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Synopsis 

Railway transport is an efficient and environmentally benign method of transport. With 

global warming effects intensifying it has become more urgent that mobility and economic 

prosperity are maintained by delivering increased transport efficient. Hence, railway 

transport has a significant role to play in the forthcoming decades. 

 

Punctuality and safety of railway operations is critical in ensuring unhindered transportation 

for passengers and freight. Rolling stock are required to operate at higher speeds and carry 

heavier axle loads than ever before. This puts increased pressure to rolling stock operators 

and infrastructure managers in trying to avoid disruption and potential accidents which also 

leads to higher transportation costs. 

 

Remote condition monitoring has increased in significance for railway transport over the 

last few years. However, there are still a lot to be done before breakthrough remote 

condition monitoring technologies are delivered at commercial scale in the wider 

international railway network.  

Different remote condition monitoring systems are installed wayside in order to evaluate 

the structural integrity of rolling stock wheelsets, detect any potential rolling stock fault in 

time and minimize the likelihood of a serious railway accident. The existing wayside 

condition monitoring system are based on infrared cameras, acoustic arrays and strain 

gauges. Despite significant investments by the rail industry in this area, false alarms can still 

occur and many of condition monitoring systems are able to detect faults once they become 

critical. 
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In the present thesis, a novel approach based on integration of acoustic emission and 

vibration analysis together with advanced signal progressing is detailed. Tests ranging from 

laboratory tests under controlled conditions, all the way up to trials under actual 

operational conditions in the UK network have been carried out, yielding promising results. 

The experimental methodology employed has shown that acoustic emission is particularly 

efficient in detecting and ranking potential axle bearing defects. When acoustic emission is 

coupled with vibration analysis, it is possible to detect axle bearing defects whilst avoiding 

misinterpretation of wheel flats for axle bearing defects. The results obtained suggest that 

the widespread use of the reported methodology in the railway is feasible. 

The novel RCM system can enhance the reliability, availability, maintainability and safety of 

rolling stock wheelsets. Experimental work have been carried out under actual operational 

conditions in UK rail network at Cropredy, at Chiltern Railway line. The novel RCM system 

has been installed adjacent to Hot Box Axle Detector for comparison purposes. No 

interference on the track circuits is the main advantage of the proposed system. During the 

signal processing module of the system, freight and passenger train waveforms were 

identified to contain evidence of potential bearing faults. The results still require follow up 

validation from Network Rail. 

 

Time, frequency and time-frequency analysis have been applied to the acquired data. High 

amplitude peaks and signal modulation were visible at raw data. The acquired signals were 

transferred to frequency domain. Harmonics in frequency distribution were clearly seen. 

These frequency bands can be used as a reference for the band pass filter at HFRT process. 
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HFRT algorithm has been effectively applied in the captured data in order to identify the 

fundamental fault frequency and its harmonics. Sidebands were also visible. TSK analysis 

was also applied in the raw signals. Frequency bands with high kurtosis values can be used 

as a reference for further analysis.   

In addition, laboratory experiments at University of Birmingham and Long Marston trials 

under controlled conditions have been carried out in order to evaluate the reliability of the 

system in early diagnosis of wheel and axle bearing defects. Acoustic emission and vibration 

signals have been collected.  From the results obtained, it has effectively demonstrated that 

fault detection can be achieved using the frequency distribution of the signal. Defect type 

evaluation can be carried out by detecting the fundamental fault frequency at the HFRT 

process and fault quantification can achieved by Normalized Moving RMS analysis. 

In summary, the research contribution of this work is presented below:  

 Development and assessment of the vibroacoustic condition monitoring system for 

railway wheelsets. Experimental methodology and results considered in this study 

are the main contributions in the literature of this field. 

  In service passenger and freight trains have been monitored. Detection of potential 

bearing faults has been achieved. 

 Novel methodology applied at the acquired in-service data in order to determine the 

appropriate frequency range for the band-pass filter during the HFRT process. 

Frequency bands with high kurtosis values can be used as a reference for the band-

pass filter. In addition, harmonics have been presented in frequency distribution of 

the signal. The frequency bands that harmonics were appeared can also be used for 

the design of the band-pass filter. 
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 Comparison between advanced signal processing techniques using laboratory, in-

field and in in-service signals. Detection of wheelsets faults, identification of type of 

the defect and quantification of fault severity can be achieved when combination of 

algorithm is applied at raw signals. 
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GLOSSARY 

Term Definition 

Defect Identification Detect the type of the defect such as inner or 
outer race defect in bearings 

Defect Quantification Sort the defective bearings by the fault 
severity 

Harmonics Multiples of fundamental faulty frequency 

Healthy bearing Defect-free bearing 

In- field experiments Experiments carried out under controlled 
conditions using a test- train 

In-service experiments Experiments carried out under actual 
conditions using in-service trains 

On-board measurements When sensors are installed on the test 
bearing, the collected signals are on-board 
measurements 

Wayside measurements When sensors are installed on rail track, the 
collected signals are wayside measurements 
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1. Introduction 

 

 

In recent years, the demand for safer and faster rail transportation has increased rapidly. Rail 

wheelsets and the components they consist of (i.e. axle bearings, axle and wheels) operate 

continuously under harsh conditions on a daily basis. Hence, wheelset defects can occur at 

any time during the operational lifetime of the aforementioned components. Therefore, more 

rigorous remote condition monitoring measures should be taken. 

 

A reliable online condition monitoring system should be able to identify the presence of any 

incipient bearing flaw. Early detection of a defect can decrease maintenance costs, prevent 

machine degradation and catastrophic failures. The findings of a recent survey published by 

the European Union Agency for Railways (EUAR) confirmed that 1721railway accidents 

have taken place in the EU-28 countries in 2018. The cost of these accidents has been 

estimated to be at 5 billion Euros.  If the precursors of the railway accidents are detected 

successfully in time, the likelihood of preventing future train derailments will be increased 

and associated maintenance and disruption costs could be significantly reduced. The main 

precursors of the railway accidents are the broken wheels, axles and rails, wrong-side 

signalling failures, track buckles and signals passed at danger (EUAR 2020). Figure 1.1 

shows a schematic of railway accident precursors in EU  between 2014 and 2018 (EUAR 

2020)..  

 

 

 

 

 

 

 

Precursors to 
railway 

accidents in 
EU- 28 

countries 

Broken 
wheels, axles 

and rails 

Wrong-side 
signaling 
failures 

Track 
buckles 

Signal passed 
at danger 



23 
 

 

 

Figure 1-1: Schematic of railway accident precursors in EU-28 Countries between 2014 and 
2018 (EUAR 2020)   

 

 

The rail industry needs to address the following operational challenges in the forthcoming 

years (F. P. G. M. a. M. Papaelias 2013; Ph Papaelias et al. 2008): 

 Reduction of train delays and derailments to an absolute minimum 

 Development of new railways to accommodate the continued growth in demand 

  

 Increase railway sustainability in both environmental and financial terms 

 

Rolling stock or infrastructure defects and faults are the main causative factors of train 

derailments (F. P. G. M. a. M. Papaelias 2013; Ph Papaelias et al. 2008; Ulianov et al. 2014). 

Various inspection techniques are currently in use or being developed for the evaluation of 

railway infrastructure defects (Al-Dalabeeh et al. 2012; Edwards et al. 2008; Munoz et al. 

2013; Nicholson et al. 2011; M. P. Papaelias et al. 2009a; M. P. Papaelias et al. 2009b, 2010; 

M. Papaelias et al. 2012; F. P. G. M. a. M. Papaelias 2013; Peng et al. 2014; Peng et al. 2015; 

Ph Papaelias et al. 2008; Rowshandel et al. 2011; Ulianov et al. 2014; R. Yang et al. 2015). 

Wheels containing flats, shelling or metal build-up are sources of repeatable severe impact 

loads on the rail. Also several cases of severe derailments have been the result of faulty axle 

bearings. Different types of Remote Condition Monitoring (RCM) systems can be installed 

wayside in order to identify the presence of rolling stock defects (Amini 2016a; Amini et al. 

2016b; Z. Huang et al. 2014a; Zheng Huang 2017; M. Papaelias et al. 2012; M. Papaelias et 

al. 2014a; M. Papaelias et al. 2016) . RCM of critical rail infrastructure assets is a realistic 

alternative which should be in place in time in order to accommodate the continuous growing 

demand for rail transport and avoid capacity bottlenecks in the short to medium term.  
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Acoustic Emission (AE) and Vibration Analysis (VA) are passive RCM techniques which 

can be applied for the evaluation of wheels, axle bearings and bogie suspensions. They can 

also be interfaced with existing RCM state of the art systems. 

 

1.1 Project Aims and Objectives 

 

The main objectives of current work are summarized below. 

 

 A general review of commercial and non-commercial RCM systems for railway 

wheelsets.Six commercial and three non-commercial systems are described in the 

current thesis. A comparison between the University of Illinois at Chicago on-board 

monitoring system and the current study was also carried out. 

 A brief review of railway rolling stock wheelsets and faults. Wheel, axle and axle-

bearing defects are described. Root causes of fault initiation are also discussed. 

 A comprehensive review  of Advanced Signal Processing techniques.Comparison 

between Advanced Signal Processing algorithms is also described  

 Evaluation of AE and vibration signal analysis for damage detection of rolling stock 

wheelsets. On-board and wayside signals have been recorded. Time, frequency and 

time-frequency analysis have been considered for processing the acquired data. 

 Laboratory tests on University of Birmingham, field trials under control operational 

conditions on Long Marston and in-service measurements under actual operational 

conditions in the UK network were carried out. 

 Development and assessment of the system’s signal processing module.Fault 

detection, defect type evaluation and fault quantification can be achieved using 

appropriate signal analysis methodology. 

 Detect any potential axle bearing fault on in-service trials during the signal 

processing. A number of potential faults have been detected. The results need to be 

confirmed with the help of Network Rail. 
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The main results of the present thesis together with the experimental methodology employed 

are presented and discussed in the chapter 6 and in chapter 7. Discussion of the results 

obtained are also presented in Chapter 7. The main conclusions and recommendation for 

future work are also described in the last chapter of the current thesis. 

 

1.2 Structure of Thesis 

 

 

The main points of the current work are described at next Chapters.  

In Chapter 2, Railway rolling stock wheelsets and faults are reviewed. Wheel, axle and axle 

bearing defects are presented briefly. 

 

Chapter 3 describes RCM Inspection techniques for railway rolling stock wheelsets.  

Commercial and Non-Commercial RCM systems for railway wheelsets are described and 

reviewed. 

 

Chapter 4 presents the fundamental of AE and Vibration Signal analysis. Rolling Stock 

Integrity can be achieved by the proposed monitoring system. 

 

Chapter 5 presents Signal Processing Techniques that are widely used for wheel and axle 

bearing fault diagnosis. Step by step algorithm description is presented in order to assist the 

reader to understand the choice of the proper type of analysis in different case studies. 

 

In Chapter 6, Results and data analysis performed during this work are described. Laboratory 

and field tests were carried out in order to assess the ability of AE and Vibration Monitoring 

Techniques in wheel and axle bearing damage detection. Representative results are shown the 

accuracy and the reliability of the novel system. 
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2. Railway rolling stock wheelsets and faults 

2.1 Introduction 
 

The wheelset is one of the fundamental components of all railway rolling stock. Rolling stock 

wheelsets consist of wheels, the axle and axle bearings (M. Papaelias et al. 2014b) Various 

faults can arise in any of these components at any time during their operational cycle but 

more common are wheel and axle bearing defects (Amini 2016a).  Harsh operational 

conditions such as rolling contact fatigue (RCF), thermal variations and dynamic impact 

forces are the main reasons for wheelset fault development in service (Amini et al. 2016c).  

Wheelset defects are also associated with damage to the rails due to impact loads they cause,  

increasing maintenance costs, environmental noise and vibration, reducing passenger 

comfort, increasing fuel consumption, resulting in operational delays and even train 

derailments (Z. Huang et al. 2014a) . Real-time wheel and axle bearing fault detection is of 

paramount importance for rail infrastructure managers and rolling stock operators.  Timely 

maintenance can thus be planned helping maximise the availability of railway assets. 

 

2.2 Wheel Defects 
 

In-service wheel defects arise due to the adverse operational conditions (e.g. high loads, RCF, 

etc.) that the wheels are subjected to. The most common wheel defects are flats, shells, 

cracks, corrugation, cavities and metal build-up. Detrimental effects on track and other 

vehicle component such as rail, sleepers and bearings may arise by wheel faults, especially 
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wheel flats (Nielsen and Johansson 2000).  Rail structural deterioration and possibly rail 

failure can occur because of the high dynamic loads caused by wheel thread defects.  

Therefore, wheel defects should be detected as early as possible and preferably in real-time.   

Manual inspection using various NDT techniques (visual, ultrasonic testing, magnetic particle 

inspection, magnetic flux leakage, eddy current testing or liquid penetrant inspection) are 

currently employed during scheduled maintenance on out-of-service rolling stock  

(Anastasopoulos et al. 2010).  The main types of wheel defects are discussed next. 

 

2.2.1 Wheel flats 
 

Wheel flats are a common out-of-round wheel defect affecting in-service railway wheelsets. 

Wheel flats are effectively flat zones on the wheel tread caused by unintentional sliding of the 

wheel on the rail track when the brakes lock (Vyas and Gupta 2006). When brakes do not 

function properly or heavy braking is applied, e.g. during an emergency stop, the wheel-rail 

friction becomes high and the wheel rotation is hindered causing the wheel to slide along the 

rail, resulting in the development of a flat.  Hence, the quality of braking is of paramount 

importance.  Wheel flats cause high impact loads on the railway track, the bearing and other 

parts of the vehicle (Z. Huang et al. 2014b) resulting in cracked sleepers, damaged rails and 

act as precursors to bearing defects (Barke and Chiu 2005; Bladon et al. 2004).   

According to the standards published by the Rail Safety and Standard Board (RSSB) when a 

wheel flat is spotted, the length of the flat around the circumference of the wheel should be 

measured in order to take appropriate maintenance actions.  The exact type of action depends 

on the extent of the wheel flat severity and the type of train affected (RSSB 2010). Generally, 
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tolerances on wheel flat defects are much smaller for high-speed trains in comparison with 

freight wagons. 

Figure 2.1 shows a railway wheel with multiple wheel defects. 

 

 

Figure 2-0-1: Photograph showing multiple wheel flats 
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2.2.2 Cracking 

Cracks can be categorized based on the root cause factor, i.e. either rolling contact fatigue 

(RCF) or thermomechanical fatigue cracks. Figure 2.2 shows RCF cracks on wheel tread 

surface (Y. Liu et al. 2020).  RCF cracks arise because of cyclic stresses in the wheel-rail 

interface. A crack initiates because of a high contact stresses at the surface of the wheel 

tread (Ekberg and Kabo 2005). Thermomechanical fatigue cracks are caused by frequent 

braking resulting in sharp increase in the temperature of the surface of the wheel tread 

combined by high contact stresses.  In order to prevent crack propagation and further 

damage to rails, cracks should be removed when the wheel is turned during maintenance. 

However, if turning does not remove completely crack sites then the wheel should be 

retired. 

According to the provisions stated in the relevant RSSB standard (RSSB 2010), when cracks 

are located in a wheel’s tread, rim or flange, the wheelset should be removed from service 

into repair facilities with a restricted speed of 45 MPH or less. However, where an isolated 

crack longer than 20 mm is identified, the wheelset is removed from service within 24 hours 

of the fault being found. 
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Figure 2-2: Photographs (a) and (b) showing RCF cracks on wheel tread surface(Y. Liu et al. 
2020) 

 

2.2.3 Shelling 
 

Shelling is manifested when large pieces of metal along the surface of the wheel break off.  

Wheel shelling is developed from surface or/and subsurface cracks initiating by localised 

stress concentration areas within the wheel rail contract zone due to high axle load and 

creep forces (Saferail).  Figure 2.3 shows shelling on wheel tread (M. Papaelias et al. 2014b). 

 

Figure 2-0-3: Photograph showing shelling on wheel tread  (M. Papaelias et al. 2014b) 

 

 

Vermeulen et al. presented the ability of high frequency vibration technique in detecting 

wheel tread defects. During this case study it was shown that wheel cracks and shelling can 

be detected  based on the response of the accelerometer (Vermeulen et al. 2010). 

 

2.2.4 Wheel metal build –up 
 

This defect is the result of excessive braking force causing the wheel to slide (Cummings and 

Sammon 2015). As the wheel slides high frictional forces result in an increase in the 

temperature of the wheel tread whilst material wears out. The material wearing out 

subsequently melts and adheres onto the wheel surface resulting in metal to build-up on the 

tread surface. Wheel metal build-up is a common wheel tread defect in cold weather 

conditions. Figure 2.4 shows wheel with metal build-up defect during experiments at 

University of Birmingham (Amini et al. 2016a). 

https://www.researchgate.net/profile/Frederik_Vermeulen
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Figure 2-0-4 shows wheel with metal build- up defect during AE experiments at University 

of Birmingham (Amini et al. 2016a). 

 

 

2.2.5 Corrugation 
 

Corrugation is an undesired and expensive to repair defect that results in decreased rail and 

wheel lifetime. Appreciable temperature difference between some parts of the wheel tread is 

a common issue due to wheel blocking during braking. The warmest wheel tread regions are 

subject to more wear when the temperature decreases. The volume of the material at these 

regions also decreases resulting in corrugation patterns in the wheel tread (Nielsen and 

Johansson 2000). Hence, excessive rolling noise and vibration are produced having an 

adverse effect on the comfort of passengers (Bracciali and Cascini 1997). 

2.3 Axle bearing defects 
 

Axle bearings are lubricated rotating components installed between the axle and the wheel. 

They are critical components in any rotating machinery. Tapered roller bearings are widely 

used in the rail industry (Z. Huang et al. 2014b) and are the type of the bearing design that 

has been considered in this study . The schematic diagram in figure 2.5 illustrates a tapered 

roller bearing assembly(Timken 2015). 
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Figure 2-0-5: Schematic of a tapered roller bearing (Timken 2015) 

 

Railway bearings can develop various types of defects in service, including roller skewing, 

race spalling, loose cone, fretting, lack of sufficient lubrication or contamination, and others.  

In the UK, rolling contact fatigue of the bearing outer race is the most common bearing 

defect type encountered (Corni et al. 2015). 

 

Bearing defects can be classified as distributed and localized defects (Patidar and Soni 2013). 

Table 2.1 summarizes the common types of bearing defect. 
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Table 2.1 : Schematic summarizing the common types of bearing defects 

 

 

Axle bearing fault initiation can result from a variety of root causes. A bearing commonly 

deteriorates because of external factors such as high impact forces acting through the wheel 

on the bearing, water ingress and poor assembly (Bladon et al. 2004). Rarely the 

aforementioned root causes are addressed before the bearing is replaced. Depending on the 

root cause factor, different bearing failures can occur. According to bearing manufacture  

SKF, the causes of a bearing damage or failure can be categorized into four main groups  

(SKF 2017). Figure 2.6 shows bearing damaged or failure causes (SKF 2017).  

 

Generally, a bearing will eventually fail due to the material fatigue. Material fatigue begins 

from both surface and sub-surface initiated failures (Symonds et al. 2015). When an axle 

bearing is about to fail, its immediate removal is the only possible option(Snell and Nairne 

2008)  
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Figure 2-0-6 : Photograph showing bearing failure causes (SKF 2017) 
 

Bearing failures are responsible for train accidents around the world (Z. Huang et al. 2014a). 

For example, the derailment of Tara Mines freight train at Skerries on 10/01/2008 was caused 

by a bearing failure (figure 2.7). No temperature alarms were reported by the hot axle box 

detectors (HABDs) leading to bearing heat up bearing seizure and eventually train derailment 

(Railway Accident Investigation Unit 2009) .  



35 
 

 

 

Figure 2-0-7 : Photograph showing derailment of Tara Mines freight train at Skerries on 

10/01/2008  

 

 Train derailments caused by faulty axle bearings are associated with axle journal rupture. 

Once a bearing becomes stuck, one of the wheels is blocked and the other continues to rotate 

as normal resulting in axle journal rupture after a few kilometres due to the high stresses 

arising from the abnormal motion of the wheelset (Amini et al. 2016a). 

Deterioration of the structural integrity of axle bearings can be detected using AE, vibration 

or temperature measurement data.  Sensors, depending on their type, can be installed either 

on-board or wayside or both (M. Papaelias 2012). Generally, axle bearing degradation results 

in an increase in noise and vibration followed by temperature rise (Corni et al. 2015).  Noise 

can commonly detected by acoustic monitors whereas vibration by accelerometers. The 

temperature of axle bearings is measured by infrared sensors but only a few kilometres before 

the final bearing failure, the alarm threshold is exceeded. 

  

2.4 Axle defects 
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Railway axles are components that are subjected to heavy loading conditions during service. 

The train weight is supported by the axle via the external axle bearings. Vehicle-track 

interaction (e.g. due to track irregularities) also adds dynamic loads on the axles. 

Furthermore, asymmetrical axle loading occurs due to the train structure (curving)  (Luke et 

al. 2011).  

Axle design can be solid or hollow. In the UK, railway axles are solid with the exception of 

Eurostar rolling stock which has hollow axles. Railway axles can suffer from different types 

of faults such as axle rupture, pitting corrosion and fatigue cracks (Vallely 2015). The most 

common axle integrity issue is corrosion. The current state of the-art corrosion assessment 

procedure is mainly based on Visual Inspection (VI) (John Rudlin et al. 2014). The extent 

and the depth of corrosion should be measured in order to take appropriate measures of 

coping with the resulted corrosion issues. Axle defects rarely occur accounting for less than 

2% of the total number of rolling stock defects reported.  As a result, the primary concern of 

railway industry is focused on axle bearing and wheel defects.  Figure 2.8 shows of final 

failures at the railway axle. Cracks have been highlighted by color contract (Rolek et al. 

2016).  
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Figure 2-0-8: Examples (a and b) of final failures at railway axle (Rolek et al. 2016). 

 

 

 2.5 Bogie Suspension defects 

 

A typical bogie consists of two wheelsets, primary and secondary suspensions and a brake 

system (Z. Huang et al. 2014b). The primary suspension is responsible for absorbing shocks 

between the bogie, the frame and the axle bearing, whereas the secondary suspension is 

responsible for absorbing shocks between the bogie and the rail vehicle body. Defects either 

in primary or secondary suspension could lead to the reduction of passengers’ comfort due to 

continuous vibrations, increasing the likelihood of an axle bearing defect or severe wheel 

damage, and hence possible derailments (Vallely 2015). The photograph in figure 2.9 shows 

a typical bogie suspension. 
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Figure 2-0-9:  Photograph showing a typical bogie suspension 
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3 Inspection and RCM techniques 

This chapter presents the most common NDT inspection techniques, the RCM systems 

currently in use by rail infrastructure managers and some examples for non-commercial RCM 

that are under development for the evaluation of the structural integrity of railway wheelsets.  

3.1 NDT for railway rolling stock wheelsets 

 

Rolling stock or infrastructure defects and faults are the main causative factors for train 

derailment. Various inspection techniques are currently in use or being developed for the 

evaluation of railway wheelset defects. Among the possible NDT techniques that can be 

employed for defect inspection at railway wheelsets are Visual Inspection, Magnetic Particle 

Inspection, Magnetic Flux leakage, Ultrasonic Testing, Eddy Current Testing, Alternating 

Current Field Measurement, liquid penetrant inspection and lubricant analysis. These key 

methods are discussed next. 

3.1.1 Visual Inspection (VI) 
 

Visual inspection (VI) is inexpensive, simple and does not require any sophisticated 

equipment in order to be carried out. The condition of the wheel is checked offline. VI is 

performed using gauges in order to evaluate the contour, flange condition and rim thickness. 

The development of automated visual inspection systems allows conventional VI methods to 

be replaced.  However, automated VI is practically never used for wheelset inspection due to 

its cost. 
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Depth of the defect and beneath the surface defects cannot be detected with visual inspection 

alone. Due to its limitation, VI must be combined with other NDT methods in order to detect 

and quantify damage in the inspected component. 

3.1.2 Magnetic Particle Inspection  
 

Magnetic Particle Inspection (MPI) is a NDT method for surface and very near-surface flaw 

detection. A magnetic field is induced in the ferrous material. The principle of this inspection 

technique is that the magnetic flux distortion caused by a defect will result in some magnetic 

flux to leak at the surface rendering a crack-type defect detectable (Štarman and Matz 2010). 

Wheel or axle defects can be revealed by spraying the component with a ferrous particle ink 

(JR Rudlin and Shipp 2003). In cases where no defect is present, the flux will remain 

contained below the surface of the ferrous material. Figure 3.1 shows the MPI principle. 

MPI for railway axles requires axle removal from service. This can cause inconvenience to 

rolling stock availability and increase maintenance costs. In addition, as a manual method, the 

operator’s interpretation can influence the inspection results. Therefore, MPI is usually 

integrated with UT. 
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Figure 3-0-1 : Magnetic Practicle Inspection method  
 

 

3.1.3 Magnetic Flux Leakage  
 

Magnetic Flux leakage (MFL) is a magnetic based NDT technique that has been applied in 

structural health monitoring of wheel tread. The principle of this method is similar to that of 

MPI since the magnetic field will leak at areas where a defect exists. Magnetic sensors detect 

the leakage field. With the help of appropriate signal processing of the MFL data obtained, 

the damaged areas and the amount of metal loss can identified and evaluated (Xu et al. 2012). 

MFL is able to detect large surface and relatively deep near-surface defects. Eddy current 

testing although more sensitive than MFL, can only inspect the top 3mm of the material. 
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MFL performance deteriorates at higher inspection speeds but in the case of axle inspection 

this is not a factor of concern. MFL can be integrated with UT in order to improve 

quantification accuracy for any defects detected whilst deeper defects can be detected and 

quantified (Ph Papaelias et al. 2008). Figure 3.2 shows the principle of MFL testing. Figure 3. 

2 (a) shows the magnetic field response for a component with no damage present whereas 

Figure 3.2 (b) shows the change in magnetic flux pattern due to metal loss at the surface of 

the component. The flux leakage is clearly visible. 

 

Figure 3-0-2 : a) Undamaged cable ; (b) Cable with metal loss (Xu et al. 2012) 
 

3.1.4 Ultrasonic Testing  
 

Ultrasonic Testing (UT) is one of the most widely used NDT methods with various 

applications in railways, welding, marine, and aerospace. This inspection technique uses high 

frequency sound waves (ultrasound) emitted and received using piezoelectric transducers. 

Typical UT frequency range is from 400 kHz to 25 MHz (Singh 2020) . Various wave modes 

can be generated but most commonly transverse and longitudinal are employed in the 

majority of inspections. Typically an UT inspection system consists of two main components, 

the transducer and a measurement unit. The transducer generates and receives high frequency 

sound waves. The received waves produce electric pulses which are subsequently digitised 
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and visualised on the screen of the measurement unit. An example of UT inspection system is 

shown in Figure 3.3. 

A water or water-based gel can be used as a couplant between the inspected material and the 

transducer in order to enhance the signal to noise ratio (SNR) and minimise acoustic 

impedance mismatch between the transducer and test piece. However, a couplant is not 

required when an Electromagnetic Acoustic Transducer (EMAT) is used in ultrasonic testing. 

The UT inspection method is sensitive to both surface and sub-surface defect. Ultrasonic 

techniques enable a fast and non-destructive evaluation of stress states in the rim of railroad 

wheels (Kappes et al. 2000).  

In order to improve the quality of the inspection, ultrasonic phased arrays can be used for 

both wheel and axle inspection. This advanced method of ultrasonic testing can also 

contribute in improving its detection ability of smaller defects. However, it can still miss 

surface defects resulting in combination with other NDT techniques such as MPI and Eddy 

Current testing (John Rudlin et al. 2006).  

https://en.wikipedia.org/wiki/Electromagnetic_acoustic_transducer
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Figure 3-0-3 : Ultrasonic inspection system (NDT) 
 

3.1.5 Eddy Current Testing  
 

Eddy Current Testing is a surface inspection technique that has been used for detecting 

defects in railway wheelsets. Conventional eddy current sensors typically contain one 

exciting and one sensing coil (Ph Papaelias et al. 2008). When an exciting coil is fed with 

alternating current (AC), a varying magnetic field is developed in and around it. If the coil is 

brought near the surface of a conductor eddy currents are induced near its skin due to the 

variations in the alternating magnetic field produced by the coil. The induced eddy currents 

subsequently give rise to a secondary magnetic field which will also vary with time and will 

get distorted in the presence of a defect. Hence, when a defect is present, the eddy currents 
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will fluctuate resulting in variations of the secondary electromagnetic field which give rise to 

impulse changes. If there is no defect, the impedance of the eddy current sensor remains 

constant.  Deeper defects may not be detected by eddy current testing due to the limited 

penetration depth at higher inspection frequencies. 

The eddy current sensors are sensitive to small surface or near-surface defects whereas the 

conventional ultrasonic transducers have limited ability of detecting these types of defects 

(Ph Papaelias et al. 2008; Pohl et al. 2004). Eddy current testing can be used not only for 

defect detection but also for defect quantification.  

The principle of eddy current testing is shown in Figure 3.4. When a defect is present, the 

circumferential eddy current distribution on the material and the defect interact resulting in 

changes of electrical impedance from Z1 to Z2 as shown in the Figure 3.4. (Pohl et al. 2004).  

 

  

Figure 3-0-4 :Eddy current testing principle (Pohl et al. 2004) 
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3.1.6 Alternating Current Field Measurement Inspection Technique 
 

The ACFM is an inspection technique capable of both detecting and sizing (length and depth) 

surface breaking cracks in metals. An alternating current (AC) is placed on or near the test 

sample. When no defects are present, the electrical current field will be undisturbed. 

However, if a defect is present, the uniform current field lines are disturbed resulting in 

current lines flowing around the ends and down the faces of the flaw (Topp and Smith 2005).  

Figure 3.5 shows alternating current lines flowing when a defect present (M. P. Papaelias et 

al. 2009a). 

ACFM is currently gaining ground into the research NDT community due to its ability for 

high-speed inspection and quantification of fatigue defects, better tolerance to lift-off 

variations and for detecting defect with the presence of coatings and grease (Ph Papaelias et 

al. 2008; Topp and Smith 2005). However, ACFM is not sensitive to detecting sub-surface 

defects (Ph Papaelias et al. 2008). 

 

Figure 3-0-5 : ACFM currents flowing around a defect (M. P. Papaelias et al. 2009a) 
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3.1.7 Lubricant Analysis 
  

One of the main causative factor for axle bearing defect initiation and propagation is lubricant 

quality degradation. Bearing lubrication can reduce the friction, promoting heat evacuation 

and increase bearing remaining life (C.Vale 2014). Lubricant analysis can effectively detect 

bearing defect at its initial stages under laboratory conditions. However, lubricant analysis 

cannot be performed on-line resulting in undetectable bearing defects that have become 

critical in service. During the inspection, rolling stock is removed from service and the axle-

box is opened for VI and for lubricant sample collection.  

3.2 Commercial RCM systems for railway wheelsets 

 

Different types of RCM systems can be installed wayside in order to identify the presence of 

rolling stock defects, enabling proactively scheduled inspections and initiation of corrective 

actions without any human intervention (Dornfeld 1990). In order to do this, RCM systems 

should be inert to any environmental changes and any rolling stock defects should be reliably 

detectable in time before failure occurs. Moreover, understanding the nature of wheelset 

flaws can enhance proper maintenance and minimize false trains stops for defects inspection 

(Bladon et al. 2004). Wayside RCM systems consist of various types of sensors (Barke and 

Chiu 2005) , which are installed on or next to the track in order to identify the presence of 

potential wheelset and bogie faults (Z. Huang et al. 2014b). Such systems measure several 

parameters such as axle bearing temperature and impact loads that are applied on the rail. 

Wayside sensors should be able to remain unaffected by changes in weather conditions, 

vibration from passing train and track circuits. The main advantage of wayside over on-board 

RCM systems is that they can monitor thousands of bearings and wheels on a daily basis 

(Cline et al. 1998). In addition, on-board RCM systems should be capable of adjustment in 

different type of train. However, the transmission path between sensor and rolling stock fault 
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is less in on-board rather than in wayside systems. The cost of the systems should be also 

taken into account in deciding which types will be employed and where should be installed. 

The only case that on-board temperature sensors are installed by law is on high-speed 

(>250km/h) passenger rolling stock to continuously monitor axle bearings for abnormal heat 

build-up. 

Each type of RCM system has its own benefits and limitations. Therefore, a combination of 

on-board and wayside RCM systems could be a solution in order to maximise reliability. 

Wayside monitoring technologies can be categorised in two groups; reactive and predictive 

(Lagnebäck 2007). The existing wayside condition monitoring systems are based on infrared 

cameras, acoustic arrays and strain gauges (M. Papaelias et al. 2014b).  Despite significant 

investments by the rail industry in this area, these systems do not provide the appropriate 

information about the condition of the wheelsets and the bogie. 

 

 

Table 3.1 :  Schematic of wayside RCM  technologies (Lagnebäck 2007) 
 

      Ideally, the key attributes of the wayside detectors are (Bladon et al. 2004): 

 Detection of as many rolling stock defects as possible  

 Minimizing the number of false alarms 
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In addition, predictive wayside RCM systems should meet a more rigorous set of additional 

operating requirements (Bladon et al. 2004): 

  A universally applied system in monitoring any train in the rail network.  

 Significant number of installations throughout the rail network 

 High detection sensitivity in wheelsets defects at initial stage 

 Data correlation to evaluate interrelated defects  

Therefore, a reliable and cost-effective wayside RCM system should prevent rather than 

detecting an imminent wheelset failure . 

3.2.1 Hot Axle Box Detector (HABD) 
 

Hot Axle Box Detectors (HABDs) are currently among the most commonly used detection 

technologies in Network Rail (Z. Huang et al. 2014a). A HABD is a reactive RCM 

technology which applies infrared sensors installed on the wayside of the rail track in order to 

identify the presence of overheating bearings and stuck brakes indicating the presence of a 

serious fault (M. Papaelias et al. 2014b). The infrared detectors usually work independent 

from each other as individual check-points. The operational principle of the HABD is based 

on the detection of an exceeded temperature threshold of the axle bearing, triggering an alarm 

which indicates imminent failure (Barke and Chiu 2005). However, HABDs can only detect 

problems once they have become critical whilst they are also prone to measurement errors. 

False alarms can occur by other nearby wheelset components such as the brake pad that may 

be become hot and trigger the alarm. Up to 80% of hot box alarms are false resulting in 

unnecessary costs and in disruption of the operational network (M. 2012) .The cost of train 

stop can reach in thousands of Euro. HABDs are expensive systems. As a consequence of 

their high cost, they are installed in regular intervals every 15-100km throughout the network. 
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Each site instrumented costs 70-100k Euros. The figure 3.6 presents the Pegasus hotbox 

detector that is capable of monitoring both in-board and out-board bearings. 

 

 

Figure 3-0-6 : Schematic of the Pegasus hotbox detector by MER MEC. The schematic is 
courtesy of MER MEC Group. 

 

3.2.2 Acoustic Array Detector (AAD) 
 

An Acoustic Array Detector is a predictive monitoring technology which uses arrays of 

microphones to record the sounds produced by the axle bearings and isolate them from the 

environmental noise of the surroundings (M. Papaelias et al. 2014b). It uses track-side 

mounted equipment that is positioned a few metres away from the rail track. The RailBAM 

(Railway Bearing Acoustic Monitor) and TADs (Track-side Acoustic Detector) systems are 

commercially available at the moment. The systems are able to recognize a bearing’s 

condition. Then, the analysed data are categorized by the type and the severity of the defect is 

classified as early, moderate or severe defect. The acoustic signature is transmitted from the 

bearing, through the structure of the wheelset/bearing housing/bogie and propagated over the 
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air outwards the sensor arrays. The operational frequency of the microphones is between 22 

kHz and 44 kHz. The recorded raw signal consists of the faulty bearing’s sound and of the 

surrounding train noise. In order to isolate and further analyse the faulty bearing signal, data 

trending is required (Z. Huang et al. 2014b). According to the manufacturers of the system,  

AADs can potentially identify the presence of  bearing faults except defects in the inward 

rollers and cones (Y.-J. Zhang 2011).  In addition, it is claimed that AADs have been 

considered to be reliable due to their ability to prevent bearing failure and maximize the 

bearing life at the same time (Snell and Nairne 2008). Acoustic detectors have been 

predominately used in Australia and United States.  In the UK, AADs trials have been carried 

out to evaluate the technology. After several trials it was suggested that AADs could detect 

bearing defects considerably earlier than train riders (Snell and Nairne 2008). However, the 

author of the present study has been unable to find case studies that support the statement for 

early bearing fault detection. The operational frequency is very low resulting in unwanted 

noise contamination of the signal. Unwanted noise can be recorded either from the train itself 

or from the environment and can cause false alarms. In the case of TADs, a wheel flat can 

cause a bearing alarm.  In addition, in-board bearing faults cannot be detected by the arrays 

due to system’s design. The train speed is also a limitation of this technology due to the 

system requirement for speed between 30 km/h and 130 km/h resulting in no monitoring of 

high-speed trains by AADs. 

Since 2012, AAD systems have been installed in 3 locations in the UK’s rail network and are 

currently undergoing evaluation (Vallely 2015). The cost per instrumented site (around 0.5M 

Euro) is also a major consideration for its installation. In figure 3.7 the installation site of one 

of the RailBAM systems on the UK railway network is shown. 
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Figure 3-0-7: AADs trial in the UK network near London. The photography is courtesy of 
SIEMENS (M. Papaelias et al. 2014a)   

 

3.2.3 Wheel impact force load detector (WILD) 
 

The Wheel Impact Load Detectors (WILDs) are reactive RCM systems for assessing the 

wheel tread condition. They use an array of strain gauges or accelerometers on the surface of 

the rail line to measure the loads sustained by the rail as a train passes over. WILD is a real-

time system that also records the train speed and the time of the measurement, the name of 

the WILD site, the direction of the train and the weight of the wagon (C. Yang and 

Létourneau 2005). 

 As a reactive system, it raises an alarm only when the pre-set threshold has been exceeded 

but it does record the loads for each of the axles measured. In case that a wheel’s impact 

reaches 140kpsi  or more, the driver is informed , the train is stopped immediately and the 

wheel is replaced (C. Yang and Létourneau 2005).  

 WILDs are used to identify wheel tread defects such as wheel flats, metal build-up and 

shelling (M. Papaelias et al. 2014b). Timely detection of a wheel thread defects can prevent 

structural damage in other rolling stock elements, on rails and crossing. In particular, since 

axle bearing faults are precursors of the wheel thread defects, WILDs may assist to reduce 
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bearing fault development. The strain gauges of a WILD attached on the rail is shown in 

figure 3.8. 

 

Figure 3-0-8: WILD based on strain gauges (photography courtesy of Markus Wong) 
 

3.2.4 Wheel Profile Detector (WPD) 
 

Wheel Profile Detectors (WPDs) are real-time predictive RCM systems. They use non-

contact sensors such as high speed cameras and lasers to monitor the wheel tread and flange 

profile (M. Papaelias et al. 2014b). It measures and estimates several wheel parameters such 

as wheel diameter, wheel flange angle and flange thickness (Bladon et al. 2004). A typical 

WPD output is illustrated in figure 3.9. 

 

Figure 3-0-9: Typically output of wheel profile detector (Bladon et al. 2004) 
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The operation of a typical wheel profile system is based on the fundamental principles of 

predictive systems. It compares the processed wheel profile against the standard profile 

(Barke and Chiu 2005). A predicted maintenance schedule can then be carried out, if the 

measured output does not meet the reference requirements. 

The main advantages of WPDs are (Lagnebäck 2007) (Barke and Chiu 2005): 

 High accuracy of wheel profile generation 

 Data trending resulting in the estimation of wheel remaining life 

 Correlation with other condition monitoring systems 

 Elimination of manual profile inspection 

However, the common limitation of WILDs and WPDs is that cannot detect axle bearing 

faults. 

3.2.5 SKF Axletronic 
 

SKF is one of the most popular axle bearing manufacturer, has developed the Axletronic 

system for on-board condition monitoring of in-service axle bearings.  The SKF Axletronic 

system makes use of temperature sensors and accelerometers. The data acquired from the 

system include, bearing temperature, rotational speed, direction of movement, vertical and/or 

lateral acceleration. It can be installed in axle box bearing units or front covers in order to 

monitor structural integrity of the bearing.  The system is also able to monitor other 

components such as wheel and bogie (SKF). 

3.2.6 Perpetuum on-board CM system 
 

Perpetuum is a commercially available on-board system using vibration and temperature 

sensors in order to detect rail axle-bearing degradation and wheel damage. It was created as a 
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spin off from the University of Southampton (UK) in 2004.  It is a real-time and self-powered 

monitoring system using wireless sensor nodes (WSNs) developed by Perpetuum Ltd. The 

sensor node consists of a vibration and a temperature sensor, the vibration energy harvester, 

electronics and wireless radio communications. The system is mounted onto the wheel 

bearing cover. The Bearing and the Wheel Health Index (BHI & WHI) are calculated by the 

captured data. Once a system detects the vibration levels above the pre-determined thresholds 

an automatic email alerts for a potential fault development being sent to the train operators. 

The faulty component will be removed or maintained at the depot at the next maintenance 

cycle. The data acquired from Perpetuum also include, train number, wheel position, date and 

time, speed of the train, GPS location, direction of travel and temperature. The Perpetuum 

system apart from monitoring rail axle bearings and wheels, is also able to monitor the health 

of other assets such as gearboxes, traction motors and tracks. According to the system’s 

manufactures, the installation of the sensors is simple and fast. 

The Southeastern Electrostar fleet (148 trains and 4,944 wheels) have been fitted with bearing 

sensors in order to monitor the integrity of rail axle bearing (Corni et al. 2015). 

The current work is focused on correlation between the vibration history of the faulty 

bearings and the physical damage. Damage severity and characterization have been 

investigated using in-service rail-axle bearings. The tests samples have been reported as 

potential faults and removed from the service (Corni et al. 2017). 

 

3.3 Non-commercial RCM systems for railway wheelsets 
 

3.3.1 Acoustic array wayside monitoring system 
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Acoustic condition monitoring system makes a use of a microphone array which is installed 

on the track in order to detect bearing defects is under development at the University of 

Birmingham. A G.R.A.S type 46AE microphone and an array of AKG C417 microphones 

were used in the lab and field trials respectively. The operational frequency of the first 

microphone is between 3.15-20 kHz whereas of the second one is 20 Hz-20 kHz. This means 

that environmental noise (e.g. from the contact of wheel track) can also be recorded.  

Different methods to reduce the unwanted noise have been considered such as HFRT method 

and Spectral kurtosis based analysis. However, improvement signal to noise ratio (SNR) is 

still an ongoing objective of this research (Entezami et al. 2014).   

Infrared light gates have been used to trigger the acquisition system automatically. The 

vehicle speed and the axle position can be calculated. From the results obtained, the 

developed system was proven capable of tracking the moving train and the sound emitted 

from the axle box. The performance of different microphone array configurations has been 

evaluated by a set of trial field tests at Long Marston, UK.  The future trial tests will assess 

the directionality of the microphone array system. The intension of the research team is also 

to install the developed system on a high-speed line in order to assess it in more challenging 

environment (M. Entezami 2016). Figure 3.10 shows the layout of the Acoustic array 

wayside monitoring system (D. Zhang et al. 2020). 
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Figure 3-0-10 shows the layout of the Acoustic array wayside monitoring system (D. Zhang 
et al. 2020) 

 

3.3.2. University of Illinois at Chicago on-board monitoring system 
 

Acoustic emission and vibration on-board monitoring system has been developed by the 

University of Illinois at Chicago in order to enhance bearing fault diagnosis.. A bearing test 

rig was used to stimulate acoustic emission and vibration data from four different bearing 

faults. Experiments were carried out using bearings with inner and outer race faults, rolling 

element fault and cage fault. For comparison purposes, a healthy bearing was also tested. The 

experiments were conducted at both high and low shaft speed ranges. The shaft speed was 

ranging between 2 and 60 Hz. In addition, vibration data were captured from a fatigue 

cracked gear of aircraft UH-60A helicopter. The same methodology has been extended and 

validated in this case study (Van Hecke 2015) . 

 

A wide band (WD) type AE sensor and an accelerometer, VibraQuest Pro by SpectraQuest, 

Inc were used during the experimental part of the project. Data acquisition was accomplished 

via NI LabVIEW SignalExpress. The sampling rate of the acquisition software was set to 100 

kHz for the acoustic emission signals and 102.4 kHz for vibration signals.  

A novel signal processing methodology based on synchronous re-sampling and spectral 

averaging was developed (Van Hecke 2015) . The developed methodology has been 

compared with the envelope analysis technique. Moreover, the effect of speed at RMS and 

peak value was presented. High shaft speed increases the RMS and peak value regardless of 

the fault type. Lastly, a comparison between acoustic emission and vibration based 

approaches was discussed. From the results obtained, it was concluded that acoustic emission 

signal analysis outperforms the vibration signal analysis in bearing fault detection. 
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.  

A comparison between the novel monitoring system of this thesis and the on-board 

monitoring system of University of Illinois at Chicago is presented below. Firstly, wayside 

and on-board experiments were presented in this thesis. Tests ranging from laboratory to in-

service were discussed. In contrast, only on-board test rig trials were carried out at University 

of Illinois at Chicago. In addition, the sampling rate of AE signals was set up to 500 kHz in 

this thesis contrary to 100 kHz at University of Illinois at Chicago. Data acquisition was 

accomplished via Matlab in current project instead of NI LabVIEW SignalExpress. A 

resonant AE sensor (R50a) was used to collect data in this thesis whereas a wideband (WD) 

AE sensor was used to acquire signals during the experiments. Lastly, during the signal 

processing development of each monitoring system different algorithms were applied in the 

collected data. In current work, Moving RMS, frequency distribution, Cepstrum analysis, 

HFRT technique and TSK analysis have been used for data processing. However, Peak and 

RMS value, HFRT technique and spectral averaging have been applied in the acquired 

signals at the University of Illinois at Chicago. 

3.3.3. Safety IDEA Project 16 
 

During the Safety IDEA Project 16 at Washington, railway bearing defect detection has been 

investigated using rail and car -mounted accelerometers. This project is the precursor for 

development of a prototype system for detecting defective bearings. Laboratory and field on-

board and wayside experiments were conducted in order to evaluate the feasibility of 

detecting defective bearing by accelerometers. Car and rail - mounted accelerometers have 

been used in this study (Y.-J. Zhang 2011). 

From the results obtained, it was concluded that bearing fault diagnosis can be successfully 

achieved by on-board accelerometers due to short transmission path. However, the signal to 
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noise ratio (SNR) was low in wayside measurements resulting in weakened defective bearing 

signals. The noise from the wheel-rail contact interface masked the useful information. 

More sophisticated signal analysis for SNR improvement is proposed as future work for this 

project. 
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4. Acoustic Emission and Vibration Monitoring in Rolling Stock Integrity 

4.1 Acoustic Emission and Vibration Testing 

4.1.1 Fundamentals of AE testing 

Acoustic Emission (AE) is a passive non-destructive testing method commonly used for 

detecting and locating faults in mechanically loaded structures and components. As a passive 

type of inspection, AE does not require excitation of the sensors but directly measure the 

noise emitted by the interaction of two different components (Ferrando Chacon et al. 2016). 

AE can provide comprehensive information about the origin and the development of a defect 

in a stressed component (Grosse and Ohtsu 2008). AE is SHM technique which can also be 

used to monitor in-service structural components. 

Acoustic Emission Testing (AET) is widely used for structural integrity evaluation of 

materials. Recently, AET is gaining acceptance as a reliable CM technique within the 

research community as it offers very promising fault diagnosis results at the initial stage of 

defect’s development.   

The energy released from a structure when is loaded can be detected by the piezoelectric 

sensors. More specifically, high frequency passive piezoelectric transducers operating in the 

frequency range of 100 kHz to 1MHz (above the audible range) are mounted on material’s 

surface in order to convert the stress waves generated from a possible defect into electrical 

signals. Electrical signals can be recorded and digitized by an appropriate data acquisition 

system and then analysed by advanced signal processing techniques. The AE signals are 

amplified using appropriate pre-amplifiers and amplifiers and filtered out before the 

digitization. The principle of AE technique is presented in figure 4.1. 
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Figure 4-0-1:  Principle of Acoustic Emission Testing (Gao et al. 2011) 
 

It is paramount importance to catch the meaningful information. Thus, AE sensor should be 

mounted as closer as possible to the source of interest. Less high frequency AE signal 

attenuation is observed as the distance of the testing component decreases (Teti et al. 2010). 

 

4.1.2 AE sensors 
 

Resonant and wideband frequency sensors are the two AE sensor category according to their 

frequency response. Resonance sensors are particularly sensitive to a narrow frequency range 

(physicalacoustics). Resonant sensors have been selected for this project. Sensor sensitivity, 

frequency response, resonance frequency and temperature impact should be taken into 

account when a traducer is selected. The selection of the appropriate AE sensors is 

fundamental process for the development of a reliable condition monitoring system. 

Piezoelectric R50a resonant AE sensors were employed in on-board and wayside 

measurements in this project. Their operational frequency are between 100 and 700 kHz. 

Therefore, they are suitable for development of high frequency monitoring system. Since AE 

transducers operate within a high frequency range, a substantial amount of low mechanical 

noise is eliminated (Anastasopoulos et al. 2010) . However, unwanted noise is still recorded. 

Various advanced signal processing techniques are applied in the captured data in order to 

filter out the noise from the meaningful signal. 
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The acoustic emission sensors and the material surface are acoustically coupled with an 

appropriate couplant (i.e. a material in order to improve signal transmission path). In order to 

achieve consistent coupling, the material’s surface should be free from dirt. In this work, 

Vaseline was used as a couplant in the on-board measurements. It is inexpensive and 

commercially available on the market and safe to handle.  In contrast, AE sensor and rail 

track were coupled using grease in wayside measurements in order to ensure good 

transmissibility of the stress waves. Furthermore, the sensors were attached on the track using 

magnetic hold-downs. 

The resistance of the sensors to any environmental condition such as hot or cold weather is 

also key advantage of the monitoring system. 

4.1.3 AE sensor calibration 

Before any experimental trial in this study, AE sensor should be calibrated without any 

reference device. Therefore, pencil lead brake is selected as an appropriate calibration 

method. Pencil lead breakage is widely used to reproduce a Hsu-Nielsen source (Sause 2011). 

It is a simple and easy method that used an automatic pencil with 2H lead and 0.5mm or 

0.3mm diameter. The pencil lead is broken against the surface of the test material. For 

instance, in on-board laboratory trial of this study, the pencil lead brake against the faulty 

bearing. The AE signal that is generated is a strong burst as same as the acoustic excitation 

produced by a crack (Sause 2011). The time and the frequency response of a generated signal 

by pencil lead brake is presented in Chapter 7 of present thesis an example. The purpose of 

this stimulation test is to ascertain the sensor accuracy and at the same time to examine the 

couplant’s consistency between the sensor and the material. 
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Figure 4-0-2: Pencil lead break testing (Yasuda et al. 2014) 
 

 

4.1.4 Acoustic Emission Signal  

The high frequency noise (or stress waves) that is emitted when a crack propagates comprises 

the AE signal. The AE signal is recorded using piezoelectric AE sensors at a pre-determined 

sampling rate. The sampling rate is of paramount importance in order to ensure satisfactory 

quality of the AE data obtained and avoid aliasing effects. High sampling rates results in a 

large amount of measurement data that need to be processed using appropriate algorithms in 

order to remove unwanted noise and detect signal features of interest that are associated with 

the presence of one or more defects.  

Each AE signal is a unique energy wave that comprises two parts of information; the 

meaningful and the noisy signal. Signal interpretation and evaluation should be applied in the 

raw captured AE data in order to manage the balance of these parts of information. Signal 

interpretation is the process of determining whether the collected measurement data are 

relevant, non-relevant or false according to the purpose of the test (Grosse and Ohtsu 2008). 

Non-relevant or false signals are noisy signals that should be filtered out before any further 

data analysis. The relevant signals should also be filtered in order to extract the useful 

information from the background noise. Different techniques of advanced signal analysis can 

be used for this purpose. Signal evaluation is the process of signal source assessment in 

accordance with several acceptance criteria.  
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AE signals can be categorized into two groups, Hit Driven Data (HDD) and Time Driven 

Data (TDD) according to the recording method. According to Green (Green 1980), the 

amplitude of HDD is greater than the amplitude of TDD signals due to different signal 

generation. 

Hit Driven Data are recorded when the signal voltage exceeded a pre-determined threshold. 

The threshold is set up by the user.  Depending on type of the AE signal, different useful 

parameters can be extracted resulting in evaluation of AE source. The signal waveform that is 

presented as an output in the measurement system depends on some key parameters such as 

the characteristics of the AE source, the AE signal transmission path, the characteristics of  

AE sensors and definitely the properties of the measurement system.  

The most useful extracted parameters for HDD data are (Miettinen and Pataniitty 1999): 

 Threshold-crossing counts; 

 Amplitude; 

 Duration; 

 Rise-time; 

 Energy-envelope 
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Figure 4-0-0-3 Characteristic parameters of AE burst signal (Du et al. 2020)  
 

On the other hand, TDD are continuously recorded and the signal never ends. In the 

literature, they are also referred as continuous waveforms. In this work, the useful signals are 

Time Driven Data. Amplitude and frequency response are the key features of a typical 

continuous AE signal. AE activity is captured for a specific time duration and is presented by 

the time waveform. The frequency response of a signal can be calculated using the Fourier 

transform. 

 

According to the operational principles of AE testing, signals were detected by the sensors 

during loading. In contrast to other NDT techniques, the materials is loaded before or after 

the data acquisition.  

 

The effect of environmental noise on the AE measurement is an important issue that needs to 

be dealt with. In this work, band-pass filters are applied in the captured data in order to 

remove any unwanted noise before the digitization. In the processing module, the acquired 
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signals are analysed using advanced signal processing techniques in order to eliminate further 

the effect of the noise. 

 

AE signal attenuation is one of the main limitations of this powerful technique.  Signal 

attenuation is dependent on sensor’s frequency. In order to cope with this issue in the current 

project, the position of the AE sensors is considered. It is widely accepted that the smallest 

transition path between AE sensor and AE source, the less signal attenuation that will occur 

(Teti et al. 2010). Within this study AE sensors were mounted on the surface of the bearing in 

the on-board measurements and on the rail in the wayside trials.  

 

AE signal can be acquired without requiring physical opening of the component monitored. 

Hence, the structural integrity of the component in question can be monitored under real-time 

operational conditions.  

The bearing’s AE signature can be affected by several parameters such as bearing geometry, 

location and severity of bearing defect, operational speed and loads of the shafts (Qiao Sun et 

al. 2004). During tests in Long Marston using rolling stock with artificially induced axle 

bearing faults, it has been proven that high-frequency acoustic emission is capable of 

detecting such faults regardless of their severity (Z. Huang et al. 2014a). Moreover, AE is 

sensitive to minor bearing damage due to the high sensitivity of the high-frequency sensors 

employed (Bladon et al. 2004). 

 

The main advantages of AE method are: 
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 Early detection of a bearing defect; 

 Real time monitoring in-service structures; 

 Minimized possibility of false alarms; 

 Low cost equipment; 

 Simple installation; 

 Ability of working in high speed; 

 Co-operation with other destructive and non-destructive techniques 

 

 

Therefore, AE testing is well-suited for monitoring the damage initiation and degradation in 

railway wheelsets. 

 

However, AET has a few limitation that are presented below: 

 

 Rapid Signal attenuation; 

 Unwanted Noise; 

 Loading history of the structure is required; 

 No repeatable patterns; 

 Temperature limit of sensor; 

 No evaluation standard for accessible data are available  
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4.1.5 State-of –the –art in Acoustic Emission Signal Analysis 
 

Acoustic Emission Technique is now widely used for assessment of structural health integrity 

in various engineering structures. Acoustic emission monitoring system has been employed 

for railway wheelsets. In principle, when a wheel or axle bearing is defective, a burst of 

energy is released. AE sensors can detect this energy enabling the health monitoring of 

railway wheelsets. Identification of any potential faults in time can enhance maintenance 

scheduling helping promote long-term train availability.  

 

Elforjani and Mba (M. Elforjani and Mba 2010) investigated the ability of AE to detect 

natural race bearing defects in low speeds. Time and frequency domain analysis have been 

employed for analysing the measured AE data. Spectral analysis and information entropy 

were used to detect the presence of cracking and its propagation. Elforjani and Mba also 

stated that AE signal analysis is able to determine the size of the defect. The duration of AE 

bursts and the angular velocity were used to calculate it. 

Amini et al. (Amini et al. 2017) evaluated the effect of speed and defect size on high 

frequency AE and vibration signals from defective bearings. Laboratory and filed 

experiments were carried out under different speeds. Roller and outer race faulty bearings 

were used during this work.  Peak to peak, RMS, Kurtosis and Crest Factor values were 

calculated and compared in each case study. From the results obtained, it can be concluded 

that signal‘s amplitude increased as the rotational speed also increased in both acoustic 

emission and vibration signals.  In addition, Peak to peak and RMS values raised proportional 

to size of the defect. However, kurtosis and Crest Factor values were not able to distinguish 

the size of the bearing fault.  
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Elasha et al. (Elasha et al. 2017) employed AE and vibration analysis to diagnose bearing 

fault in a planetary gearbox.  Bearing in three different conditions were used during the 

experimental part of this study. A heavily damaged bearing, a slightly damaged bearing and a 

defect-free bearing were utilized for comparison purposes. Combination of adaptive filter, 

spectral kurtosis and envelope analysis were applied to the captured signals. Elasha et al 

reported that AE signal analysis is capable of detecting earlier than vibration signal analysis. 

In addition, small defect can only be detected by AE analysis. 

 

Cockerill et al. (Cockerill et al. 2016) discussed the effect of speed and load in AE signal. 

Outer race and inner race faults have been tested. From the results obtained, it was shown that 

speed was more sensitive than load resulting in increasing the amplitude of RMS when a rise 

of speed or load was appeared.   

 

Elforjani (Mohamed Elforjani 2018) demonstrated the  applicability of AE in diagnosis 

bearing cracks. Comparison between AE and vibration signal analysis in fault detection was 

presented. AE is more sensitive to early detection of bearing defects than vibration analysis. 

Estimation of remaining useful life for bearing was discussed. In addition, investigation of 

the influence of grease starvation condition of detecting bearing faults was reported. 

Correlation between AE features and bearing wear have been achieved resulting in promising 

conclusions. 

 

Liu et al. (D. Liu et al. 2018) proposed a new method based on Kurtogram in order to 

enhance the early bearing fault diagnosis. The novel method combines autocorrelation 

function, Shannon entropy and Kurtogram. Simulated and measured acoustic emission 
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bearing signals were processed in order to demonstrate the effectiveness of the proposed 

method. Outer race bearing faults have been considered as test bearings to evaluate the 

effectiveness and the reliability of the new processing technique.  

 

Hawman (Hawman and Galinaitis 1988) has shown that AE can provide a significant 

improvement in bearing health monitoring over vibration when a small size defect appears. 

Detection and classification of bearing defects were achieved earlier by AE signal analysis. 

 

Anastasopoulos et al. (Anastasopoulos et al. 2010) demonstrated the ability of AE wayside 

monitoring to detect wheel faults. Trains and trams wheelsets have been measured. Time 

signal analysis and Pattern Recognition NOESIS software were used to analyse the acquired 

AE data. Reference signals from a defect-free wheelsets have been compared with the 

measured AE data.  

 

Liu et al. (C. Liu et al. 2017) successfully processed AE signals using signal feature 

extraction to enhance bearing health monitoring. Signal Reconstruction has been achieved 

using sensing. The new data contains sufficient information as the original signals with lower 

sampling frequency and less computational cost. 

 

Mba (Mba 2003) reported that the increase in AE counts are irrespective of outer race defect 

size. However, inner race defect size gave reverse results. It also stated that increase in speed 

and load can lead to increase in AE counts. 
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Miettinen er al. (Miettinen and Andersson 2000) noted that AE time signal analysis is the 

most reliable method to indicate the hardness of contaminated particles. AE rolling bearing 

measurements were captured during laboratory tests. Grease mixtures used for the lubrication 

of the bearings. Structural health monitoring was based on measuring AE pulse count levels. 

 

Sandoral et al. (Usgame Sandoval et al. 2013) demonstrated the ability of AE time signal 

analysis to indicate the presence of a fault. Different severity levels of outer and inner race 

faults were studied. He concluded that ring down count and kurtosis values can be a good 

indicators for bearing fault diagnosis. However, RMS and peak values have low sensivity in 

the early stage of faults. In addition, time domain analysis cannot discriminate between inner 

and outer race defects. 

 

Siroishi et al. (Shiroishi et al. 1997) investigated the effect of vibration and AE analysis to 

detect and diagnose outer and inner race bearing defects. High Frequency Resonance 

Technique and Adaptive line enhancer have been applied in the captured signals. Bearing 

Fault Frequency and its harmonics have been identified to the spectrum. AE signal analysis is 

also less sensitive to inner race defects. 

 

Dukas et al. (Dykas et al. 2017) reported that RMS and count rates can distinguish a dry 

bearing from newly greased bearing. AE sensor, accelerometer and high frequency 

microphone were used in the experiments. The accelerometer and the microphone also 

showed a rise in RMS signal power as the lubricant quality degraded. 
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Niknam et al. (Niknam et al. 2013) also evaluated AE time signal processing to distinguish 

between lubricated and dry bearings. Eight levels of rotational speed and four levels of radial 

load were applied. Four statistical parameters such as standard deviation, max, variance and 

mean were sensitive to lubrication mode. Lack of lubrication increased these signal 

parameters. 

 

Al-Ghamd et al. (Al-Ghamd and Mba 2006) investigated the capability of AE to detect 

bearing defects earlier than vibration. Outer race bearing fault has been seeded in varying 

defect size. Three different AE parameters (maximum amplitude, RMS and Kurtosis value) 

are sensitive to fault identification and size estimation. The results also demonstrated that the 

monitoring of bearing fault degradation in unachievable with vibration testing. 

 

Mornain and Mba (Morhain and Mba 2003) utilised the Acoustic Emission Testing to 

monitor outer and inner race bearing defects. AE parameters such as RMS and Count Values 

have been validated as effective monitor techniques to detect bearing damage. However, 

RMS and Count Analysis cannot distinguish between small and large inner race defects. 

 

4.1.6 State-of –the –art in Vibration Signal Analysis 

 

Vibration is the oscillation or repetitive motion of an object around an equilibrium position. 

A vibration signature of a faulty component can provide useful information about its 

operation in a non-destructive matter. In order to obtain the vibration signal of rotating 

machinery, piezoeletronic accelerometers are used. These are low cost and reliable sensors 

due to their high frequency response compared to displacement and velocity sensors 
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(McFadden and Smith 1984). In addition, accelerometers are usually light weight (0.4-50 

gram). A typical frequency operation range of an accelerometer lies between 5 kHz and 25 

kHz. Operating characteristics should be taken into account when the accelerometers are 

selected as sensing method. In addition, proper mounting of the sensors should also be 

considered in order to avoid missing useful information. In a typical fault analysis, the 

recorded vibration signal compared with a reference signal both in time and in frequency 

domain. An acceptable level is considered as a healthy threshold. For more accurate results, 

vibration data trending is required (Z. Huang et al. 2014a).  

 

The vibration signal of a rolling bearing close to failure is often non-linear and non-

stationary. In wayside measurements, the vibration signal analysis is not powerful unless 

severe defect is considered (Amini 2016b). 

 

It is also evident that wheel defects such as flats, cracks and shelling can be identified by the 

vibration’s signature using high frequency spectral analysis (Vermeulen et al. 2010). 

 

Symonds N et al. (Symonds et al. 2015)used vibration signal analysis to monitor on-board 

bearings to Electrostar fleet. Outer race damage has been identified at early stage. The 

ultimate goals of this case study are to link in bearing vibration signature with damage level 

and to detect causing fault factors. 

 

Cao et al. (Cao et al. 2016) developed a novel condition monitoring technique to detect 

wheel-bearing faults. Empirical Wavelet Transform has been applied to the acquired 
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vibration data. Outer race fault, roller fault and compound of fault of roller and outer race was 

investigated. Both stimulated and real-time data were collected. From the results obtained, it 

is obvious that this method can enhance wheel-bearing fault diagnosis. 

 

Ho and Randall (Ho and Randall 2000) has shown that in self-adaptive noise cancellation 

(SANC) conjunction with envelope analysis enable identification of bearing defects in both 

stimulated and real conditions. Vibration signals have been collected. Roller Bearing 

Frequency has been successfully revealed into signal’s spectrum. 

 

Zhang et al. (Z. Zhang et al. 2017) used vibration monitoring analysis to enhance early stage 

bearing fault diagnosis. Roller and outer race defects have been investigated during 

laboratory trials at the University of Birmingham. The measured data were acquired at a 

variety of speeds and noise environment. Empirical mode decomposition (EMD) and 

minimum entropy deconvolution (MED) have been applied in the acquired data. The results 

have been shown that the proposed method enhance bearing fault detection at the early stage. 

Mauricio et al. (Mauricio et al. 2020)  investigated the effectiveness of a novel bearing 

diagnostic tool in order to minimize the influence of the strong Electromagnetic Interference 

at raw vibration signals. Cyclic Spectral Coherence have been applied on the captured data 

improving the envelope analysis results. Automated detection of the optimal frequency band 

for the band pass filter design was achieved.  The proposed methodology validated and 

evaluated using a planetary gearbox test rig. Inner and outer race faults were used during the 

experimental part of this project.  From the results obtained, the fundamental bearing 

frequencies have been successfully presented in the envelope spectrum. 
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Klausen and Robbersmyr (Klausen and Robbersmyr 2019) reported the capability of the cross 

correlation spectrum to enhance an accurate bearing fault detection at low speed conditions 

(20rpm). A bearing test rig with three different faulty bearings (damaged rollers, outer race 

and inner race faults) was used in order to stimulate vibration signals. Cross correlation 

between whitened vibration signal and its envelope was calculated. The whitening vibration 

signal was computed using synchronous averaging and an autoregressive model. The 

resulting signal contains amplified frequency components related to bearing faults. The new 

signal was analysed using the High Frequency Resonance Technique. Prominent harmonics 

and sidebands were revealed at the envelope spectrum. 

 

He and He (He and He 2020) demonstrated the ability of vibration analysis technique to 

achieve bearing fault detection using a new hybrid deep signal processing approach. The 

proposed method combines vibration analysis technique with time synchronous resampling 

mechanism. Bearing test rig was used in order to validate the effectiveness of the proposed 

method. Bearings in five different conditions (healthy, inner and outer race faults, rolling 

element fault and cage fault) were considered at the experimental part of this work.  The 

RMS and the peak values were calculated from the reconstructed vibration signals indicating 

better performance in bearing fault diagnosis than the raw signals. 

 

4.2 Current state of work using AE and Vibration signal analysis 

 

RCM system for railway wheelsets has been developed by University of Birmingham during 

the MaxBe project. In this work, AE and Vibration signal analysis have been performed in 

order to detect faults prior to failures, assess the severity of fault and identity the type of the 
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faults. State-of-the-art signal analysis has been employed in the acquired data. If no defect is 

detected, the KPIs results are stored for future trending. In case of wheelset defect is detected, 

further analysis using intelligent algorithms is performed in order to confirm the presence of a 

defect and to assess the severity.  

During the project, on-board and wayside experiments have been employed. The ultimate 

goal is to integrate the on-board and wayside systems in order to improve results accuracy. In 

this approach, if a fault is detected by the wayside system then the train will be stopped and 

monitored by the on-board system. In case of the two systems have the same response then 

the train will be driven to the maintenance de-pot. 

The proposed customised system can also be integrated with commercial system which 

monitor the wheel condition such as WILDs and WPDs. The aforementioned wheel systems 

are not capable of monitoring railway axle bearings. 

From the results obtained, AE signal analysis have higher SNR compared to vibration. Thus, 

wheelset faults can be detected noticeably earlier. However, AE analysis is more expensive 

than Vibration analysis. Therefore both type of analysis techniques are employed in current 

work. 

A customised AE and vibration monitoring system has been developed by the University of 

Birmingham. The R50a resonant sensor is connected to the preamplifier and to amplifier. The 

amplifier is connected to data acquisition board. A computer is used to storage the results. An 

accelerometer was also used for the vibration data. 

Acoustic emission and vibration signals were acquired during experimental work carried out 

at laboratory in field and in-service. Two test rigs were used for signal acquisition. Defect 

free bearings and faulty bearings have been tested during experimental part of this project. 

The effect of speed and load in signal amplitude and in RMS amplitude were also discussed.  
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Different signal processing techniques were discussed such as Normalized Moving RMS, 

Cepstral analysis for multiple defects, Frequency distribution and HFRT algorithm. Trolley 

test were also carried out using wheel flat defect. Vibration signal analysis is more effective 

than AE when wheel flat defect is appeared. Different bearing roller defects were tested at 

Long Marston, UK. Frequency distribution has been proved as the optimum option for data 

analysis in order to detect the type of the defect. High Frequency Resonance Technique has 

been applied in the captured signals and the bearing faulty frequency has been revealed. 

Therefore, the origin of the fault was identified.  In addition, the customised system has been 

installed on the UK rail network at Cropredy at Chiltern Railway line, adjacent to Hot Box 

Axle Detector for comparison purposes. The integrated system consists of 6 channels (4 AE 

and 2 vibration). The gain used for Cropredy trials has been set up to 29dB in order to 

minimize the environmental noise and enhance SNR. The Sampling rate was set up at 500 

kHz for AE signals and at 25 kHz for vibration measurements.  

 Freight and passenger trains signal have been acquired. Trains with potential faults defective 

wheelsets have been detected. Several signal processing techniques have been applied at the 

raw signals. Comparison between frequency responses was presented. Sharp peaks in specific 

frequencies were visible. These frequencies can be used as a reference for further processing. 

The HFRT algorithm was also applied at the captured data. Freight and passenger trains with 

potential faults have been identified. Fundamental frequency and its harmonics can been 

clearly seen at HFRT plot. Sidebands were also visible. These patterns can indicate the type 

of the defect. 

Spectrogram and TSK plots were also presented in the results of this work. High kurtosis 

value at specific frequency band indicated the presence of a defect. In addition, strong signal 

modulation was demonstrated in raw signals indicating the presence of a fault. Harmonics in 



78 
 

frequency distribution and in Spectrogram were presented enhancing the presence of a 

potential wheelset fault.    
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5. Signal processing Algorithms 

In this chapter, an overview of advanced signal processing techniques for diagnosis of wheel 

and axle bearing condition is being presented. Three approaches of signal analysis are 

discussed, the time, the frequency and time-frequency domain. According to this study, a 

combination of them can enhance the wheel and axle bearing fault detection and diagnosis. 

5.1 Time domain analysis 

Time domain signal analysis can be used to detect the present of a defect based on evaluation 

statistical parameters such as moving kurtosis and moving RMS. 

5.1.1 Moving RMS 
 

RMS is a non-dimensional statistical indicator of the energy of a signal. The RMS value for a 

signal with length n is described by the equation below (Lebold et al. 2000)  : 

    (5.1) 

The main limitation of RMS analysis is that the time information is lost. Moving RMS is an 

approach of analysis that reverses the time information.  In this type of process, the RMS 

value is calculated in terms of moving window analysis.  

In a moving RMS analysis, high amplitude peaks are most likely related to bearing defect. In 

this study, the severity of a bearing defect can be evaluated using moving RMS signal 

processing.  
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5.1.2 Moving Kurtosis 
 

Kurtosis is a non-dimensional statistical descriptor of the sharpness of peaks in a raw signal.  

The kurtosis value for a signal with length n is provided by the equation  

           (5.2) 

Where   is the difference between each value and the mean of the signal . 

 A healthy threshold can be applied in order to evaluate the structural integrity of a 

component.  For a healthy bearing with normal distribution, the kurtosis value is close to 3. 

Any value greater than that indicates damage development (Tandon and Choudhury 1999). 

Moving kurtosis is calculated as moving RMS. 

The main limitation of kurtosis is that it may not be suitable analysis method in noisy 

environments. When SNR is high, measure kurtosis in specific frequency bands might be 

more effective (Amini et al. 2016c).  

5.1.3 Moving Crest Factor 
 

Crest Factor is a time-waveform analysis which provides a value for the impact caused by the 

strikes in a fault bearing.  The Crest Factor value for a signal is provide by the equation  

 

CF is a unit-less ratio that depends on the severity of fault. CF usually exceeds value of 5 

early in the wear cycle. In contrast, a value of 2.5 is presented late in the wear cycle (Graney 

and Starry 2012).  
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Moving CF s is calculated as moving RMS with the advantage of more accurate results 

compared with CF value due to high number of points at the waveform.  

5.1.4 Peak to Peak analysis 
 

Peak to peak analysis (PK to PK) is used in bearing defect detection since it gives more 

accurate results than peak value. It is a statistical parameter that used for bearing condition 

assessment at Vibration and AE signals analysis. In this study, Maximum peak value and 

Normalized Moving RMS peak value are used to evaluate the effect of speed and load at AE 

testing. The results are presented in Chapter 7. 

 

5.2 Frequency domain 
 

Railway wheelset health assessment can be also evaluated using several frequency analysis 

techniques.  The presence and the type of fault can be established using AE or vibration 

frequency processing (Amini et al. 2016a). Fast Fourier Transform, High Frequency 

Resonance Technique and Cepstrum analysis are discussed in this work.  

 

5.2.1 Fast Fourier Transform (FFT) 

 

One of the most common AE signal analysis technique is the power spectral analysis that is 

based on Fast Fourier Transform (FFT) algorithm. The Fourier Transform is a reversible 

transformation of signal from time domain to frequency domain. The Fourier Transform for a 

continuous time signal is defined as (Phillips et al. 1995): 

     (5.4) 

and the Inverse Fourier Transform (IFT) is defined as  
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  (5.5) 

The FFT algorithm performs the same function as the Discrete Fourier Transform (DFT) but 

in less computational time. 

The FFT algorithm can be described as follows (Transform): 

The frequency distribution of an AE or vibration signal can be used to enhance the bearing 

fault diagnosis. A benchmark frequency distribution for a healthy case can be cross-

correlated with any frequency distribution in order to evaluate the health component. 

Harmonics in power spectrum of an axle bearing might also be an indicator for a defect 

initiation. 

 In the current study, high amplitude peaks in frequency distribution have been used also as a 

reference for further processing. The signal can be band-pass filtered based on these peaks 

and further processed using the envelope analysis technique. Envelope analysis is discussed 

later to this thesis. 

 High amplitude peaks can be related to resonance frequencies of the sensor or of the 

component.  The resonance frequencies of the R50a sensor are 170 kHz and 350 kHz. 

Calibration curve of R50a sensor based on ASTM E976 is shown in Figure 5.1 

(physicalacoustics). Pencil break tests can be used to confirm the sensor calibration accuracy 

by confirming the resonance frequencies   whereas the resonance frequencies of an axle 

bearing can be detected using an impact test. 



83 
 

 

Figure 5-0-1:Calibration curve of R50a sensor based on ASTM E976 (physicalacoustics) 
 

5.2.2 HFRT (high frequency resonance technique)  

 

Rolling element bearings consist from four main components: outer and inner race, cage and 

rolling element.  Balls, rollers and tapered rollers are the most common rolling elements 

nowadays.  

Bearing defect can be presented in any of these four components. A series of vibration 

impacts generated periodically when the rolling element passes over the defect. These 

impacts recur at Bearing Fundamental Frequencies (BFF) (Tyagi 2003).  

According to rolling bearing kinematics the four BFF can be calculated with the following 

mathematical equations below (Table 5.1) while the bearing geometry and the shaft speed are 

known in advance (Graney and Starry 2012) : 

 

Bearing Fundamental 

Frequencies 

Acronym Mathematical Equations 

Ball Pass Frequency Inner 

race 

BPFI 








 cos1

2 P

B
F

N
 

Ball Pass Frequency Outer 

race 

BPFO 
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2 P

B
F

N  
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Fundamental Train 

Frequency 

FTF 








 cos1

2 P

BF  

Ball Spin Frequency BSF 






















2

cos1#
2 P

B
F

B

P

 

 
Table 5.1 : Bearing Characteristic Frequencies and their acronym(Graney and Starry 2012) 

 

Where: 

N = number of ball bearings 

F = shaft frequency in Hz 

B =ball bearing diameter in mm 

P =pitch diameter in mm  

Θ = contact angle. 

The manufacture of the bearing generally provides the BFF. 

The schematic in Figure 5.2 (left) is shown a ball rolling bearing defects illustration and in 

Figure 5.2 (right)  a diagram of the  BFF inputs explanation (Segla et al. 2012) : 

 

Figure 5-0-2: Bearing defects illustration (left) and diagram of inputs explanation (right) 
(Segla et al. 2012) 
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Early stage bearing damage may not be detectable using conventional spectrum analysis due 

to wide energy distribution (Robert B. Randall and Antoni 2011; Tyagi 2003).  The HFRT 

(also known as envelope demodulation processing) provides superior sensitivity to bearing 

fundamental frequencies in AE and vibration applications (Amini et al. 2016b; Tandon and 

Choudhury 1999) .  The main idea of the HFRT is to separate the signal generated by the 

defective part with in the envelope spectrum,  from the signal generated by the other machine 

elements using the band pas filter around the resonance frequency (McFadden and Smith 

1984).  This approach of analysis shifts the frequency analysis from high frequency range to 

lower frequency allowing better resolution (Robert B. Randall and Antoni 2011). 

Before the presentation of the HFRT algorithm, the Hilbert Transform is described. 

For a signal )(tg , the HT is defined by the equation below (Kschischang 2006): 

 

   (5.6) 

              

The Hilbert Transform of is the convolution of with the signal  
t

1  . 

 

The HFRT process employed in AE and vibration signals of this study and is shown in figure 
5.3 

 

 
 

Figure 5-0-3: Schematic showing the high frequency resonance technique process 
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The HFRT algorithm consists of 3 main  steps  in order to locate the faulty characteristic 

frequency in the envelope spectrum  (Segla et al. 2012): 

 

Band-pass filter is applied to the raw data. The bandwidth of the filter is crucial to guarantee 

the results. The bandwidth is suggested to be at least four times the highest fundamental 

faulty frequency (McFadden and Smith 1984). The band passed signal is then subjected to 

envelope analysis. In this work, Hilbert Transform (HT) has been used to calculate the 

envelope signal. HT extracts the amplitude modulating signal from the amplitude modulated 

signal (Mjit et al. 2011). The repetition rate of the impact has been revealed in this step.  In 

third step, the envelope spectrum is estimated using the FFT algorithm. 

 

5.2.3 Cepstrum analysis 
 

Multiple faults in rolling element bearings or gearboxes may not be detectable using power 

spectrum or envelope analysis. Vibration cepstrum analysis has been considered as most 

appropriate method for detecting and distinguishing the families of harmonics in power 

cepstrum (Robert B Randall ; Spectra Quest 2006). The power cepstrum of a signal  is 

defined by the equation below  (R. Randall 1982) :  

   (5.7) 

Power cepstrum is described as the Inverse Fourier Transform of the natural logarithm of the power 

spectrum of the original signal.  The horizontal axis is the Quefrency that is reciprocal of 

Frequency and it is measured in seconds. Table 5.2 shows the Cepstrum terminology. 
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Spectrum analysis Cepstrum anlysis 

Frequency(Hz) Quefrency (sec) 

Harmonic Rahmonic 

Filter Lifter 

Magnitude Gamnitude 

Phase Saphe 

Table 5.2: Cepstrum Terminology 
 

Figure 5.4 shows an example of Cepstrum analysis. The raw data is a vibration signal from a 

defective bearing from the test rig in 500RPM rotational speed. Damage in both races and in 

roller has been artificially induced. The fundamental frequencies of the bearing are BPFO= 

76.9Hz, BPFI= 98.1Hz, BSF=65.85Hz. The peaks at 

97.62
101588.0,

2.99
101008.0,

64.77
101288.0   confirms the presence of the faults. There 

is a slight offset between the theoretical and the observed fundamental frequencies due to the 

slight variation in the rotational speed during the test. 
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Figure 5-0-4: Defective bearing F7 test rig: Raw signal- power spectral analysis-power 

cepstrum analysis (from top to bottom) 
 

5.2.4 Cross correlation technique 
 

Cross correlation technique is a useful tool to determine the similarity of two signals as 

function of the time-lag shift . A reference signal from a defective bearing is created and an 

input signal is compared with the reference signal using the cross correlation function. 

The cross-correlation function of two continuous signals  and  can be calculate by 

the following function (Kaphle et al. 2012) : 
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In this study, frequency spectrum similarity between two signals from same source or from 

different source is also presented in Chapter 7. When two signals acquired by the same 

bearing fault, their frequency spectrum have the same pattern. Spectral coherence function 

can also be used for the same reason. 

 

5.3 Time-frequency domain techniques 
 

5.3.1 Time-Spectral Kurtosis (TSK) 
 

Spectral Kurtosis (SK) is a useful signal processing technique of decomposing the kurtosis 

value of a signal as a function of frequency (J. J. M. s. Antoni and processing 2006; J. Antoni 

and Randall 2006). However, time information is lost.  SK has been extended to time domain 

by developing Time-Spectral Kurtosis (TSK) (Chen et al. 2014). TSK is a three-axis 

representation of the signal: time, frequency and kurtosis value. Bearing fault diagnosis can 

be enhanced using TSK technique (Amini et al. 2016c) by detecting the series of transients in 

frequency domain and their location in time domain. Kurtosis value of 3 is considered as 

normal distributed signal that is corresponds to healthy machine.  Any values greater than 3 

could be related to mechanical faults. However, false alarms may be caused in real world 

environment when wheel-bearing signals are analysed by SK due to spare interference 

impulses (Chen et al. 2014). 

The ability of the TSK algorithm to distinguish the axle bearing defects and random noise has 

been shown by Amini et al. Wayside AE signals have been collected by artificially damaged 

axle bearings. TSK has been applied for the analysis of the experimental data. High 

amplitude kurtosis values in specific frequency bands have been related to bearing defects. 

Therefore, TSK analysis can enhance the bearing fault diagnosis in this case study (Amini et 

al. 2016c). 
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The kurtogram (fourth-order spectral analysis tool) has been recently introduced as an 

efficient analysis technique for non-stationary signals. The detection of abnormal transients in 

a signal and their corresponding frequency band (s) by identifying the maximum kurtosis 

value can be achieved using the kurtogram technique (J. Antoni 2007).  The optimum 

frequency band for the design of a band pass filter is the main purposes of this type of 

analysis. The centre frequency and the window size (bandwidth) can be calculated without 

requirement of historical data. Hence, automated envelope spectrum analysis can be applied 

in the signals.  

Fast kurtogram is another approach of Kurtogram that has the same quality of results in less 

computational time. Therefore, it is more appropriate in on-line industrial applications (J. 

Antoni 2007). 

Eftekharnejad et al. investigated the ability of kurtogram in bearing fault diagnosis. Acoustic 

emission and vibration measurements performed on naturally degraded roller bearing. The 

kurtogram has been applied for the analysis of experimental data. From the results, obtained, 

SK-based filtering has been considered as an effective method of signal-to-noise ratio 

improvement (Eftekharnejad et al. 2011). 

Spectral kurtosis has also been applied in fault detection of WT gearboxes by Barszcz and 

Randall (Barszcz and Randall 2009).  A band-pass filtered has been design based on the 

frequency of the highest spectral kurtosis band. Periodicity of the highest amplitude peaks 

were clearly seen in the filtered signal. The tooth crack in the planetary gear was confirmed 

by this time period. 
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Figure 5.5 shows a typical example of fast kurtogram (J. Antoni 2007) illustration from AE 

signal obtained by this study. A band-pass filter can be designed based on the results below. 

The centre frequency will be 185546.875 Hz and the Bandwidth 3906.25 Hz.  

 

Figure 5-0-5:  Kurtogram of a raw AE signal from the Cropredy tests 
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5.4 Comparison of Advanced Signal Processing techniques  
 

Signal 

processing 

techniques 

Simple and 

easy to 

implement 

Detection of 

faulty 

characteristic 

frequency  

Improve 

SNR 

Detect 

faults 

at 

early 

stage 

Time 

information 

is lost 

Detect 

multiple 

defects 

Distinguish 

fault 

severity  

Moving 

RMS 

       

Peak to 

peak 

analysis 

       

FFT        

HFRT        

Cepstrum        

TSK        

 

Table 5.3: Comparison between each domain analysis 

 

From the results obtain during this thesis, the main conclusions about the comparison of 

advance signal processing techniques were presented in Table 5.3.  The recorded AE and 

Vibration data were analysed using the advanced signal processing that are presented in this 

work. 

As it can be seen, Moving RMS is simple and easy to implement and is suitable for 

distinguish the defect severity. In addition, Peak to peak analysis is easy and simple to 

implement to raw signals.  Frequency distribution can improve SNR and enhance fault 

detection at early stage. HFRT algorithm can identify the faulty characteristic frequency 

resulting in improvement of SNR. Multiple defects can be revealed using Cepstrum analysis. 
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In addition, Cepstrum Transform is simple and easy to implement. Time information is lost in 

frequency domain analysis. Therefore, TSK algorithm is a three axis representation. High 

Kurtosis value in specific frequency can indicate the presence of a potential fault. The 

information provided by this technique can be used for further processing. The time is also 

available resulting in detection of the faulty spacemen.  
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6. Experimental Method 
 

6.1 Equipment and experimental method 
 

The present chapter discusses the experimental procedure employed in this study. A 

customised integrated RCM system has been built for the tests (shown in Figure 6-1). This 

novel system consists of the following components: 

 High frequency accelerometers with a sensitivity of 100mV/g manufactured by 

Wilcoxon (W. S. Technologies 2020b), 

 A 2531A Agilent 4-channel data acquisition card with a maximum sampling rate of 

2MS/s in single-channel mode (K. Technologies 2020a) , 

 A 4-channel decoupling hub manufactured by Agilent  

 AE analogue amplifiers manufactured by Krestos 

 Pre-amplifiers manufactured by Physical Acoustics Corporation (PAC) (Acoustics’ 

2020), 

 An accelerometer power supply manufactured by Krestos 

 R50α resonant AE sensors manufactured by PAC (Acoustics 2020) 

 An industrial computer with a customised data logging and analysis software developed 

in collaboration with other colleagues written in Matlab. 

 

 

Figure 0-0-0-1: The customized data acquisition equipment used during laboratory and 
field trials (Amini 2016b) 
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Figure 6-2 shows the experimental configuration applied at AE data acquisition. An R50α 

resonant AE sensor is connected to the preamplifier, which in turn is connected to an 

amplifier. The amplifier is connected to a data acquisition board, which converts the 

amplified electric signals generated by the AE sensor into digital data that are subsequently 

fed to the acquisition software. The data acquisition board is connected to a computer via 

USB connection. The preamplifier’s gain was set to 40dB and the amplifiers gain was 

ranging between 22dB and 40dB according to the test’s requirements. The sampling rate of 

the acquisition software was set to 500 k Samples per Second. The data recording duration 

was set to 5 seconds for laboratory trials and 5-18 seconds for the Long Marston and 

Cropredy trials. The acquired AE and vibration data were analyzed using signal processing 

tools developed using Matlab in collaboration with other researchers.  

 

Figure 0-0-0-2: Experimental configuration for AE tests  (Yilmazer et al. 2012) 

 

A Wilcoxon 712F piezoelectric accelerometer with has sensitivity of 100mV/g and a 4- 

channel power supply manufactured both by Krestos were employed for the vibration data 

acquisition. The operational frequency range of the accelerometer is between 1.5 Hz - 15 

kHz. Figure 6-3 a shows the calibration process of the Wilcoxon 712F piezoelectric 

accelerometer during the experiments of this study. Figure 6-3 b shows the frequency 

spectrum that confirms the accurate calibration of the piezoelectric accelerometer. 
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a) 

 

b) 

 

Figure 0-0-0-3: a)Calibration process of the Wilcoxon 712F piezoelectric accelerometer and 

b) Frequency spectrum shows that calibration process is accurate. 
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6.2  Laboratory-based testing 

 

6.2.1 Case study 1 – On-board testing on defective bearings 

 

Laboratory experiments have been performed on healthy and defective bearings in order to 

evaluate the customised monitoring system. The tests have been employed under variable 

shaft speeds, different loads and with various levels of damage severity.  

Customised test rigs were used for the trials. The rotation speed was between 100 - 1000 

RPM. The bearing samples were PW29530037CSHD PFI model. Figure 6-4 shows the 

customised test rig 1. An accelerometer and an AE sensor installed on the bearing’s surface. 

AE sensor was coupled using Vaseline. A dust tape also used in order to keep in place the 

sensor.  

 

Figure 0-0-0-4 :  Customized bearing test rig 1 at the University of Birmingham 

Figure 6-5 and Figure 6-6 show the experimental configuration employed at laboratory 

experiments using the test rig 2. The photographs on Figure 6-5 present the experimental 

instruments used at the Laboratory trials. A customised Acoustic Emission and Vibration 

logger developed by Dr Arash Amini was used for data acquisition. AE and vibration 

measurements were recorded and saved for further processing. The AE sensor and 

accelerometer installed at the test bearings are shown in Figure 6-6. 
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Figure 0-0-0-5: Customized bearing test rig 2 at the University of Birmingham. The 

photograph on the right shows the AE and Vibration data logger. 

 

 

 

Figure 0-0-0-6: AE sensor (left) and accelerometer (right) installed on the bearing’s surface 
 

The on-board set of tests were carried out on free of defects and defective bearings using the 

two customised test rigs. Various faults such as outer race defects, roller defects and bearings 

with multiple defects were simulated during the trials. Table 6-1 describes the different 

induced bearing faults employed on test rig experiments. Photographs showing the 

aforementioned bearing faults are illustrated on Figure 6-7. 

 

Table 6.1: Description of different induced bearing faults used on on-board test rig 
experiments (Amini 2016a) 

Lab Test  ID Description 

F0 (Healthy) Good Condition, no induced defects 

F1 Minor damage to one small area on each outer race, consisting of surface 

roughening by means of an electrical discharge engraver.  Fault length 1.7% of 
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circumference. 

F2 Minor damage to one small area of one roller in each cage, again consisting of 

surface roughening by electrical discharge engraver. Fault length 10% of 

circumference. 

F3 Similar to F1 above, but damage is a little larger and deeper, inflicted by means of 

a small rotary grinder. Fault length 2.9% of circumference.  

F4 Similar to F2 above Single faulty roller in each cage. Small rotary grinder. Fault 

length 50% of circumference.  

F5 Single ground and roughened fault, same position on each outer race.  Damage 

inflicted by small cutting wheel and engraver.  Fault length 6.6% of circumference. 

F6 Significant damage, both races.  Damage inflicted by small cutting wheel and 

engraver. Fault length 35% of circumference. 

F7 Significant damage, both races and 6 rollers on each side.  Debris from grinding 

left in bearing. Fault length 35% of race circumference, 12% of roller 

circumference. 

 

F0 
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F7 

Figure 0-0-0-7: Induced bearing faults used during the test rig experiments 
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A power tool was used to generate the bearing defects on its surface. Tapered roller bearings 

have been used as test bearings on laboratory experiments. An example of a rig double raw 

tapered roller bearing is shown in Figure 6-8. 

 

Figure 0-0-0-8: A rig double raw tapered roller bearing disassembled 
 

6.2.2 Case study 2– Wayside testing on artificial – induced wheel flat 

 

Wayside AE and vibration testing have been carried out using an artificial-induced wheel flat. 

Motorized trolley trials have been performed using a defect-free and a defective wheel for 

comparison purposes. The wheel diameter was 0.16m and the trolley speed was 

approximately 1 m/s. The wheel flat dimensions were 1mm in depth and 1cm in length. The 

high frequency AE and vibration reliability was assessed at this case study. The results in 

next chapter have shown that the vibration signal analysis has successfully detected the faulty 

wheel. The type of fault has also been identified during the signal processing module. 

 

Photographs on Figure 6-9 shows the accelerometer installation wayside and the motorized 

trolley used at the experimental trials.  Wheel flat length illustrated on photograph on Figure 

6-10. 
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Figure 0-0-0-9: Wayside installations (left figure) and motorized trolley (right figure) 

 

 

 
Figure 0-0-0-10: Wheel flat defect 

 

6.3  Long Marston field trial 

 

The customised AE and Vibration RCM system has been installed wayside at Long Marston. 

Field trials in collaboration with VTG Rail Limited were carried out in order to evaluate the 

capability of the RCM system to confirm the presence of artificially induced wheel and axle 

bearing faults. During the experiments, axle bearings with roller defects at different severity 

(2, 4, 8 mm deep) have been captured. Severity fault quantification was also achieved using 

the Normalised Moving RMS algorithm at the signal processing module. 

Freight tanker wagons with no artificially induced fault have used at experimental trials. A 

locomotive with no wheelsets faults provided by Motorail Logistics used to pull or push the 

test train depending on the direction of movement is shown in Figure 6-11. The train was 

moved forward and backward over the rails with constant speed of 48Km/h and 32Km/h 
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respectively. Schematic on Figure 6-12 illustrates the test vehicle and the layout of the 

sensors. 

 

Figure 0-0-0-11: Photograph showing the yellow locomotive and the freight test wagons 
(Amini 2016b) 

 

 

Figure 0-0-0-12: Schematic showing the test vehicle and the sensor layout at Long Marston 
trials 

 

AE sensors and accelerometers were mounted on track using magnetic hold-downs. Vaseline 

was also used to couple the AE sensor on the web rails. The sensors were installed above the 
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sleepers in order to reduce the noise effect on the signal acquired due to rail bending 

moments. The installation of AE sensors and accelerometers is shown in Figure 6-13. Four 

R50a AE sensors and two Wilcoxon 712F accelerometers were used during the field trials. 

The sampling rate was set up to 500 kHz and 25 kHz for AE and vibration acquisition 

respectively. The time duration of the captured signals was 12 sec.  

  

Figure 0-0-0-13: Photograph showing the AE sensors and accelerometers installed on the 
web rail at Long Marston, UK (Amini 2016b) 

 
 

Schematic on Figure 6-14 shows the experimental set-up at Long Marston wayside trials. The 

bearing faults was at one side of train keeping the other side defect-free for comparison 

purposes. Photographs on Figure 6-15 show the first wagon of the test vehicle. One of the 

bogies contains a healthy axle bearing and three different severity axle bearing roller faults.  
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Figure 0-0-0-14: Schematic showing the experimental set-up with all the bearing defects 

(Zheng Huang 2017) 

 

Figure 0-0-0-15: Photographs showing the first wagon of the test vehicle.  The tanker 
contains a healthy and three fault axle bearings 

 

An optical infrared triggering system was also used in order to trigger automated the data 

acquisition system when the test vehicle pass over the detection zone. Two pairs of infrared 

sensors were employed in the form of optical gates. Train speed can be calculated when 

distance between the sensors is known. When the wheelsets pass through the detection zone, 

the AE and vibration activity arising from the train is captured. The meaningful signal can be 

truncated in order to increase data storage and reduce computational time. The advantage of 

multiple sensors on the experiments is redundancy in case of sensor failure. Signals from 

multiple sensors can also be fused into a signal with the same information and less data 
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storage. Figure 6-16 shows the optical trigger system used for activating the data logging 

system at Long Marston measurements. 
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Figure 0-0-0-16: Photograph showing the optical trigger system used at Long Marston 
trials  

 

 

 

6.4  Cropredy in-service trial 

 

The novel RCM system has been installed on the UK rail network at Cropredy at Chiltern 

Railway line, adjacent to Hot Box Axle Detector for comparison purposes in October 2015. 

The system has been housed in a special cabinet with air ventilation. The integrated system 

consists of 6 channels (4 AE and 2 vibration). A mechanical treadle was used in order to 

activate the data logging system. The sensors in Cropredy have been put 18.5 meters away 

from the triggering system in order to provide enough time for the system to wake up from 

sleep mode (two seconds). Also the distance between the sensors is such so as to ensure at 

least one full rotation of the wheel occurs within the space defined by the sensor distance.  

Measurement data are recorded and stored automatically. Figure 6-17 shows the schematic of 

sensors layout at Cropredy trials. The gain used for Cropredy measurements has been set up 

to 29dB in order to decrease the environmental noise that affects the AE raw signal. The 

Sampling rates was set up at 500 kHz and 25 kHz for AE and Vibration measurements 

respectively. The time duration was 6 sec due to high speed of the trains at the certain line. 
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Figure 0-0-0-17: Schematic showing sensor layout at Cropredy trials. A mechanical treadle 
was used for activating the data logging system (Zheng Huang 2017). 

 

The RCM system has been instrumented at Chiltern Main Line (direction from London to 

Birmingham). The maximum allowable train speed of line is 100MPH (160 km/h). The speed 

of trains can also be confirmed by the processed signal. Therefore, system has been installed 

properly.   

Passenger and freight trains signals have been recorded. The processed measurements are 

discussed in the following chapter. The raw signals have been analysed using different 

advanced signal processing techniques. Freight and passengers trains with potentially 

defective wheelsets have been detected. The time and the date of the record signal were also 

available. Therefore, the faulty trains can be identified for further inspection. Comparison and 

validation between the existing technology and the purposed RCM can also be achieved 

using the data of Hotboxes and the signals of the potential faults. 

 

No interference on the track circuits is the main advantage of the proposed monitoring 

system. The ceramic face of the AE sensors isolates electrically the sensor from the rail track 

enabling the installation of the system in electrified lines without obstacles. Furthermore, the 

installation was simple and no time-consuming (less than 1h). Figures 6-18 shows different 

aspects of the system’s installation including the AE resonance sensors and associated pre-

amplifiers and amplifiers procured from PAC, two industrial accelerometers procured from 

Wilcoxon, the computer logging and data storage system (2 U2531A Agilent USB DAQs) and 

the special cabinet. 
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Figure 0-0-0-18:  RCM system installation at Cropredy  
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The 168 DMU Chiltern passenger trains normally consists of 3 or 5 carriages and passed by 

the inspection zone at Cropredy. The aforementioned passenger trains have a maximum 

speed of 160 km/h. 

The Type 66 freight trains are also passed by the inspection zone at Cropredy.  This type of 

trains reach a maximum speed of about 90 km/h. The Type 66 freight trains consist of more 

than 25 wagons. The Chiltern Rail Line uses magnetic axle counters and is not electrified. 

A safety study with all the details of the customised RCM system was submitted at Network 

Rail in order to authorise the system’s installation at any suitable location on the UK rail 

network, including Cropredy. A Certificate of Acceptance with reference number 

PA05/06524 was issued by Network Rail. 



112 
 

 

7. Results and data analysis 

The results presented in this chapter shows the effectiveness of AE and vibration analysis 

techniques in detecting and evaluating various types of rolling stock faults under laboratory, 

simulated and in-service conditions. The data analysis methods employed on the recorded 

signals are also discussed. Time, frequency and time-frequency analysis are applied on the 

raw signals.  In the first part on-board measurements under laboratory conditions were carried 

out on healthy and faulty bearings. Two different types of test rigs were used to simulate 

various defects and obtain the associated AE and vibration signals. In addition, wayside AE 

signatures were acquired from simulated wheel flats using a test trolley.  The following 

sections of the present chapter are concerned with the field experiments at Long Marston. 

The performance of the integrated customised system was evaluated under a controlled 

railway environment.  Wheel and axle bearing defects were artificially induced on the test 

rolling stock. The third and last section of the results chapter presents the case of in-service 

trials at Cropredy site on Chiltern rail line connecting London to Birmingham. These trials 

served for the evaluation of the integrated technique under actual operational conditions.  

 

7.1 Laboratory experiments on wheel and bearing defect detection  

7.1.1 Impact tests 

 

Pencil lead tip breaks (Hsu-Nielsen) tests were carried out in order to evaluate the AE 

sensors. The response of the accelerometers were evaluated using impulses using hammer 

strikes. Prior to any stimulation on laboratory or field measurements, simulated signals have 

been considered to validate the time and frequency response of the transducers. Hsu-Nielsen 

source tests were performed in order to assess the proper installation of AE sensors. During 

test rig measurements, an R50a AE sensor was installed on the bearing cage. The simulated 

signal test involved a pencil lead tip breaks against the testing surface. Figure 7-1 shows an 

example of multiple simulated AE signals. Each peak was generated by a lead tip break 
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represented a separate simulated signal. This burst type AE signal has similarities with the 

waveform produced by a propagating crack. From Figure 7-2 up to Figure 7-5 the zoomed-in 

plots of the previous signal are presented. 

 

Figure 7-0-1 : Raw AE burst signal generated by pencil brake tests 

 

Figure7-0-2: Raw AE burst signal zoomed-in 
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Figure 7-0-3: Raw AE burst signal zoomed-in 

 

 
Figure 7-0-4 : Raw AE burst signal zoomed-in 
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Figure 7-0-5 : Raw AE burst signal zoomed-in 
 

 

The power Spectrum of the simulated signal is shown in Figure 7-6. As it can be seen, the 

frequency response of the signal is mostly excited between 165 and 185kHz.This is expected 

since the resonance frequency of R50a AE sensor is 170 kHz. 

 

Figure 7-0-6: Power spectrum of the impact test 
Figure 7-7 shows a raw vibration signal captured during impact test on the bearing. Figure 7-

8 presents the zoomed-in plot of the previous signal.  The frequency spectrum is illustrated in 

Figure 7-9. Looking into frequency response of the captured signal, high multiple peaks 

between 2 kHz and 4 kHz can be recognized.  
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Figure 7-0-7:  Impact test on the bearing 
 

 

Figure 7-0-8:  Zoomed-in raw Impact test signal 
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Figure 7-0-9:  Power spectrum of the previous signal 
 

7.1.2. Case study 1 - Outer race defective bearings 

 

As part of the test rig experiments, the detection and evaluation of outer race bearing defects 

were investigated. On-board AE and vibration signals were recorded using the customised 

test rig 1. Figure 7-10 shows the raw AE signature acquired for a bearing with an outer race 

defect at a rotational speed of 500 RPM.  The peaks seen in raw AE signature are the impacts 

of the outer race fault each time the bearing rotates. Modulation of the waveform is also 

clearly visible. 
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Figure 7-0-10:  Raw acoustic emission signal obtained from an outer race defective bearing 
at 500RPM 

 

The acquired signal processed using frequency domain analysis in order to identify the 

characteristic frequency and its harmonics at spectrum. HFRT algorithm has been applied on 

the raw data. As it can be seen in Figure 7-11 a characteristic fault frequency of 74 Hz and its 

harmonics are clearly seen. This corresponds to a known race faulty frequency for this model 

of bearing at 500 RPM (see table 7.1). Hence, the outer race defect has been identified 

successfully on this particular the test bearing.  There is a slight offset between the theoretical 

and observed faulty frequency due to slight variation of the actual rotatio0nal speed during 

the experiments. In addition, a dominant peak at 8.3 Hz   is observed at the 

HFRT plot due first order of turning speed of the test rig. 

 

Table 7.1: Bearing Fundamental Frequencies in the customized test rig- 76.9Hz frequency 
and its harmonics were expected to appear in the HFRT plot (Amini 2016a) 

 Speed (RPM) 
Defect 
types 

150 250 300 400 500 600 1000 

FTF 1.1 1.8 2.2 2.9 3.6 4.4 7.3 
BPFO 23.1 38.4 46.1 61.5 76.9 92.3 153.8 
BPFI 29.4 49.05 58.8 78.5 98.1 117.7 196.2 
BSF 19.7 32.9 39.5 52.7 65.85 79 131.7 
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Figure 7-0-11:  HFRT plot of the previous raw acoustic emission signal. The BPFO frequency 
and its harmonics are clearly revealed 

 

In case of vibration analysis, the same pattern is observed. Impacts generated by the outer 

race defect are visible in the raw vibration signal acquired at 500RPM (Figure 7-12). The 

HFRT plot of the raw signal is shown in Figure 7-13. This algorithm is employed for 

detecting the faulty characteristic frequency at the spectrum. Peaks related to BPFO and its 

harmonics are identified. Therefore, the accuracy of the proposed method is validated.   
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Figure 7-0-12:  Raw acoustic vibration signal obtained from an outer race defective 
bearing at 500RPM 

 

 

Figure 7-0-13:  HFRT plot of the previous raw vibration signal. The BPFO frequency and its 
harmonics are clearly observed 

 

7.1.3 Case study 2- Roller defective bearings 

 

Bearing defect quantification was also evaluated by performing normalisation of the moving 

RMS and associated frequency analysis. AE and vibration signals were recorded using two 

roller defective bearings with different severity (F2 and F4 at Table 6-1). Defect-free signals 

were also acquired for comparison purposes.  Test rig 2 used for this part of experiments. 

Figure 7-14 shows three AE signals recoded from two rollers defective bearings with 

different defect severity and a healthy bearing at 500rpm. The fault length was 10% and 50% 

of circumference respectively.  Figure 7-15 presents the Moving RMS plots of the above 

signals after they have been normalised. It can be observed that the fault length has an effect 

on signal’s amplitude. Therefore, normalisation of the Moving RMS permits the sorting of 

the signals with respect to the actual severity of the defect. Establishing the threshold for the 

healthy condition can also be used for automated signal analysis.  
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The power spectra of the previous AE signals are shown in Figure 7-16.  The results obtained 

indicate that the high-amplitude peaks generated by the bearing with a roller defect with 10% 

fault length and the healthy bearing have no clear difference. Hence, it is not feasible to 

evaluate the defect severity using frequency domain analysis.  

 

 
Figure 7-0-14: Results from three raw acoustic emission signals obtained from two roller 

defective bearings and a defect-free bearing (50% fault length of circumference- blue 
signal, 10% fault length of circumference- red signal and defect- free bearing - green signal) 
 

 
Figure 7-0-15: Normalized Moving RMS plots of the above acoustic emission signals. The 

difference between the defective bearings and the defect-free bearing is clearly evidence. 
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(50% fault length of circumference- blue signal, 10% fault length of circumference- red 
signal and defect- free bearing - green signal) 

 

 

Figure 7-0-16: Power Spectrum results of the previous acoustic emission signals. (50% fault 
length of circumference- blue signal, 10% fault length of circumference- red signal and 

defect- free bearing - green signal) 
 

Figure 7-17 shows three raw vibration signal generated by two bearings containing roller 

defects with different level of severity and a healthy bearing at a rotational speed of 500rpm. 

As the bearing condition deteriorates, the signal amplitude increases. Figure 7-18 shows the 

Moving RMS plots after normalisation obtained from the above signals. Based on the results 

of the analysis presented below, the same conclusions as discussed earlier in the present 

chapter section can be drawn.  Hence, the severity of the bearing defects can be evaluated 

through normalisation of the Moving RMS results. 

 

The frequency spectra of the above three vibration signals are shown in Figure 7-19. High 

amplitude peaks between 2 kHz and 4 kHz are clearly seen in the spectra of the two defective 

bearings. This frequency range can be used as a reference for further processing.  

Peaks between 2 kHz and 4 kHz are no longer visible in the spectrum of the defect-free 

bearing. Therefore, the results suggest that frequency analysis can be used to identify bearing 

roller defects.  
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HFRT analysis was carried out to process a dataset where the bearing tested contained a 

roller defect with 50% fault length of circumference. Looking into the HFRT plot of the 

recorded signal (shown in Figure 7-20) the bearing characteristic frequency of 62 Hz and its 

harmonics can be recognized. This frequency corresponds to a known roller fault frequency 

for this bearing model at 500rpm. In addition, a dominant peak at 3.8 Hz, which corresponds 

to a fundamental train frequency (FTF), is clearly seen. 

Thus, HFRT algorithm can be applied for the identification of the type of the bearing defect. 

 

 
Figure 7-0-17: Three raw vibration signals recorded by two rollers defective bearings with 

different defect severity and a healthy bearing at 500rpm. (50% fault length of 
circumference- blue signal, 10% fault length of circumference- red signal and defect- free 

bearing - green signal) 
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Figure 7-0-18: Normalized Moving RMS plot of the previous vibration signals. The 

conclusion from the previous Normalized Moving RMS plot of the acoustic emission 
example still applies. (50% fault length of circumference- blue signal, 10% fault length of 

circumference- red signal and defect- free bearing - green signal) 
 

 
Figure 7-0-19:  Power Spectrum of the previous vibration signals. High amplitude peaks 

between 2 KHz and 4 KHz are clearly visible at the datasets from roller defective bearing. 
(50% fault length of circumference- blue signal, 10% fault length of circumference- red 

signal and defect- free bearing - green signal) 
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Figure 7-0-20: HFRT plot of the vibration signal generated by the roller defective bearing 

with 50% fault length of circumference is illustrated. BSF, its harmonics and FTF are clearly 
visible 

 

7.1.4 Case study 3 - Bearing with multiple defects  

 

As part of the laboratory test plan, the performance of the AE and vibration technique in 

detecting bearings with multiple defects was evaluated. Two sets of experiments were carried 

out using a larger test rig. The rotational speed of the tests was between 100 and 700 RPM. 

The first testing configuration considered, involved a bearing with significant damage in both 

outer and inner races and six rollers on each side. The second one involved a bearing with 

damage in both outer and inner races. Results on healthy and defective bearings are presented 

and discussed. 

 

The plot in Figure 7-21 shows an example of comparison between defective and defect-free 

bearings. AE signals were recorded at 500RPM. A visible difference in amplitude can be 

recognised. High amplitude peaks at blue signal generated by the impacts of the defect. The 

Moving RMS results after normalisation are provided in Figure 7-22. The peaks related to 

defective bearing can be clearly seen. The power spectra are shown in Figure 7-23, further 

confirm the presence of the defective bearing. 
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HFRT algorithm has been performed to analyse the raw AE signals generated by the 

defective bearing. The HFRT plot is shown in Figure 7-24. The fundamental frequencies of 

the bearing are BPFO= 76.9Hz, BPFI= 98.1Hz, BSF=65.85Hz. The aforementioned 

frequencies are observed in the plot. The harmonics of BPFO are also visible. However, 

harmonics of BPFI and BSF are not observed. There is a slight offset between the theoretical 

and the observed fundamental frequencies due to the slight variation in the rotational speed 

during the test. 

 

Cepstral analysis is more suitable for detecting multiple defects. The Cepstrum plot is shown 

in Figure 7-25. The peaks at  ,  and  confirm 

the presence of three different faults and identify the type of the defect by correlating the 

peaks in the cepstrum plot with the BPFI, BPFO and BSF of the bearing at 500 RPM 

rotational speed. Therefore, Cepstrum processing provides consistent results.  
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Figure 7-0-21: Acoustic emission signals acquired by a defective bearing with multiple 
faults (blue signal) and a defect-free bearing (red signal) 

 

Figure 7-0-22: Normalized Moving RMS plots. High amplitude peaks are visible at signal 
generated by the defective bearing (red signal). No obvious peaks at signal recorded by 

the healthy bearing (blue signal)  
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Figure 7-0-23: Power spectrums of the previous acoustic emission signals. Defective 
bearing is the red signal and healthy bearing is the blue signal 

 

Figure 7-0-24: HFRT plot for the defective bearing showing clear the fundamental 
frequencies and the harmonics of the BPFO. 
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Figure 7-0-25: Cepstrum plot of defective bearing showing clear the three fundamental 
frequencies of the bearing at 500RPM 

 

The raw vibration signal generated by a defective bearing with damage in both outer and 

inner races and in six rollers is shown in Figure 7-26. The rotational speed is 500 RPM. 

Figure 7-27 presents the power spectrum analysis of the previous signal. High amplitude 

peaks are generated between 2 kHz and 4 kHz indicating the presence of the bearing defects. 

This frequency range has been used as a reference for the band-pass filter at HFRT analysis. 

 

Cepstrum analysis has been performed at the vibration signal (Figure 7-28). The fundamental 

frequencies of the bearing at 500RPM are BPFO= 76.9Hz, BPFI= 98.1Hz, BSF=65.85Hz. 

The peaks at  confirms the presence of the 

faults. There is a slight offset between the theoretical and the observed fundamental 

frequencies due to the slight variation in the rotational speed during the test. The plot in 

Figure in Figure 7-29 is the zoomed-in of the Cepstrum results. 
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HFRT algorithm has also been applied at the vibration signal. Figure 7-30 shows the HFRT 

results. The BPFO frequency and its harmonics are visible.  The plot in Figure 7-31 is the 

zoomed-in of the HFRT result. The BSF frequency was revealed. However, the BPFI 

frequency was not observed. Therefore, Cepstrum analysis of the vibration signal obtained is 

more suitable for detecting the fundamental frequencies when multiple faults are considered. 

  

Figure 7-0-26: Raw vibration signal recorded by defective bearing with significant damage 
at both races and in six rollers at 500 RPM 

 

Figure 7: 0-27: Power spectrum of the previous vibration signal. High amplitude peaks are 
visible between 2 kHz and 4 kHz. These frequency range can be used for further processing 
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Figure 7-0-28: Cepstrum plot of the previous vibration signal 

 

Figure 7-0-29: Zoomed-in of Cepstrum plot. The BPFO, BPFI and BSF frequencies are visible. 
Cepstrum algorithm is the most suitable type of analysis when multiple defects are 

considered  
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Figure 7-0-30: HFRT results showing the BPFO frequency and its harmonics. BSF frequency 

is also obvious. In contrast, the BPFI frequency is not presented 
 

 
Figure 7-0-31: HFRT results zoomed-in 

 

 

Laboratory tests were also carried out on a bearing with damage in both outer and inner races 

to investigate the capability of AE and vibration analysis to detect the defects. Data were 

recorded for a few seconds and the rotational speed was between 100 and 700 RPM. Two 

signals were selected to represent the ability of AE and vibration techniques to detect 

multiple defective bearings. Figure 7-32 shows an example of an AE signal generated by a 

defective bearing with damage in both inner and outer race. The rotational speed was 500 
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RPM. The power spectrum plot of the previous signal is provided in Figure 7-33. The results 

shows high amplitude peaks after 100 kHz are related to the bearing defects. The Cepstrum 

plot is shown in Figure 7-34. No obvious peaks related to defects are visible to cepstrum 

results. Therefore, the cepstrum analysis is no longer suitable for this particular dataset. 

HFRT algorithm has been applied on the AE signal. The result is provided in Figure 7-35. 

The BPFO frequency and its harmonics are clearly observed. In contrast, BPFI frequency is 

not visible at the HFRT plot. 

Figure 7-0-32: Raw acoustic emission signal generated by defective bearing with damage 
in both races at 500 RPM 
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Figure 7-0-33: Power spectrum of the previous acoustic emission signal 

 

Figure 7-0-34: Cepstrum plot of the acoustic emission signal. No obvious peaks are visible 

 

Figure 7-0-35: HFRT plot. The BPFO frequency and its harmonics can be identified. No BPFI 
frequency is visible at the HFRT results 

 

In order to evaluate the capability of vibration technique to monitor damage in both races on 

the test bearing, a relevant set of experiments were carried out. The rotational speed was 

between and 100 and 700 RPM. Figure 7-36 presents a raw vibration signal generated by a 

defective bearing with damage in both inner and outer races at 500 RPM. Figure 7-37 shows 

the power spectrum of the vibration signal. High amplitude peaks between 1000 and 2500 Hz 

are visible. This frequency band can be used as a reference for further processing. Figure 7-
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38 shows the zoomed-in plot of the power spectrum. A certain pattern can be recognized due 

to repeating peaks spaced at 76 Hz. This frequency corresponds to the BPFO frequency at 

500 RPM. Therefore, low frequency analysis can confirm the presence of the outer race 

defect. 

 

HFRT algorithm has been applied on the vibration signal in order to identify the type of the 

defects. The Figure 7-39 shows the HFRT results. The fundamental frequency of 76.87 Hz 

followed by its harmonics are clearly visible. This frequency corresponds to the BPFO 

frequency at 500 RPM. Figure 7-40 presents the zoomed-in plot of the HFRT results. The 

fundamental frequency of 93.65 Hz can be recognised. This frequency corresponds to the 

BPFI frequency at 500RPM. There is a slight offset between the theoretical and the observed 

fundamental frequencies due to the slight variation in the rotational speed during the test. 

 

Furthermore, the application of Cepstrum analysis was investigated to detect the two 

fundamental frequencies of the bearing. Figure 7-41 shows the Cepstrum results. The peak at 

0.013 corresponds to the BPFO frequency at 500 RPM ( ). The fundamental 

frequency followed by its harmonics. Figure 7-42 shows the zoomed-in Cepstrum plot. The 

peak at 0.01084 corresponds to the BPFI frequency at 500 PRM ( ). 

Therefore, vibration Cepstrum analysis is able to detect defective bearings with multiple 

defects. 
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Figure 7-0-36: Raw vibration signal generated by defective bearing with damage in both 
races at 500RPM 

 

Figure 7-0-37: Power spectrum results of the vibration signal 
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Figure 7-0-38: Zoomed-in power spectrum of the raw vibration signal. Number of peaks 
spaced at 76Hz indicating the presence of outer race fault 

Figure 7-0-39: HFRT plot. The BPFO and its harmonics are clearly visible 
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Figure 7-0-40: Zoomed-in HFRT results. The BPFI is also recognized 

 

Figure 7-0-41: Cepstrum plot showing the BPFI frequency followed by its harmonics 
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Figure 7-0-42: Zoomed-in Cepstrum plot. The BPFI frequency is also visible 
 

7.1.5. Case study 4 - Effect of load and speed in Amplitude and in Normalized Moving 

RMS peak value 

  

During laboratory trials, AE measurements on roller defective bearings were conducted in 

order to evaluate the effect of speed and load on AE signatures. Two sets of experiments with 

different fault severity were carried out. The speed was between 100 and 700 RPM. Origin 

V.9.0 Software was used for the line-graphs. Figure 7-43 shows the effect of speed in peak 

amplitude of the raw signal and in Moving RMS peak values after normalisation. The sample 

was a roller defective bearing with fault length 10%. It is visible that the AE amplitude raised 

as the rotational speed increases. More energy released by the impact produced by the roller 

defect at higher speed resulting in amplitude increase. The Moving RMS peak value after 

normalisation was maximum between 300 and 500 RPM. 

 

Figure 7-44shows the effect of speed in peak amplitude of the raw signal and Moving RMS 

peak value after normalisation when the roller defective bearing has fault length 50%. The 

same pattern in amplitude peak as previous is observed. The peak value after normalisation 

was maximum between 400 and 700 RPM with exception of 600 RPM rotational. 
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The effect of load in AE signals was also evaluated. The load was between 5 and 9 bar. 

Figure 7-45 presents the effect of load in amplitude peak of the raw signal and in Moving 

RMS peak value after normalisation. The sample was a roller defective bearing with 10% 

length. The higher value in both parameters was observed at 8 bar. 

 

Figure 7-0-43: The effect of speed in amplitude peak and in Normalized Moving RMS peak 
value. The sample was a roller defective bearing with 10% fault length  
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Figure 7-0-44: The effect of speed in amplitude peak and in Normalized Moving RMS peak 
value. The sample was a roller defective bearing with 50% fault length 

 

 
Figure 7-0-45: The effect of load in amplitude peak and in Normalized Moving RMS peak 

value. The sample was a roller defective bearing with 10% fault length 
 

7.1.6 Case study 5- Trolley tests with a wheel flat defect 

 

Trolley experiments with a wheel flat defect were employed at the University of Birmingham 

in order to evaluate vibration analysis in detecting and identifying the type of the defect. 

Despite vibration signatures from in-service wheels are unique, trolley results are more 

clearly due to less noise.  Vibration signatures from a defect-free wheel were also recorded 

for comparison and validation purposes. 

 

Figure 7-46 shows an example of raw vibration signals generated during these tests. The blue 

trace signal was acquired from the wheel with the flat defect whereas the red trace signal was 

recorded by the defect-free wheel. The peaks related to the wheel contained the flat defect are 

clearly visible. 
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Vibration power spectra are shown in Figure 7-47. High amplitude between 1.5 and 2.5 kHz 

can be clearly identified. This frequency range can be used as a reference for further 

processing. No obvious peaks are observed at the power spectrum generated by the defect-

free signal (red signal). A healthy threshold can also be applied in order to compare the 

datasets automatically. 

 

Figure 7-48 shows the Moving RMS results after they have been normalised. The impacts 

produced by the wheel flat defect release more energy. Sharp peaks related to the energy 

released during its impact event are clearly visible indicating the presence of the defect. 

 

The HFRT algorithm has been applied on the recorded signals. Figure 7-49 shows the HFRT 

results. The peaks are related to the number of wheel revolutions. According to the vibration 

signature analysis plot, this pattern is observed at wheel flat defects. Therefore, the type of 

the defect was identified.  
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Figure 7-0-46: Raw vibration signals generated by wheel flat defect (blue signal) and 
defect-free wheel (red signal) 

 

Figure 7-0-47: Vibration power spectrums from previous signals. A peak at 2 kHz can be 
observed at the spectrum acquired by the defective wheel 
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Figure 7-0-48: Normalized Moving RMS from previous signals (blue signal-wheel flat 
defect and red signal-defect-free wheel) 

 

Figure 7-0-49: HFRT results of vibration signals (red signal-wheel flat defect and blue 
signal-defect-free wheel) 

 
In summary, results and data analysis performed during this work are described briefly 

below. The ability of Acoustic Emission and vibration monitoring techniques in wheel and 

axle bearing damage detection has been evaluated and assessed by the novel methodology 

applied at the acquired signals.  

Before the experimental part of this project, pencil lead tip breaks (Hsu-Nielsen) tests were 

carried out in order to assess the proper installation of AE sensors. Several laboratory cases 
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studies have been considered in this thesis using customised test rigs. Firstly, detection and 

evaluation of outer race bearing defects were investigated. The rotating speed was between 

100 and 1000 RPM. Representative results of a defective bearing at 500 RPM have been 

presented. HFRT algorithm has been applied at the raw data in order to identify the type of 

the defect. From the results obtained, the fundamental faulty frequency and its harmonics 

have been clearly seen. This frequency corresponds to a known faulty frequency for this 

model of bearing at 500 RPM.  The same pattern of results is observed at vibration signals. 

Therefore, the accuracy of the proposed analysis method is validated. 

 

In addition, Acoustic emission and vibration signals were acquired using two roller defective 

bearings with different severity. Signals of defect-free bearing was also recorded for 

comparison purposes. Bearing defect quantification has been achieved when Normalized 

Moving RMS applied at the raw signals. Comparison between frequency spectra has been 

presented and discussed. High amplitude peaks at frequency spectrum of defective bearing 

can be used as a reference for further processing.  HFRT algorithm has been applied in the 

raw signals. Bearing characteristic frequency and its harmonics can be recognised. Thus, 

HFRT analysis has been considered as the appropriate signal processing method for 

identifying the type of the defect. 

 

As part of the experimental plan of this project, the performance of Acoustic emission and 

vibration technique in detecting bearing with multiple defects was evaluated. Two sets of 

experiments were carried out using the test rig. The first testing configuration considered, 

involving a bearing with significant damage in both outer and inner races and in six rollers in 

each side. The second one involved a bearing with damage in outer and inner races. In raw 

signals, high amplitude peaks are generated by the impacts of the faults. HFRT analysis has 
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been applied at the acquired signals. The three faulty frequencies has been identified (BPFO, 

BPFI, BSF). However, the BPFO harmonics are only observed in the HFRT plot. BPFI and 

BSF harmonics are not presented in the results.  Furthermore, Cepstrum analysis has been 

applied at the raw signals and it has been proved that Cepstrum analysis is more suitable for 

detecting multiple defects. The three bearing faulty frequencies and their harmonics have 

been presented in cepstrum. Therefore, cepstrum analysis provides more consistent results 

than HFRT algorithm when multiple defects considered. The same pattern in results is also 

observed for the defective bearing with damage in outer and inner race. 

 

The effect of speed and in load in amplitude of raw signals and in Normalized Moving RMS 

peak value is also evaluated and discussed in this work. From the results obtained, AE 

amplitude raised as the rotational speed increases. The sample was a roller defective bearing. 

The range of speed was between 100 and 700 RPM. The Normalized Moving RMS peak 

value was maximum between 300 and 500 RPM. The effect of load in AE signal was also 

presented. The load was between 5 and 9 bar. The higher value in both parameters was 

observed at 8 bar. 

 

Wayside vibration signals were also acquired from simulated wheel flats using a test trolley. 

The experiments have been considered in order to evaluate vibration monitoring in wheel flat 

detection.  High amplitude peaks were observed in raw signals. Moving RMS analysis has 

been applied in the collected data. The impacts produced by the wheel flat release more 

energy. Sharp peaks related to the energy release during its impact event are clearly visible 

indicating the presence of the defect. In addition, HFRT algorithm has been applied on the 

recorded signals. The peaks are related to the number of wheel revolutions. This pattern is 
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observed at wheel flat defects. Therefore, the type of the defect has been detected 

successfully.  

 

7.2 Long Marston field trials 

7.2.1 On- board measurements 

 

Experiments were carried out under actual conditions in Long Marston rail track in order to 

evaluate the customised AE and vibration analysis RCM system. On-board and wayside 

measurements were recorded and processed in order to assess the condition of axle bearings.  

The test train run forward with consistent speed of 48 km/h and backward with speed of 32 

km/h over the instrumented area. The sampling rate used was set at 500 k Samples/s. The 

acquisition duration was 12s for both scenarios in order to record the entire train waveform. 

 

In the first set of trials on-board measurements were carried out in order to detect simulated 

inner race defects. The test configuration is shown in Figure 7-50. Figure 7-51 shows an 

example of a raw AE signal generated by an inner race defective axle bearing. The power 

spectrum of the defective axle bearing is presented in Figure 7-52. Sharp amplitude peaks are 

clearly visible indicating the presence of the defect. These frequencies can be used as a 

reference for the band-pass filtering during the HFRT process.  

 

The HFRT results are provided in Figure 7-53. The fundamental frequency of 49.95 Hz and 

its harmonics can be recognised.  According to manufacturer’s datasheet, the BPFI is 11.7 Hz 

when the bearing rotational frequency is 1Hz. The train speed was 48 km/h which 

corresponds to a wheel rotational speed of 4.2 Hz (256RPM) 
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Figure 7-0-50: Test configuration at on-board Long Marston trials 

 

Figure 7-0-51: Raw acoustic emission signal generated by an inner race defective axle 
bearing 
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Figure 7-0-52: Power spectrum plot of inner race defective axle bearing 

 

Figure 7-0-53: HFRT results of the inner race defective axle bearing. The fundamental 
frequency of 49.95 Hz and its harmonics are clearly visible 

 

7.2.2 Wayside measurements 

 

As part of Long Marston test plan, wayside measurements were also carried out in order to 

evaluate the capability of AE to detect and quantify roller defects. AE testing were carried out 

on axle bearings with roller defects at different severity (2, 4, 8 mm deep). Defect type 
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evaluation was achieved by frequency analysis and severity fault quantification was 

accomplished by Normalized Moving RMS analysis. 

 

The test configuration is shown in Figure 7-54. The speed was 48 km/h and the movement of 

the train was with engine in the front. The schematic diagram in Figure 7-55 shows the 

distance between the wheels of the tested train. 

 

Figure 7-56 shows the raw AE signal generated by the train. The distance between the wheels 

was known. Therefore, the peaks at 5.452s, 6.36s and 6.38s are related to 2mm, 4mm and 

8mm roller defects. Peak at 5.452s corresponds to 2mm roller defect. The acoustic emission 

was truncated from time window 5.45s to 5.46s. This signal was selected as a template. The 

power spectrum of the template is shown in Figure 7-57. This spectrum was compared with 

the spectra generated by 4mm and 8mm roller defects. In addition, the template was 

compared with the spectrum generated by the noise of the braking event towards the end of 

the acquisition. The results are shown in Figure 7-58, Figure 7-59 and Figure 7-60. 

 

Two signals which are generated by the same fault are expected to have similar frequency 

distribution. From the results obtain, it obvious that high similarity in frequency distributions 

is clearly visible in Figure 7-58 and Figure 7-59. No similarity in frequency spectrum is 

observed in Figure 7-60. Therefore, acoustic emission frequency analysis can identify type of 

the defect at wayside trials. 
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The effect of fault severity on Moving RMS peak values after normalisation is shown in 

Figure 7-61. The Moving RMS amplitude increases as the axle bearing condition deteriorates. 

 

 

Figure 7-0-54: Test configuration at wayside Long Marston trials 
 

 

Figure 7-0-55: Schematic showing the distance between the wheels 
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Figure 7-0-56: Raw acoustic emission signal generated by three different roller defective 
axle bearings 

 

Figure 7-0-57: Power spectrum of acoustic emission signal generated from time window 
5.45 to 5.46s. Peak at 5.452s corresponds to 2mm roller defect. This signal is selected as a 

template 
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Figure 7-0-58: The red signal is the power spectrum of the acoustic emission signal from 
time window 6.36 to 6.37. Peak at 6.36 corresponds to 4mm roller defect. Blue signal is 
the power spectrum generated by 2mm roller defect (template). High Similarity can be 

clearly seen 

 

Figure 7-0-59: The red signal is the power spectrum of the acoustic emission signal from 
time window 6.38 to 6.39. Peak at 6.383 corresponds to 8 mm roller defect. Blue signal is 
the power spectrum generated by 2mm roller defect (template). High Similarity can also 

be seen 
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Figure 7-0-60: The red signal is the power spectrum of the acoustic emission signal from 
time window 7.44 to 7.45s. Peak at 7.44s corresponds unknown noise. Blue signal is the 

power spectrum generated by 2mm roller defect (template). No similarity can be 
observed 

 

Figure 7-0-61: Line graph presents the effect of fault severity on Normalized Moving RMS 
peak value. The Normalized Moving RMS amplitude increases as the axle bearing 

condition deteriorates 
 

Summing up, on-board and wayside experiments were carried out under controlled conditions 

in Long Marston, UK rail track in order to evaluate and assess the ability of the customised 

vibroacoustic monitoring system to detect bearing faults at early stage. In the first set of 
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trials, on-board measurements were carried out in order to detect simulated inner race defects. 

Sharp amplitude peaks were visible in the power spectrum indicating the presence of the 

defect. These frequencies can be used as a reference for designing the band pass filter of the 

HFRT process. Furthermore, HFRT algorithm has been applied at the collected signals. The 

fundamental faulty frequency and its harmonics have been successfully recognized at the 

envelope spectrum. Therefore, frequency domain analysis can detect the presence of a defect 

and identifying the type of the defect. 

 

In the second sets of experiments, wayside measurements were collected in order to evaluate 

the capability of acoustic emission in detection and quantification of bearing roller defects. 

From the results obtained, defect type evaluation has been achieved by frequency domain 

analysis. In addition, severity quantification has been accomplished by Normalized Moving 

RMS analysis. 

 

A peak related to 2mm roller defect has been selected as a template. The power spectrum of 

the template has been presented and compared with power spectra generated by 4mm and 

8mm roller defects. Furthermore, the power spectrum of the template has been compared 

with the spectrum generated by the noise of the braking event. 

 

Two signals generated by the same fault are expected to have similar frequency distributions. 

High similarity in frequency distributions generated by the roller defects were observed. In 

contrast, no similarity between the template and the noise of the braking event has been 

presented. Therefore, frequency domain analysis is suitable for type fault detection at 

wayside trials. 
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The effect of fault severity on Normalized Moving RMS peak value has also been discussed. 

From the results obtained, the Normalized Moving RMS amplitude increases as the bearing 

condition deteriorates. Hence, severity fault quantification can be achieved by Normalized 

Moving RMS analysis.  

  

 

7.3 Cropredy in-service trials 

7.3.1 Example of freight and passenger trains waveform 

A series of wayside measurements were carried under actual operational conditions at the 

instrumented Cropredy site in-order to evaluate the customised RCM system under rail 

network conditions. The AE and vibration RCM system has been installed next to a Hot Axle 

box detector for validation purposes. Freight and passenger trains have been recorded. Each 

dataset represents the AE signal generated by the train. The acquisition time was 5 sec for 

passenger trains whereas 18 sec was selected as the optimum time for freight trains.  

 

Figure 7-62 is a representative example of a typical AE waveform generated from a 

passenger train with rolling stock free of defect. In contrast, Figure 7-63 shows an AE signal 

acquired from a freight train. The difference between two kinds of waveforms is clearly 

visible. The amplitude of AE signal generated by the freight train is lower than the passenger 

one due to the fact that the freight wagons do not have motorised axles which are noisier 

causing wheel sliding during traction. In addition, the length of the freight train was longer 

whilst its speed was lower. 
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Figure 7-0-62: Raw acoustic emission waveform from passenger train with rolling stock 
free of defect 
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Figure 7-0-63: Raw acoustic emission waveform from freight train with rolling stock free of 
defect (top) and zoomed-in of the raw acoustic emission waveform (bottom). 

 

7.3.2 Freight and passenger trains waveform with potential faults 

 

During signal processing certain freight and passenger train waveforms were identified to 

contain evidence of potential bearing faults. The results still require follow up validation from 

Network Rail. Figure 7-64 shows an AE signal collected from a freight train passing through 

the instrumented Cropredy site. High amplitude peaks and signal modulation indicates the 

presence of a defect. The raw signal acquired by the other three sensors is presented in Figure 

7-65, 7-66, 7-67. The raw signal has been analysed using different advanced signal 

processing techniques in order to confirm the presence and identify the type of the defect. 

 

 In Figure 7-68 the raw signal compared with a waveform generated by a train with rolling 

stock free of defects. Figure 7-69 shows the comparison between two power spectra. High 

amplitude peaks in the blue trace signal indicate the presence of a defect. The HFRT 

algorithm has been applied in both signals. The results is shown in Figure 7-70 and Figure 7-
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71. From the results obtained, a fundamental frequency of 453 Hz and its harmonics are 

clearly seen. The sidebands indicating the presence of an inner race bearing defect. No 

obvious peaks are observed in Figure 7-71. 

 

This particular dataset has been analysed using the TSK algorithm. The results are shown in 

Figure 7-72. High Kurtosis values also confirm the presence of defects. Frequency bands 

with high Kurtosis values can been used as a reference for further analysis. 

 

The spectrogram of the AE signal is shown in Figure 7-73. The presence of the defects is also 

confirmed.  

 

Figure 7-0-64: Raw acoustic emission (CH2) signal generated by freight train. High 
amplitude peaks and signal modulation can be clearly seen  
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Figure 7-0-65: Raw acoustic emission signal (CH1) 
 

 

Figure 7-0-66: Raw acoustic emission signal (CH3) 

 

Figure 7-0-67: Raw acoustic emission signal (CH4) 
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; 

  

Figure 7-0-68: Raw acoustic emission signals generated by freight trains. Blue signal is 
acquired by freight train with faulty wheelsets whereas red signal by freight train with 

healthy wheelset. The different in amplitude can be clearly seen 

 

Figure 7-0-69: Comparison between frequency responses of freight trains. Sharp peaks in 
specific frequencies are clearly visible. These frequencies can be used as a reference for 

further processing 
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Figure 7-0-70: HFRT results of signal generated by train with potential fault. Fundamental 
frequency of 453Hz and its harmonics can be clearly seen. Side-bands are also visible. This 

pattern can indicate an inner race defect 

  

Figure 7-0-71: HFRT plot of acoustic emission generated by freight train with healthy 
wheelset. No obvious peaks are observed 
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Figure 7-0-72: TSK results. Frequency bands with high Kurtosis value can be used as 
reference for the band-pass filter of the HFRT algorithm 

 

Figure 7-0-73: Spectrogram plot. High frequency peaks also confirm the presence of the 
defect  

 

Figure 7-74 shows an example of AE signal generated by passenger train. Strong signal 

modulation between 3.4s and 4.4s indicates the presence of a defect. The power spectrum is 

shown in Figure 7-75. Harmonics in frequency distribution can be clearly seen. These 

frequency bands can be used as reference for the band-pass filter at the HFRT process.  
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Figure 7-76 shows the HFRT results. The fundamental frequency of 771.8 Hz and its 

harmonics are visible. The sidebands are also observed. Figure 7-77 presents the TSK results. 

High Kurtosis value at 159 kHz indicating the presence of a fault. Therefore, frequency 

analysis and TSK algorithm can indicate the presence of a defect. 

 

Figure 7-0-74: Raw acoustic emission signal generated by passenger train. High amplitude 
and strong modulation can indicate the presence of a defect 

 

Figure 7-0-75: Power spectrum of previous acoustic emission signal. Harmonics in 
frequency distribution are clearly visible 
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Figure 7-0-76: HFRT results. The fundamental frequency of 771.8 Hz and its harmonics are 
visible. Sidebands can also be observed 

 

Figure 7-0-77: TSK results. High Kurtosis value at 1.59 kHz indicating the presence of a fault 
 

Figure 7-78 shows a raw AE signal generated by passenger train. Strong signal modulation 

between 3.8s and 5.2s indicating the presence of a defect. The power spectrum is shown in 

Figure 7-79. Harmonics in frequency distribution can be clearly seen. These frequency bands 

can be used as reference for the band-pass filter at the HFRT process.  
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Figure 7-80 shows the HFRT results. The fundamental frequency of 459 Hz and its 

harmonics are visible. Figure 7-81 presents the TSK results. High Kurtosis value at 109 kHz 

indicating the presence of a fault. Therefore, frequency analysis and TSK algorithm can 

indicate the presence of a defect. In addition, the fundamental frequency can be detected by 

HFRT process. 

 

 

Figure 7-0-78: Raw acoustic emission signal recorded by passenger train. Signal 
modulation can be observed 

Figure 7-0-79 : Power spectrum of previous signal. Harmonics in frequency distribution can 
be observed indicating the presence of potential fault 
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Figure 7-0-80: HFRT results. The fundamental frequency of 459.2 Hz and its harmonics can 
be clearly seen 

 

Figure 7-0-81: TSK results. High Kurtosis value at 1.09 kHz is visible indicating the presence 
of a fault 

 

Figure 7-82 shows an acoustic emission signal acquired by passenger train. Strong signal 

modulation between 1.6s and 2.5s indicating the presence of a defect. The power spectrum is 

shown in Figure 7-83. Harmonics in frequency distribution can be clearly seen. These 

frequency bands can be used as reference for the band-pass filter at the HFRT process.  
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Figure 7-84 shows the HFRT results. The fundamental frequency of 2450 Hz and its 

harmonics are visible. Figure 7-85 presents the TSK results. High Kurtosis value at 149 kHz 

indicating the presence of a fault. Therefore, frequency analysis and TSK algorithm can 

indicate the presence of a defect. 

 

Figure 7-0-82: Raw acoustic emission signal generated by a passenger train. High 
amplitude and signal modulation can be clearly seen 
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Figure 7-0-83: Power spectrum of previous signal. Harmonics in frequency distribution can 
be observed indicating the presence of a fault 

 

Figure 7-0-84: HFRT plot. The fundamental frequency of 2450 Hz and its harmonics are 
clearly visible 

 

Figure 7-0-85: TSK results. High Kurtosis value at 1.149 kHz indicating a potential fault 
 

To sum up, a series of wayside measurements were carried out under actual operational 

conditions at the instrumental Cropredy site in order to evaluate the customised RCM system 

in wheel and axle bearing damage detection. Freight and passenger trains have been recorded. 
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Representative examples of acoustic emission waveforms generated by passenger and freight 

trains with rolling stock free of defects have been presented.  

 

During signal processing, several freight and passenger train waveforms has been detected to 

contain evidence of potential bearing faults. High amplitude peaks at raw signal and signal 

modulation indicate the presence of a defect. Harmonics in frequency distribution has been 

observed indicating the presence of a potential fault. In addition, HFRT algorithm has been 

applied at the collected data. Bearing fundamental frequency and its harmonics are visible in 

the envelope spectrum.  The captured signals have also been analysed using the TSK 

algorithm. High kurtosis values also confirm the presence of a defect. Frequency bands with 

high kurtosis value can be used as a reference for designing the band-pass filter of the HFRT 

process. Furthermore, the presence of the defect is also confirmed by the Spectrogram.  
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Chapter 8 Conclusions and Recommendations for 

future work 

8.1 Conclusions 
 

This thesis has presented the further advancement of an integrated online vibroacoustic RCM 

system for rolling stock wheelsets. AE and vibration analysis have been carried out in order 

to evaluate the condition of wheelsets under different experimental setups including 

measurements of in-service rolling stock operating on the Chiltern rail line in the UK.  

Laboratory, field and in-service experiments have been performed. On-board and wayside 

measurements have been carried out together with the associated signal processing required 

for the evaluation of the data obtained. Time, frequency and time-frequency analysis have 

been considered for processing the captured data. 

 This study has proposed a procedure for undertaking a literature review of railway rolling 

stock wheelsets and faults. Common wheel, axle bearing and axle defects have been 

presented. Inspection using various NDT techniques for railway rolling stock wheelsets have 

been reviewed and discussed in details. Commercial and non-commercial RCM systems for 
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the evaluation of the structural integrity of railway wheelsets are presented. University of 

Illinois at Chicago on-board monitoring system has a few similarities with the integrated on-

line vibroacoustic RCM of this study. Comparison between the two systems have been 

presented. 

Acoustic Emission (AE) and Vibration signal analysis in evaluation of railway wheelsets 

health integrity have also been reviewed and discussed. Fundamental of AE testing and AE 

signal has been presented in details. Time Driven Data have been recorded during the 

experimental part of this project. Furthermore, the two categories of AE sensor have been 

described. Resonance sensors have been considered as a suitable option for the developed 

condition monitoring system due to their frequency response. Advantages and limitations of 

AE testing have been presented. Advance signal processing of AE signals can overcome the 

most of limitations and can be effective for monitoring the damage initiation and degradation 

in railway wheelsets. Thus, AE has been employed as the appropriate structural health 

monitoring technique for this project. 

State-of the art in Acoustic Emission and Vibration signal analysis have been reviewed and 

discussed. Several researches have used AE and vibration in order to detect wheelset defect. 

The data analysis and the results of their experiments have been presented together with their 

conclusions. 

Current state of work using AE and vibration signal analysis have been described. The 

experimental methodology and data analysis employed in the current study have been 

presented. The effectiveness of acoustic emission and vibration techniques supported by the 

experiments.  

Advanced signal processing algorithms of railway wheelsets fault detection have been 

reviewed. Time, frequency and time-frequency domain analysis are the three approaches of 
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signal analysis that are discussed in the current work. Signal processing techniques such as 

moving RMS, moving Kurtosis, Peak to Peak analysis, Fast Fourier Transform, High 

Frequency Resonant Technique, Cepstrum analysis and Time- Spectral kurtosis have been 

presented in details. Comparison between these signal processing techniques have been 

described. 

Integrated Remote Condition Monitoring system’s equipment and experimental methodology 

employed in the current work have been described. Two customised test rigs were used for 

the experimental part of this project. During laboratory-based testing, on-board experiments 

have been carried out using healthy and defective bearings in order to evaluate the 

effectiveness of Acoustic Emission and Vibration signal analysis. In addition, wayside testing 

on artificial-induced wheel flat have been performed using motorized trials. AE and vibration 

signals of defect-free and defective wheel have been recorded for comparison purposes.  

During field trials in collaboration with VTG Rail Limited, the customised vibroacoustic 

monitoring system have been installed under controlled conditions at Long Marston, UK. 

Wayside and on-board data have been acquired and analysed using the advanced signal 

processing techniques. The artificially induced axle bearing faults have been detected 

efficiently. An optical infrared triggering system has also been used in order to trigger 

automated the data acquisition system when the test-vehicle pass the detection zone. 

During in-service experiments, the novel remote condition monitoring system has been 

installed on the UK rail network at Cropredy at Chiltern Railway line (direction from London 

to Birmingham) adjacent to Hot Box Axle Detectors for comparison purposes.  Wayside AE 

and Vibration signals have been recorded. The results and the main conclusions of the 

experimental work of this project have been presented below.  
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From the results obtained to date, it has been effectively demonstrated that fault detection, 

defect type evaluation and fault quantification can be achieved using appropriate signal 

analysis methodology. 

During Long Marston and Cropredy trials, frequency distribution has been used in order to 

detect the presence of defects. Comparison between a template signal of defect-free bearing 

and a defective bearing have been presented. Harmonics in frequency distribution can be an 

indication of a fault. High amplitude peaks in raw signal and signal modulation can also be 

appeared due to a potential defect.  In addition, TSK analysis enhanced the ability of the 

system to identify bearing defects. Frequency bands with high kurtosis values can be used as 

a reference for further analysis in order to confirm the type of the defect.  The HFRT 

algorithm has been effectively applied in the captured data obtained during various 

measurements in order to identify the characteristic faulty frequency. The bearing defects 

were known in advance during laboratory and Long Marston experiments. Therefore, the 

bearing faulty frequencies were known by the manufacturer of the bearings.  However, 

Cropredy tests were blind trials as they were performed on in-service rolling stock. From the 

analysis carried out on Cropredy measurements from different freight and passenger trains a 

number of potential faults have been detected. The results indicating the potential presence of 

defects still need to be confirmed with help of Network Rail. Moving RMS analysis has also 

been applied at laboratory and fields measurements. Defect quantification has been shown to 

be possible by establishing appropriate threshold limits which however need to be confirmed 

more accurately for different rolling stock types.   

During laboratory trials using bearings with multiple defects, Cepstrum analysis have been 

considered as the appropriate signal analysis methodology in order to confirm the presence of 

all the defects. Three different fundamental faulty frequencies and their harmonics have been 
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detected. In addition, wheel flat on motorized trials have been confirmed by vibration signal 

analysis.  

High frequency AE and vibration have been shown to be useful techniques for railway wheel 

and axle bearing fault detection, providing superior capabilities over state-of-the art 

techniques. This has been supported by laboratory, field and in-service measurements. 

To conclude, the research contribution of current work has been achieved by the development 

of a novel vibroacoustic monitoring system for railway wheelsets. High frequency acoustic 

emission and vibration testing have been considered in order to detect wheelsets defects at the 

early stage. During the experimental part of this project, in-service trials were carried out at 

Cropredy. Potential bearing faults have been detected. Therefore, the signal processing 

methodology has been evaluated using in-service data. In addition, comparison between 

advanced signal processing techniques have been carried out using signals acquired by 

laboratory, in-field and in-service experiments. The properties of each algorithm have been 

supported by results. During the application of HFRT method, a band-pass filter should be 

designed. Novel methodology about frequency range selection of the band –pass filter has 

also been considered. TSK algorithm and frequency distribution of the signal can both 

enhance the selection of the appropriate frequency band. Harmonics in frequency distribution 

is evidence that a defect is appeared. Thus, the frequency range that the harmonics presented 

is the appropriate frequency range for the design of the band pass filter. Furthermore, 

frequency bands with high kurtosis values can be used as a reference for the band pass filter. 

 

8.2 Recommendations for future work 
The work carried out to date has yielded promising results. However, there is still substantial 

scope for future research and development in the field of wheel and axle bearing fault 



176 
 

detection and quantification. The influence of speed and weight of rolling stock on the AE 

and vibration signals obtained needs to be evaluated in more depth to confirm the 

quantification capability of the techniques. This will also require that the suspected defective 

wheels and bearings will need to be checked manually after detection by the system.  

 

Additional, development should also focus on wireless sensing and energy harvesting to 

increase the autonomy of the system and simplify operational principles. Further 

advancements are also possible in the signal processing, particularly towards decreasing 

computational costs of more complex algorithms such as moving kurtosis and spectral 

kurtosis. The possibility of using wavelets is an area worth of further investigation.   

As the complexity of machinery increases, the possibility of fault detection by single- sensor 

based methods decreases gradually.  Along with the rapid development of computers, a 

multi-sensor based monitoring system will be expected to yield more independent results.  

Data fusion techniques are suggested as the best solution for increasing the effectiveness of 

the condition based maintenance (Niu et al. 2010). Data fusion methods have recently gained 

ground within the research communities due to rapid development of signal processing 

methods and to rapid progress of advanced sensors. Data fusion is defined as a process of 

combining data and information from different sources in order to maximize the accuracy of 

identifying a potential defect in a machinery (Hall and Llinas 2001).  

Data fusion techniques can be categorised into 3 groups according to their requirements (Hall 

and Llinas 2001) : 

 Signal level fusion 

 Feature level fusion 
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 Decision level fusion 

 

The customised monitoring system consists of four AE sensors and two accelerometers. 

Signal level fusion can be achieved in order to enhance the important information, improve 

detectability and reliability of the system. Signals from different sensors can be fused into a 

new signal using several methods such as Weighed Averaging algorithm,Weighted 

Averaging based on correlation function and  Kalman filter (Hall and Llinas 1997) , 

(GUANGFU et al. 2011). The new fused signal then can be analyzed using the advanced signal 

processing techniques that are presented in this thesis.  

In addition, comparison between the novel customised monitoring system that is presented in 

this work and a new multi-sensor monitoring system can be presented. Evaluation of the 

effectiveness of the multi-sensor system in detecting several wheelsets faults can also be 

achieved. 

According to Liu and Wang, the fusion of multi-sensor data provides an increased accuracy 

over a single sensor alone (Q. C. Liu and Wang 2001). In addition, data fusion reduces the 

quantity of data resulting in a faster system’s response. Furthermore, signal fusion extends 

spatial coverage of system and reduce sensor’s redundancy. Therefore, data fusion is highly 

recommended as a future work of this thesis. 
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Appendix A: Case study 1- Outer race defective 

bearings 

 

Raw acoustic emission signal obtained from an outer race defective beating at 1000RPM 

 

 

 

HFRT plot of previous raw acoustic emission signal.  The BPFO frequency and its 
harmonics are clearly seen 
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Raw vibration signal acquired by an outer race defective bearing at 100 RPM 

 

 

HFRT plot of previous raw vibration signal. The BPFO frequency and its harmonics are 
clearly observed 

 



186 
 

 

 

 

 

Raw vibration signal acquired by an outer race defective bearing at 1000 RPM 

 

 

HFRT plot of previous raw vibration signal. The BPFO frequency and its harmonics are 
clearly illustrated 
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Appendix B: Case study 2- Roller defective 

bearings 

 

 

Raw acoustic emission signal obtained from a roller defective beating at 200RPM 

 

 

HFRT plot of previous raw acoustic emission signal.  The BSF frequency and its 
harmonics are clearly seen 
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Appendix C: Case study 3 - Cropredy in-service 

trials 

 

Raw AE signal generated by passenger train. High amplitude and strong modulation can 
indicate the presence of a defect 

 
Power spectrum of previous AE signal. Harmonics in frequency distribution are clearly 
visible 
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HFRT results. The fundamental frequency of 836.5 Hz and its harmonics are visible. 
Sidebands can also be observed 
 

 
Spectrogram plot. High frequency peaks also confirm the presence of the defect 
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TSK results. High kurtosis value at 159 kHz indicating the presence of a fault 

 
 
Raw AE signal generated by passenger train. High amplitude and strong modulation 
can indicate the presence of a defect 
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Power Spectrum of previous signal 

 
TSK results. High Kurtosis value at 165.8 kHz indicating the presence of a fault 
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Raw AE signal generated by passenger train. High amplitude can be observed 

 
Power Spectrum of previous AE signal 
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TSK results. High Kurtosis value at 165 kHz indicating the presence of a fault  

 

 




