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R E S U M O

A utilização de inteligência sob forma de tecnologia no nosso dia-a-dia é uma realidade

em crescimento e, portanto, devemos fazer uso da tecnologia disponível para melhorar

várias áreas do nosso quotidiano. Por exemplo, a tecnologia atual permite a conceção de

sensores inteligentes, mais especificamente sensores de multidão, para detetar passiva-

mente dispositivos como smartphones ou smartwatches através de probe requests emitidos

por estes dispositivos que, por sua vez, fazem parte de um processo de comunicação que

ocorre sempre que o Wi-Fi dos dispositivos está ativado. Adicionalmente, crowd sensing

- uma solução de Ambient Intelligence (AmI) - é estudada hoje em dia em várias áreas

com bons resultados. Portanto, esta dissertação visa investigar e utilizar sensores de

multidão para capturar passivamente dados acerca da densidade de multidões, explorar

as capacidades do sensor escolhido, analisar e processar os dados para obter melhores

estimativas, e conceber e desenvolver modelos de Machine Learning (ML) para prever a

densidade nas áreas sensorizadas. Áreas nas quais o sensor de multidão está inserido -

AmI, Smart Cities, Wi-Fi Probing - são estudadas, juntamente com a análise de diferentes

abordagens ao crowd sensing, assim como paradigmas e algoritmos de ML. Em seguida,

é explicado como os dados foram capturados e analisados, seguido por uma experiência

feita às capacidades do sensor. Além disso, é apresentado como os modelos de ML

foram concebidos e otimizados. Finalmente, os resultados dos vários testes de ML são

discutidos e o modelo com melhor desempenho é apresentado. A investigação e os

resultados práticos abrem perspetivas importantes para a implementação deste tipo de

soluções na nossa vida diária.

Palavras-Chave: Ambient Intelligence, Crowd Sensing, Machine Learning, Smart Cities,

Séries Temporais
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A B S T R A C T

Bringing intelligence to our everyday environments is a growing reality and therefore

we should take advantage of the technology available to improve several areas of our

daily life. For example, current technology allows the conception of smart scanners,

more specifically crowd sensors, to passively detect devices such as smartphones or

smartwatches through probe requests emitted by such devices, that, in turn, are part

of a communication process that happens every time the devices’ Wi-Fi is enabled.

Additionally, crowd sensing - an Ambient Intelligence (AmI) solution - is being studied

nowadays in several areas with good results. Therefore, this dissertation aims to

research and use crowd sensors to passively collect crowd density data, explore the

capabilities of the chosen sensor, analyse and process the data to get better estimations

and conceive and develop Machine Learning (ML) models to forecast the density of

the sensed areas. Areas in which crowd sensing is inserted - AmI, Smart Cities, Wi-Fi

probing - are studied, along with the analysis of different crowd sensing approaches

and ML paradigms and algorithms. Then, it’s explained how the data was collected and

analysed together with the insights obtained from it, followed by an experiment done

on the crowd sensor capabilities. Moreover, it’s presented how the ML models were

conceived and tuned. Finally, the results from the ML several tests are discussed and

the best performing model is found. The investigation, together with practical results,

opens important perspectives for the implementation of these kinds of solutions in our

daily lives.

Keywords: Ambient Intelligence, Crowd Sensing, Machine Learning, Smart Cities,

Time Series Problems
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1

I N T R O D U C T I O N

In this section, the context and motivation of the problem will be discussed, along with

the definition of the project’s main objectives and the approach planned to achieve

them. Furthermore, the research hypothesis together with the methodology used will

be described, as well as the discussion of the problem and its challenges. Finally, it will

give an overview of this dissertation’s structure.

1.1 context & motivation

Bringing intelligence to our everyday environments is a growing reality and therefore

we should take advantage of the available technology to improve several areas of our

daily life. The growing reality of technology, namely AmI and Smart Cities, respectively

defined as "a digital environment that proactively, but sensibly, supports people in their daily

lives" (Cook et al., 2009) and as a city that has the "ability to reason upon the knowledge

acquired through data gathered by sensorization, with focus on improving the quality of life

at urban centres, considering sustainability and safety principles" (Fernandes et al., 2018),

enables the development of different solutions to improve areas of our lives, namely

urban security, marketing or energy management. In fact, current technology allows

the conception of smart scanners to passively detect devices such as smartphones or

smartwatches through the sense of Wi-Fi probe requests and Bluetooth signals. The

development of crowd control algorithms and the use of these crowd sensors will allow
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the gathering of important data, such as crowd density data, which can be used in

distinct fields to positively affect our day-to-day. Moreover, ML, a subset of Artificial

Intelligence (AI) that is a key part of AmI and Smart Cities, can be used to learn with

these data and take an extra step in establishing the importance of collecting crowd

density data (Fernandes et al., 2018; Cook et al., 2009; Jung and Muñoz, 2018).

In terms of motivation, the following vision by Weiser (1991) represents the author’s

motivation for this project: "The most profound technologies are those that disappear. They

weave themselves into the fabric of everyday life until they are indistinguishable from it". The

main goal and motivation of this project is to prove that it is possible to develop a

system capable of enhancing different areas of our lives, while not requiring an active

user’s role in the gathering of data, enabling the user to live his daily life in a normal

way, that is, without making any kind of extra effort and still having its life improved

significantly. The fact that this project also involves the use and theoretical knowledge

of emerging technologies, like ML, and a possible contribution for the affirmation of

Smart Cities, also plays a big role in the development of this dissertation.

1.2 main objectives

1.2.1 Objectives

The goal is to non-invasively sense the density of people through a crowd sensor

located at a point of interest, where there are relevant variations in crowd density, to

prove that these sensors can collect data relevant enough to bring positive changes in

different areas in which these can be used. More specifically, this dissertation aims to

firstly choose an adequate point of interest in which smart scanners will be used to

passively detect smartphones and smartwatches through probe requests emitted by

such devices, estimating the crowd density of that area. These estimations will then

be made more valuable and accurate through the use of crowd control algorithms and

2



the investigation on the use of MAC randomization. Then, besides the use of crowd

detection and control algorithms, the objective is to study the capabilities of the chosen

smart scanner by performing a Received Signal Strength Indicator (RSSI) experiment,

where the sensing device’s maximum range will be explored in an indoor environment.

Lastly, the conception and development of various ML models will be done to forecast

the density of the sensed areas.

1.2.2 Proposed Approach

This project can be divided in two main phases. The first is data acquisition. This sensing

will be done with the use of a Crowd Sensing Smart Scanner, more specifically a second

generation ESP8266 ESP-12E NodeMCU Amica board. To program this smart scanner,

the Arduino Integrated Development Environment (IDE) will be used to develop

software that allows the passive detection of the Wi-Fi signals from people’s smart

devices. In terms of data storage, the sensor will be storing data in the Firebase Realtime

Database, a cloud-hosted NoSQL database that allows the storage and synchronization

of the crowd sensor data in real time. To study the maximum RSSI values and the

relation with how far a device is, a separate experiment will be conducted.

The main objective of the second phase is to know the density of people in a certain

area as well as the use of algorithms for crowd detection and control. Having the data

gathered, a complete data analysis will be conducted in order to clean and manipulate

the data to make it richer and, in this way, getting precise and useful insights on the

crowd density. Then, following the gathering of valuable information on the density of

people provided by the collected data, different types of ML models and configurations

will be tested, to find out which combination of these performs better at forecasting the

density of the sensed areas.
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1.3 research hypothesis and methodology

In this dissertation, there are different hypothesis that will be addressed. On one hand,

it will be addressed whether crowd sensing can be done through the non-invasive

capturing of Wi-Fi or Bluetooth probe requests emitted by peoples’ devices. Moreover,

it will test if the data collected by this method offers relevant insights on crowd density

and if it’s valuable enough to produce good ML models in order to forecast crowd

densities. Last, but not least, it is expected to prove that the used methods can be

applied to real-life use cases (traffic forecasting and better crowd safety measures, for

instance), and improving the quality of life in through these.

Concerning the working methodology, this project will follow the CrossIndustry

Standard Process for Data Mining (CRISP-DM) which provides an overview of the

life cycle of a data mining/ML project. The phases are Business Understanding, Data

Understanding, Data Preparation, Modeling, Evaluation and Deployment (shown in

Figure 1). More importantly, the key aspect of this life cycle is that the sequence of the

phases is not rigid, so this phases are parts of an ongoing cycle of analytics activity,

having to go back forth among these phases frequently (Chapman et al., 2000).
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Figure 1: CRISP-DM Phases in Chapman et al. (2000).

1.4 the problem and its challenges

The purpose of this section is to explain in which areas the proposed approach can have

a positive impact. Firstly, the problems that can be solved are going to be discussed.

Secondly, the main expected challenges are going to be presented.

1.4.1 Problem

The problem can be divided in two main points. On one hand, there are areas of our

life that can be improved through today’s technology, namely the ones related to AmI

and Smart Cities. On the other hand, the studied crowd sensing solutions have revealed

some issues that could be fixed or improved.

AmI solutions have proved to be a great asset to improve several areas of our daily

life. For example, in urban security, these kind of solutions can improve the safety of

the Vulnerable Road Users (VRUs) (Fernandes et al., 2018). It is a known fact that the
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number of traffic deaths is increasing every year (World Health Organization, 2015) or

that there could be more information available when wanting to plan a trip according

to the traffic peaks in certain places. Another example is in the area of marketing.

The decision making could be optimized if there was information about the group

behavioural patterns in a certain place, making it possible to enhance each marketing

decision. In either of these cases, an AmI solution, in this case crowd sensing, can be a

solution to help improve these areas and several others. Ares et al. (2016) proved that

crowd sensing provided insights about people’s mobility in different places inside a

disco, which could help enhance security, marketing or energetic efficiency issues.

Another category of the problem is related to the crowd sensing itself. The studied

articles revealed that many of the approaches not always used the most efficient solution,

either in terms of cost or accuracy, and also that there could be room for improvement

in other aspects as well. The proposed solution will try to address these issues and

develop a crowd sensing solution that takes into account factors like privacy, the type of

sensing device, technologies used and the user role in the sensing phase, just to mention

a few.

1.4.2 Challenges

The challenges can differ from AmI or Mobile and Pervasive Computing to more specific

and technical one’s. One major challenge is that even though a AmI system has clear

benefits by continuously improving one’s quality of life, the possibility of performing

wrong actions demands caution when deploying such a system. Furthermore, the

purpose of this dissertation is to develop a system that can bring advantages to one’s

life without any active participation from the user. Therefore, another challenge is being

able to build technology capable of shortening the gap between humans and computing

devices. Moreover, from a technical perspective, both sensing and reasoning phases

have challenges that must be overcome in order to develop a viable system. Starting
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by the sensing phase, in the case of RSSI, a metric that can be useful for calculating

how far a person is from the sensor, it might be difficult to rely solely on it because

of its high sensibility to obstacles in the way of the signal. Additionally, the recently

implemented MAC Address Randomization forces extra testing to conclude how much

a certain MAC address is a viable identifier of a device or not. Besides that, choosing a

point of interest where ground truth is available might be difficult to find, but would

be helpful to prove if the system is viable or not. Also, after the sensing phase, it will

be crucial to get the best out of the data available: creating new relevant features - a

process called feature engineering, removing unnecessary data or choosing and testing

suitable ML models are some steps to be taken.

1.5 dissertation structure

This document contains the following main sections: Introduction, State of Art, Experi-

ments, Results and Discussion, and, finally, the Conclusion.

Firstly, the introductory chapter starts by establishing an overall view on this thesis

theme context and motivation. Furthermore, the main objectives and the proposed

approach to reach them are presented, along with the research hypothesis and method-

ology. Finally, the problem and its challenges are discussed.

In the State of Art chapter, the goal is to describe minutely the different kind of

approaches on crowd sensing, specially the approaches that also involve the detection

of Wi-Fi or Bluetooth probe requests and then reason upon its main advantages and

disadvantages. Besides the description of the different solutions to help enhancing the

numerous areas of a Smart City, this section contains information about the current

state of ML, along with its different paradigms.

In the experiments chapter, a detailed overview of the development done along with

the materials used in the various project phases are given. More specifically, in the

data collection and data analysis sections, not only explain how these were performed,
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but also discuss the conclusions and insights taken from the data. Finally, through the

collected data, the model conception and tuning section enunciates and explains the

steps taken to achieve the best performing ML model.

Additionally, the results and discussion chapter presents the results from the various

configurations tested in the previous section, along with the discussion of these.

Finally, the conclusion chapter enunciates the overall results of all the work done,

whether they met or not the initially proposed goals, and, additionally, suggestions as a

way to improve the current work.
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2

S TAT E O F T H E A RT

In this section, it will be explained how Smart Cities and AmI are being broadly used

and studied nowadays, and more specifically, how different authors approach crowd

sensing and how they make the sensed data useful for different case studies. Also, an

overview of ML paradigms and algorithms will be given.

2.1 smart cities

In the cities’ history, the importance of technology to improve quality of life has been

always recognized and explored. Over the humankind’s history, there are several

examples of how technology can be useful for cities. Indeed, 3000 years ago Persian

engineers dug a Qanat, a long tunnel connecting a well to its outflow many miles away.

This ancient example of open and forward thinking, made possible the water supply

for a city of one million inhabitants until very recently (Harrison et al., 2010).

In this modern times, with all the technology available we should strive for making

better use of all the public resources available in order to improve numerous areas of a

city and ultimately increase the quality of life of each citizen along with the reducement

of operational costs of the public administrations (Zanella et al., 2014). Along side

with Smart Cities stands Internet of Things (IoT) (Fernandes et al., 2018). IoT is related

with technologies such as sensors, actuators, Global Positioning System (GPS) devices,

and mobile devices (Xu et al., 2014). The use of these resources can improve the
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quality of areas such as agriculture, urban security, environmental monitoring, security

surveillance, and others (Xu et al., 2014; Fernandes et al., 2018; Zanella et al., 2014). In

fact, the availability of different types of data collect by IoT sensors, may be used to

enhance the awareness of people about the status of their city or to improve other urban

issues (Zanella et al., 2014). For example, urban IoT could enable the route planning

in advance to reach the office or to discover the time of day in which one could do a

shopping trip to the city centre without encountering traffic. The sensing capabilities

and GPS installed on modern vehicles along with the sensing of different conditions in

a given road, would allow these type of situations to happen (Zanella et al., 2014).

One important aspect to mention is that despite the fact that these kind of tech-

nologies are still in a early stage, there are real-life examples of already implemented

systems. Recently, BMW developed an intelligent informatics system (iDrive system)

that provides intelligent driving directions based on environment data (vehicle location

and road condition) provided by various sensors and tags (Qin et al., 2013).

Finally, Smart Cities and IoT have proven to be a great asset to improve different areas

of a city and a citizen’s daily life. However, with great power comes great responsibility.

Given the fact that, for example, every IoT technology will rely largely on the collection

of personal and private information, protecting this data is a crucial and important for

the evolution of Smart Cities. In fact, studies have revealed that the number of attacks

on IoT entities, when compared to the traditional ones, is appearing to be much higher

(Roman et al., 2011; Li, 2013; Ting and Ip, 2013). Therefore, IoT standardization, such

as the definition of privacy and legal interpretation, which are still not clearly defined,

should be worked upon to prevent privacy issues (Xu et al., 2014).

2.2 ambient intelligence

AmI should be given importance for the promotion of Smart Cities (Fernandes et al.,

2018). AmI is a digital environment that brings intelligence and improvement to our
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daily lives by continously acting and reasoning upon the sensed data (Cook et al., 2009).

In fact, a Smart City should embed AmI by creating several distinct sensorization levels

in cities, as shown in Figure 2. At a first level, there are Application Programming

Interfaces (APIs) that offer relevant information such as road conditions and the weather.

On a second level people can wear devices that makes them a citizen sensor, contributing

for the extraction of relevant data. The third and final level comprises the city in itself

and the methods for extracting actionable data from the environment in where one lives

and stands (Fernandes et al., 2018).

Figure 2: The scale levels for data collection and AmI in Fernandes et al. (2018).

When it comes to the AmI evolution, the evolution of technology played, naturally, a

very important role. Initially computers were very expensive and difficult to understand

and a single computer would typically be used by numerous individuals. This paradigm

changed in the eighties with the PC revolution, allowing each individual to possess its

own computer. Nowadays, as industry progressed and costs dropped, one individual

often has access to more than one computer - naturally more complex and capable

than the previous ones. Moreover, in current times the access is not limited to only just

computers. This means that since the miniaturization of microprocessors, computing

power is embedded in our daily lives. Whether present in mobile phones or cars,

these devices are often something that we take with to travel outside our homes (like

mobile phones or smartwatches) or to help us finding the best route to our destination
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(like cars and their GPS Navigation). All this evolution, namely in faster computation

with reduced power along with an increased availability, made the realization of AmI

possible (Cook et al., 2009).

AmI algorithms normally follow the same logic. Firstly, the objective is to gather data

by sensing the environment’s and users’ state with the use of sensors. Following up, the

use of AI techniques allows the reasoning upon the sensed data. Finally, acting has the

objective to make AmI algorithm reach its goal, by executing actions that affect the end

users (Cook et al., 2009). Shortly, AmI has three phases: sensing, reasoning and acting.

Sensing

Sensing is where AmI starts. In order to have some sort of effect on an individual’s

daily life, it is necessary to firstly collect data about this individual. This way, sensing

is the process of perceiving the environment by collecting data effectively so that the

reasoning and acting algorithms have practical use (Cook et al., 2009). Effectively means

not only to sense with the most accuracy possible, but also to have the adequate data

processing.

Sensors can be used for different purposes and in different ways. Some sensors have

been designed for the detection of chemicals and humidity sensing (G.Delapierre et al.,

1983) or to determine readings for light, radiation, temperature, sound, strain, pressure,

position, velocity, and direction, and physiological sensing to support health monitoring

(Ermes et al., 2008; Stanford, 2004). Others were built to detect Bluetooth-enabled

mobile phones carried by the participants in a festival (Larsen et al., 2013). Alternatively,

a way of detecting individuals, can also be by the use of wearable devices, such as

Radio-frequency identification (RFID) tags that along with RFID readers enable the

monitorization of the tagged objects. Also, the use of video-based techniques has been

used for sensing purposes (Yuan et al., 2011).
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Reasoning

Reasoning must operate with the data gathered by the sensing. In order to make this

data useful, reasoning algorithms must be responsive, adaptive and beneficial to the

problem that is being addressed. Therefore, these algorithms include different types of

reasoning (Cook et al., 2009). They can vary from Modeling or Decision Making, to, in

a more specific way, algorithms that enable crowd density estimation.

In terms of Modeling, the main goal is to build a model that is adaptable to a certain

problem, by detecting anomalies and changes in patterns. As for Decision Making, the

goal is to have automated decisions. For example, according to Mozer (2004), one of the

few fully-implemented AmI systems, has the goal to determine ideal settings for lights

and fans in a home, by using neural network and a reinforcement learner. Typically

most of these algorithms use ML techniques, as they need to be responsive to changes

and perfom prediction tasks.

Concerning crowd density estimation, there are several approaches that one can take.

In the case of Schauer et al. (2014), in order to reduce the number of false-positives when

sensing the crowd, a hybrid approach is used, considering both the RSSI value and the

time when a MAC address was captured. By using two sensors, and comparing the time

delay of a certain MAC address between the two sensors along with a certain threshold

defined for RSSI, the authors prove that the possibility to reduce the false-positive rate

is increased.

Acting

The last typical phase of a AmI system, is Acting. It allows the connection between

the real-world and all the work done by the previous phases through the execution of

actions that affect the system users. It can be done by robots or simply by notifications

or interactions (Cook et al., 2009; Ramos et al., 2008).
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Conclusion

One main goal of AmI is to make pervasive computing, ubiquitous computing and

context-aware computing a reality. Indeed, shortening the gap between humans and

computing devices, would allow the wide spread of this technologies through a area or

a group of people, making possible the development of devices without explicit operator

control (Cook et al., 2009; C.Augusto et al., 2010). In the context of this dissertation,

it is crucial to reduce the human-computer interaction, so that the system can infer

situations without the active role of any person.

Finally, AmI is a paradigm that can bring multiple benefits to our daily lives and

in different ways while still being adaptive, as shown above. Every phase has its own

purpose and are mutually dependent. Nevertheless, similarly to Smart Cities, there

are privacy and security challenges that must be acknowledged. On one hand, the

fact that every AmI system requires some sort of sensing on a user’s environment or

daily life, even with potential benefits, brings up privacy issues. Moreover, in 2003 a

survey showed that privacy protection was more important to the participants than any

potential benefits provided AmI technologies. Nonetheless, there is also a city whose

evolution was enhanced by the open acceptance to loss of privacy (O’Connell, 2005). On

the other hand, issues like the AmI systems performing the wrong actions and forcing

humans to extra work - having the opposite intended effect - are an aspect that makes

the deployment of these systems a process that requires caution.

2.3 wi-fi probing

These days, the majority of smart devices are equipped with Wi-Fi communication

interfaces. This type of interface is normally used for enabling internet access and has

been widely adopted by any kind of smart device. In recent years, smart devices usage

has suffered a huge increase (Zhou, 2017/09; E.Longo et al., 2018). For example, in 2016,

the shipment of China’s smartphones represented 95.7% of China’s total mobile phones
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shipment in the same period (Zhou, 2017/09). Other valuable facts are that the number

of cellphones is now bigger than the actual number of people in the world, according to

United Nations (UN)’s International Telecommunications Union (ITU), the World Bank,

and the UN (M.Murphy, 2019), or that the number of smartphones users worldwide is

increasing every year, as show in Figure 3. Therefore, Wi-Fi has been widely used and

its usage is increasing at a fast pace.

Figure 3: Number of smartphone users worldwide from 2016 to 2021 in Holst (2019).

Smart devices that have a Wi-Fi interface periodically send Wi-Fi probe requests in

order to discover which wireless networks are available for connection (L.Oliveira et al.,

2019). This mechanism is defined by the IEEE 802.11 standard as an active mechanism

or an active scan (Zhou, 2017/09; Freudiger, 2015). These probe requests are constantly

being sent whenever the smart device’s Wi-Fi is enabled, sending information containing

for example the device’s MAC address. It should be noted that the rate at which a

device sends this packets depends on the Operative System (OS) used on it (Freudiger,

2015). To sum up, this communication process that happens every time the device’s

Wi-Fi is enabled, allows the sniffing of the probe requests, allowing the detection of

devices nearby a certain sensor (Zhou, 2017/09). This opens the possibility to use smart

devices’ probe requests as a way to get insights into numerous areas like crowd density

15



(Schauer et al., 2014), shopping habits (Barbera et al., 2013) or traffic forecasting (Ares

et al., 2016).

Over the past few years, the MAC address, which is sent along a probe request,

has suffered changes due to privacy issues. At first, the MAC address of each smart

device was unique and immutable, which lead to a lot of contest regarding privacy

dangers. Nowadays, the main strategy adopted by manufactures to fight this issue

is the randomization of the MAC addresses (Freudiger, 2015; L.Oliveira et al., 2019).

There were other proposed approaches, which did not have continuity: Beresford

and Stajano (2004) suggested changing MAC addresses over time, whereas Greenstein

et al. (2008) proposed removing link-layer identifiers all-together. In L.Oliveira et al.

(2019) the randomization of MAC addresses is defined as "a strategy that is intended to

prevent potential observers from identifying which mobile devices are within reach of a sensor".

Moreover, details like device, manufacturer, and operating system version influence

how the MAC address is or not randomized (L.Oliveira et al., 2019). Martin et al. (2017)

identified that most devices, especially those with an Android OS, do not implement

randomization of MAC addresses in any way. There are also studies that show that

the MAC randomization, in the case the iOS 8.1.3 randomization mechanism, can be

defeated (Freudiger, 2015). Besides that, others have showed that is possible to estimate

the number of mobile devices present at a certain place and time through a solution

that is immune to MAC address randomization strategies (L.Oliveira et al., 2019).

To conclude, Wi-Fi is a growing technology that is increasingly more integrated in

ubiquitous computing. Its usage in most of today’s devices, opens new possibilities on

how to implement crowd sensing. Even though MAC address randomization is feature

that does protect user privacy, it is still an on-going process, as many devices still don’t

have it implemented, or because there are methods to get around it. Therefore, finding

a way to implement crowd sensing without compromising one’s privacy while still

getting the most of the fact that smart devices are constantly sending probe requests, is

one of the objectives of this dissertation.
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2.4 crowd sensing

One big goal of this dissertation is to sense the crowd, gathering data either for

calculating density of people at certain points of interest, or even forecast these values.

Crowd sensing can be done in multiple different ways, and consequently, the objective

of this section is to review different approaches to this problem. There are some key

aspects which will be taken into account in order to have some comparison parameters:

1. Sensing

• The kind of device used for the sensing;

• Technologies involved;

• The collected data structure;

• The role of the user in the sensing (an inactive role or opportunistic and

participatory sensing) (Sun et al., 2016; Petkovics et al., 2015; Ganti et al.,

2011; Guo et al., 2015);

• The scale on which the approach is being tested;

• The storage method used;

• What kind of privacy measures are used;

• Pre-processing.

2. Reasoning

• Data Modeling;

• ML Models.

2.4.1 Sensing through Bluetooth

The paper produced by Larsen et al. (2013) presents an approach to Crowd Sensing at a

large-scale music festival with over 130 000 participants for obtaining spatio-temporal
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data. In order to do so, the authors use several Blutetooth scanners to discover Bluetooth-

enabled mobile phones carried by the participants. In a second phase, they reveal what

kind of algorithms used for analysis purposes.

Methodology

In the referred study, the authors’ method to obtain data is to use Nokia N900 smart-

phones with custom software for detecting Bluetooth-enabled devices in proximity,

as crowd sensors. As Larsen et al. (2013) states, this methods has some benefits and

drawbacks. On one hand, the Bluetooth scanners, functioning as master devices, scan

passively continuously for devices without any active participation on the user side. On

the other hand, since Bluetooth is a short-range low-power protocol for implementing

Wireless Personal Area Networks (WPAN), the range in which devices can be discovered

is very limited. Besides that, the discoverability of a device can depend on its operating

system and additionally on the fact that normally it has to be set manually by the user.

Regarding the scanner itself, besides having the Bluetooth module in it, it offered

3G communication, data storage, battery power and GPS tracking. This allowed the

gather of data in real time whilst having power in case of a event’s power outage, or the

tracking of the device in case the it got lost.

Data

In terms of data storage, the scanned data was stored locally using the SQLite database

on the device and also uploaded to server, always depending on the network availability.

In order to maintain availability and robustness of the system, the authors present a not

so clear approach. Approximately there were two scans per minute, and if the devices

did not upload data to the server during a certain amount of a time, the device would

be rebooted either by issuing a command via Bluetooth or by manually turning them

on and off. It is not clear if the command via Bluetooth was triggered automatically by

the software itself. Additionally, having any kind of manual work in this case is not the
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best solution when the objective is to maintain availability and to implement an AmI

system. Nevertheless, an periodical reboot would occur every 24 hours to minimize the

effect of any device not working properly.

As for the data structure, the collected data is a time series of events, where each

entry is characterized by the time, scanner ID and the Bluetooth MAC address of a

discovered device. The authors argue that the RSSI was not registered, since using

that measure for distance calculation has an accuracy which can depend on the type of

environment (Larsen et al., 2013).

Regarding privacy issues, even that according to Larsen et al. (2013) the Danish Data

Inspectorate considered that that information didn’t enable the linkage of the device

to a person, the authors still made sure to hash the MAC addresses after extracting

information about the vendor. Also, the human-readable identifiers on each device were

not recorded for a faster scanning and for anonymity issues.

Data collection and Analysis

In order to provide sufficient coverage of all the relevant areas, the authors used 33

Bluetooth scanners placed in the vicinity of stages like shops, bee booths and mixing

areas of the stages. This allowed the coverage of rich spots and also the placement in

spots where a power source was available. The scanned data was uploaded in real time

via a 3G network. Naturally, in events where high number of mobile phones are present

problems with the mobile network tend to occur. So some sensors only uploaded data

when they got their connection reestablished- normally in the early morning hours.

With this being said, only 7 of 33 sensors were able to run without the need of being

maintained one or more times during the 8 days of the festival. With this strategy, the

authors were able to collect 1 204 725 observations during the 8 days of the festival.

Taking into account the number of unique devices discovered (8534), 6.5% of the overall

population was actually observed. Therefore, 8534 entries in the dataset does provide

some window to discover patterns in participants mobility.
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Micro Groups Modelling

Taking into account that the authors claim that given the fact that the radius of Bluetooth

is limited to about 10 meters for the transmitters used in most of the mobile phones

and that the case study in Larsen et al. (2013) is to get insights on the internal structure

of a crowd, the authors analyse the data at two levels. One of them is Micro Groups

Modelling.

In this level, the objective is to discover if people move alone or in groups and how

groups are different in Larsen et al. (2013), micro groups are sets of people frequently

co-occurring in the same area and time frame (spatio-temporal bin). After dividing

the timeline of the entire festival into 1076 x 10-minute temporal bins and with each

scanner creating a spatial bin, the authors started by out of the 8534 unique devices

discovered, removing the ones that were seen in less than 10 temporal bins or less

than 3 spatial bins. Either because being in less than 10 temporal bins didn’t provide

enough data or because being in few spatial bins meant that the scanned device was a

stationary one (such as crew laptops). For all common occurrences, a directed graph was

constructed having the weight of each link estimated by the number of co-occurrences

of the participant A with participant B, divided by total number of occurrences of the

participant A.

This method had many constraints: from 130 000 participants, participants had to be

seen in the same 10 meter radius within the same 10 minutes at least half of the times

they were observed in total and in at least 3 different locations, to ensure meaningful

data for the purpose. Regardless, the authors were still able to detect micro groups,

having in the end 500 people moving around while belonging to a particular structure.

Macro Modelling

In this case, the objective was to combine the spatio-temporal traces with the bands

schedule, in order to find out which concert each of the participants attended (Larsen

et al., 2013).
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After assigning meta information to each show (genre, playcount, etc), the authors

first approach was to calculate the pearson correlation between the number of unique

devices found during each concert and the logarithm of the playcount of the band.

A strong correlation was expected, as the number of people at a concert seems to be

correlated with how much the band is listened to (playcount). In the end, for Larsen

et al. (2013) the Pearson’s correlation proved that people’s choices regarding concerts

are not really correlated to the band’s popularity. So a more complex model was used.

In terms of pre-processing, the authors transformed the time series data into a binary

attendancy table, having a matrix that maps each participant to the concerts attended

by the person. After that, they transformed it into a matrix that indicated how many

times each participant was scanned at a certain concert. Finally, the table is again

transformed to a binary matrix by filtering all the entries which had a lower value

than a certain threshold. To remove outliers, some similar processing was done as in

the Micro Modelling. Participants who participated in less than three concerts and

Bluetooth devices recorded in the same location throughout the festival were removed,

having remained 5127 attendees for further analysis.

Regarding the model, the data was fitted in an Infinite Relational Model (IRM) to

reveal the pattern’s of people behaviour at the festival. The model’s stability and

generalizability are proven by different number of measures used to evaluate it as well

as the usage of non-complete datasets and the insertion of randomness in the testing

phase. Some interesting insights were obtained in this process. For example, in Figure 4

it’s possible to see that the user cluster 5 is highly associated with the concert cluster 15

or 20, meaning that people in cluster 5 attended concerts from these clusters.
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Figure 4: Figure that demonstrates the relation between user and concert clusters in Larsen et al.
(2013).

Discussion and Conclusions

To sum up, this paper proved that even though Bluetooth based approaches to crowd

sensing can have some drawbacks (like having to be in discoverable mode for example),

it has proven in real-life its feasibility. Using Bluetooth signals as a way to detect

persons might not be the best solution, since these signals have a really short range

of detection. Additionally, the analysis of the spatio-temporal data proved to reveal

interesting insights when wanting to discoverer relations between each user that was

sensed and also between the user and a concert. The issue is that nowadays some smart

devices have the MAC randomization enabled, so the present approach wouldn’t work

so well nowadays. Nevertheless, the authors made sure to protect one’s privacy by

hashing the MAC address of each device. The device used was Nokia N900, which

offered 3G communication, data storage, battery power and GPS tracking. Having a

smartphone to essentially sense Bluetooth signals and be responsible for the storage of

data is not worth the price of the device. Finally, the authors say that all the data and

its insights were being displayed in a 46 inch monitor during the festival and that the
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participants were attracted by it, which can reflect on how people are becoming more

open-minded towards these kind of technologies (Larsen et al., 2013).

2.4.2 Sensing through Bluetooth and Wi-Fi

In Schauer et al. (2014), the main objective is to present pratical approaches of crowd

sensing, such as crowd density and pedestrian flows estimation. The methods are tested

in a real-life scenario. In fact, all the sensing occurs in a major German airport, which is

not only beneficial because of being a real scenario, but also because the authors use

ground truth information provided by the security check to test the feasibility of their

approach.

Methodology

During the period of 16 days, the authors obtain data by using 2 time-synchronized

laptops to discover devices with Bluetooth or Wi-Fi enabled. These two laptops were

placed in two different locations: one located in the public area, and the other inside

the area after the boarding pass scans - the security area. As in Larsen et al. (2013), this

papers draws attention to some of the disadvantages of using Bluetooth as a way of

crowd sensing. On the other hand, the wireless local area network technology, know as

Wi-Fi, does present some advantages in crowd sensing when compared to Bluetooth.

Firstly, instead of having a communication range of 10 meters like Bluetooth, it can go

from 35 meters in indoor environments to 100 meters for outdoor environments, which

facilitates the identification of Wi-Fi enabled devices. Besides that, the authors claim

that in different mobile devices the active scan - which is the process that allows that

detection of the Wi-Fi probes emitted by such devices - occurs at least once within two

minutes.
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Data

Regarding data structure, the data collected on these experiments had fields like the

RSSI value, the MAC address and the entry’s time stamp. In the 16 days, there were

over 11 million probe requests captured in the public area and about 8.5 million in the

private one. Daily, the authors were able to capture 9995 unique Wi-Fi MAC address

and 357 unique Bluetooth addresses. With this data, the Schauer et al. (2014) concluded

that Apple devices send out probe requests more frequently when compared to other

Android devices.

Crowd Density Estimation

The Schauer et al. (2014) define crowd density estimation as: amount of people per unit

of area within a certain time interval. Therefore, estimating this measure in the node’s

coverage is done by counting the amount of unique devices during a certain period of

time. In order to evaluate the results, the authors expected that whenever there was a

higher frequency of board pass readings, the crowd density should be higher too. In

Figure 5, it is possible to see that the correlation exists and that there is a higher density

of people in the public area, which was expected.
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Figure 5: Daily data of Wi-Fi, Bluetooth, and boarding pass readings in Schauer et al. (2014).

Although there was no data representing the ground truth, it is possible to conclude

that the density of the crowd had some relation with the actual number of people that

were on the boarding pass readings.

Pedestrain Flow Estimation

The Schauer et al. (2014) define pedestrian flow as "amount of people moving one way

through an area of interest within a certain time interval". In order to estimate this measure,

the paper presented four different approaches: Naive Approach, Time-based Approach,

RSSI-based Approach and, finally, an Hybrid Approach.

The simplest way, the Naive Approach, was to count the number of unique MAC

addresses which were captured at the both sensors (s1 and s2) within a specific time

interval. Two big problems arised from this method. One of them was that with this
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method it wasn’t possible to determinate the direction of a person. The other, was

that a device present in the overlapping zones of each sensor would be accounted as

a person moving, increasing the rate of false-positives. The first problem was solved

using a Time-based Approach, in which the specific time interval had to be positive

(between the first and last node). In the second case, the authors presented a RSSI-based

approach in which the pedestrian flow is calculated as the number of unique MAC

addresses in a certain period of time that have the RSSI value over a certain threshold

for both nodes. Similar to Larsen et al. (2013), Schauer et al. (2014) refer that the RSSI

can be influenced by numerous factors, such as the environment itself or the device

characteristics. Therefore, defining a reasonable threshold was the key here, but the

Schauer et al. (2014) concluded that it was necessary a more of a Hybrid Approach.

Finally, this method uses both the RSSI value and the time of when a MAC address was

captured. This lead to the following method to calculate pedestrian flow: number of

unique MAC addresses captured containing a positive time delay between the sensors

and at least one capture with the RSSI value over a certain threshold for both nodes.

This way, this method ensures that the sensed pedestrian is moving from one point to

another, while also reducing the possibility of false-positives in case the pedestrian was

in the overlapping detection zones of the nodes.

This final approach offered some good results, but in order to improve them Schauer

et al. (2014) decided to only capture data when the security gate was open. This ensured

that the captured data could be compared with the ground truth having less false-

positives and therefore a focused estimation. Figure 6 presents the pearson correlation

(which indicates how much one observation is correlated to another, from a scale to 0

to 1 (Schauer et al., 2014), of each approach and also with the optimal time shift for

sensoring being implemented.
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Figure 6: Correlation coefficients for each approach and with different focused estimations in
Schauer et al. (2014).

Note that Schauer et al. (2014) performed different times shifts for each estimation

and then calculated the correlation coefficient for each time shift.

Discussion and Conclusions

The authors were able to prove that for crowd sensing the Wi-Fi is more reliable

than Bluetooth not only because of its characteristics but also because more modern

devices use it nowadays. Besides that, Schauer et al. (2014) proved that it is possible

to estimate crowd density and pedestrian flow using the Wi-Fi and Bluetooth as a

way sense to a certain area. Additionally, the correlation results between the sensed

data and corresponding boarding pass readings, showed the feasibility of the method

implemented, having an average of 0.75 in the Pearson’s correlation factor with their

best approach. The authors also show an interesting way to counter the overlapping

coverage area of various sensors. Moreover, the RSSI value was used in the calculation

of the Pedestrian Flow, but because of its volatile values the method used to counter this

issue was to define a threshold as a way to filter results and combine this metric along

with others. The way this threshold was defined is not explained explicitly. Regarding

the sensing device used, using a cheaper option (e.g. a micro controller), even if with

a higher number of sensors deployed, would have the same end result. Finally, either

on the Crowd Density or Pedestrian Flow estimation, the authors claim that MAC

randomization in 2014 didn’t raise a problem when wanting to recognize a certain

device. But, time has passed and Apple is not the only integrating MAC randomization
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mechanism in their devices now. Despite being proved that this mechanism is still on

early stages, it should be a factor to take into account when wanting to do some sort of

crowd sensing.

2.4.3 Sensing in a SmartCity context

In Ares et al. (2016), the main objective of crowd sensing is to address and improve

issues that could be solved in a Smart City’s context. In fact, a mobility monitoring

system is presented as way to improve several areas of city, like traffic or security issues

inside buildings. Whilst the sensing phase applied to the four different areas of study is

the same, the authors then use different methods for analysis, processing and modelling

algorithms for the different cases.

Methodology

The sensing device used in Ares et al. (2016) is a single-board computer, based on

a Rasperry Pie board. As the objective is to sense each individual through the the

possesion of digital devices, the board has a Bluetooth and Wi-Fi cards, allowing the

board to detect Wi-Fi and Bluetooth probe requests.

The monitoring system developed by Ares et al. (2016) has an architecture of six

modules. The first one is the software implemented in the sensor in order to detect

Bluetooth and Wi-Fi devices along with extraction and encryption of the devices’ MAC

address. It is also responsible for publishing this data to the server. Secondly, there’s

a module to act as gateway between the sensors and the server, making possible the

communication between the sensors themselves, and the sensors and external networks.

Then, there are modules responsible for the control of the sensors from distance and for

the storage either in a local server or in a cloud-based storage, which have services for

data mining, ML, forecasting and visualization.
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As in any other crowd sensing case, privacy was also one of the thematics discussed

by Ares et al. (2016). In this case, the authors argue that as soon as a MAC address

(either on a Wi-Fi or Bluetooth probe) is captured from a device, it is immediately

encrypted using the SHA1 hash algorithm. Apart from that, the system proposed

only publishes information about general data, meaning that neither individual data is

shared nor data relating to a specific device.

Analysing people’s mobility in a discotheque

One of the use cases that Ares et al. (2016) tested their approach in was a discotheque.

A place where from common knowledge almost every one has a smartphone and where

the change, in terms of mobility, is very fast. In order to collect the data, five devices

were installed in a discotheque, one in each main room and the others on the main

entrance and outdoor terrace. It is also mentioned - even though the authors don’t

expand on it - that given that fact that the eletromagnectic scenario was heavy, the

testing of the device was more difficult.

In terms of amount of data, a total of 2200 different devices were detected in one of the

busiest nights. After collecting the data, the main goals were to find group behavioural

patterns in the data, which could optimize the decision making for marketing or security

issues in the disco. To do this, Ares et al. (2016) first extracted several variables, shown

in Table 1, from the data so that they could then apply clustering methods.

Table 1: Variables extracted from the data in Ares et al. (2016).
Variable name Description Type
entrance_time First date/time the device was detected Date

out_time Last date/time the device was detected Date
stay_time Number of seconds the device has been in the disco Integer

abs_time_node_X Number of seconds the device has been detected in every node X (from 1 to 5) Integer
relat_time_node_X Percentage of the time the device has been detected in every node X (from 1 to 5) Float

relat_night_time_node_X
Percentage of the time the device has been detected in every node X (from 1 to 5)
regarding the whole time

Float

The clustering method used in Ares et al. (2016) was a Self Organizing Map (SOM).

This method uses a feed-forward neural network that by using an unsupervised training
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algorithm and nonlinear regression techniques, is able to cluster the data and finally find

interesting relations between the set of variables. By transforming the resulting data of

the clustering method into a Unified Distance Matrix (U-matrix), the authors generated a

graph that visually represented the multi-variable dataset in a two-dimensional display.

Using this U-matrix + SOM approach, several graphs were produced. For instance, one

of the graphs produced by SOM was able to show that in room of the sensor 112, the

Main Room, the number of devices staying there a higher percentage of time was the

highest between all rooms, followed by the sensor 122, as demonstrated in Figure 7.

Figure 7: SOM plane analysis for the variable referring to the time a device spent in a nodes 112

and 122 in Ares et al. (2016).

Through this use case it was possible to gather and process data that can be useful

for different purposes. The clustering method used showed interesting insights about

people’s mobility in different places inside the disco, making it possible to address

issues on marketing or energetic efficiency in the context of Smart Cities (Ares et al.,

2016).

Traffic Forecasting

One other interesting use case in Ares et al. (2016) is regarding Traffic Forecasting.

Sensing is not only useful to get insights or relevant live information about different

environments, but also to forecast relevant situations like whether traffic is going to be

heavy or not at certain hours in certain places.
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Compared to the previous use case, in this one there was real data provided by

the Spanish traffic management agency, so even though detecting cars at high speed

seemed to be an issue, the validation of the approach in Ares et al. (2016) was possible

by comparing the real data with the data collected by their approach. In order to collect

the data, six nodes were placed in six different positions along different roads (that had

loop detectors installed by the traffic management agency), as illustrated in Figure 8.

Figure 8: Location of the six sensors in Ares et al. (2016).

Since one of the goals in Ares et al. (2016) was to forecast the traffic, the sensed data

had to be processed so that there was information about the number of cars that passed

a given point in a certain period of time, organizing the data in a time series way.

Given this processing, the authors in Ares et al. (2016) tested four different methods

(using the forecast package of the R language (Hyndman and Khandakar, 2008) for

forecasting the traffic, enabling the prediction of the number of cars that pass in different

points in certain periods.

As stated in Ares et al. (2016), the method that had the most accurate behaviour was

the Exponential Smoothing State Space Model (ETS). For this experiment the data used

was from the node 1010, having a total of 1920 values. Figure 9 demonstrates that the

ETS method was able to forecast the values with good accuracy when compared to the

real data.
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Figure 9: Expected vs forecasted number of cars in one of the highway points in Ares et al.
(2016).

Finally, this use case showed that it is possible to sense data even from cars that are

moving on a high speed and also suggest which forecast method might work best for

time series problems. Having this embedded in a Smart City would improve allow the

route planning or the improvement of traffic jams, for example.

Discussion and Conclusions

The approach in Ares et al. (2016) used a singled-board computer to detect Wi-Fi and

Bluetooth probe requests in order to do the crowd sensing. Privacy-wise, the authors

used the SHA1 hash algorithm in order to encrypt the MAC address as soon as it was

captured from a device, protecting any individual’s data with this method. In the first

use case, the use of clustering methods proved to be valuable when wanting to show

group behavioural patterns in the extracted data. Nevertheless, in this case there were

sensors distributed in various places of a discotheque, but it was not clear on whether

there was overlapping of the sensors coverage area or not, and if it was something that

was taken into account. A possible way to do this could be using the RSSI value to filter
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unwanted values. In the second use case, the proposed solution allowed the forecast

of traffic related data. It was referred that vehicles travelling at high speed could be

difficult to detect, but the results showed that when compared to the ground truth

information provided by the loop detectors, the sensed data was accurate. Finally, MAC

address randomization wasn’t mentioned at all throughout the paper, which means the

authors didn’t consider the possible effects of this mechanism on their results.

2.4.4 Mobile Crowd Sensing

All the approaches referred before have one point in common: they use passive sensing

techniques, allowing the detection of users without them playing an explicit role in the

gathering of data. Mobile Crowdsensing (MCS) is a paradigm that offers a different

approach, where individuals with sensing and computing devices collectively share

and extract data for a common purpose (Ganti et al., 2011).

Instead of using typical IoT devices, such as RFID tags (Cook et al., 2009) or single

board computers (Ganti et al., 2011), this approach defends that mobile devices can be

more useful. Commonly equipped with various sensing capabilities and also with pow-

erful computation, as Figure 10 shows, mobile devices can offer different possibilities

when it comes to crowd sensing.

Figure 10: Some of the sensing capabilities of different mobile devices in Ganti et al. (2011).
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MCS has characteristics that offer not only new opportunities but also big challenges.

When it comes to advantages of this paradigm, mobile devices have a bigger variety of

sensing capabilities and more computing, storage and communication resources than a

traditional IoT sensor. Besides that, the fact that mobiles devices are already deployed in

one’s life may lead to a easier usage of this devices as sensors to our everyday quotidian,

improving it in several areas. Instead of using specific sensors for example to collect

traffic data, a possible solution could be using smartphones carried by drivers to collect

the traffic data (Ganti et al., 2011).

In terms of drawbacks, the main one is that fact that MCS, either on participatory

sensing or opportunistic sensing, involves an active role of the user in order to extract

any kind of data. On the one hand, participatory sensing can be defined as sensing

that "requires the active involvement of individuals to contribute sensor data". On the other

hand, opportunistic is the sensing where "user involvement is minimal" (Ganti et al.,

2011). In the end, either one of these approaches are inserted into the process know as

Crowdsourcing, defined as "The practice of obtaining needed services or content by soliciting

contributions from a crowd of people, especially from an online community" (Guo et al., 2015).

More specifically, if users reported the available parking spots with text or images, that

would be inserted into MCS (Ganti et al., 2011). The main issue is that the owners of

mobiles devices commonly are not willing to contribute for the sensing, processing and

communication of the data, unless they have an appropriate incentive mechanism to do

so (Ganti et al., 2011). Besides this main disadvantage, MCS might have problems to

deal with the different structure of data produced by different mobile devices (even for

the same purpose), privacy related issues or the need of communication with a large

number of devices (Ganti et al., 2011).
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2.4.5 Sensing in a Mobile Crowd Sensing paradigm

Following up on the MCS section, this section will present an approach embedded

in this paradigm, where multiple mobile phones are used collaboratively to estimate

crowd density through the scan of the environment for Bluetooth devices (Weppner

and Lukowicz, 2013).

Methodology

In Weppner and Lukowicz (2013), the method proposed is to sensor the environment for

Bluetooth enabled devices through a reduced numbers of users (stationary or dynamic)

that are equipped with a Bluetooth scanning mobile phone to determine the crowd

density in an area of 2500m2. A reduced number of volunteers walk through specific

areas during specific times in order to extract all the relevant data. This is tested

during three days at the European soccer championship official public viewing event,

which has thousands of visitors. In their experimental setup, 10 students are divided

in 5 teams of 2 students each, where some of them stand on the same spot (like near

entrances), and others walk continuously around the event area, in order to cover all

the relevant regions. In terms of the sensing device, each student is equipped with one

Android smartphone, that continuously runs an applications that scans for discoverable

Bluetooth devices, producing data that is saved onto a microSD card. Each scan is

defined as a time interval that contains a dataset with all the unique Bluetooth devices

(except the repeated devices), along with other information like the RSSI value, etc.

Along with this, all the data extracted can be compared to ground truth information

about crowd density with the use of a High Definition (HD) video camera, which can

prove (or not) the feasibility of this method.
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Feature Engineering

As the authors in Weppner and Lukowicz (2013) want to estimate precisely the crowd

density of the whole event area, 6 features were created. In ML, Feature Engineering

is the process of creating features based on raw data, in this case from the sensors.

This process has the ability to increase the performance of the prediction model, as any

model needs to be fueled with relevant data, regardless of the complexity/power of the

ML model (Rencberoglu, 2019; Koehrsen, 2018).

This section will explain briefly two of the features created. The first feature, "Averaged

sum of distinct devices discovered by all sensors in scan window", describes the average

number of unique devices discovered in each sensor for every scan window (snap-shot),

which can be seen in Figure 11. An issue that could arise from this method was that

the same Bluetooth device could be detected by different sensors, which could give

false results. In order to solve this, Weppner and Lukowicz (2013) argue that Bluetooth

devices discovered by multiple sensors at the same time don’t influence the calculation

of the referred feature. One other feature created was "Ratio of discovered devices in

current snapshot to discovered devices in last x minutes". This feature allowed the creation

of crowd movement insights during every snap-shot. The calculation of this feature was

done by dividing the number of occurrences in the union of unique devices discovered

by all sensors in a snap-shot, by the number of occurrences in unique Bluetooth devices

discovered in the last 15 snap-shots. In the end, a high value of this feature would

indicate that in the current snap-shot there was strong crowd movement.
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Figure 11: Feature Averaged sum of distinct devices discovered by all sensors in scan window along
with ground truth crowd density levels in Weppner and Lukowicz (2013).

Model Evaluation

After the sensing and the processing of the data, Weppner and Lukowicz (2013) used a

decision tree classifier for classifying the crowd density in six different levels: empty (0.01

- 0.05 people/m2), very low (0.05 - 0.2 people/m2), low (0.2 - 0.3 people/m2), moderate

(0.3 - 0.4 people/m2), high (0.4 - 1.0 people/m2), very high (1.0 - 0.05 people/m2)

and extremely high (2.0 + people/m2). The evaluation was done using 10-fold cross

validation. The results for each level are illustrated in Figure 12.
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Figure 12: Confusion matrix generated by the decision tree classifier in Weppner and Lukowicz
(2013).

An accuracy of 75.3% was achieved, which, if the ground truth data was actually

accurate, does provide relevant predictions when it comes to crowd density. But

Weppner and Lukowicz (2013) does say that the ground truth information might be

noisy, which doesn’t contribute for an actual feasibility of the approach and model used.

Besides this, Weppner and Lukowicz (2013) also argue that the human body has a high

absorption coefficient of the Bluetooth signal, which affects the scanning done by the

mobile devices and therefore leading to results that might not be the pretended. Relying

on features that are not directly dependent on the absolute number of discoverable

devices and using relative features based on the ratio between values observed by

different devices, lead to improvements, which is a point to be considered. This process,

feature engineering, not only helped on improving the ML model itself, but also with

the visualization of meaningful data and to a more robust system overall. Nonetheless,

the authors refer that there was a 30% improvement in accuracy when using multiple

sensors, compared to using a single device, but don’t demonstrate it. Since the presented

approach is part of a bigger paradigm, know as participatory sensing, it would have

been relevant to know how the volunteers who were using sensors were convinced to be

part of the sensing. Lastly, their current approach would have to suffer some changes in
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order to have the same success, since the MAC address randomization is more present

nowadays than it was in 2013.

2.5 machine learning

ML can be defined as a field of AI (see Figure 13) where computers are programmed

to learn from data (Géron, 2017; Shalev-Shwartz and Ben-David, 2014). The main

advantage of ML over a human’s learning is that a computer has the ability to consume

huge amounts of data and detect and analyse its patterns that are outside of the

human perception (Shalev-Shwartz and Ben-David, 2014). This technological method’s

evolution arised from the increased data collection and ML algorithm’s complexity, as

well as the decreased cost of data processing power (Mitchell, 1991). Nowadays, ML

is used in many different cases like voice/face recognition, recommendation systems

or classification problems. For each kind of problem, there’s a different kind of ML

algorithm that normally performs better and belongs to one of the three defined ML

paradigms: Supervised, Unsupervised and finally Reinforcement learning (Géron,

2017).

Figure 13: Difference between Machine Learning and Artificial Intelligence in Singh (2018).
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2.5.1 Learning Paradigms

ML Paradigms vary according to each type of problem which in their turn have different

amounts and types of supervision in training.

Supervised Learning

In the case of Supervised Learning, the data used to train the model contains labels,

which are the outputs for each input. The model has a mapping function, which is

formed by a algorithm (which differs depending on the kind of problem), that after

trained predicts the output data for each input (Géron, 2017; Brownlee, 2020a).

A typical example is a classification problem, where the model needs to predict the

correct categorical output, by calculating whether an email is spam or not. Given that

the training the dataset contains each email labeled, for each email (input), the model

must learn from the training set how to predict the label (Spam or Not Spam), in the

most accurate way possible. Another kind of Supervised Learning problem, is the

regression problem which happens when a discrete output, like the price of a house for

example, has to be predicted by the model (Géron, 2017; Shalev-Shwartz and Ben-David,

2014).

Unsupervised Learning

Unsupervised Learning the difference is that the data used to train the model is

unlabeled. The model now tries to learn without any supervision. In this case, the

model only has available the inputs without any corresponding outputs, having to

discover interesting patterns in the data (Géron, 2017; Brownlee, 2020a). This kind

of problem can be divided into main three categories: Clustering, Association Rule

Learning and Visualization and Dimensionality Reduction. In the first place, Clustering

is grouping up each input such that each one ends in the same cluster. Association Rule

Learning is having to pair up groups of data, so that it forms a rule such as people

40



who see the movie X also see the movie Y. Finally, Visualization and Dimensionality

Reduction, in the case of Visualization is presenting the data so that it is understandable

how the data is organized. In the case of Dimensionality Reduction, it is discovering

which inputs reflect better the general dataset, simplifying the data without losing

information. (Géron, 2017; Shalev-Shwartz and Ben-David, 2014; Brownlee, 2020a).

Reinforcement Learning

Finally, Reinforcement Learning uses a method based on reward/penalty of each action

to train the model. The learning system, called an agent in this context, must learn how

to choose the actions that can get the most reward over time, based on its policy. In fact,

the policy of the learning system is what defines its behaviour to different situations

(Géron, 2017).

One of the most well know examples of the use of this paradigm is the AlphaGo. By

implementing Reinforcement Learning algorithms, the robot or program learned how

to play the game Go by analysing millions of games and playing games against itself,

which allowed the robot to get better over time and eventually beat the world champion

Lee Sedol (Géron, 2017).

2.5.2 Learning Algorithms

Embedded in each learning paradigm there are a variety of algorithms used for solving

typical ML tasks. Below, some of these algorithms are going to be described.

Linear and Logistic Regression

In the first place, Linear Regression is a ML algorithm inserted into the Supervised

Learning paradigm. Being used to predict numerical values, this algorithm prediction

method is to compute a weighted sum of the input variables (typically features given in

a dataset) plus a bias term, which can help the model to make more accurate predictions.
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In the second place, Logistic Regression also belongs to the same paradigm referred

before, but it is used for classification problems, meaning that it is used to predict

categorical outputs. Using a similar equation as Linear Regression, this algorithm

outputs the logistic of this result, showing how likely an instance is to belong to a

certain class (Géron, 2017).

Decision Tree and Random Forest

Decision Tree is a Supervised Learning versatile algorithm that is able to perform both

classification and regression tasks. This algorithm’s response is based on the criteria

defined by each node of the tree. Given a certain input, each node will be responsible for

decisions that will lead to the final prediction, present in the tree’s leaves. Despite being

a powerful and versatile technique, it might encounter over-fitting problems (Géron,

2017; Ray, 2019). In fact, the Random Forest algorithm, also embedded in the same ML

paradigm, is one of the solutions used to overcome this issue. Random Forest can be

defined as an ensemble of Decision Trees. Various Decision Trees are trained each on

a random subset of the training set. This way, the model makes predictions based on

various Decision Trees, being more likely to be more flexible with less bias and variance

(Géron, 2017; Desai, 2020).

Principal Component Analysis

The Principal Component Analysis (PCA), is an Unsupervised Learning algorithm used

for extracting the most relevant features in a dataset. A dataset might have a large

number of features, what PCA does is to find the ones who preserve the maximum

amount of variance. In fact, it allows the to turn an intractable problem into a tractable

one, without losing much information (Géron, 2017; Desai, 2020).
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K-means

The K-means is an Unsupervised Learning algorithm, which purpose is to form clusters

- groups of data that were formed because of the similarity between its data points - to

discover underlying patterns in the data. After defining the number of clusters that are

going to be created, this algorithm proceeds to optimize the position of the centroids

(location that represents the center of the cluster), so that it successfully creates the

intended groups of data (Desai, 2020; Garbade, 2018).

Artifical Neural Networks

Artificial Neural Networks (ANNs) are the core of Deep Learning (DL). Compared to

other algorithms, the ANNs offer new possibilities to deal with highly demanding ML

tasks as they are very powerful, versatile and scalable (Géron, 2017). Shortly, ANNs can

be defined as a directed graph with neurons instead of nodes and links instead of edges

(Shalev-Shwartz and Ben-David, 2014). The neurons are responsible for performing

some sort of calculation and the result of this calculation will be multiplied by a weight

as it travels through the network. These components are present in the layers of a

network including the hidden layers, where the calculation happens, the input layer -

which contains the data provided to the ANNs - and also the output layer - responsible

for producing the outputs (Josh, 2015). There are various types of ANNs, including the

Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) or LSTM, for

example. Each one has its own advantages and utility in different use cases.

2.5.3 Learning Algorithms for Time Series Problems

As stated before, there are learning algorithms that are more suitable to certain types

of problems. Given the fact that in this dissertation one of the goals is to develop ML

43



algorithms capable of predicting the future based on past data - Time Series Problems -

some of the main aspects of these algorithms will be described.

To begin with, Time Series problems exist in different contexts. Whether the goal is to

predict future stock prices (Géron, 2017), future knowledge of pore-water pressure (Wei

et al., 2020) or to forecast the number of trips in special events at companies like Uber

(Laptev et al., 2017), they all have one aspect in common: their learning algorithms are

capable of working with sequences with varied lengths as inputs and therefore capable

of processing sequential data with good results. One of the most used algorithms for

this purpose is RNNs. Its unique properties, which are going to be explored more

deeply throughout this section, make it suitable to tackle these problems (Géron, 2017;

Goodfellow et al., 2016).

One aspect these neural networks have in common, is that they both use the same

training algorithm to update their weights: Backpropagation Through Time (BPTT).

In order to understand how this strategy works, we must review how the standard

training algorithm works. This is simply called backpropagation training algorithm and it

is used in regular ANNs. The goal of this strategy is to modify the weights of an ANN

in order to reduce the network’s output error. The way this happens is by finding out

how much each connection contributes for the error and then tweaking the connection’s

weights accordingly, along with each bias term. Basically, for each input the network

receives, it can be divided it four phases, respectively: forward pass, computation of

the network’s error, backward pass and finally the gradient descent step. In the first

phase, the algorithm computes the output and preserves all intermediate results so they

can be used on the backward pass. Afterwards, through a loss function that compares

the network’s output with the desired output, the output error is calculated. Then, in

the backward pass, the gradients are calculated by measuring how much each output

connection contributed to the error and it finishes off by computing how much of these

error’s contributions came from the layer below, doing this repeatedly until it reaches

the input layer. Finally, the learning happens by performing a gradient descent step

in order to tweak all the connections (Géron, 2017; Brownlee, 2020b). Note that some
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authors defend that the backpropagation refers only to the calculation of the gradient

and not to the previously explained process (Goodfellow et al., 2016).

BPTT is the backpropagation training algorithm explained above applied to an RNN.

Compared to the traditional backpropagation, the differences lies with the data that the

algorithm works with. The forward pass phase goes through an unrolled network (see

Figure 14). Since in RNNs each recurrent neuron additionally receives as an input its

own output from the previous time step, the capacity of unrolling the network though

time is possible. This means the output of the network takes into account data from

previous time steps. Besides this, the weights’ update is slightly different since each

recurrent neuron has a sets of weights both for inputs and for outputs of the previous

time step (Géron, 2017; Brownlee, 2020b; Werbos, 1990).

Figure 14: An unrolled Recurrent Neural Network in Olah (2015).

Long Short-Term Memory

RNN is a great DL system for time series problems, because of the features of its

recurrent neurons which allows the existence of some form of memory. Despite these

benefits, they face issues when dealing with very long sequences, losing information

which can be very relevant for predicting future values.

LSTM networks are a particular type of a RNN, being capable of learning long-term

dependencies. Therefore, LSTMs are often used to solve sequence derived problems.

Having been first introduced in 1997 (Hochreiter and Schmidhuber, 1997), it has been

gradually improved over the years (Géron, 2017). Nowadays, it is successfully used in
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several applications, like speech recognition (Zhang et al., 2016) or trajectory prediction

(Altché and d. L. Fortelle, 2018).

In terms of architecture, the benefits of using LSTMs are provided by the nature of a

LSTM cell, shown in Figure 15.

Figure 15: Long Short-Term Memory Cell in Yu et al. (2019).

Compared to a standard recurrent cell, these cells have three different gates which

allow the presence of a state within a cell. These gates regulate the information that is

added or removed to the cell state and are composed by a sigmoid neural net layer and a

element-wise multiplication operation. In the end, the output produced by this cell takes

into consideration relevant past information. Additionally, in the process of outputting

a result it also decides which information is stored or not in the state. Concluding, since

this cell has the ability to store and erase data, and pick relevant information for a given

time step, the rate of success at dealing with long term sequences increases (Géron,

2017; Yu et al., 2019; Olah, 2015).
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2.6 conclusions

After the analysis of several articles, it was possible to identify that crowd sensing can be

done in numerous ways and for different purposes, as illustrated in Table 2. In general,

from the reviewed the articles, even though some of them belonged to different fields of

study, the main approach was to capture either Wi-Fi or Bluetooth probe requests from

smart devices as a way to sense the crowd. With the extracted data, the articles showed

that is possible to implement crowd sensing for different purposes: crowd density

estimation, traffic forecasting or analysing people’s mobility are just a few examples.

Table 2: Crowd Sensing Approaches.
Device Field of Study Techonologies RSSI #rawdataset(∼) Models Privacy

Sensing through
Bluetooth Nokia900 Music Festival Bluetooth No 1 million Graphs

IRM MAC encryption

Sensing through
Bluetooth
and Wi-Fi

Laptop Airport Wi-Fi
Bluetooth Yes 11 million No information

available No

Sensing in
a SmartCity

context
SingleBoardComputer

People’s mobility in
a discotheque

Traffic forecasting

Wi-Fi
Bluetooth No No information

available

SOM
ETS

ARIMA
Theta
IRM

MAC encryption

Sensing in
a MCS

paradigm
SmartPhones Public viewing event Bluetooth Yes 4100 Tree Classifier No

When it comes to comparing Bluetooth based approaches to Wi-Fi one’s, it was

clear that capturing Bluetooth probe requests presented a higher number of challenges.

Firstly, even though either Bluetooth or Wi-Fi need to be manually turned on by the

user for enabling the retrieval of data by the sensor, Bluetooth has to be additionally

set to discoverable mode as well. Moreover, the detection’s range of Wi-Fi signals is

much higher than the Bluetooth ones. While the first has a communication range that

can vary from 35 meters to 100 meters (depending on the environment), the second

has a range of about 10 meters. Finally, in one of the articles reviewed, where their

approach was tested on a big airport, the authors in Schauer et al. (2014) revealed that

they detected 6211 unique Wi-Fi MAC addresses vs 250 unique Bluetooth addresses per

day in the public area, which verifies that fact that Bluetooth probe requests are harder

to capture, and therefore using Wi-Fi is a more efficient approach in these cases.
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As expected, in order to do any kind of sensing it is necessary to have a sensing

device. In the reviewed approaches, different kind of devices were used: Nokia N900

smartphones, laptops, single-board computers or android smartphones in general. It

was possible to identify that even though these devices have different capabilities, the

main one is being able to capture probe requests. Therefore, the conclusion for this

dissertation is that the sensing device used should be capable of doing so. Other aspects

are important too, namely the price of the device or for the capacity to connect itself to

other networks.

In all the captures done by these devices the structure of data extracted has a typical

set of values: Bluetooth / Wi-Fi MAC address, timestamp, scanner id (in case multiple

scanners are used) and RSSI. From these fields, the RSSI is the more controversial one.

Since it is a very volatile value, some approaches don’t use it at all. The ones who do

make sure not to take any conclusions that rely solely on this metric. Defining a way to

filter its values (with a defined threshold), combining it with other metrics, or creating

features that despite being relevant, are not directly dependent on the RSSI, are some of

the methods use to mitigate the volatileness of this metric.

Regarding the MAC address, some of the crowd sensing approaches decided to hash

this address right after extracting it, in order to secure one’s privacy. Crowd sensing

provides solutions for modern-day problems, but at the same time, it handles data that,

if not manipulated correctly, might bring privacy issues. Therefore, either encrypting

the MAC address or being careful to only show data that represents a big group of

people are some of the measures that help to protect one’s privacy. A big subject arises

from this topic: MAC randomization - a solution that has been recently implemented

in this field. Some studies have revealed that either there are ways to get around it, or

that many devices do not implement it at all. When wanting to do some sort of crowd

sensing, this mechanism should not be ignored, since despite protecting one’s privacy,

it might produce data that leads to wrong conclusions. If a certain device is detected

by sensors with the MAC address X, and 1 minute later it changes its address, then,

the sensors would produce data indicating that apparently two different devices were
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detected within 1 minute, which is not true. This is not a common case to happen, since

MAC randomization does have flaws, and when occurring efficiently it occurs when

the smart device is sending probes to search for available networks.

Another important point from the examined methods is that some of them have

ground truth information, giving them the possibility of testing the output of their

approach with data that corresponds to the truth. Finding a point of interest where

ground truth information is available to test the approach that will be presented in this

dissertation, is a key factor to test its feasibility. Either resorting to other sensing devices,

like video cameras, or to places where to get in there’s needed some sort of check-in

method like an airport, were some of the methods used by the approaches reviewed.

In addition, the user’s role in the sensing phase must always be recognized. Having

an active role, like in opportunistic or participatory sensing, brings challenges that are

difficult to overcome.

After the sensing phase, each studied work showed how they operated with the

gathered data in order to make it useful and beneficial. In terms of data modeling,

the studies revealed that creating new variables with the existent data, a process know

as feature engineering, can be beneficial not only for visualization purposes, but also

for the fueling of prediction algorithms, making them have increased robustness and

accuracy. The use of different algorithms proved to be useful for various purposes:

traffic forecasting, pedestrian flow estimation or even for finding relations between each

user and the groups they were moving in.
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3

E X P E R I M E N T S

This section will explain, in detail, the various development phases of this project.

It will review all the phases from Data Collection to Model Conception and Tuning,

explaining the methods used for data collection and how this data provided several

insights through its analysis, and, finally, how the modeling was organized to produce

good performing models. Moreover, the capabilities of the device used in the Data

Collection are tested in the RSSI Experiment.

3.1 ethical considerations

Before moving to the actual development, it is important to emphasize that all the work

done does not compromise any individual’s privacy. All the data are collected through

an entirely non-invasive methodology and all the work done upon this data is not

centered on any individual, but instead on gathering information beneficial for crowd

density problems.

3.2 data collection

The first step was to find a proper device for the extraction of data. Since this work is

being done in the context of Smart Cities, the device was chosen taking into account the
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price, the capacity of detecting Wi-Fi probe requests and the capacity of uploading the

sensed data to a real time database.

Taking into account these parameters, the chosen device was the low-cost Wi-Fi

microchip ESP8266 ESP-12E NodeMCU Amica board (Figure 16). The NodeMCU is a

low-power Arduino type board which runs on ESP8266 Wi-Fi module. In addition to the

reduced cost of e2.4 per board, it also has a Wi-Fi module, 4MB flash memory, a built-in

antenna, open-source support, a micro-USB interface and finally small dimensions

(4.8x2.4x0.5cm) and low weight (109g). Such features allow the board to be a sensor

suitable for crowd sensing (Fernandes et al., 2018), being here entitled as a smart

scanner.

Figure 16: ESP8266 ESP-12E NodeMCU Amica board.

In order to program the board, the application that used was the Arduino IDE. It

provides simple one-click mechanisms to compile and upload a program to the smart

scanner. This program, called a sketch in this IDE, can be written in the language C or

C++. It needs to have implemented at least two basic functions: setup() and loop(). The

first one is a function that is called when the sketch starts after power-up or reset of the

board, being normally used for initializing variables, setting up connections or libraries

needed in the developed sketch. The second is a function repeatedly executed until the

board is powered of or reseted.

The Arduino project’s open-source nature has allowed the development of many free

software libraries that developers are using to extend their projects. This allowed the

use of two external libraries in the development of the code: ESP8266Wifi (Grokhotkov
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et al., 2020a; Grokhotkov, 2020; Grokhotkov et al., 2020b) and Firebase Arduino (Coyne

et al., 2016). Its usage enabled the exploration of the board’s Wi-Fi module, allowing the

connection to a network and also the detection of Wi-Fi probe requests and, additionally,

the possibility of uploading the data into the Firebase Realtime Database (Google,

2020a,b), which was the database chosen to store the sensed data.

The developed sketch - which was based on the software available in Fernandes (2018)

- was coded in a way that the ESP8266 ESP-12E NodeMCU Amica board captured Wi-Fi

probe requests emitted by people’s smart-devices in a non-invasive manner. The setup()

function, executed once the board is initialized or reseted, is used for setting up the

board as an Access Point (AP), connecting it to a network, and if connected successfully,

establishing a connection to Firebase. Furthermore, a timer is also initialized for

managing the transmission of data to the Firebase database. Finally, four different

handlers are registered. These handlers are called once a station connects or disconnects

to the board and when a Wi-Fi probe request is captured by the board. In fact, the

most important function, onProbeRequestCaptureData(), is the one being called upon the

reception of a Wi-Fi probe request (Listing 1). If the data structure used for storing the

data temporarily has space, the new probe request will be stored in case of it being

considered a new sighting. After that, every sendtimer seconds all the data is pushed

into the Firebase database and cleaned locally. Apart from this, the loop function is

also enabling the user to send commands through the serial like Stop/Restart, Count,

Start/Stop_Timer and Clear, among others.

Listing 1: Function called upon the reception of a Wi-Fi probe request.

void onProbeRequestCaptureData(const WiFiEventSoftAPModeProbeRequestReceived& evt) {

if(currIndex < ARRAY_SIZE){

if(newSighting(evt)){

probeArray[currIndex].mac = macToString(evt.mac);

probeArray[currIndex].rssi = evt.rssi;

probeArray[currIndex++].previousMillisDetected = millis();

}
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} else{

Serial.println(F("*** Array Limit Achieved!! Send and clear it to process more

probe requests! ***"));

}

}

3.3 data analysis

In this section, the dataset acquired in the previous phase will be analysed in the

following paragraphs by first understanding and cleaning the data, and then explored

in order to gain insights on several nuances that the data collected can offer.

3.3.1 Materials

For these experiments, the development was done in the Jupyter Notebook using Ana-

conda, a data science open-source platform. The Jupyter Notebook is a free open-source

web application that allows the creation of documents that contain code, and it can be

used for several purposes like: data cleaning and transformation, data visualization, ML

and more. The Jupyter Notebook runs on a local runtime, meaning that the processing

happens on a single local machine. The machine used had the following specifications:

Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz (4 CPUs), 8GB RAM and a integrated

graphics card, Intel(R) HD Graphics 5500.

Since the tasks in these experiments were data science oriented, the chosen pro-

gramming language was Python due to its properties and useful libraries to fulfil the

necessary purposes. Libraries like Pandas, Numpy or Matplotlib were used since they

offer a range of different tools for data processing and visualization. Moreover, a MAC

address lookup API (Massoud, 2020) was used to find the vendor of each MAC address.
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3.3.2 Data Understanding

The data acquired by the smart scanner was converted to a CSV file and was loaded

using the Pandas library. The first step was to understand the data by quickly looking

at its structure, attributes and data quality. The referred dataset has 232421 entries -

each one corresponds to a probe request sent to the Firebase by the smart scanner -

being characterized by 10 different attributes: id, device_identifier, type, rsi, mac, previ-

ous_millis_detected, data_created, latitude, longitude and creation_date. As demonstrated in

Figure 17, these attributes hold three different data types: float, int and object.

Figure 17: Information about the 10 attributes of the dataset.

The type object can hold any kind of Python object, but since the data was loaded

from a CSV file, it is possible to conclude that these objects hold a text attribute. In

Figure 18, the number of unique values for each attributed is displayed.
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Figure 18: Unique values in each attribute.

As expected, the categorical attributes have fewer unique values so it is important to

understand which values these attributes hold. Having mentioned that, each attribute

is described in Table 3.
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Table 3: Attributes information.

(a) Numerical Attributes.
Parameter Name Description Type

id The unique identifier for each entry of the
dataset int

rssi Corresponds to the RSSI
Indicator of the probe request int

previous_millis_detected Indicates how many milliseconds passed since
the smart scanner began capturing int

data_created The data identifier for which the probe
request was captured int

latitude

The latitude of the sensor’s localization
There are only two unique values for this
attribute, meaning that sensor was capturing
in two different places

float

longitude

The longitude of the sensor’s localization
There are only two unique values for this
attribute, meaning that sensor was capturing
in two different places

float

(b) Categorical Attributes.
Parameter Name Description Type
device_identifier The sensor’s identifier object

type Indicates the probe type. object

mac

Indicates the MAC address of the device
associated to the probe request
There are 43590 unique values for this attribute,
meaning that there are 43590 unique MAC addresses

object

creation_date

The data in which the probe request was
captured following the format
Year-Month-Day Hour:Minute:Second:Millisecond
The analysis of this attribute showed that the dataset
contains values between 2018-07-25 and 2018-09-19

object

Lastly, it is important to mention that the dataset is ordered by date.

3.3.3 Data Quality

In many cases the data may present issues like duplicated or missing values (for exam-

ple), leading to false conclusions and prejudicing all the posterior phases. Therefore,
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the dataset was also analysed in that perspective. In fact, the dataset has no missing

values and also doesn’t contain any duplicate value, resulting in no further exploration

for these cases.

3.3.4 Data Exploration

The data structure and quality were covered, but no real information was extracted

yet. Therefore, this section will get as many insights as possible given by the dataset:

by exploring the attributes, their combinations, and creating new ones. This will be

all done bearing in mind that one of the objectives of this dissertation is to gather

viable information on crowd density data and that the crowd sensor was located in

Universidade do Minho’s IT department, more specifically, in the Intelligent Systems

Lab. The analysis itself was divided in three different parts: Time Analysis, MAC

Addresses Analysis and Crowd Density Analysis.

Time Analysis

The current dataset has an attribute, creation_date, which can be used to determine

correlations between the frequency of captured probe requests and time. Consequently,

exploring this attribute can offer interesting insights.

To begin the time analysis, a simple histogram was created, illustrated in Figure 19.

This plot allowed to get a general perception on how the number instances - captured

Wi-Fi probe requests - varied in time, per day.
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Figure 19: Creation Date Histogram, per day.

By analysing this plot, it is trivial to conclude the following points:

• The numbers of instances varies with time;

• The registered instances go from July to September;

• The month in which the instance is registered affects the number of instances;

• Weekends and weekdays have different numbers of instances.

The number of instances variation can be explained by different factors. In the case of

the second half of August there are not many captured devices, which can be explained

by this period being a holiday season. Also, weekends seem to have less captured

devices when compared to regular weekdays, which is sustained by the fact the data

collection site has less people on the weekend. A deeper study was carried out on these

specific variations to confirm its veracity.

Nine new features were added to the dataset: Year, Month, DayName, DayWeek,

DayMonth, Time, Hour, Minute and Weekend - all extracted from the creation_date. The

names of the attributes are self-explanatory. For example, DayWeek corresponds to the

number of the day in the week, DayMonth corresponds to the number of the day in the
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month, and Weekend indicates if it is weekend or not. To complement the histogram

which showed a general perception of how the number of instances varied, more specific

cases were studied, with the aid of the new features.

As Figure 20 shows, three different bar plots were created for the following attributes:

Month, DayMonth and DayWeek.

Figure 20: Analysis to months, day of the month and day of the week.

The first plot, shows that the majority of the instances were registered in September.

The lack of instances in August was already explained, but in the case of July the low

number of instances registered is simply justified by the fact that the first instance was

only registered at the end of July (25-07-2018). In the second case, relative to the day of

the month plot, there is clearly a gap in the period between the 21
th and 24

th day of the

month. This is explained by three different reasons. Firstly, as the recorded instances
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only start in the 25
th of July, this month doesn’t contribute for number of instances in

the studied period. Moreover, the last recorded instance is on the 19
th of September,

which also puts September in the same case of July. Finally, only August remains -

a month in which not many instances were recorded, specially in the second half of

the month. In the third plot, the assumption (retrieved from Figure 19) that weekends

seemed to have less recorded instances is verified.

To complete the time analysis and to get all the insights possible through time derived

features, bar plots for the attributes Hours, Weekend and Minutes were created.

Figure 21: Analysis to hours, weekends and minutes.

As shown in Figure 21, the weekend plot and the minutes plot don’t offer much new

information. On contrary, the hours plot shows that the time period between 9 and 16 is
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when there are more devices present and consequently more recorded instances. This is

probably due to the fact that it is a working hour period. Being the data acquired from

a working place, the density showed in the 9-16 period is justifiable.

To conclude, Table 5 presents the summary of the conclusions explained previously.

Table 5: Time Analysis conclusions.
Feature Conclusions

Day of the Week There is a higher number of captured Wi-Fi probe requests during weekdays
Day of the Month Between the 21

th and 24
th day of a Month, there’s very few recorded instances

Month
September has the most captured Wi-Fi probe requests, whereas July
and August have fewer

Hour
Between 9 AM and 16 PM it’s the period where the number of captured
Wi-Fi probe requests is higher

Minute No relevant conclusions

MAC Addresses Analysis

The next study will be focused on the MAC addresses attached to the sensed Wi-Fi probe

requests. Valuable and different information can be obtained from these addresses. As

a matter of fact, it would be interesting to know if the number of the sensed probe

requests was more affected by single devices, that continuously kept sending Wi-Fi

probe requests and therefore were sensed multiple times, or by a large number of

different devices.

In fact, through the number of probe requests per MAC address, it was possible to find

that, approximately, five Wi-Fi probe requests were captured per device. Additionally,

the respective median was equal to one. These two results mean that a considerable

number of devices only gets sensed once. To confirm this, the 75
th percentile was

calculated and the result was one, meaning that 75% of the devices are sensed only one

time. This result could, in part, be explained by the MAC Randomization mechanism -

making the sensor capture probe requests from the same device with different MAC

addresses associated - but this topic will be explored further on this analysis.
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The first three octets of the address correspond to the Organizationally Unique

Identifier (OUI), allowing the vendor identification. This way, the vendors of the

captured MAC addresses were studied (Figure 22).

Figure 22: MAC Vendors pie chart.

This chart shows the most represented vendors in the dataset, where Intel Corporate,

AzureWave Technology Inc and Google, Inc. are some of the most represented vendors.

Besides, the slice in the chart represented by Other corresponds to the least represented

vendors, while the Not Found slice are addresses with an unknown vendor. This can

happen if an address is locally administrated or private, for example.

The most frequent address in the captured Wi-Fi requests was also studied to under-

stand the kind of device it was and why it was sensed so many times. The address is

associated to AzureWave Technology Inc, a company that makes Wi-Fi components for

computers and IoT devices - so the device was most likely a computer. Besides that, the

first record of the device it’s immediately on the first day of sensing and last one is on
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the last sensing day. Additionally, a time analysis was conducted specifically for this

MAC address, as displayed in Figure 23.

Figure 23: MAC Address time analysis.

This plot didn’t add much relevant information. It was expected that perhaps the

device was active on the weekends, contributing for so many captured Wi-Fi probes

associated with this address. But that didn’t turn out to be true, and since there were

no relevant fluctuations, no relevant information could be extracted from these plots.

The last analysis on the MAC addresses was focused on MAC randomization. The

objective was to find out if it was possible to identify if an address had been randomized,

and, if so, calculate how many of them were randomized. Through research it was

possible to find that a randomized MAC address is always locally administrated and
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transmitted in unicast (Vanhoef et al., 2016; Ansley, 2019; Project, 2020). However, there

are addresses that have this characteristics and are not randomized (Martin et al., 2017).

Moreover, some authors also refer that after the randomization process, the OUI is no

longer identifiable (Freudiger, 2015).

The first step was to create a new dataset based on the MAC addresses from the Wi-Fi

dataset, partially shown in Figure 24.

Figure 24: MAC Addresses dataset.

To each MAC address, four different columns were attached: LocallyAdministrated,

Unicast, Randomized and Vendor. The first, identifies if the address has been locally

administrated, doing so by checking if the address’ local assigned bit, which is the

second least significant bit of the first octet in a MAC address, is set to 1. In the second

place, the Unicast column spots if the multicast bit, the address’ least significant bit,

is set to 0. Thirdly, the Randomized column identifies if an address is randomized by

checking if the locally administrated bit is set to 1 and the multicast bit is set to 0. Lastly,

the Vendor is also on the dataset to study if there is any relation between those that

don’t have any Vendor associated and the randomization mechanism. This process is

partially shown in Listing 2.

Listing 2: Creation of the MAC dataset.
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d = {

"mac": sensing_data_WiFi.mac,

"LocallyAdministrated": mac_check_local(sensing_data_WiFi.mac),

"Unicast":mac_check_unicast (sensing_data_WiFi.mac),

"Randomized": mac_check_randomized (sensing_data_WiFi.mac),

"Vendor":l_vendors

}

df_mac = pd.DataFrame(data=d)

The analysis of the MAC Addresses dataset started by studying main corpus statistics,

as shown in Table 6. Firstly, it was possible to conclude that from 232421 captured

addresses, 52626 were locally administrated. Moreover, the second conclusion taken

was that all addresses were transmitted in unicast. Therefore, bearing this in mind

and since a randomized address needs to be locally administrated and transmitted

in unicast, all locally administrated addresses in the dataset are candidates to being

randomized addresses. Regarding the vendors, from the whole dataset, 51576 addresses

didn’t have any vendor associated.

Table 6: Corpus statistics.
Category #MACs

Corpus 232421

Locally Administrated 52626

Unicast 232421

Randomized 52626

Not Found 51567

At this point, it was possible to identify how many MAC addresses were candidate

to be randomized - 52626 addresses. As referred previously, some authors mention

that randomized addresses do not have any vendor associated. Therefore, the vendor

of each one of the candidates to being randomized MAC addresses was analysed, as

demonstrated in Table 7.
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Table 7: Locally Administrated Statistics.
Category #MACs

Locally Administrated 52626

Found 29022

Not Found 23604

These results indicated that 23604 MAC addresses were both locally administrated

and didn’t have any vendor associated. Since the studies from other authors revealed

that a randomized MAC address is always locally administrated and have unicast

transmission, and also that randomized addresses don’t have any vendor associated, a

possible conclusion is that 23604 MAC addresses are randomized - 10 % of the total

corpus.

Crowd Density Analysis

Data analysis was finished by performing a study focused on getting crowd insights

through the collected data. For this whole analysis it is important to clarify the difference

between the number of unique and total MAC addresses in a specific time frame. In

comparison to unique requests, total requests involve repeated MAC addresses, meaning

that one person carrying one device can contribute with multiple requests. Therefore,

when wanting to understand crowd density, this is not a viable metric, whereas the

unique number of addresses can be a better alternative. It is also not completely accurate

since devices using the MAC randomization mechanism will be registered with different

addresses and because there might exist more than one device per person. Nonetheless,

MAC randomization is not being correctly used nowadays, and as shown in previous

results, only 10 % of the total addresses were randomized. In conclusion, analysing the

number of unique MAC addresses will provide viable crowd insights.

Given this context, the first analysis was based on understanding the difference

between the number of unique and total MAC addresses per day. To do so, the plot in

Figure 25 was created - where the blue line represents the variation of number of total
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MAC addresses per day, whereas the red one is relative to the variation of number of

unique MAC addresses.

Figure 25: Unique vs Total MAC Addresses per day.

The first detail that stands out is that both line plots have the same fluctuations. This

is valuable because all the insights obtained in the time analysis done previously (which

was relative to all requests), also apply to unique addresses and therefore to the crowd

itself - an hypothesis also studied and confirmed in Figure 26. We can conclude, for

example, that in the data collection’s site there is a higher crowd density at regular week

days. Other than that, despite following the same variations, it is clear that the number

of unique of MAC addresses is remarkably lower, probably due to single devices being

sensed multiple times - supporting the argument that the randomization mechanism is

not widely used.
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Figure 26: Aggregate Time Analysis.
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It would also be valuable to know the number of persons in a given time frame.

This way, Figure 27 shows the different number of Not Unique, Unique and All MAC

addresses in a given period of time.

Figure 27: Unique MAC Addresses Plot.

For example, in this case, on the 7
th of July of 2018, there were about 1721 devices

present in the data collection site and therefore a similar number of persons.

Moreover, studying time periods in a timeframe is also useful for more specific

insights. For example, as shown in Figure 28, the 11am to 12am hour period period is

divided in groups of 15 minutes that compare the number of Unique an Not Unique MAC

addresses. The red bar plots show that there isn’t much relevant variations, meaning

that the number of persons stayed approximately the same.
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Figure 28: Variation of MAC Addresses in 2018-07-25.

Another case studied was to find how the number of persons varied from 14pm to

20pm - a period that includes some of the busiest hours - on weekdays. To do so, two

different days - a monday and a tuesday - were studied, as illustrated in Figure 29 and

Figure 30, respectively.

Figure 29: Variation of MAC Addresses in 2018-09-10.
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Figure 30: Variation of MAC Addresses in 2018-09-11.

Both plots present the variation, in groups of 60 minutes, of the number of Unique

and Not Unique Mac addresses, from 14pm to 20pm. Both plots are very similar,

probably because they are both during weekdays, and also show that the number of

Unique devices starts decreasing around 5pm, meaning that the number of persons also

decreases at this time.

3.4 received signal strength indicator experiment

A RSSI experiment was conducted to test the device’s signal detection range and what

can interfere with it or not. This experiment was done in an indoor scenario, that

included walls, doors and floors, and was divided in two parts. In the first one, the

objective was to find how much of an indoor site the smart scanner could cover, while

also testing the interference of obstacles. The procedure started by setting up the

ESP8266 board as an AP in a specific site. Then, a person with a mobile device would

walk away from the device, try to connect that device to the smart scanner, go back the

initial site, and check if the connection had been successful by analysing the monitor in

Arduino. This process was repeated multiple times, gradually increasing the distance
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device-smart scanner, until the connection was no longer possible, or increasing the

number of obstacles. By doing this, the area that the smart scanner could cover in an

indoor scenario was discovered, as well as the effect of obstacles in the smart scanner’s

signal transmission.

When it comes to obstacles, the signal strength was clearly weakened by it. Never-

theless, it was clear that obstacles like walls had higher interference than doors, for

example. In terms of range, from the site where the smart scanner was positioned the

signal existed until around 35 metres to the right and 25 metres to the left. Finally,

being on the floor below where the smart scanner was, made the signal very weak, but

approximately right below the smart scanner and in a range of around 10 meters, the

connection with the smart scanner was still possible.

In the second part of the experiment, the objective was to simply analyse the maximum

RSSI value that the smart scanner’s signal could reach. Note that this wasn’t possible in

the previous procedure because when a device establishes a connection to the smart

scanner, the event registered - WiFiEventSoftAPModeStationConnected - doesn’t have the

RSSI avalaible for retrieval. Therefore, the procedure was to run a sketch where the

smart scanner would capture the Wi-Fi probe requests of defined MAC address. This

address was from a mobile device. Having the indoor points where the device could not

connect to the smart scanner, which were discovered in the previous experiment, the

mobile device was moved to those points while having the Wi-Fi turned on. By doing

this, the maximum RSSI values were captured by the smart scanner. The conclusion

taken was that that if the RSSI was around 90, then the signal would start being very

intermittent, reaching values of 93 at maximum before the signal fading.

3.5 model conception and tuning

This section will go through all the creation process of ML models for the collected

data and all other steps these models imply. The main objective was to create a model
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capable of accurately predict the number of people in the future based on past data.

This is a time series problem. In the following sections, all the steps taken are going to

be presented and explained.

3.5.1 Materials

The materials used previously were also used for the purposes of model conception

and tuning. Additionally, a different platform and various other python libraries were

used. When it comes to hyper-parameters optimization, Colaboratory - a platform from

Google that allows writing and execution of Python code in the browser - was the tool

used for this computationally expensive task. Colaboratory is similiar to the Jupyter

Notebook, but since colab notebook run on Google’s cloud servers, it uses accelerated

hardware. Moreover, ML and DL libraries like Keras, TensorFlow and Scikit-Learn, were

used to create and evaluate ML models. The library Matplotlib was also used to plot

different nuances of the models: predictions and training losses, among others.

3.5.2 Data Preparation for Machine Learning Algorithms

The dataset that was explored didn’t have a clear response variable - a variable that

would be predicted in order to solve a problem. Since the objective was to predict the

number of people, predicting the number of unique MAC addresses would be a good

indicator for doing so. Therefore, a new dataset, represented in the Figure 31, was

created. It contained a column specifying the number of unique MAC addresses per

hour.
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Figure 31: Dataset excerpt containing the response variable.

As ML models normally perform better with more relevant information, one of the

first decisions was to perfom feature engineering by adding variables relative to time

to the dataset, as shown in Figure 32. As seen in the data exploration, these attributes

proved to influence the number of MAC addresses’ fluctuations - making these a good

option to fuel the models in the future. It is also important to mention that even

though these features were created, when experiment with the ML models, multiple

combinations of these features were tested. Also, the attribute creation_date was dropped

posteriorly as its information was now present in other attributes.

Figure 32: Dataset excerpt with time attributes.
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Moreover, the matrix in Figure 33 shows the correlations between the attributes. It

was expected that there could be strong correlations between the time attributes and

the response attribute - the number of unique MAC addresses per hour.

Figure 33: Correlation matrix between the dataset’s attributes.

The attributes Month, DayWeek and Weekend still showed some correlation with the

response variable.

One relevant conclusion was that the response variable had mostly low values while

having some outliers. As shown in Figure 34, the histogram shows that most of the

values of the response variable were in a range of low values (lower than 100). The

scatter plot, in turn, besides confirming the previous statement, also shows the presence

of outliers in the data.
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(a)

(b)

Figure 34: Density and distribution plots on the response variable, represented in a) and b),
respectively.
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3.5.3 Machine Learning Models Conception

The main objective was to build a model capable of predicting crowd density - a

regression problem. Therefore, different approaches were tested in order to reach

a solution that could provide the most reliable results. These different approaches

followed the same process, as illustrated in Figure 35.

Figure 35: Adopted procedure to conceive the ML models.

From the dataset, the data first goes through a Pre-Processing phase, which prepares

the data for the training phase. Several data configurations, model types and parameters

are tested to conclude which combinations provides the best results. Having a model

trained, it goes through the process of evaluation which implies tuning until the

performance is satisfactory. In fact, the type of evaluation also depends on whether the

data was regularly divided into one training and one test set, or if it was divided into

several training and validation sets. Finally, before reaching the Forecasting phase, the

tuned model is trained with the data structure that provided the best results and then

its final assessment it’s done on an unbiased test set.

Data Pre-Processing

The first step before actually creating and training ML models, is to pre-process the

data. The pre-processing of data is not only important, but also necessary to make

good models. In Figure 36, the pre-processing pipeline is demonstrated. It contains
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four different steps. The last three have different options that were all tested in

order to see which one would make the most out of the ML model, except for the

training/validation/tests sets creation which is responsible for the type of evaluation

used later on.

Figure 36: Pre-Processing Pipeline.

The first step in the pipeline is Feature Selection and Engineering. In this step, the

attributes, except for the target attribute, are (or not) removed from the dataset. There

are interesting correlations between attributes, in particular with the target attribute,

but there is the possibility that some of these attributes don’t contribute at all to the

ML algorithm. Therefore, experimenting with different combinations of these was

one of the decisions made. Next, there is Feature Scaling - a very important process

since ML algorithms perform better when the numerical attributes have the same scale.

In this step, two scaling methods are used: Normalization (between -1 and 1) and

Standardization. After the scaling of the attributes, the Training/Validation/Tests sets

creation is responsible for splitting the data so that the model can be trained, tuned

and tested with different groups of data, allowing a better evaluation of the model

performance. This way, firstly, the Train/Test split divides the data into one training

set and one test set with a 83% and 17% ratio. Moreover, the resultant training set is

splitted using the TimeSeriesSplit, where the data is divided as Figure 37 shows.
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Figure 37: Time Series Split applied to the training set.

The initial training set is divided into 3 folds of training and validation tests, providing

better evaluation and therefore better tuning by producing different sets with which

the model can be trained and evaluated on, avoiding issues like overfit and producing

better models. The 83%-17% ratio is used to so that the model can be tested on a full

week of September, which is a month of many variations, being a good candidate for

the models to be tested on. Lastly, the test set is solely used for testing the produced

tuned models with a completely unbiased set.

It’s important to emphasize that the way the TimeSeriesSplit was applied, was the

best given the available the data. If the data volume was higher, the best option would

be to apply the TimeSeriesSplit to the full dataset, producing folds that had training,

validation and test sets. If this method was applied to the available data, the split would

look like Figure 38 shows.
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Figure 38: Time Series Split applied to the full set.

This would allow not only the training and tuning on different sets, but also the

testing. The issue, in this case, is that the validation data would always be too little

and not representative - as it’s possible to see in the plots above - not enabling a good

tuning and therefore not giving the different tests sets good usage. Consequently, even

though the applied Cross-Validation (CV) method only allows the test of the model on

a single set of data, it ensures that the model is constantly trained and evaluated on

significant validations sets.

Finally, the last phase - Supervised Transformation - consists in reframing this se-

quence prediction problem into a supervised learning problem, using the Sliding Window

Technique. This consists in using the values of previous time steps as input variables

and use the next time step’s value as the output variable. In order to demonstrate the

previous transformation, a simpler example will be used. Given a dataset, shown in

Table 9a, the supervised transformation produces a new dataset, illustrated in Table 9b.
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Table 8: Sliding Window technique applied to a simpler example.

(a) Original Dataset.
Time Step Y

t 10

t+1 20

t+2 30

t+3 40

t+4 50

.

.

.

.

.

.
t+n ...

(b) Modified Dataset.
Time Step X Y

t [10,20] 30

t+1 [20,30] 40

t+2 [30,40] 50

.

.

.

.

.

.

.

.

.
t+n ... ...

This restructuration allows the prediction of the output variable at a given time step

by using the values of previous time steps. Therefore, this is applied to the problem in

question by transforming the existent sets of data. As illustrated in Figure 36, it can

be divided in two different categories: Univariate or Multivariate. On one hand, the

first implies that only one feature is used as an input, meaning that each timestep only

includes sequences of one feature. On the other hand, the second means that multiple

features are used as inputs, meaning that multiple features are found in every time step.

The function in Listing 3 is responsible for this transformation.

Listing 3: Supervised Transformation function.

def prepare_supervised_transf(dt_values, target, start_index, end_index, time_steps,

dim, target_size):

data = []

labels = []

start_index = start_index + time_steps

if end_index is None:

end_index = len(dt_values) - target_size

for i in range(start_index, end_index):

indices = range(i-time_steps, i)

data.append(np.reshape(dt_values[indices], (time_steps, dim)))

labels.append(target[i+target_size])

return np.array(data), np.array(labels)
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By applying the Sliding Window Technique, the function above transforms the original

dataset, which shape is (length, n_features), into two arrays:

• one relative to the input variables (x), which shape is (length, n_time_steps, n_features)

and contains various sequences;

• other relative to output variable (y) with the shape (length, 1) and contains the

number of unique MACs.

So, for every sequence present in x, its corresponding output value - the value that

needs to be predicted - is present in the array y. Moreover, this function can either

produce not only univariate, but also multivariate data, depending on the value of the

argument dim and the argument dt_values. For example, if the objective is to produce

univariate data, dim must be equal to 1 and dt_values must be a list containing the values

of only one feature. Besides that, the argument time_steps is very important since it

controls the size of the sequence that is going to be used to predict the next value.

The plot in the Figure 39 - which doesn’t contain normalized or standardized values

for visualization purposes - shows the result produced by a concrete example of a

supervised transformation, where 24 time steps are used to predict the 25
th value. In

this example, the model would have to predict the number of Unique MAC addresses

at 2018-07-26 13:00:00, based on the previous 24 hours.
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Figure 39: Plot that illustrates an example of a time step’s sequence and respective response
variable produced by a Multivariate Tranformation.

To conclude, the supervised transformation phase is responsible for preparing the

data for entering a ML model. As in other phases, multiple combinations of these

kind of transformations are tested, in order to find out which one allows the best

performance. The number of time steps present in each sequence, more specifically, the

number of hours used to predict the next hour, is the one variable that is varied. Finally,

the data is prepared to enter a Single Step Model - a model that typically will predict a

single value for each sequence.

Modeling

Having the data processed and prepared for entering a ML model, the next phase is

to actually build and train a model. Therefore, the Modeling phase is responsible for

creating a model by building and training it, as shown in Figure 40. The group of all the

tested models were chosen according to the type of data received. Since the data is from

a sequence prediction problem, models like the RNN and the LSTM, that theoretically
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present more potential of having good results because of its properties, were chosen to

tackle the problem along with the ANN, a multi-layer perceptron, which is always a

standard to test.

Figure 40: Modeling Pipeline.

One of first things to be done regarding modeling, was to establish baseline models -

models that are really simple and still have a chance of presenting good results. They

also provide baseline metrics so that more complex models can have a comparison

measure. This way, four different baseline models were created:

• Baseline model - a model that simply computes the next value of the sequence by

calculating the mean of the sequence values;

• Baseline Network - a ANN with only one input Flatten layer and an output Dense

layer;

• Baseline LSTM - Similar to the Baseline network but with one LSTM layer.
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Both the baseline network and the baseline LSTM are compiled using the loss function

Mean Average Error (MAE) and the optimizer Adam. Also, they are only trained during

20 epochs to get a quick assessment on its performance with the data provided by the

Train/Test split - one training set and one test set - in the Pre-Processing phase and

with 24 values in each sequence. Also, other type of Baseline was tested to see if it was

even viable: a simple linear regression model.

Apart from the baseline models, other three were explored to a higher degree: LSTMs,

RNNs and ANNs. This exploration was divided in two steps: building the models

and training them. The first, involves creating and compiling the models. Creating a

model is the phase where the type of model, the kind and number of layers used and

its number of neurons and activation functions, are defined. To do so, one function per

type of model was created, as shown in Listing 4 for the case of the LSTM.

Listing 4: Functions responsible for creating the LSTM model.

def create_LSTMmodel(n_neurons, n_features, n_steps, stacked_lstm):

lstm_model = tf.keras.models.Sequential (name=’LSTM_Model’)

if (stacked_lstm == True):

lstm_model.add (tf.keras.layers.LSTM (n_neurons, return_sequences = True,

input_shape = (n_steps, n_features)))

lstm_model.add (tf.keras.layers.LSTM (int(n_neurons/2), return_sequences = True

))

else:

lstm_model.add (tf.keras.layers.LSTM (n_neurons, input_shape = (n_steps,

n_features)))

lstm_model.add (tf.keras.layers.Dense (1,activation="linear"))

return lstm_model
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Through the functions’ argument it’s possible to control different aspects of the model

which allowed the quick creation of multiple models. The arguments n_features and

n_steps vary according to the data structure that is going to be used in the training phase.

The other two variables, n_neurons and stacked_lstm, help defining the layers’ number

of neurons and also how many layers the neural network will have. Additionally,

others aspects of models can be changed, like adding other kind of layers (for example,

a Dropout layer), by manually changing the function code. This allowed the quick

creation of models with different layers and different levels of complexity.

After creating the models, they must be compiled. The compilation phase is where

the optimizer, loss function and, optionally, the metrics are defined. Briefly, the choice

of the optimizer and loss function will affect the learning algorithm used in the training

phase. In fact, multiple optimizers, including its learning rates were tested to assess

which combination provided the best results.

The modeling is finished by training the already built model. This phase is where the

model actually learns to predict the next value in a sequence by constantly updating its

parameters until it converges into a good solution. The function in Listing 5 was used

to train the models.

Listing 5: Function responsible for training the models.

def train_model (model, x_train, y_train, epochs, val_split = 0,verbose = 1, x_val=[],

y_val=[]):

history = model.fit (x_train, y_train, epochs = epochs,

validation_split = val_split,

shuffle = False, verbose = verbose,

batch_size = 32,

callbacks=[keras.callbacks.EarlyStopping(

patience=25,restore_best_weight = True)])

return history
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By receiving the model, training data and the number of training epochs, the function

is capable of calling the fit() method from the Keras API to train the model. These

parameters, amongst others, have importance on how the model is trained. Table 10

explains the role of the most important parameters.

Table 10: Parameter’s role in the training phase.
Parameter Name Description

x_train Contains all the sequences from which the model should learn.

y_train

Contains the next value for each of the x_train’s sequences. The
loss at the end of each epoch is calculated by comparing the predict
value VS the respective value from y_train using the defined loss
function.

epochs Defines the numbers of maximum epochs that the model will be
trained on.

validation_split

This is a value that defines how much of the training data is going
to be used for validation purposes. Validation data allows better
analysis of the model’s performance, namely if overfitting exists
or not.

shuffle Shuffle is always define to False. In sequence derived problems,
one must not change the order of the data, since this must be preserved.

batch_size

Defines how many sequences will be trained together. This affects
not only the model performance, but also the training speed.
In these kind of problems, the batch size is even more important
since in LSTMs the memory is discarded after each batch.

callbacks

A callback is defined to use EarlyStopping - the training stops when
the losses in the the validation split stop improving for more than
25 epochs, restoring the models weights from the epoch with the
best performance (if restore_best_weights is set to True).

Different values of the parameters epochs, validation_split, batch_size were tested to

have the best performance possible. Moreover, it is important to underline that the

training data - x_train and y_train - varies accordingly the data produced by the Data Pre-

Processing phase. Also, the models are both trained with normalized and standardized

data in order to see which scaling method works best.

To sum up, in this phase, baseline models are created along with the main models.

In these last ones, parameters are constantly changed according to the results from

the next phase. In the end, while going back and forth with modeling and evaluation,
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different kinds of models end up being created, whether in terms of model type, but

also regarding model parameters.

Evaluation

One of the most important phases in any ML project is evaluating the model’s perfor-

mance. The main objective is to find the parameters that best suits the model, as well as

the type of data. This phase, if not done correctly, can lead to false conclusions, and,

ultimately, to a model that doesn’t have the capacity of performing well when faced

with a slightly different input. This way, the evaluation phase consists in three main

steps, illustrated in Figure 41. Firstly, the model’s performance assessment is done only

with validation sets: in a first stage resorting only to 10% of the training set, and in

a second stage using the validations sets provided by the TimeSeriesSplit. Afterwards,

the model is tuned by going back to the Modeling and/or to the Data Pre-Processing.

Finally, after finding the right data configurations and most suitable model with its

hyper-parameters, the model is tested on the test set.

Figure 41: Evaluation Pipeline.

Before explaining the three main steps in the evaluation, three different regression

error measures were defined to better assess the model. Each one of these computes
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the error between the predicted values and the real values, but in different ways, and

therefore providing different insights. These are briefly described in Table 11:

Table 11: Error measures.
Metric Name Description

MAE
Computes the average absolute difference between the predicted
and real values.
Describes the typical residual and isn’t very sensitive to outliers.

MSE

Computes the average squared difference between the predicted
and real values.
Is gives high weight to larger errors and therefore is very sensitive
to outliers.

RMSE
Computes the root of the average squared difference between the
predicted and real values.
Also useful to identify large the presence of larger residuals.

In the first evaluation stage, the first thing is to analyse the training metrics provided

by the training phase. The losses of the training and validation set are studied, as well

as other additional metrics defined. Additionally, the training method used makes

it possible the plot the learning curves. This allows the identification of whether

overfitting or underfitting occured, and also if the training convergence occurred in

a good manner. These results can immediately be used to do some tuning. As a

matter of fact, parameters like the optimizer and its learning rate, batch size, the number

of layers/neurons to adjust the model complexity and also the use of regularization

techniques are some of the parameters modified for tuning purposes. Lastly, the defined

metrics allow the understanding of the model’s performance on the validation set, but

these results might not be representative of the model capability on different sets, since

it was only tuned and tested in a single sets.

Therefore, a more reliable kind of evaluation - by training and testing the model on

different sets of data - is also applied after the previous stage. This procedure is called

CV. More specifically, the CV object used is the TimeSeriesSplit, which is adequate to

sequence problems. In this procedure, the dataset is splitted into 3 sets of data, which

contain train and validation sets. The model is then trained on each training set and
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evaluated on the respective validation set. In the end, a mean of the three evaluations is

calculated in order to evaluate the model performance. This way, the model capacity

on different sets is more reliably represented in the final metrics - providing a better

evaluation and in the end a better tuning phase. A function, illustrated in Listing 6, was

created to do this.

Listing 6: Function responsible for training and evaluating using the TimeSeriesSplit.

def train_evaluate_tsc (dt,time_steps,features, scaler, model_type,tscv,verbose=1):

fold_no=0

metrics = []

metrics_unscaled = []

models = []

for train_index, test_index in tscv.split(dt):

train_set, test_set = dt[train_index], dt[test_index]

x_train_mul, y_train_mul = prepare_multivaridata (train_set,

train_set[:,0],0,None,

time_steps,features,farmetric)

x_test_mul, y_test_mul = prepare_multivaridata (test_set,

test_set[:,0],0,None,

time_steps,features,farmetric)

if (model_type == "LSTM"):

model = create_LSTMmodel (10, features, time_steps, False)

else:

if (model_type =="ANN"):

model = create_ANN (features, time_steps)

else:

model = create_RNNmodel (10, features, time_steps, True)

model = compile_model (model,"RMSprop", loss= "mae")

history = (train_model (model,x_train_mul, y_train_mul, val_split=0.1, epochs

=200, verbose = verbose))

metrics.append ((get_metrics (model, x_test_mul, y_test_mul, scaler))[0])

metrics_unscaled.append ((get_metrics (model, x_test_mul, y_test_mul, scaler))

[1])

models.append (model)

fold_no += 1

metrics_names = ["MAE","MSE","RMSE"]

print ("Average scores for all folds:")

for i, metric in enumerate(metrics_names):

print (metric, "error", np.mean(((np.array(metrics)).T) [i]),"/", np.mean(((np

.array(metrics_unscaled)).T) [i]))

return metrics,models
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Basically, for each set produced by the TimeSeriesSplit, the data is transformed with the

supervised transformation and splitted into train and validation sets. Next, according to

the model chosen in the argument model_type, the model is created and then trained. The

model is subsequently evaluated through error measures on the respective validation

set, and these are saved on a list. This process is repeated for each TimeSeriesSplit’s fold,

and at the end the mean of each metric is calculated. Moreover, this function also allows

the quick test of different sequences, by changing the functions arguments time_steps

and features, which will control the length of sequences and also how many features

each sequence has. Finally, the arguments dt and scaler, are important to define the kind

of feature scaling used and the number of features present.

Concerning the tuning part, it was done both manually and also in an automated

way. The automated way was done using the RandomizedSearchCV, which, as the name

suggests, performs a randomized search on the hyper-parameters. It was used only

after the best data structure was found, and it took into account other conclusions that

restrained the universe in which the search was conducted in. Additionally, it also uses

the same CV method used previously to divide the training set.

Lastly, the model is evaluated on the test set by using the already trained and tuned

model to predict the values of the test set and then using the defined error measures to

compare them to the real values.

Forecasting

The next and final phase of the pipeline is Forecasting. The objective is to forecast the

number of unique MAC addresses, based on past data. To do so, two types of prediction

were explored. One, consists in using the single-step model to predict the next value of

a sequence. This is done by simply using the method predict () of the Keras API model

class. This method is applied to the model and as an input the method receives the

sequences from the test set.
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Another kind of prediction was also explored. Since the model is a single-step model,

predicting multiple values from a sequence was also explored. One way to do this

could be building a multi-step model, a model that would immediately output more

than one value. Another way, the one explored, was to forecast recursively. For a single

sequence, the prediction should have more than one value. The strategy was to have the

model predict the next value and then use the predicted value as an actual value from

the sequence - forming the sequence for the next time step. The new sequence would

then be used as the input sequence and the process would be repeated. The following

function, represented in Listing 7, represents this strategy for an univariate model.

Listing 7: Recursive Forecast.

def multistep_forecast (model, x_values, time_steps, features, n_steps):

x_values = x_valid_uni[0].reshape (1,time_steps,features)

for steps_ahead in range (n_steps):

y_single_pred = lstm_model.predict (x_values [:,steps_ahead:])

x_values = np.concatenate ((x_values,y_single_pred.reshape (1,1,1)), axis=1)

return (x_values [:,time_steps:].reshape((n_steps, 1)))
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4

R E S U LT S A N D D I S C U S S I O N

The developed pipeline produced several results by testing different data structures,

different models and respective parameters. The first section, Preliminary Analysis,

through the first stage of the Evaluation - where the model is only tested against a

validation set from the training set - will demonstrate how different model’s and training

parameters affect the error measures and training phase convergence. The second one,

Tuning phase, which took into account the conclusions from the preliminary analysis,

performs numerous tests using the TimeSeriesSplit evaluation to find the optimal data

structure and the optimal model.

In the end, through the constant experimentation and tuning, the data structure

associated to the best performance model is found, making the prediction of crowd

density feasible in real-world contexts.

4.1 preliminary analysis

The first thing to do was defining a data structure. It had 24 time steps each one

containing 6 attributes: UniqueMacs, Month, DayWeek, DayMonth, Hour and Weekend.

Then the baseline models were tested and all of them showed the potential for good

results, except for the linear regression model. Moreover, since the LSTM was the

most promising because of its properties, this type of model was tested manually with
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several different parameters. Going back and forth with modeling and evaluation, it

was possible to conclude some points and make decisions.

First, regarding the model’s complexity, which is increased by the number of layers,

neurons and activation functions, the main thing to notice was that if the model was

more complex, the performance would decrease. Increasing the model’s complexity

and at the same time applying regularization techniques could be a option that would

have good results in both train and validation sets, but it only decreased the overfitting

whilst not increasing the final validation set performance.

In terms of the model compilation, which include mainly parameters like the loss

function and the optimizer, it’s important to mention some aspects. In regression

problems, the loss function normally varies between the MSE or MAE. In fact, both can

produce models with different characteristics. Having this in mind, LSTM models were

trained multiple times using these two loss functions.

On one hand, the model that used the MAE as its loss function optimized this

metric by reducing the average difference between the predictions and the real values,

producing more consistent predictions. On the other hand, using the MSE as the loss

function, enabled the model to produce predictions that don’t have a big difference to

the real values, following the peaks values much better when compared to the MAE.

Given this fact, in this point a decision was taken to define the MSE as the loss function.

When wanting to predict the number of people per hour, the really high/low number of

this measure must not be neglected since this can be a key factor for making decisions

based on these predictions. A possible counter argument for this decision could be that

peak values could not be representative of the actual number of persons and therefore

these shouldn’t be given much weight. But, actually, these peaks are produced by

unique MAC addresses, so there is not one device responsible for the immense number

of probe requests.

Between the possible optimizers, several were tested and the following had the best

results: RMSprop and Adam. The result was not surprising since the Adam optimizer is

widely used as it generally provides good results. Also, the learning rate was varied.
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The error metrics didn’t decrease, but instead the only aspect that varied was the

convergence speed. Since this wasn’t an issue, the learning rate was dropped as a

parameter to be tested manually. The same result was also applied when the batch size

was varied.

After testing several LSTM configurations, two more models were tested: RNN and

ANN. Like the LSTM, these two models also presented the same kind of results in terms

of the model complexity, loss function and optimizer. Moreover, the results were also

promising and surprisingly similar to the LSTM which, right from the start, had the

best prospects.

To conclude, this phase allowed us to obtain some initial insights and also to make

some decisions. On one hand, using MSE as the loss function showed to have more

potential given the nature of the problem being faced. On the other hand, less complex

models seemed to perform better as well. Also, the optimizer to be used was defined

since it provided the best results. Moreover, this phase showed that all models have a

good foundation to work with. None of them had a really differentiated performance

from each other, which enabled all of them to continue to be tested and improved.

All the tuning done in this phase was manual. In the next phase, the models’ hyper-

parameters will be tuned in an automated way.

4.2 tuning phase

This phase, unlike the previous one, which was mainly to gather more initial insights

on the model’s hyper-parameters, will show which data structure is better to fuel the

model and also will tune the hyper-parameters in an automated manner. In the end,

the best performing model along with the proper data structure, will be found.

It should be noted that the results presented in this section are always the average

of the same test done multiple times. Since the training algorithm used to update the
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networks’ weights does not always converge in the same manner, averaging the results

of multiple tests is the most reliable method to precise a model’s performance.

4.2.1 Data Structure

Regarding the data structure, the first thing to do was to analyse which type of feature

scaling provided the best results. To do so, the three model types tested in the previous

phase were explored using CV, with the initially defined data structure of 24 time steps

and 6 features, and varying the feature scaling method, as shown in Table 12.

Table 12: Feature Scaling Results.
Feature Scaling Results

LSTM RNN ANN
MAE RMSE MAE RMSE MAE RMSE

Norm 48.6 66.47 53.45 82.17 54.08 76.25

Std 40.51 63.84 37.21 56.73 45.56 62.01

Table 12 shows the difference between two different methods of feature scaling. Three

different models were trained and evaluated multiple times, and the average results of

each one of them demonstrate that standardization provides the best results for both

the three models being tested and the two metrics MAE and RMSE. From this point,

standardization was defined as the feature scaling method to be used.

Features

Posteriorly, the number and the type of features were tested. The objective was to

explore the effect of these attributes on the model’s performance. Before explaining

this procedure, it’s worth to remind the data structure shape: (length, n_time_steps,

n_features). In this procedure, the number of features or n_features was in a first instance

decreased according to the attributes more or less correlated to the response variable -

dropping the less correlated attributes gradually - creating 3 different combinations of
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attributes: the first, with 6 attributes that initially defined; the second, with the same

attributes as the previous structure but dropping DayWeek and DayMonth; the third,

with only one 1 feature, UniqueMacs. The results are depicted in the Table 13.

Table 13: Feature Experimentation Results.
Data structure

(time_steps, n_features) Results

LSTM RNN ANN
MAE RMSE MAE RMSE MAE RMSE

(24, 6) 40.51 63.84 37.21 56.73 45.56 62.01

(24, 4) 35.90 59.06 33.72 50.23 30.03 51.40

(24, 1) 21.28 37.64 24.17 44.25 18.32 34.90

From this table, it’s easy to conclude that the performance increases when the number

of features is decreased. This implies that the attributes used were not relevant and

therefore were not helping the model’s performance. At this point, a review of the

feature engineering/selection phase was imminent. But before creating new features,

an experiment was made to dictate whether any of the existent attributes were relevant

or not. This was done by testing a structure with a low number but more correlated

features. Therefore, the test, showed in Table 14, was conducted with 24 time steps and

2 features, where the added feature was the one that was more correlated: Weekend.

Table 14: Most Correlated Feature Results.
Data structure

(time_steps, n_features) Results

LSTM RNN ANN
MAE RMSE MAE RMSE MAE RMSE

(24, 2) 32.45 52.59 27.26 45.61 22.09 38.95

Still, the performance achieved by this structure was better than the previous ones

- (24, 6) and (24, 4). Consequently, these results leaded to a decision of going back to

the data pre-processing phase, more specifically by making a review of the feature

engineering/selection phase with the aid of the already done data analysis (Section

3.3). In this review, features that had a higher correlation to the response variable were
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created: a feature that identified working hours and one that identified the holiday

month. As a matter of fact, whilst the most correlated attribute before this review had a

standard correlation coefficient of -0.27, these two new attributes had, respectively, 0.46

and -0.32.

The first tested structure included these two attributes, plus the Weekend attribute

since it already had some correlation ratio and finally the response variable: UniqueMacs.

The performance, shown in the first row of Table 15, was better than all the other

combinations of features tested, apart from the one using only 1 feature. This was

a good indicator that the relevance of the attributes was taking part on the models’

performance. Also, the results until this point showed that the models benefited from

using only features with good correlation coefficients, even if that meant using a low

number of them. Therefore, the most correlated attribute created until this point was

tested along with the response variable (shown in the second row of Table 15), forming

a data structure with 2 features: UniqueMacs and WorkHour.

Table 15: Feature Engineering Results.
Data structure

(time_steps, n_features) Results

LSTM RNN ANN
MAE RMSE MAE RMSE MAE RMSE

(24, 4) 26.04 44.15 26.73 43.84 25.09 40.89

(24, 2) 22.5 39.77 22.34 38.95 21.5 36.46

In the case of the RNN model, this data structure offered the best results yet, whereas

in the case of the LSTM the results were very similar to best performing LSTM yet (with

the (24, 1) structure) and, finally, the ANN wasn’t too far from the its best performing

structure too ((24, 1)). But, there was still room for improvement in terms of feature

engineering, so two new attributes were created: HolidayorWeekend and LessDensity. The

first, identified if the entry of the dataset was registered in a holiday month or in a

weekend, producing a correlation coefficient of -0.49. This feature was tested along with

the WorkHour feature and the response variable. The data analysis showed that even in
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a holiday month or in a weekend, the working hour was still a factor the influenced

the density of persons per hour. Secondly, the LessDensity attribute identifies all the

cases that are prone to have few persons: including being in holiday month, a weekend

or out of working hours. This attribute produced a correlation coefficient of -0.81 (the

highest yet), however it neglected some aspects, such as, for example, the distinction

between working hours at regular weekdays and working hours at weekends, which

had different levels of crowd density. In the end, two separate data structures were

tested, the results of which are demonstrated in Table 16. The first row represents the

structure with three features: HolidayOrWeekend, WorkHour and UniqueMacs. And, the

second, the structure with two features: LessDensity and UniqueMacs.

Table 16: Final Features Results.
Data structure

(time_steps, n_features) Results

LSTM RNN ANN
MAE RMSE MAE RMSE MAE RMSE

(24, 3) 19.03 35.78 21.2 37.43 21.8 37.98

(24, 2) 19.62 35.95 20.45 36.23 18.83 35.01

These results showed that the tested features combination had good results. In fact,

both the LSTM and RNN and their best performance with these tests. The ANN had a

similar result to it’s best performing structure ((24, 1)). With all these experiments, the

data structure that provided the best results for each model was found, concluding the

tuning stage for the parameter n_features.

Time Steps

The number of time steps, this is, the number of hours that the model uses to predict

the number of unique MAC addresses in the next hour, is another parameter of the

data structure that was tested. We could argue that a model that needs less information

- less time steps, in this case - to make an accurate prediction, would be a better

model than the one that needs more data. Additionally the models’ batch size is an
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aspect that was also tested, since in LSTMs and RNNs this parameter controls when

the model’s memory is discarded. Firstly, the three usual models will be tested by

gradually decreasing the number of time steps. The features used were a combination

that already had provided some good results: UniqueMacs and LessDensity. Throughout

this experience these features will not be changed, so that the effect of the timesteps’

variation is clear. Finally, the batch size for this experience was set to 32. These were the

results of the first phase (Table 17):

Table 17: Time Steps Experimentation results.
Data structure

(time_steps, n_features) Results

LSTM RNN ANN
MAE RMSE MAE RMSE MAE RMSE

(48, 2) 20.71 36.69 22.12 40.27 23.89 38.53

(24, 2) 19.62 35.95 20.45 36.23 18.83 35.01

(12, 2) 19.48 36.13 21.21 37.30 21.16 37.2

The findings showed that there were no improvements in increasing the time steps

number, in this case to 48. Furthermore, reducing the time steps to 12 didn’t produce

any significant variations, having in the ANN model case reduced the performance.

Consequently, the number of time steps was defined to 24 as it provided consistent

good results when compared to other alternatives. When it comes to the batch size, the

procedure was simple. Having the result of a defined data structure - whether in terms

of time steps and features - the batch size would be varied in order to see its effect on

the final metrics. In terms of training speed, increasing the batch size proved to speed

up the training, but in terms of results, it produced similar or worse evaluations when

compared to the batch size used for all the previous testings, which was 32. Reducing

the batch size decreased severally the training speed, having been set aside for this

reason.
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Summary

The experimentation, using CV with different feature scaling methods, features, time

steps and batch size, leaded to decisions that tuned three different models by finding

their optimal data structures. From the initial results, the different testing studies made

the models suffer a great increase in performance, which showed the importance of

proper data for fueling the models. The conclusions taken were similar for all the

models, but different in some aspects. In the case of the LSTM model, the standardized

data with 24 time steps and 3 features (UniqueMacs, HolidayOrWeekend and WorkHour),

provided the best results. For the RNN model, using 24 time steps and 2 features

(UniqueMacs and LessDensity), while also having standardized data, provided its best

performance. Finally, for the ANN model, using the same feature scaling method, the

data structures with 24 time steps and 1 feature or 24 time steps and 2 (UniqueMacs

and LessDensity), provided very similar results. In this case, it was defined the structure

with two features as being the optimal one.

4.2.2 The 3rd Fold problem

In the above testing, the results were improved considerably but the best results still

had high measure values (considering the nature of the response variable), such as,

approximately, 19 for MAE and 36 for RMSE.

The training set is divided into 3 folds, which in their turn contain training and

validation sets. The cause of the error inflation was in the third fold. It had really high

values of MAE and RMSE when compared to the first two folds. While the models’

average best results for the three folds was rounding around 19 for MAE, the models

always produced errors of around 36 for the third fold, a value above the mean of the

three folds. The same was applied to RMSE, presenting a RMSE value of approximately

36 as the three folds average, whilst having values of around 68 for the third fold, being

again above the three folds mean.
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Taking a deeper look into each of the three folds, the 3
rd fold’s validation set, is much

more challenging when compared to the other two folds. It has more fluctuations and

also these have much higher peaks of values, making these values more challenging

to predict. Additionally, the training set used in the third fold is not representative

enough. The training set includes six days of July and almost all the month of August.

July has some representative variations but they are not many, and August is a month

where the number of unique MACs is really low and doesn’t have much significant

variations. Consequently, the training set lacks in quantity and quality not representing

really well the testing environment, causing sample bias. Nonetheless, it’s important

that the models have the ability to perform well when faced with different kinds of

data, and more even when (in the case of the 3
rd fold) faced with a month where the

model could have practical use.

An aspect that could be limiting the models’ performance on the 3
rd fold, could be

that the models were sticking to much to the training data, overfitting it. Since the

validation set on the 3
rd fold is quite different from what appears in the training set, the

use of techniques to avoid overfitting could help enhancing the performance on this fold.

The best solution would be collecting more (representative) training data. Nonetheless,

by lowering the models’ capacity of memorizing the training data, there’s a chance that

they could then perform better on the 3
rd fold. This way, two different regularization

techniques were used - dropout and l2 regularization - among the increase of training

epochs and change of loss function to MAE, which optimized the models according

to the CV. In Table 18, the three models were tested with the referred regularization

methods.
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Table 18: Regularizer Results for the three models.

Regularizer 3 Folds Average
LSTM RNN ANN

MAE RMSE MAE RMSE MAE RMSE
Dropout (0.30) 13.51 32.28 15.58 35.04 14.74 33.07

Dropout (0.50) 14.88 34.34 15.55 36.41 15.25 34.70

l2 (0.001) 13.57 31.30 15.90 35.54 15.73 32.82

l2 (0.001) + Dropout (0.30) 13.30 32.10 15.51 35.29 15.08 33.08

l1_l2 (0.001) 13.14 31.12 15.72 35.60 15.58 32.74

l1_l2 (0.001) + Dropout (0.30) 15.79 32.73 15.31 35.13 16.10 34.11

Regularizer 3rd Fold
LSTM RNN ANN

MAE RMSE MAE RMSE MAE RMSE
Dropout (0.30) 28.28 65.15 33.02 72.30 32.20 68.58

Dropout (0.50) 29.60 68.64 34.01 77.49 33.80 72.75

l2 (0.001) 29.54 65.00 33.62 72.42 34.83 67.49

l2 (0.001) + Dropout (0.30) 27.90 65.43 32.72 72.99 32.70 68.79

l1_l2 (0.001) 27.43 62.26 32.89 72.64 34.57 67.54

l1_l2 (0.001) + Dropout (0.30) 35.52 67.35 32.67 73.15 34.74 71.73

For the LSTM model, there were improvements both in the 3 Folds Average and in

the 3
rd fold, specially using the l1_l2 regularizer. Moreover, in the RNN case, there were

also improvements on both evaluations. Additionally, using dropout with a 0.50 rate

reduced significantly the performance in the 3
rd fold. Finally, the ANN model had a

similar performance compared to the RNN, but presented better RMSE results.

In conclusion, the insight on why there were high error values, allowed to produce

solutions that leaded to some improvements. For example, before applying the change

of the loss function and also regularization, the best performance LSTM had a MAE

of 19.03 and a RMSE of 35.78 for the average of the 3 folds, and a MAE of 36.84 and a

RMSE of 72.68 for the 3
rd fold. After the changes, the modified model had a MAE of

13.14 and a RMSE of 31.12 for the average of the 3 folds, and MAE of 27.43 and RMSE

of 67.35 for the 3
rd fold. Furthermore, it allowed to also restrain the universe in which
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the hyper-parameterization, which will be explained in the next section, would explore.

Last but not least, it’s import to emphasise that given the nature of the training data,

the best solution of all would be to collect more data, giving the models more relevant

data to learn with and therefore increasing its performance.

4.3 hyper-parameters optimization & final model

In this section, the three models are going to go through a hyper-parameters optimiza-

tion phase, taking into account all the conclusions reached until to this point. On one

hand, the data structure experiments enabled to find the best combination of time steps

and features that could provide the best performance for each model. On the other

hand, the deeper analysis on the metrics provided insights that leaded to the change

of the training’s loss function, as well as the use of regularization techniques. These

last experiment with the regularizers, allowed to understand which of them boosted

each model’s performance. Therefore, the universe in which the hyper-parameters

optimization will happen was shortened by the previous experiments. In fact, the

parameter distribution in which the randomized search, a automated hyper-parameters

optimization method, did its search, it’s presented in Table 20 for each model.

Table 20: Parameter Distributions used in the Randomized Search.
Parameter Distribution

LSTM RNN & ANN
n_hidden [0, 1, 2, 3, 4, 5] [0, 1, 2, 3, 4, 5]
n_neurons np.arange(1, 100) np.arange(1, 100)

learning_rate reciprocal(3e-4, 3e-2) reciprocal(3e-4, 3e-2)

drop_out [0, 0.2, 0.3, 0.35] [0, 0.2, 0.3, 0.35]

regularizer [l1_l2, l2] None

regularizer_rate [0, 0.01, 0.001, 0.0001] None

optimizer [Adam, RMSprop] [Adam, RMSprop]
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The randomized search, on the LSTM and ANN models, searched for 60 iterations

making a total of 180 fits, during a period of, respectively, 2 hours and 1 hour. Moreover,

for the RNN the search was limited to 18 iterations, making a total of 45 fits, and taking

3 hours to do so, being this the reason for a less amount of searching iterations. The

combination of searched hyper-parameters that optimized the models, both for the

metric MAE and RMSE, are displayed in Table21.

Table 21: Optimal Parameters found in the Randomized Search.
Parameter Value

LSTM RNN ANN
n_hidden 0 0 0

n_neurons 25 49 87

learning_rate 0.001 0.0085 0.00066

drop_out 0 0.3 0

regularizer l1_l2 None None
regularizer_rate 0.001 None None

l2 None 0.0001 0.0001

optimizer Adam Adam RMSprop

All optimized models don’t have hidden layers and a significant number of neurons,

meaning that models with a low complex degree perform better - confirming an

hypothesis that was already mentioned in the preliminary analysis. Furthermore, all

optimized models present some regularization whether in terms of drop out or of

penalizer (l2 or l1_l2), also confirming previous work done.

The results from these models were compared with the best performing models of

each model type until the randomized search. Additionally, the models were not only

evaluated with the average of the 3 folds (using CV), but also evaluated on the test set,

which had never been tested yet. In Table 23a, the TimeSeriesSplit results in the training

set are presented, where as Table 23b presents the results from the test set.
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Table 22: Hyper-Parameters Optimized Models vs Non Hyper-Paramaters Optimized Models.

(a) Average Results on the training fold’s validation sets.
Hyper-Parameters

Optimization Results

LSTM RNN ANN
MAE RMSE MAE RMSE MAE RMSE

Yes 13.17 31.25 15.17 32.67 14.73 31.94

No 13.30 32.10 15.51 35.29 14.74 33.07

(b) Results on the test set.
Hyper-Parameters

Optimization Results

LSTM RNN ANN
MAE RMSE MAE RMSE MAE RMSE

Yes 23.62 49.42 29.33 56.96 30.68 56.78

No 23.40 49.91 32.81 63.67 30.91 56.56

The best performing model in the test set was the optimized LSTM, since the RMSE

it’s the preferred metric and the MAE error difference to the non-optimized model

is not significant. Also, this model was the one that performed best in the training

set’s validation folds produced by the TimeSeriesSplit. For a better interpretation of the

metrics produced on the set, the plot in Figure 42 compares the predictions from the

best performing model to the real values in the test set.
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Figure 42: Best model predictions vs real values in the test set.

The predictions are consistent and follow the true values’ variations very well. There

is a maximum threshold prediction value, around 350, that the model does not exceed,

making it have a worse performance when the number of persons per hour is really

high, as shown at 17/09/18 15:00.

The last results prove that this model can have good performance on unseen data. In

reality, it is a model that with the data of 24 hours, can predict with reasonable precision

the number of persons at the 25
th hour. But, this model would be much more valuable

if it could make predictions for multiple time steps ahead. For this reason, the recursive

forecast was applied, making the model predict values for the next 10 hours and 24

hours, as shown in Figure 43.
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(a) Recursive forecast up to 10 hours ahead,

(b) Recursive forecast up to 24 hours ahead.

Figure 43: Multi-Step Predictions generated using recursive forecast.

The results show that in general the model is able to follow the variations very close

even when predicting up to several hours ahead. Nevertheless, the second plot in
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Figure 43 shows that the model failed to follow the variation in the last hour. This was

expected, as the used prediction method mainly relies on using the already predicted

values, which makes the prediction error increase as number of predictions increases.

4.4 summary

The preliminary analysis was useful to indicate which aspects were more important to

have a model with good performance. Besides indicating that the three initially defined

models (LSTM, RNN and ANN) had potential to be explored, it mainly indicated that

less complex models would get better results, which allowed the tuning phase to be

more focused in the data structure, which, in turn, provided great increases in the

models’ performance.

The data structure tests were divided into features and time steps. In the first, the

main finding was that feature engineering enhanced all models, making them have

increased robustness and accuracy. In fact, the literature review on several crowd

sensing approaches had already proved that this process produced good results in

similar contexts, and the present problem was no exception. Also, the creation of

new attributes was done because the ones being used until then weren’t producing

satisfactory results. In addition, using a low number of features also helped making

better models. Apart from this, the variation of time steps wasn’t able to produce any

significant improvements, as well as the batch size variation.

It was also found that the used training data wasn’t representative or numerous

when compared to the validation data in the 3rd fold, which was being the main reason

for the lack of model performance. The use of regularization techniques in general

slightly boosted the models’ performance, by making them stick less to the training data.

Moreover, the hyper-parameters optimization using the randomized search method

didn’t lead to significant improvements, but still managed to enhance performances.
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Resultant from all the tests done, the best performing model in both training and test

sets was a LSTM with only one input layer and one output layer. The input layer had

25 neurons and used the l1_l2 regularizer with a 0.001 rate. It was trained with a data

structure of 24 time steps and 3 features, including the feature being predicted. This

model was able to forecast up to 10 hours ahead with reasonable precision, making

it adequate for real-world contexts where the crowd density forecasting is useful to

enhance decision making in different areas of our lives.

In conclusion, the three models all used some kind of regularization technique, all had

a low complex degree, used standardized data, MAE as their loss function, and relevant

attributes in their data structure. The use of the CRISP-DM methodology promoted the

constant adaptation to the results by going back and forth in the phases defined in the

ML pipeline. Finally, LSTMs, the model that theoretically presented better chances of

having the best performance, ended up exactly being the best performing one. Despite

this, this model needed the right data pre-processing, as well as the correct use of loss

function and hyper-parameters.
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5

C O N C L U S I O N

The first section will review the results achieved and how they met the initially proposed

objectives and the elicited research hypothesis. Additionally, it will address what could

be done in the future to improve this work and to make the most out of it.

5.1 conclusions

The main of objective of this dissertation was to develop a feasible solution to estimate

crowd density, more specifically, by using a smart scanner to passively detect devices

such as smartphones or smartwatches through probe requests emitted by these devices.

The sensing method would take into account aspects like privacy, type of sensing

device, technologies used and the user role in the sensing phase. Furthermore, a RSSI

experiment would be conducted to explore the capacities of the chosen smart scanner

and the collected data would also be used to conceive and develop ML models to

forecast the density of the sensed areas. In the end, the objective was to prove that this

crowd sensing approach had results that could be applied to real-life cases, ultimately

making a possible contribution to the quality of life improvement in these.

The State of Art section was important for several reasons. Firstly, it showed how

Smart Cities and AmI are integrated with each other and how they can be useful to our

daily life. The deeper study into AmI allowed the awareness of how its applications are

organized and what aspects are important when developing solutions in this paradigm.
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In fact, it showed that privacy and security challenges must be acknowledged. Secondly,

it confirmed that the use of smartphones is increasing at a fast pace and that the majority

are equipped with Wi-Fi communication interfaces. This was very important for the

robustness of the data collection method since it relied on this aspect to gather reliable

data on crowd density. Moreover, it presented how the MAC randomization mechanism

has not been widely and correctly used in nowadays’ devices. This was an aspect that

despite protecting one’s privacy, could create noise in the crowd density data.

Furthermore, different crowd sensing methods were reviewed. It was important to

perceive that crowd sensing can be done in a different number of ways and what usual

challenges and solutions arise in these methods. Firstly, it demonstrated how crowd

sensing is used for different purposes and the positive insights that one can gain from

it. Secondly, it showed that capturing probe requests was a crowd sensing method with

good results. Thirdly, it was concluded that capturing Wi-Fi probe requests is much

more reliable than Bluetooth ones, helping to define the type of probe requests the

sensing phase should take into account. Moreover, it showed the usual information that

could be gathered from sensing smart devices, including RSSI values that, unlike other

attributes, was controversial and wasn’t reliable on its own. On the topic of attributes,

the literature also emphasized the importance of feature engineering on the success of

ML models, an aspect that was taken into account during the experiments done in ML.

Last, but not least, it highlighted that using passive sensing techniques, which is the

type of method used in this work and means that users don’t have any kind of explicit

part in the data collection, was more reliable and easier to implement when compared

to other techniques.

The development of the solution itself allowed the practical understanding of the

proposed approach viability. Before diving into the main practical results, it’s important

to highlight how the CRISP-DM methodology was important to define the main devel-

opment phases and how dependent they were of each other, two aspects that helped to

enhance the quality of the presented results.
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When it comes to the data collection, this phase showed how it was to possible to

passively capture probe requests with a cheap and practical device: ESP8266 ESP-12E

NodeMCU Amica. Also, it proved that is possible to store data in a real time, useful

if the sensor was applied in a real-life scenario. Furthermore, the RSSI experiment

done with this crowd sensor revealed that despite having limitations when it comes to

sensing in an indoor environment, it still has good capacity to do so, having proved to

capture probe requests approximately up to 30 metres in the floor where it was located

and even in certain areas of the floor below.

Regarding the data analysis, its main objective was to turn the collected data into

reliable crowd density data. This way, the data went through a complete processing and

exploration phase, which besides helping to understand the collected the data and its

main parameters presented insights on crowd density and its variations. In fact, after

eliminating the noise in data by replacing the number of unique MAC addresses per

hour per its total number, crowd density variations became clearer. It was possible to

discover how crowd density varied with different hours, months and days, variations

that were plotted in different ways that helped to perceive better the number of people

fluctuations. Moreover, it was possible to see the huge difference between the number

of unique addresses and its total number. Besides that, the study on the collected data’s

MAC addresses explored the MAC vendors, the metrics of probe requests per MAC

address and the MAC randomization mechanism. Mainly, it showed that on one hand,

there wasn’t a significative number of randomized addresses and that these addresses

were, on its majority, being captured only one time. On the other hand, it demonstrated

that the most represented MAC vendor was most likely from a computer, which doesn’t

help to estimate crowd densities as it contributes for noisy data.

As for the model conception and tuning, the LSTM model was capable of predicting

the number of unique MAC addresses per hour up to 10 hours ahead and the results on

the test set - which was challenging and unbiased - were encouraging. Before achieving

this performance, numerous tests were done using different data configurations, differ-

ent hyper-parameters and model types. These tests showed that feature engineering
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boosted the models’ performance. On the contrary, the number of time steps used in

the training data didn’t have a big impact on the models’ performance. Additionally, it

exposed a big challenge which was dealing with the lack of representative data. For

this, regularization techniques proved to help the models have a greater performance.

In conclusion, the investigation part of this dissertation helped to develop a more

robust solution and also gain more knowledge in the domain of crowd sensing. In turn,

the results of the implemented solution showed that it is possible not only forecast, but

also to passively estimate crowd density resorting to a cheap, but qualified sensor and

to crowd detection algorithms for the sensing phase.

5.2 future work

In the first place, a work that could be done to reduce the gap between actual crowd

density and the collected data would be to remove all the probe requests that had a

MAC address whose vendor was associated with a computer. To do so, a study could

be done to retrieve the list of the most common vendors associated to computers, and,

if these vendors didn’t collide with vendors from smart devices, use this list to filter the

data. This would allow the elimination of 1 person being counted as multiple persons,

for example, if a person had in its possession a computer and a smartphone.

In the second place, model conception and tuning could have considered more

hyper-parameters and features. Other option would be to do all the tuning in an

automated manner, that is, not only using automated hyper-parameters optimization

but also automated data structure optimization. With the aid of more computer power,

this would allow the test of a wider range of configurations that could lead to better

performances. Another aspect that would provide better predictions would be collecting

more data.

Finally, the developed solution is part of the AmI paradigm, whose final phase consists

in connecting the sensing and reasoning phases to the real-world. Furthermore, one of
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the goals of this dissertation was also to open future perspectives in applying these kind

of solutions in real-life scenarios, making positive contributions to our lives. Therefore,

choosing a point of interest where crowd sensing is useful would be interesting to turn

these studies into real-life measures: by developing a web application that would use

the conceived methods allowing users to check current and future crowd densities in a

certain site; by implementing measures through the data analysis and forecasting in

areas like marketing, urban security, or even the current COVID-19 situation.
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