a continuous map
between their geometric realizations that sends cubes in an order-preserving way to subdivided cubes and
that preserves labels of paths. There exists a cubical dimap from ◦ ab−→ ◦ to ◦ a−→ ◦ b−→ ◦, and the category
of HDAs and cubical dimaps is a symmetric monoidal category. In this section, we collect the main facts
about cubical dimaps. More details can be found in [Kah18a]. All topological spaces considered are
compactly generated Hausdorff spaces, and constructions such as products are performed in the category
of these spaces (see [Ste67]).
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3.1 Geometric realization
The geometric realization of a precubical set P is the quotient space

|P | =

∐
n≥0

Pn × [0, 1]n

 / ∼

where the sets Pn are given the discrete topology and the equivalence relation is generated by

(dki x, u) ∼ (x, δki (u)), x ∈ Pn+1, u ∈ [0, 1]n, i ∈ {1, . . . , n+ 1}, k ∈ {0, 1}.

The geometric realization of a morphism of precubical sets f : P → Q is the continuous map
|f | : |P | → |Q| given by |f |([x, u]) = [f(x), u].

The geometric realization of a precubical set P is a CW complex. The n-skeleton of |P | is the geometric
realization of the precubical subset P≤n of P defined by (P≤n)i = Pi for i ≤ n and (P≤n)i = ∅ for
i > n. The geometric realization of the precubical interval ❲k, l❳ may be identified with the closed interval
[k, l] by means of the homeomorphism |❲k, l❳| → [k, l] given by [j, ()] 7→ j and [[j−1, j], t] 7→ j−1 + t.
The natural homeomorphism |P ⊗Q| → |P | × |Q| given by

[(x, y), u] 7→ ([x, (u1, . . . , up)], [y, (up+1, . . . , up+q)]), (x, y) ∈ Pp ×Qq, u ∈ [0, 1]p+q

permits us to identify the spaces |P ⊗Q| and |P | × |Q|.

3.2 Cubical dimaps of precubical sets
An elementary cubical dimap from a precubical set P to a precubical set Q is a continuous map
f : |P | → |Q| such that the following two conditions hold:

(1) For every vertex x ∈ P0, there exists a (necessarily unique) vertex y ∈ Q0 such that f([x, ()]) =
[y, ()].

(2) For every element x ∈ Pn (n > 0), there exist integers l1, . . . , ln ≥ 1, a morphism of precubical sets
χ :
⊗n

i=1❲0, li❳ → Q, a permutation θ ∈ Sn, and increasing homeomorphisms φi : [0, 1]→ [0, li]
(i ∈ {1, . . . , n}) such that the following diagram, in which tθ is given by tθ(x1, . . . , xn) =
(xθ(1), . . . , xθ(n)), is commutative:

|❲0, 1❳⊗n| ≈ //

|x]|

��

[0, 1]n
tθ // [0, 1]n

φ1×···×φn //
n∏
i=1

[0, li]
≈ // |

n⊗
i=1

❲0, li❳|

|χ|

��

|P |
f

// |Q|

By [Kah18a, Prop. 6.2.4], the objects in condition (2) are uniquely determined by f and x. A cubical
dimap of precubical sets is a finite composite of elementary cubical dimaps. It can be shown that not all
cubical dimaps are elementary. For example, there exists a nonelementary cubical dimap from ❲0, 1❳⊗2
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to the precubical set composed of two squares a and b such that d1
1a = d0

2b. By construction, a cubical
dimap is a cellular map. It is clear that condition (1) above holds for arbitrary cubical dimaps and not only
for elementary ones. Therefore a cubical dimap f : |P | → |Q| induces a vertex map f0 : P0 → Q0, which
sends a vertex x ∈ P0 to the unique vertex y ∈ Q0 such that f([x, ()]) = [y, ()].

The geometric realization of a morphism of precubical sets is an elementary cubical dimap. Hence
the presheaf category of precubical sets can be seen as a wide subcategory of the category of precubical
sets and cubical dimaps. Another important class of cubical dimaps is given by subdivisions in the sense
of [Kah14b]: A subdivision of a precubical set P consists of a precubical set Q and a homeomorphism
|P | → |Q| that is an elementary cubical dimap such that the permutation in condition (2) of the definition
is always the identity. In this situation we may, of course, also view P as obtained from Q by merging
cubes.

The category of precubical sets and cubical dimaps is a symmetric monoidal category with respect to
the usual tensor product of precubical sets. The tensor product of two cubical dimaps f : |P | → |P ′| and
g : |Q| → |Q′| is the composite

f ⊗ g : |P ⊗Q| ≈−→ |P | × |Q| f×g−−−→ |P ′| × |Q′| ≈−→ |P ′ ⊗Q′|,

which is indeed a cubical dimap. The braiding of the symmetric monoidal structure is the homeomorphism

|P ⊗Q| ≈−→ |P | × |Q| ≈−→ |Q| × |P | ≈−→ |Q⊗ P |,

which is an elementary cubical dimap.

3.3 Cubical dimaps and paths
Let f : |P | → |Q| be a cubical dimap of precubical sets, and let ω : ❲0, k❳ → P be a path. By [Kah18a,
Prop. 6.5.1], there exist a unique integer l, a unique path f I(ω) : ❲0, l❳ → Q, and a unique increasing
homeomorphism φ : [0, k]→ [0, l] such that the following diagram commutes:

|❲0, k❳| ≈ //

|ω|
��

[0, k]
φ
// [0, l]

≈ // |❲0, l❳|

|f I(ω)|
��

|P |
f

// |Q|

We remark that Lf I(ω) = 0 if Lω = 0 and that f I(ω) is a path from f0(ω(0)) to f0(ω(Lω)). Note also
that if f is the geometric realization of a morphism of precubical sets h : P → Q, then f I(ω) = h ◦ ω.
By adapting the arguments given in [Kah14b] in the context of weak morphisms, it is easily seen that
the construction of f I(ω) is compatible with composition of cubical dimaps, concatenation of paths, and
dihomotopy.

3.4 Cubical dimaps of HDAs
An elementary cubical dimap from an HDA A to an HDA B is a pair (f, σ) consisting of an elementary
cubical dimap f : |PA| → |PB| and a morphism of concurrent alphabets σ : (ΣA, DA)→ (ΣB, DB) such
that f0(IA) = IB, f0(FA) ⊆ FB, and λB ◦ f I = σ∗ ◦λA. If (g, σ) : A → B is a morphism of HDAs, then
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its geometric realization (|g|, σ) is an elementary cubical dimap from A to B. A cubical dimap of HDAs
is a finite componentwise composite of elementary cubical dimaps. Note that if (f, σ) is a cubical dimap
of HDAs, then f is a cubical dimap of precubical sets and the above conditions for elementary cubical
dimaps hold.

The coproduct of HDAs is the coproduct in the category of HDAs and cubical dimaps. The tensor
product of HDAs turns this category into a symmetric monoidal category. The tensor product of cubical
dimaps and the natural isomorphisms of the symmetric monoidal structure are defined componentwise.

4 The trace language of an HDA
The trace language of an HDA, which is defined in this section, describes its possible finite behavior. It
contains the information necessary to decide whether an HDA satisfies a given saturated safety property,
i.e., a safety property that is compatible with the congruence relation of the concurrent alphabet of the
HDA. In addition to the trace language of an HDA, we define its fundamental monoid. We show that
the trace language and the fundamental monoid behave well with respect to cubical dimaps and establish
formulas to compute them for tensor products and coproducts. The trace language of an HDA is a trace
language in the sense of Mazurkiewicz trace theory. References on this subject are [AR88, Die90, DM97,
DM11, Maz87, Maz95].

4.1 Saturated safety properties
Let Σ be an alphabet. Following van Glabbeek [Gla10], we say that a safety property is given by a set
B ⊆ Σ∗. An HDA A with ΣA = Σ satisfies this safety property, A |= safety(B), when for every
path ω ∈ P I

A with ω(0) = IA, λA(ω) /∈ BΣ∗. Note that since we allow labels to be words, it is not
enough to require λA(ω) /∈ B. Note also that B and BΣ∗ define the same safety property: for any HDA
A with ΣA = Σ, A |= safety(B) ⇔ A |= safety(BΣ∗). If (Σ, D) is a concurrent alphabet, a safety
property given by a subset B ⊆ Σ∗ is called saturated if for any two congruent elements m,m′ ∈ Σ∗,
m ∈ BΣ∗ ⇔ m′ ∈ BΣ∗.

4.2 Prefixes
Let M be a monoid. We say that an element v ∈ M is a prefix of an element u ∈ M and write v � u if
there exists an element w ∈ M such that u = vw. The relation � is a preorder on M . If M is free or a
trace monoid, then � is a partial order.

4.3 Trace language
The trace language of an HDA A is the set

TL(A) = {v ∈M(ΣA, DA) | ∃ω ∈ P I
A : ω(0) = IA, v � [λA(ω)]}.

Note that although we use the same notation, TL(A) is different from the trace language defined in
[Kah14b]. By the next two propositions, the trace language contains exactly the information needed to
determine which saturated safety properties are satisfied by an HDA.

Proposition 4.3.1. Let (Σ, D) be a concurrent alphabet, and let B ⊆ Σ∗ define a saturated safety
property. Then for any HDA A such that (ΣA, DA) = (Σ, D), A |= safety(B) if and only if TL(A) ⊆
{[s] | s ∈ Σ∗ \ (BΣ∗)}.
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Proof: Suppose first that A |= safety(B). Consider v = [x] ∈ TL(A). Let ω be a path in A such
that ω(0) = IA and v � [λA(ω)], and let w = [y] ∈ M(Σ, D) such that [λA(ω)] = vw = [xy].
Since A |= safety(B), λA(ω) /∈ BΣ∗. Since xy ≡ λA(ω), also xy /∈ BΣ∗. Thus x /∈ BΣ∗. Hence
v = [x] ∈ {[s] | s ∈ Σ∗ \ (BΣ∗)}.

Suppose now that TL(A) ⊆ {[s] | s ∈ Σ∗ \ (BΣ∗)}. Let ω be a path in A such that ω(0) = IA.
Consider a prefix x � λA(ω). Then [x] � [λA(ω)] and therefore [x] ∈ TL(A) ⊆ {[s] | s ∈ Σ∗\(BΣ∗)}.
Hence x ≡ y for some y ∈ Σ∗ \ (BΣ∗). This implies x ∈ Σ∗ \ (BΣ∗). Since B ⊆ BΣ∗, x /∈ B. It
follows that λA(ω) /∈ BΣ∗.

Proposition 4.3.2. Two HDAs A and B over the same concurrent alphabet (Σ, D) satisfy the same satu-
rated safety properties if and only if TL(A) = TL(B).

Proof: By Proposition 4.3.1, A and B satisfy the same saturated safety properties if they have the same
trace language. Suppose that TL(A) 6= TL(B). Then we may suppose that there exists an element
v ∈ TL(A) such that v /∈ TL(B). Consider the safety property given by the set

B = {x ∈ Σ∗ | v � [x]}.

This is a saturated safety property. Indeed, let m ∈ BΣ∗ and m′ ≡ m. Then there exists an element
x ∈ B such that x � m. Hence v � [x] � [m] = [m′] and therefore m′ ∈ B ⊆ BΣ∗. Note that
the same argument shows that B = BΣ∗. Since v ∈ TL(A), there exists a path ω ∈ P I

A such that
ω(0) = IA and v � [λA(ω)]. Hence λA(ω) ∈ B = BΣ∗. Thus A 6|= safety(B). On the other hand,
B |= safety(B). Indeed, if this was not the case, there would exist a path ν ∈ P I

B such that ν(0) = IB
and λB(ν) ∈ BΣ∗ = B. But then we would have v � [λB(ν)] and therefore v ∈ TL(B), which is not
the case.

Proposition 4.3.3. Let (f, σ) : A → B be a cubical dimap of HDAs. Then M(σ)(TL(A)) ⊆ TL(B). In
particular, if (ΣA, DA) = (ΣB, DB) and σ = id, then TL(A) ⊆ TL(B).

Proof: Consider an element v ∈ TL(A). Let ω ∈ P I
A be a path such that ω(0) = IA and v �

[λA(ω)]. Let w ∈ M(ΣA, DA) such that [λA(ω)] = vw. Then M(σ)(v)M(σ)(w) = M(σ)(vw) =
M(σ)([λA(ω)]) = [σ∗(λA(ω))] = [λB(f I(ω))]. Hence M(σ)(v) � [λB(f I(ω))]. Since f I(ω)(0) =
f0(ω(0)) = f0(IA) = IB, it follows that M(σ)(v) ∈ TL(B).

4.4 The trace language of a tensor product
Let A and B be two HDAs. We view M(ΣA, DA) and M(ΣB, DB) as submonoids and TL(A) and
TL(B) as subsets of M(ΣA⊗B, DA⊗B).

Proposition 4.4.1. TL(A⊗ B) = TL(A) · TL(B).

Proof: In order to show that TL(A) · TL(B) ⊆ TL(A ⊗ B), consider elements a ∈ TL(A) and b ∈
TL(B). Let α ∈ P I

A and β ∈ P I
B be paths such that α(0) = IA, β(0) = IB, a � [λA(α)], and

b � [λB(β)]. Let v ∈ M(ΣA, DA) and w ∈ M(ΣB, DB) be elements such that av = [λA(α)] and
bw = [λB(β)]. Write α = x1] · · ·xk] and β = y1] · · · yl] where the elements xi and yi are of degree ≤ 1.
Let ω be the path in A⊗ B defined by

ω = (x1, IB)] · · · (xk, IB)] · (α(Lα), y1)] · · · (α(Lα), yl)].
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Since all elements of M(ΣA, DA) commute in M(ΣA⊗B, DA⊗B) with all elements of M(ΣB, DB), we
have [λA⊗B(ω)] = [λA(α)λB(β)] = [λA(α)][λB(β)] = avbw = abvw. Hence ab � [λA⊗B(ω)] and
therefore ab ∈ TL(A⊗ B).

For the reverse inclusion, consider an element v ∈ TL(A ⊗ B). Let ω ∈ P I
A⊗B be a path such

that v � [λA⊗B(ω)]. Consider an element w ∈ M(ΣA⊗B , DA⊗B) such that [λA⊗B(ω)] = vw. Since
M(ΣA⊗B, DA⊗B) = M(ΣA, DA) · M(ΣB, DB), we may choose elements a, x ∈ M(ΣA, DA) and
b, y ∈ M(ΣB, DB) such that v = ab and w = xy. We show that a ∈ TL(A) and b ∈ TL(B). Write
ω = (x1, y1)] · · · (xn, yn)], and consider the paths α ∈ P I

A and β ∈ P I
B given by α = x1] · · ·xn]

and β = y1] · · · yn]. Since all elements of M(ΣA, DA) commute with all elements of M(ΣB, DB) in
M(ΣA⊗B, DA⊗B), we have

[λA⊗B(ω)] = [λA⊗B((x1, y1)])] · · · [λA⊗B((xn, yn)])]

= [λA(x1])][λB(y1])] · · · [λA(xn])][λB(yn])]

= [λA(x1])] · · · [λA(xn])][λB(y1])] · · · [λB(yn])]

= [λA(α)][λB(β)].

Hence axby = abxy = vw = [λA⊗B(ω)] = [λA(α)][λB(β)]. Since every element of M(ΣA⊗B, DA⊗B)
can be uniquely written as a product of an element of M(ΣA, DA) and an element of M(ΣB, DB), it
follows that ax = [λA(α)] and by = [λB(β)]. Thus a � [λA(α)] and b � [λB(β)] and therefore
a ∈ TL(A) and b ∈ TL(B).

4.5 Fundamental monoid
The fundamental monoid of an HDA A is the submonoid π(A) of M(ΣA, DA) defined by

π(A) = {[λA(ω)] |ω ∈ P I
A, ω(0) = ω(Lω) = IA}.

The term reflects an analogy with the fundamental group of a topological space. Given a cubical dimap
(f, σ) : A → B, the homomorphism M(σ) : M(ΣA, DA) → M(ΣB, DB) restricts to a homomorphism
π(f, σ) : π(A)→ π(B). In particular, we have the following proposition:

Proposition 4.5.1. LetA and B be two HDAs over the same concurrent alphabet. If there exists a cubical
dimap of HDAs (f, σ) : A → B such that σ = id, then π(A) is a submonoid of π(B).

Proposition 4.5.2. For any two HDAs A and B, π(A⊗ B) = π(A) · π(B).

Proof: The proof is similar to the one of Proposition 4.4.1. The details are left to the reader.

Proposition 4.5.3. Let A and B be two HDAs. The isomorphism of monoids

M(ΣA, DA) ∗M(ΣB, DB)→M(ΣA+B, DA+B)

restricts to an isomorphism π(A) ∗ π(B)→ π(A+ B).

Proof: Let (jA, σA) : A → A + B and (jB, σB) : B → A+ B be the morphisms of HDAs where the
morphisms of precubical sets jA : PA → PA+B and jB : PB → PA+B are given by jA(x) = (x, IB) and
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jB(y) = (IA, y) and σA : (ΣA, DA) → (ΣA+B, DA+B) and σB : (ΣB, DB) → (ΣA+B, DA+B) are the
inclusions. Consider the following commutative diagram of monoids:

π(A) ∗ π(B) π(A+ B)

M(ΣA, DA) ∗M(ΣB, DB) M(ΣA+B, DA+B)

(π(|jA|,σA),π(|jB|,σB))

∼=
(M(σA),M(σB))

It is clear that (π(|jA|,σA),π(|jB|,σB)) is injective. We show that it is surjective. A loop ω inA+B with
ω(0) = IA+B = (IA, IB) can be decomposed as a concatenation

ω = (jA ◦ α1)(jB ◦ β1) · · · (jA ◦ αn)(jB ◦ βn)

where the αi are loops in A with αi(0) = IA and the βi are loops in B with βi(0) = IB. Therefore

[λA+B(ω)]

= [λA+B(jA ◦ α1)][λA+B(jB ◦ β1)] · · · [λA+B(jA ◦ αn)][λA+B(jB ◦ βn)]

= [λA+B(|jA|I(α1))][λA+B(|jB|I(β1))] · · · [λA+B(|jA|I(αn))][λA+B(|jB|I(βn))]

= [σ∗A(λA(α1))][σ∗B(λB(β1))] · · · [σ∗A(λA(αn))][σ∗B(λB(βn))]

= M(σA)([λA(α1)])M(σB)([λB(β1)]) · · ·M(σA)([λA(αn)])M(σB)([λB(βn)])

= (M(σA),M(σB))([λA(α1)][λB(β1)] · · · [λA(αn)][λB(βn)])

= (π(|jA|, σA), π(|jB|, σB))([λA(α1)][λB(β1)] · · · [λA(αn)][λB(βn)]).

It follows that (π(|jA|,σA),π(|jB|,σB)) is surjective.

4.6 The trace language of a coproduct
Let A and B be two HDAs. We view M(ΣA, DA) and M(ΣB, DB) as submonoids and TL(A) and
TL(B) as subsets of M(ΣA+B, DA+B). Similarly, we view paths in A and paths in B as paths in A+B.

Proposition 4.6.1. TL(A+ B) = π(A+ B) · TL(A) ∪ π(A+ B) · TL(B).

Proof: We show first that π(A+ B) · TL(A) ∪ π(A+ B) · TL(B) ⊆ TL(A+ B). Consider an element
v ∈ TL(A) and a loop ω ∈ P I

A+B such that ω(0) = IA+B = (IA, IB). Let α be a path in A such
that α(0) = IA and vw = [λA(α)] for some element w ∈ M(ΣA, DA). We have [λA+B(ω · α)] =
[λA+B(ω)]vw. Hence [λA+B(ω)]v ∈ TL(A + B). Thus π(A + B) · TL(A) ⊆ TL(A + B). Similarly,
π(A+ B) · TL(B) ⊆ TL(A+ B).

For the reverse inclusion, consider an element v ∈ TL(A + B). Let ω ∈ P I
A+B be a path of minimal

length such that ω(0) = IA+B and [λA+B(ω)] = vw for some element w ∈M(ΣA+B, DA+B). We may
assume that ω does not lie entirely in A or B, because in that case we would have either v ∈ TL(A)
or v ∈ TL(B) and there would be nothing to prove. We may further suppose that the last edge of ω is
an edge of A and leave the analogous case where it is an edge of B to the reader. Decompose ω as a
concatenation

ω = α1 · β1 · · ·αr · βr · γ
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where the αi are loops inA with αi(0) = IA, the βi are loops in B with βi(0) = IB, γ is a path inA with
γ(0) = IA, and all paths except possibly α1 have positive length. Set l1 = Lα1·β1···αr·βr and l2 = Lγ .
Then |v| > l1. Indeed, otherwise we would have w = yz for some elements y, z ∈ M(ΣA+B, DA+B)
such that |y| = l1 − |v| and |z| = l2. Moreover, we would have

vyz = [λA(α1)][λB(β1)] · · · [λA(αr)][λB(βr)][λA(γ)].

Since congruence classes of elements of ΣA do not commute with congruence classes of elements of ΣB
in M(ΣA+B, DA+B), this would imply z = [λA(γ)] and

vy = [λA(α1)][λB(β1)] · · · [λA(αr)][λB(βr)] = [λA+B(α1 · β1 · · ·αr · βr)],

which would contradict the minimality of ω. So |v| > l1. Hence there exist elements

u, x ∈M(ΣA+B, DA+B)

such that |u| = l1, |x| = |v| − l1, and v = ux. Since

uxw = [λA(α1)][λB(β1)] · · · [λA(αr)][λB(βr)][λA(γ)],

we have
u = [λA(α1)][λB(β1)] · · · [λA(αr)][λB(βr)] = [λA+B(α1 · β1 · · ·αr · βr)]

and xw = [λA(γ)]. Therefore u ∈ π(A + B), w ∈ M(ΣA, DA), x ∈ TL(A), and v = ux ∈
π(A+ B) · TL(A).

Remark 4.6.2. By Propositions 4.5.3 and 4.6.1, we have TL(A + B) = TL(A′ + B′) if (ΣA, DA) =
(ΣA′ , DA′), (ΣB, DB) = (ΣB′ , DB′), TL(A) = TL(A′), TL(B) = TL(B′), π(A) = π(A′), and
π(B) = π(B′). The last two assumptions are needed here, as shows the example where A and B have
only one vertex and one edge, the one of A labeled a and the one of B labeled b, A′ = A, and B′ has two
vertices and two edges, both labeled b, one leading from the initial to the other state and the other leading
from the second state to itself.

5 The homology language of an HDA
A higher-dimensional automaton is an ordinary automaton with information on independence of actions.
We have used the independence relation associated with the concurrent alphabet of an HDA, and the
induced congruence relation, to define its trace language and its fundamental monoid. The higher-
dimensional structure of an HDA contains further information on independence. An overall picture of
the independence structure of an HDA is given by its labeled homology, as introduced in [Kah18a]. Here,
we use the labeling on the homology of an HDA to define its homology language. As in the case of the
trace language and the fundamental monoid, we show that the homology language is compatible with
cubical dimaps and establish formulas to compute it for tensor products and coproducts. We also give
examples of how the homology language of an HDA can be used to reason about the independence of
subsystems or components of a concurrent system. We work over a fixed principal ideal domain, which
we suppress from the notation.
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5.1 Chain complexes and homology
A chain complex is a graded module C = (Cn)n≥0 with boundary operators d : Cn → Cn−1 (n ≥ 1)
satisfying d ◦ d = 0. A chain map between two chain complexes is a morphism of graded modules
that commutes with the boundary operators. The homology of a chain complex C is the graded module
H∗(C) = (Hn(C))n≥0 defined by H0(C) = C0/im(d : C1 → C0) and

Hn(C) = ker(d : Cn → Cn−1)/im(d : Cn+1 → Cn) (n ≥ 1).

A chain map f : C → D induces a morphism of graded modules f∗ : H∗(C) → H∗(D), defined by
f∗([z]) = [f(z)], and this makes H∗ a functor from the category of chain complexes to the category of
graded modules.

The direct sum of two chain complexes is the direct sum of the underlying graded modules, with
boundary operators defined componentwise. The homology functor preserves direct sums. The tensor
product of two graded modules A and B is the graded module A⊗B defined by

(A⊗B)n =
⊕

0≤i≤n

Ai ⊗Bn−i.

The tensor product of two chain complexes C and D is the tensor product of the underlying graded
modules with the boundary operators given by

d(x⊗ y) = dx⊗ y + (−1)ix⊗ dy, x ∈ Ci, y ∈ Dn−i.

Over a field, the homology functor is compatible with tensor products. For the general case and further
results in homological algebra, see, e.g., [Dol80, Hat01].

5.2 Cubical chains and cubical homology
Let P be a precubical set. The cubical chain complex of P is the chain complex C∗(P ) where Cn(P ) is
the free module generated by Pn and the boundary operator d : Cn(P )→ Cn−1(P ) is given by

dx =

n∑
i=1

(−1)i(d0
ix− d1

ix), x ∈ Pn.

The chain map induced by a morphism of precubical sets is defined in the obvious way. The cubical
homology of P , denoted by H∗(P ), is the homology of C∗(P ). The cubical chain complex C∗(P ) is
naturally isomorphic to the cellular chain complex of |P | (cf. [Kah18a, Thm. 3.3.1]). Since a cubical
dimap of precubical sets is a cellular map, it follows that the functors C∗ and H∗ extend to the category of
precubical sets and cubical dimaps and, moreover, that a cubical dimap which is a homotopy equivalence
induces an isomorphism in cubical homology. An explicit description of the chain map induced by an
elementary cubical dimap is given in [Kah18a, Prop. 7.4.1].

Example 5.2.1. Throughout this section, we will consider the example HDA A where (PA)0 = {IA},
(PA)1 = {x1, x2, x3}, (PA)2 = {y}, (PA)n = ∅ (n ≥ 3), dk1xi = IA (k ∈ {0, 1}, i ∈ {1, 2, 3}), dk1y =
x2, dk2y = x1 (k ∈ {0, 1}), FA = {IA}, ΣA = {a1, a2, a3}, DA = (ΣA × ΣA) \ {(a1, a2), (a2, a1)},
and λA(xi) = ai (i ∈ {1, 2, 3}). We suppose, of course, that the xi and the ai are pairwise different.
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x

e1x = d0
2x

e2x = d0
1x

Fig. 2: A 2-cube and its starting edges

Geometrically, A is a wedge (one-point union) of a torus and a circle. By definition of the cubical chain
complex, C0(PA) is the free module generated by IA, C1(PA) is the free module generated by the xi,
C2(PA) is the free module generated by y, and all other Cn(PA) are 0. Since d0

1xi = d1
1xi and d0

i y =
d1
i y, all boundary operators of C∗(PA) are 0. Hence H∗(PA) has 1 generator in degrees 0 and 2 and 3

generators in degree 1. As this example illustrates, homology may be seen as an algebraic tool to count
holes in geometric objects such as precubical sets or topological spaces.

5.3 The edge eix

Let x be an element of degree n > 0 of a precubical set P , and let i ∈ {1, . . . , n}. We define the ith
starting edge of x to be the element eix ∈ P1 given by

eix =

{
x, n = 1,
d0

1 · · · d0
i−1d

0
i+1 · · · d0

nx, n > 1.

The edge eix leads from the initial vertex of x to the initial vertex of the face d1
ix, i.e., we have d0

1eix =
d0

1 · · · d0
1x and d1

1eix = d0
1 · · · d0

1d
1
ix. An illustration is given in Figure 2.

5.4 Strings
Let Σ be an alphabet. Given a string m of length n ≥ 1, we will write m1, . . . ,mn to denote the uniquely
determined elements of Σ such that m = m1 · · ·mn.

5.5 Labeling chain map
LetA be an HDA. Consider the exterior algebra on the free module generated by ΣA, Λ(ΣA). Recall that
this is the quotient of the tensor algebra on the free module on ΣA by the two-sided ideal generated by all
elements of the form x ⊗ x where x ∈ ΣA (see [Bou74] for more details). The exterior algebra Λ(ΣA)
is canonically graded by the exterior powers of the free module generated by ΣA. We view the graded
module Λ(ΣA) as a chain complex with d = 0 and define the labeling chain map

lA : C∗(PA)→ Λ(ΣA)

on basis elements x ∈ (PA)n by

lA(x) =


1Λ(ΣA), n = 0,

|λA(e1x)|∑
j1=1

· · ·
|λA(enx)|∑
jn=1

λA(e1x)j1 ∧ · · · ∧ λA(enx)jn , n > 0.

By [Kah18a, Prop. 4.4.5], the labeling chain map is indeed a chain map, i.e, we have lA(dx) = dlA(x) =
0 for all x ∈ C∗(PA).
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Example 5.5.1. Consider the HDAA of Example 5.2.1. The exterior algebra Λ(ΣA) is the graded module
freely generated by 1Λ(ΣA) in degree 0, a1, a2, and a3 in degree 1, a1 ∧ a2, a1 ∧ a3, and a2 ∧ a3 in deegre
2, and a1 ∧ a2 ∧ a3 in degree 3. In degrees ≥ 4, Λ(ΣA) is 0. We have e1xi = xi, e1y = d0

2y = x1,
and e2y = d0

1y = x2. Hence the labeling chain map of A is given by lA(IA) = 1Λ(ΣA), lA(x1) = a1,
lA(x2) = a2, lA(x3) = a3, and lA(y) = a1 ∧ a2.

Proposition 5.5.2. Let (f, σ) : A → B be a cubical dimap of HDAs, and let f∗ : C∗(PA) → C∗(PB) be
the chain map induced by f . Then lB ◦ f∗ = Λ(σ) ◦ lA.

Proof: We may suppose that (f, σ) is an elementary cubical dimap of HDAs. Consider the HDA C given
by PC = PA, IC = IA, FC = FA, ΣC = ΣB, DC = DB, and λC = σ∗ ◦ λA. Then (f, σ) decomposes as
the composite of elementary cubical dimaps of HDAs

A
(id|PA|,σ)
−−−−−−→ C

(f,id(ΣB,DB))−−−−−−−−−→ B.

We have lC = Λ(σ) ◦ lA and, by [Kah18a, Thm. 7.5.1], lB ◦ f∗ = lC . Hence lB ◦ f∗ = Λ(σ) ◦ lA.

5.6 Labeled homology
Let A be an HDA. The labeling chain map lA induces a morphism of graded modules

`A : H∗(PA)→ H∗(Λ(ΣA)) ∼= Λ(ΣA).

Explicitly, `A([z]) = lA(z). The pair (H∗(PA), `A) is called the labeled homology of A.

Example 5.6.1. For the HDA A considered in Examples 5.2.1 and 5.5.1, we have `A([IA]) = 1Λ(ΣA),
`A([xi]) = ai (i ∈ {1, 2, 3}), and `A([y]) = a1 ∧ a2. Further examples can be found in [Kah18a].

Proposition 5.5.2 immediately implies the following fact:

Proposition 5.6.2. Let (f, σ) : A → B be a cubical dimap of HDAs. Then the morphism of graded
modules f∗ : H∗(PA)→ H∗(PB) satisfies `B ◦ f∗ = Λ(σ) ◦ `A.

5.7 The homology language
We define the homology language of an HDA A to be the graded module

HL(A) = im (`A : H∗(PA)→ Λ(ΣA)).

Thus, by definition, the homology language of an HDA can be read off its labeled homology.

Example 5.7.1. The homology language of the HDA A of Examples 5.2.1, 5.5.1, and 5.6.1 is the graded
submodule of Λ(ΣA) generated by the unit and the elements a1, a2, a3, and a1 ∧ a2.

Proposition 5.7.2. Let (f, σ) : A → B be a cubical dimap of HDAs. Then Λ(σ)(HL(A)) ⊆ HL(B).
In particular, if (ΣA, DA) = (ΣB, DB) and σ = id, then HL(A) ⊆ HL(B). If, furthermore, f is a
homotopy equivalence, then HL(A) = HL(B).

Proof: This follows from Proposition 5.6.2 and the fact that a homotopy equivalence induces an isomor-
phism in homology.
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5.8 The homology language of a tensor product
Let A and B be two HDAs. We view HL(A) and HL(B) as graded submodules of the exterior algebra
Λ(ΣA⊗B) = Λ(ΣA q ΣB).

Proposition 5.8.1. HL(A⊗ B) = HL(A) ∧HL(B).

Proof: Consider the homology cross product

× : H∗(PA)⊗H∗(PB)→ H∗(PA ⊗ PB) = H∗(PA⊗B),

i.e., the composite ζ∗ ◦ κ where κ is the homomorphism of graded modules

H∗(PA)⊗H∗(PB)→ H∗(C∗(PA)⊗ C∗(PB)), [x]⊗ [y] 7→ [x⊗ y]

and ζ is the isomorphism of chain complexes C∗(PA)⊗ C∗(PB)→ C∗(PA ⊗ PB) given by

x⊗ y 7→ (x, y), x ∈ PA, y ∈ PB.

By [Kah18a, Thm. 5.3.2], we have the following commutative diagram of graded modules:

H∗(PA)⊗H∗(PB) H∗(PA ⊗ PB) H∗(PA⊗B)

Λ(ΣA)⊗ Λ(ΣB) Λ(ΣA⊗B)⊗ Λ(ΣA⊗B) Λ(ΣA⊗B)

×

`A⊗`B

=

`A⊗B

∧

By the Künneth theorem, there exists a graded torsion module U ⊆ H∗(PA ⊗ PB) such that

H∗(PA ⊗ PB) = U ⊕ im× .

Since Λ(ΣA⊗B) is a free module, `A⊗B(U) = 0. Hence

HL(A⊗ B) = `A⊗B(U ⊕ im×) = `A⊗B(im×) = im(`A⊗B ◦ ×).

By the commutativity of the above diagram, im(`A⊗B ◦ ×) = HL(A) ∧HL(B). Thus HL(A ⊗ B) =
HL(A) ∧HL(B).

Example 5.8.2. Let Ai be the sub-HDA of the HDA A of Example 5.2.1 defined by (PAi)0 = {IA},
(PAi)1 = {xi}, and ΣAi = {ai}. Geometrically, Ai is a circle, and one easily computes that HL(Ai) =
Λ({ai}). By Proposition 5.8.1, for i 6= j, HL(Ai ⊗Aj) = HL(Ai) ∧HL(Aj) = Λ({ai, aj}).

5.9 The homology language of a coproduct
Let A and B be two HDAs. We view HL(A) and HL(B) as graded submodules of the exterior algebra
Λ(ΣA+B) = Λ(ΣA q ΣB).

Proposition 5.9.1. HL(A+ B) = HL(A) +HL(B).
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Proof: Let (jA, σA) : A → A + B and (jB, σB) : B → A+ B be the morphisms of HDAs where the
morphisms of precubical sets jA : PA → PA+B and jB : PB → PA+B are given by jA(x) = (x, IB) and
jB(y) = (IA, y) and σA : (ΣA, DA) → (ΣA+B, DA+B) and σB : (ΣB, DB) → (ΣA+B, DA+B) are the
inclusions. Consider the morphisms of precubical sets I 7→ IA and I 7→ IB from a precubical set with
one vertex I to PA and PB, respectively. Then we have the following push out of precubical sets:

{I} PA

PB PA+B

jA

jB

Applying cubical chains to this push out, we obtain a push out of chain complexes, which yields a short
exact sequence

0→ C∗({I})→ C∗(PA)⊕ C∗(PB)
(jA∗,jB∗)−−−−−−→ C∗(PA+B)→ 0.

The induced long exact sequence in homology shows that the upper map in the following commutative
diagram of graded modules is surjective:

H∗(PA)⊕H∗(PB) H∗(PA+B)

Λ(ΣA)⊕ Λ(ΣB) Λ(ΣA+B)

(jA∗,jB∗)

`A⊕`B `A+B

(Λ(σA),Λ(σB))

HenceHL(A+B) = im(`A+B◦(jA∗,jB∗)) = im((Λ(σA),Λ(σB))◦(`A⊕`B)) = HL(A)+HL(B).

Example 5.9.2. Consider the HDA A of Example 5.2.1 and the sub-HDAs Ai of A defined in Ex-
ample 5.8.2. By Proposition 5.9.1 and Examples 5.7.1 and 5.8.2, we have HL((A1 ⊗ A2) + A3) =
HL(A1 ⊗A2) +HL(A3) = Λ({a1, a2}) + Λ({a3}) = HL(A), which is no surprise since A ∼=
(A1 ⊗A2) +A3.

5.10 Independence
Let A be an HDA, and let A1, . . . ,An (n ≥ 2) be HDAs with disjoint alphabets, each contained in
ΣA. We say that the Ai are independent in A if there exist a sub-HDA B ⊆ A and an isomorphism
(f, σ) : A1 ⊗ · · · ⊗ An → B in the category of HDAs and cubical dimaps such that ΣB =

⋃n
i=1 ΣAi and

σ is induced by the inclusions ΣAi ↪→ ΣB. Since ΣAi ⊆ ΣB ⊆ ΣA, we may view HL(Ai) and HL(B)
as graded submodules of both Λ(ΣB) and Λ(ΣA).

Proposition 5.10.1. If the HDAs A1, . . . ,An are independent in A, then

HL(A1) ∧ · · · ∧HL(An) ⊆ HL(A).

Proof: It follows from Proposition 5.8.1 that HL(B) = HL(A1)∧ · · · ∧HL(An). By Proposition 5.7.2,
HL(B) ⊆ HL(A).
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0 1 2
basket checkout

leave

Fig. 3: Program graph for Example 5.10.2 (ii)

Examples 5.10.2. (i) Consider again the HDA A of Example 5.2.1 and the sub-HDAs Ai of A de-
fined in Example 5.8.2. We have HL(A) = Λ({a1, a2}) + Λ({a3}) and HL(Ai) = Λ({ai}). Since
HL(A1) ∧ HL(A3) = Λ({a1, a3}) 6⊆ HL(A), Proposition 5.10.1 implies that the HDAs A1 and A3

are not independent in A. For the same reason, A2 and A3 are not independent in A. The fact that
HL(A1) ∧ HL(A2) = Λ({a1, a2}) ⊆ HL(A) suggests that A1 and A2 are independent in A. And
indeed, A1 ⊗ A2 is isomorphic in the required way to the sub-HDA B of A given by (PB)0 = {IA},
(PB)1 = {x1, x2}, (PB)2 = {y}, and ΣB = {a1, a2}.

(ii) A small grocery store has three shopping baskets and two checkout counters. All customers behave
the same:

• They wait until a basket is available and then start shopping.

• Once they have selected the products they wish to buy, they move to the checkouts and wait for
their turn to pay. Since they are usually very polite and give others priority, the order in which they
pay is unpredictable—even if there is a queue.

• Having paid, they return the basket and leave the store.

• If they forgot to buy something, they repeat the procedure from the beginning.

Focusing on the behavior of the customers with respect to the shared resources—the baskets and the
checkouts—we may describe the shopping protocol as the program graph (in the sense of [BK08]) de-
picted in Figure 3. The actions modify two integer variables x and y counting the available shopping
baskets and the free checkouts, respectively. They are defined as follows:

• basket: Wait until x > 0, and then decrement x.

• checkout: Wait until y > 0, and then decrement y.

• leave: Increment both y and x.

If we view x and y as semaphores and consider Dijkstra’s P and V operations (see, e.g., [Dij68]), then
basket = P(x), checkout = P(y), and leave = V(y); V(x).

Let us now consider a system of four customers executing the above protocol, and let us suppose
that initially all shopping baskets and both checkout counters are free, i.e., x = 3 and y = 2. Assuming
atomicity of the actions of the program graph, we may use the method of [Kah19], implemented in the
tool pg2hda [Kah18b], to construct an HDAA modeling the state space of the system. We do not need to
know A in detail. Let us just mention that it is a 3-dimensional HDA with 563 cubes altogether and that
its alphabet is the set

ΣA = {basketi, checkouti, leavei | i ∈ {0, 1, 2, 3}}.
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The indexes of the labels are introduced to distinguish the four customers.
The homology language ofAwith Z2-coefficients can be computed fromAwith the aid of the software

CHomP [Pil18]. It is clear thatHL(A) is generated by the unit of Λ(ΣA) in degree 0. In degree 1,HL(A)
is generated by the elements

basketi + checkouti + leavei, i ∈ {0, 1, 2, 3}.

Each of these elements represents one of the customer processes executing alone. In degree 2, HL(A) is
generated by the products

(basketi + checkouti + leavei) ∧ (basketj + checkoutj + leavej), i < j.

In view of Proposition 5.10.1, this indicates that any two customers are independent and can proceed
simultaneously without conflict if the other customers do nothing (or just talk). Since there are two
checkouts, this is, of course, to be expected. Since there are no more than two checkouts, one would
certainly also expect that no three customer processes are independent, despite the fact that there are three
shopping baskets. And indeed, althoughA has cubes of dimension 3,HL(A) is trivial in degrees≥ 3. We
conclude that any two but no three customers are independent. Note that our analysis of the independence
structure of A has been carried out at the level of the homology language, without explicit mention of
HDAs representing the customer processes. Note also that the homology language would have been the
same for a store with only two baskets.

As this example shows, the homology language does not necessarily uncover surprising features of
concurrent systems. Arguably, however, it encodes fundamental information on independence in HDAs.

6 Weak equivalence
As pointed out in the introduction, weak equivalence is a coarse notion of equivalence for HDAs that
focuses on a small number of fundamental features. Besides the trace language, the fundamental monoid,
and the homology language, these are accessibility and coaccessibility. Weak equivalence is defined as the
symmetric closure of a preorder called weak implementation. We show that both relations are compatible
with the tensor product and, at least in the coaccessible case, the coproduct of HDAs. We also relate
weak equivalence to the preorder of topological abstraction introduced in [Kah16] and adapt the results
of that paper to provide conditions under which HDAs can be reduced to weakly equivalent smaller ones
by collapsing and merging cubes.

6.1 Accessible HDAs
A state x of an HDA A is called reachable if there exists a path in A from IA to x. An HDA is called
accessible if all states are reachable. The proof of the following elementary fact is left to the reader:

Proposition 6.1.1. Let A and B be two HDAs. The following statements are equivalent:

1. A and B are accessible.

2. A⊗ B is accessible.

3. A+ B is accessible.
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6.2 Coaccessible HDAs
A state x is called coreachable if there exists a path from x to a final state. An HDA is called coaccessible
if all states are coreachable. Coaccessibility guarantees the absence of very bad phenomena such as
deadlocks. We omit the easy proof of the following proposition:

Proposition 6.2.1. LetA and B be two HDAs. IfA and B are coaccessible, then so areA⊗B andA+B.
If A⊗ B is coaccessible, then so are A and B.

Remark 6.2.2. Unfortunately, coaccessibility of A + B does not in general imply coaccessibility of A
and B. Indeed, consider two one-vertex HDAs A and B, and suppose that FA = {IA} and FB = ∅. Then
A and A+ B are coaccessible but B is not.

6.3 Weak implementation and weak equivalence
We say that an HDA A weakly implements an HDA B and write A v B if the following three conditions
are satisfied:

1. If B is accessible, then so is A. If B is coaccessible, then so is A.

2. (ΣA, DA) = (ΣB, DB), π(A) ⊆ π(B), and TL(A) ⊆ TL(B).

3. HL(A) ⊆ HL(B).

It is clear that weak implementation is a preorder on the class of HDAs. We say that two HDAs A and B
are weakly equivalent and write A ' B if A v B and B v A.

Proposition 6.3.1. LetA and B be two HDAs over the same concurrent alphabet. If there exists a cubical
dimap of HDAs (f, id) : A → B such that for all x ∈ (PA)0, x is reachable if f0(x) is reachable and x is
coreachable if f0(x) is coreachable, then A v B.

Proof: This follows from Propositions 4.3.3, 4.5.1, and 5.7.2.

Theorem 6.3.2. Let A, A′, B, and B′ be HDAs such that A v A′ and B v B′. Then A⊗ B v A′ ⊗ B′.
If A and B are coaccessible, then also A+ B v A′ + B′.

Proof: This follows from Propositions 4.4.1, 4.5.2, 4.5.3, 4.6.1, 5.8.1, 5.9.1, 6.1.1, and 6.2.1.

Corollary 6.3.3. Let A, A′, B, and B′ be HDAs such that A ' A′ and B ' B′. Then A⊗ B ' A′ ⊗ B′.
If A, A′, B, and B′ are coaccessible, then also A+ B ' A′ + B′.
Remarks 6.3.4. (i) Weak equivalence has been designed to be a coarse congruence for the tensor prod-
uct and (as far as possible) the coproduct such that the trace language and the homology language are
invariants. In certain situations, it might be convenient to modify the definition of weak equivalence. For
instance, if the compatibility with the coproduct is not considered essential, the requirement on the fun-
damental monoid may be dropped. Another possible modification concerns accessibility. According to
our definition, an HDA with unreachable states cannot be weakly equivalent to its accessible part. This
is adequate if unreachable states are interpreted as representing problems such as dead code (see, e.g.,
[FGH+16, p. 22]). However, one might as well see unreachable states as just unreachable from the cho-
sen initial state and prefer to define an equivalence where an HDA is always equivalent to its accessible
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part. To do so, one could define two HDAs to be equivalent if their accessible parts are weakly equivalent
in the sense of this paper. For accessible HDAs, this concept of equivalence would coincide with the
concept of weak equivalence proposed here.

(ii) By Proposition 6.3.1, two HDAs over the same concurrent alphabet are weakly equivalent if there
exist well-behaved cubical dimaps between them in both directions. Just as morphisms of HDAs, cubical
dimaps may be seen as simulations, and so, from this point of view, weak equivalence is coarser than a kind
of simulation equivalence. It should be pointed out in this context that HDAs that are history-preserving
bisimilar in the sense of [Gla06] need not be weakly equivalent. Consider, for example, an HDA A with
only one vertex and one edge, labeled a. Then A is history-preserving bisimilar to its unfolding B, which
consists of an infinite sequence of edges, all labeled a. On the other hand, since in degree 1, HL(A) is
generated by a but HL(B) = 0, A and B are not weakly equivalent. Consequently, these two HDAs are
also not simulation equivalent in the above sense, and indeed, there is no cubical dimap from A to B. If
one wishes to define a concept of bisimilarity that is stronger than this notion of simulation equivalence,
one possibility is to consider P-bisimilarity in the sense of Joyal, Nielsen, and Winskel [JNW96] where P
is the wide subcategory of the category of HDAs and cubical dimaps of the form (f, id) whose morphisms
are inclusions of sub-HDAs. It should be noted, though, that although it is not isomorphism, this concept
of bisimilarity is very strong.

6.4 Topological abstraction
In [Kah16], a preorder for HDAs has been introduced, called topological abstraction. Roughly speaking,
an HDA A is a topological abstraction of an HDA B if there exists a cubical dimap A → B that is a
homotopy equivalence inducing an isomorphism of trace categories and an isomorphism of homology
graphs. The homology graph of an HDA A is the directed graph where the vertices are the homology
classes of A and there is an edge from a homology class υ to a homology class ν if there exist precubical
subsets U, V ⊆ PA such that υ ∈ imH∗(U ↪→ PA), ν ∈ imH∗(V ↪→ PA), and for all vertices u ∈ U0

and v ∈ V0, there exists a path from u to v [Kah14a]. The trace category of an HDA A is the category
TC(A) whose objects are the initial state, the final states, the minimal vertices (i.e., vertices without
incoming edges), and the maximal vertices (i.e., vertices without outgoing edges) and whose morphisms
are the dihomotopy classes of paths between these states [Kah14b]. A cubical dimap (f, σ) : A → B that
preserves minimal and maximal vertices induces a functor f∗ : TC(A)→ TC(B), which sends an object
x to f0(x) and a dihomotopy class [ω] to [f I(ω)]. By the following proposition, topological abstraction is
often stronger than weak equivalence:

Proposition 6.4.1. Let A and B be two accessible and coaccessible HDAs over the same concurrent
alphabet, and let (f, id) : A → B be a cubical dimap that is a homotopy equivalence. Suppose that f
preserves minimal and maximal vertices and that the functor f∗ : TC(A) → TC(B) is an isomorphism.
Then A ' B.

Proof: By Propositions 4.3.3, 4.5.1, and 5.7.2, we only have to show that π(B) ⊆ π(A) and TL(B) ⊆
TL(A). Consider first a loop β ∈ P I

B such that β(0) = IB. Since f0(IA) = IB and f∗ is full, there
exists a loop α ∈ P I

A such that α(0) = IA and f∗([α]) = [β]. Hence f I(α) ∼ β and therefore λA(α) =
λB(f I(α)) ≡ λB(β). Thus [λB(β)] ∈ π(A).

Consider now an element v ∈ TL(B). Let β ∈ P I
B be a path such that β(0) = IB and v � [λB(β)].

Since B is coaccessible, we may suppose that β ends in a final state b. Since f∗ is full and surjective on
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Fig. 4: An elementary collapse followed by a vertex-star collapse

objects, there exists a path α ∈ P I
A such that α(0) = IA and f∗([α]) = [β]. As before, this implies that

λA(α) = λB(f I(α)) ≡ λB(β). Hence v � [λA(α)] and therefore v ∈ TL(A).

Remark 6.4.2. An important difference between topological abstraction and weak equivalence is that
weakly equivalent HDAs need not be homotopy equivalent and may have certain topological differences.
Indeed, weak equivalence ignores zero-labeled homology classes (at least of dimension≥ 2). Examples of
such classes include torsion classes, differences of classes with the same label, classes that are noise (e.g.,
classes given by differences of cubes with the same boundary), and classes given by virtual boundaries
(i.e., cycles that become boundaries in larger HDAs). In contexts where zero-labeled homology classes
are essential, weak equivalence is too weak a notion of equivalence.

6.5 Cube collapses
We shall now provide conditions under which collapsing a cube in an HDA yields a weakly equivalent
HDA. We will consider elementary and vertex-star collapses. The definition of these concepts is based on
the following construction: the star of an element x of a precubical set P is the graded set star(x) defined
by

star(x)n = {y ∈ Pn |x ∈ y](❲0, 1❳⊗n)}.

Thus star(x) consists of x and all elements having x in their iterated boundary. The graded set P \star(x)
is a precubical subset of P . We say that a face dki x of a regular cube x of P is free if star(dki x) = {x, dki x}.
In this case, the inclusion |P \star(dki x)| ↪→ |P | is a homotopy equivalence, and we say that P \star(dki x)
has been obtained from P through an elementary collapse (see Figure 4 for a picture). If x ∈ P is a
regular cube of degree n ≥ 2 and k1, . . . , kn ∈ {0, 1} are indexes such that at least one ki = 0, at least
one ki = 1, and star(dkn1 · · · d

k1
1 x) ⊆ x](❲0, 1❳⊗n), then the inclusion |P \ star(dkn1 · · · d

k1
1 x)| ↪→ |P |

is a homotopy equivalence and we say that P \ star(dkn1 · · · d
k1
1 x) has been obtained from P through a

vertex-star collapse (see Figure 4).
In degrees ≥ 3, elementary collapses always yield weakly equivalent HDAs:

Proposition 6.5.1. Let A be an HDA, and let x be a regular cube of degree n ≥ 3 with free face dki x.
Consider the sub-HDA B ⊆ A defined by PB = PA \ star(dki x) and ΣB = ΣA. Then A ' B.

Proof: This follows from Proposition 5.7.2 and the fact that A and B agree in degrees ≤ 1.

Elementary 2-cube collapses are more delicate. We first deal with the case where the free face is a back
face:

Theorem 6.5.2. LetA be an HDA, and let x be a regular 2-cube with free face d1
ix (i ∈ {1, 2}). Consider

the sub-HDA B ⊆ A defined by PB = PA \ star(d1
ix) and ΣB = ΣA. Suppose that there exists an edge
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y in B such that d0
1y = d0

1d
1
ix, and suppose that for every path ω ∈ P I

B with ω(Lω) = d0
1d

1
ix and

ω(0) ∈ {IA, d1
1d

1
1x, d

1
1y}, there exists a path ν ∈ P I

B such that ν(0) = ω(0), ν(Lν) = d0
1d

0
1x, and

ν · (d0
3−ix)] ∼ ω in A. Then A ' B.

Proof: We adapt arguments given in the proofs of [Kah16, Lemma 4.4.3, Thm. 6.3.1]. Since the inclusion
|PB| ↪→ |PA| is a homotopy equivalence, HL(A) = HL(B). By Propositions 4.3.3 and 4.5.1, we have
TL(B) ⊆ TL(A) and π(B) ⊆ π(A). For the reverse inclusions, it suffices to show that every path
ω ∈ P I

A with ω(0) = IA is dihomotopic to a path ω′ ∈ P I
B. So consider ω ∈ P I

A with ω(0) = IA. We
may suppose that ω /∈ P I

B. Write ω as a concatenation

ω = ω0 · (d1
ix)] · ω1 · · ·ωr−1 · (d1

ix)] · ωr

where each ωj is a path in PB. By our assumptions, there exist paths ω̄j ∈ P I
B (0 ≤ j < r) such that

ω̄j(0) = ωj(0), ω̄j(Lω̄j ) = d0
1d

0
1x, and ω̄j · (d0

3−ix)] ∼ ωj . Set

ω′ = ω̄0 · (d0
ix)] · (d1

3−ix)] · ω̄1 · · · ω̄r−1 · (d0
ix)] · (d1

3−ix)] · ωr.

Since x is regular, ω′ ∈ P I
B. It is clear that ω′ ∼ ω.

Since A and B have the same vertices and the same initial and final states and every path in B is a
path in A, it is clear that A is (co)accessible if B is (co)accessible. Suppose that A is accessible, and
consider a vertex b ∈ (PB)0. Then there exists a path ω ∈ P I

A from IA to b. As shown above, there
exists a path ω′ ∈ P I

B such that ω′ ∼ ω. It follows that B is accessible. Suppose that A is coaccessible.
By our hypothesis, there exists an edge y 6= d1

ix starting in d0
1d

1
ix such that for every path ω ∈ P I

B with
ω(Lω) = d0

1d
1
ix and ω(0) = d1

1y, there exists a path ν ∈ P I
B such that ν(0) = d1

1y, ν(Lν) = d0
1d

0
1x,

and ν · (d0
3−ix)] ∼ ω. We show first that d1

1y is coreachable in B. Since A is coaccessible, there exists
a path γ ∈ P I

A from d1
1y to a vertex c ∈ FA = FB. If γ ∈ P I

B, we have nothing to show. If γ /∈ P I
B,

it begins with a path from d1
1y to d0

1d
1
ix. Let ω be a shortest such path. Then ω ∈ P I

B, and so we may
choose a path ν ∈ P I

B such that ν(0) = d1
1y, ν(Lν) = d0

1d
0
1x, and ν · (d0

3−ix)] ∼ ω. Since γ /∈ P I
B, γ

terminates with a path from d1
1d

1
1x to c. Let β be a shortest such path. Then β ∈ P I

B. The concatenation
ν · (d0

ix)] · (d1
3−ix)] · β is a path in B from d1

1y to c. Hence d1
1y is coreachable in B. Consider now an

arbitrary vertex b ∈ (PB)0. Then there exists a path α ∈ P I
A from b to a final state. If α ∈ P I

B, b is
coreachable in B. If α /∈ P I

B, it begins with a path in B from b to d0
1d

1
ix = d0

1y. Hence there exists a
path in B from b to d1

1y. Since d1
1y is coreachable in B, it follows that b is coreachable in B. Hence B is

coaccessible if A is coaccessible.

For elementary collapses of 2-cubes with a free front face, we state the following fact, which is proved
by adapting the arguments given in the proof of Theorem 6.5.2:

Theorem 6.5.3. LetA be an HDA, and let x be a regular 2-cube with free face d0
ix (i ∈ {1, 2}). Suppose

that d1
1d

0
ix /∈ {IA} ∪ FA and that there exists an edge y 6= d0

ix such that d1
1y = d1

1d
0
ix. Suppose also

that there is no edge z 6= d1
3−ix such that d0

1z = d1
1d

0
ix. Consider the sub-HDA B ⊆ A defined by

PB = PA \ star(d0
ix) and ΣB = ΣA. Then A ' B.

Regarding vertex-star collapses, we have the following result:

Theorem 6.5.4. Let x be a regular cube of degree n ≥ 2 of an HDAA, and let k1, . . . , kn ∈ {0, 1} such at
least one ki = 0, at least one ki = 1, dkn1 · · · d

k1
1 x /∈ {IA}∪FA, and star(dkn1 · · · d

k1
1 x) ⊆ x](❲0, 1❳⊗n).

Consider the sub-HDA B ⊆ A defined by PB = PA \ star(dkn1 · · · d
k1
1 x) and ΣB = ΣA. Then A ' B.
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Proof: Since there exists a path in A from d0
1 · · · d0

1x to dkn1 · · · d
k1
1 x, A is accessible if B is accessible.

Since there exists a path in A from dkn1 · · · d
k1
1 x to d1

1 · · · d1
1x, A is coaccessible if B is coaccessible.

By [Kah16, Thm. 4.6.1], [Mis15], every path ω ∈ P I
A with endpoints in B is dihomotopic to a path

ω′ ∈ P I
B. Since A and B have the same initial and final states, this implies that B is (co)accessible if A is

(co)accessible. By Propositions 4.3.3 and 4.5.1, it also follows that TL(A) = TL(B) and π(A) = π(B).
Since the inclusion |PB| ↪→ |PA| is a homotopy equivalence, HL(A) = HL(B).

6.6 Cube merging
Let A and B be two HDAs over the same concurrent alphabet. If B is weakly regular and A is obtained
from B by merging cubes by means of a subdivision homeomorphism (see Section 3.2), thenA and B are
weakly equivalent. More precisely, we have the following theorem:

Theorem 6.6.1. Let (f, id) : A → B be an elementary cubical dimap such that f : |PA| → |PB| is a
subdivision homeomorphism and f0(FA) = FB. If B is weakly regular, then A ' B.

Proof: The fact that A is (co)accessible if and only if B is (co)accessible is shown in [Kah16, Thm.
6.2.3]. Since f is a homotopy equivalence, HL(A) = HL(B). By Propositions 4.3.3 and 4.5.1, it
remains to prove that π(B) ⊆ π(A) and TL(B) ⊆ TL(B). By [Kah16, Prop 3.4.1], A is weakly
regular. By [Kah14b, Prop. 4.7.4], it follows that for every path β ∈ P I

B from IB to a vertex of the
form f0(a) where a ∈ (PA)0, there exists a path α ∈ P I

A from IA to a such that f I(α) ∼ β. This
immediately implies that π(B) ⊆ π(A). Consider m ∈ TL(B). Let ω ∈ P I

B be a path starting in IB
such that m � [λB(ω)]. Consider the vertex b = ω(Lω). Then there exist an integer n ≥ 0 and an
element c(b) ∈ (PA)n, called the carrier of b, such that f([c(b), u]) = [b, ()] for some u ∈ ]0, 1[n. Since
f is a subdivision homeomorphism, there exist integers l1, . . . , ln ≥ 1, a morphism of precubical sets
χ :
⊗n

i=1❲0, li❳ → PB, and increasing homeomorphisms φi : [0, 1] → [0, li] (i ∈ {1, . . . , n}) such that
the following diagram commutes:

|❲0, 1❳⊗n| ≈ //

|c(b)]|

��

[0, 1]n
φ1×···×φn //

n∏
i=1

[0, li]
≈ // |

n⊗
i=1

❲0, li❳|

|χ|

��

|PA|
f

// |PB|

Let us write φ to denote the upper horizontal composite. Let r ∈ N, x ∈ (
n⊗
i=1

❲0, li❳)r, and v ∈ ]0, 1[r

be the uniquely determined elements such that φ([ιn, u]) = [x, v]. Since [χ(x), v] = f([c(b), u]) =

[b, ()], x is a vertex and χ(x) = b. Let ν be a path in
n⊗
i=1

❲0, li❳ from x to (l1, . . . , ln). Since the

φi are increasing homeomorphisms, φ([(1, . . . , 1), ()]) = [(l1, . . . , ln), ()]. Hence [χ(l1, . . . , ln), ()] =
f([d1

1 · · · d1
1c(b), ()]) and therefore χ(l1, . . . , ln) = f0(d1

1 · · · d1
1c(b)). Thus β = ω · (χ ◦ ν) is a path

from IB to f0(d1
1 · · · d1

1c(b)). It follows that there exists a path α ∈ P I
A from IA to d1

1 · · · d1
1c(b) such that

f I(α) ∼ β. Since m � [λB(ω)], also m � [λB(β)] = [λA(α)]. It follows that TL(B) ⊆ TL(A).
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Fig. 5: HDA for Peterson’s algorithm (parallel arrows have the same label)

6.7 Example
An HDA modeling the accessible part of the system given by Peterson’s mutual exclusion algorithm
[Pet81] is depicted in Figure 5. The concurrent alphabet is the pair (Σ, D) where Σ is the set of edge
labels and D is the canonical dependence relation (see Section 2.10). Peterson’s algorithm is based on
three shared variables—namely, the boolean variables b0 and b1 and the turn variable t, whose possible
values are the process IDs, say 0 and 1. Process i executes the following protocol:

• Set bi to 1 to indicate the intention to enter the critical section.

• Set t to 1− i to give priority to the other process.

• Wait until b1−i = 0 or t = i, and then enter the critical section.

• Leave the critical section setting bi to 0.

• Repeat the procedure from the beginning.

As explained in more detail in [Kah16], the HDA for Peterson’s algorithm may be reduced to the one
depicted in Figure 6 by collapsing and merging cubes in the way discussed in Sections 6.5 and 6.6 and,
more precisely, using Theorems 6.5.2, 6.5.3, 6.5.4, and 6.6.1. Consequently, the two HDAs are weakly
equivalent.

Since weakly equivalent HDAs have the same trace language, they have the same saturated safety
properties (see Proposition 4.3.2). In the case of Peteron’s algorithm, such properties may thus be verified
for the small HDA in Figure 6 instead of for the bigger one depicted in Figure 5. This applies in particular
to mutual exclusion, which is the saturated safety property given by the set

1⋃
i=0

Σ∗ · {criti} · (Σ \ {bi:=i0})∗ · {crit1−i}.

Another important feature of Peterson’s algorithm is starvation freedom: a process that requests access
to the critical section will eventually obtain it. This liveness property can be inferred from the saturated
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Fig. 6: Reduced HDA for Peterson’s algorithm

safety properties given by the sets

Σ∗ · {a} · (Σ \ {crit0, crit1})∗ · {a} (a ∈ Σ \ {crit0, crit1})

and

Σ∗ · {bi:=i1} · (Σ \ {criti})∗ · {crit1−i} · (Σ \ {criti})∗ · {crit1−i} (i ∈ {0, 1}).

Starvation freedom of Peterson’s algorithm can thus be established using any HDA weakly equivalent to
the one of Figure 5. It should be noted, however, that the trace language only contains information on
saturated safety properties (see Proposition 4.3.2) and that therefore weak equivalence does not preserve
liveness properties in general.

7 Concluding remarks
This paper introduced weak equivalence, a coarse notion of equivalence for higher-dimensional automata.
Although equivalences for HDAs do not really fit into van Glabbeek’s linear time - branching time spec-
trum [Gla01], one might want to know how weak equivalence compares with trace equivalence, the coars-
est equivalence in the spectrum. What can be said is that two HDAs over the same concurrent alphabet
will have the same trace language if their underlying automata are trace equivalent. On the other hand, the
underlying automata of weakly equivalent HDAs will normally only be trace equivalent up to congruence.
Thus, ignoring the higher-dimensional structure of HDAs and comparing only what is comparable, weak
equivalence may be considered weaker than trace equivalence.

As we have pointed out, history-preserving bisimilar HDAs (see [Gla06]) need not be weakly equiva-
lent. It would be interesting to know under which conditions history-preserving bisimilarity implies weak
equivalence.

We have shown that weak equivalence is a congruence with respect to the tensor product and, at least
in the coaccessible case, the coproduct of HDAs. This fact and our results on the reduction of HDAs
provide means to establish that two HDAs are weakly equivalent. A fundamental problem in this context
is whether weak equivalence is decidable for finite HDAs. Given the undecidability of the equivalence
problem for regular trace languages [AH89], it seems likely that weak equivalence is undecidable as well.
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The homology language of an HDA A has been defined as a graded submodule of the exterior algebra
Λ(ΣA). An interesting question is which submodules of exterior algebras may actually arise as homology
languages of HDAs. It seems possible to show that HL(A) is necessarily a graded subcoalgebra of
Λ(ΣA). Assuming that this is true, the question becomes: Which subcoalgebras of an exterior algebra are
homology languages?

The term weak equivalence has a particular meaning in homotopy theory. A natural question is thus
whether there exists a homotopy theory of HDAs such that two HDAs are weakly equivalent in the sense
of this paper if and only if they are weakly equivalent in the homotopy theory.
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