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Abstract

State-of-the-art reinforcement learning (RL) algorithms generally require a large sam-

ple of interaction data to learn sufficiently well, which makes it difficult to apply them

to the problems where data is expensive. This thesis studies exploration, transformation

bias, and policy selection of model-based RL in finite MDPs, all of which has strong

impact on sample efficiency.

Exploration has previously been studied under the setting where learning-process cu-

mulative reward needs to be maximised. When learning-process cumulative reward is

irrelevant and sample efficiency is of primary concern, existing strategies become ineffi-

cient and analyses become unsuitable. This thesis formulates the planning for exploration

problem, and shows that the efficiency of exploration strategies can be better analysed by

comparing their behaviours and exploration costs with the optimal exploration scheme of

the planning problem. The weaknesses of existing strategies and the advantages of con-

ducting explicit planning for exploration are presented through an exploration behaviour

analysis in tower MDPs.

Transformation bias of value estimates in model-based RL has previously been consid-

ered insignificant and has not gained much attention. This thesis presents a systematic

empirical study to show that when the sample size is small, the transformation bias is not

only significant, it can even lead to disastrous effect on the accuracy of value estimates and

overall learning performance in some cases. The novel Bootstrap-based Transformation

Bias Correction method is proposed to reduce the transformation bias without requiring

any additional data. It can work well even when sample size per state-action is very small,

which is not possible with the existing method.

Policy selection is rarely studied and has been conducted naively by directly comparing

two estimated values in most model-based algorithms, which increases the risk of selecting

inferior policies due to the asymmetry of the value estimate distributions. To better



study the effectiveness of policy selection, two novel family-wise metrics are proposed and

analysed in this thesis. The novel Bootstrap-based Policy Voting method is proposed for

policy selection, which can significantly reduce the risk of policy selection failures. Then,

two novel tournament-based policy refinement methods are proposed, which can improve

general RL performance without needing more data.
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CHAPTER 1

INTRODUCTION

1.1 Background

Reinforcement learning (RL) is a branch of machine learning which focuses on learn-

ing desirable behaviours by interacting with the environment [Sutton and Barto, 2018,

Szepesvári, 2010]. The learning agent observes the environment, takes some actions, see

what happens, and tries to improve the utility of its behaviour based on these obser-

vations. Such a trial-and-error style learning process occurs frequently in our daily life.

For example, when we take showers, we often play with the control valve, turning the

temperature of the water up and down several times, to find out the most comfortable

setting. This is different from the approach of supervised learning, by which we find out

the best temperature setting of the shower by, say, referring to the instruction manual of

the heater.

There have been many successes in applying RL to real-world problems in recent years.

RL has widely been used in robotics [Kober et al., 2013, Riedmiller et al., 2009, Gu et al.,

2017, Zhu et al., 2017, Tan et al., 2018, Hwangbo et al., 2019] to deal with various problems

such as motor control, locomotion, and navigation. RL agents can play board, card, and

video games at a near-human level, and it is not even too surprising in recent days to hear

that in yet another game the deep-RL-based agents have beaten the best human players

in the world [Mnih et al., 2015, Silver et al., 2016, Silver et al., 2018, Vinyals et al., 2019,
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OpenAI et al., 2019]. RL has also been applied to many other domains such as dialogue

generation and chatbot [Li et al., 2016, Serban et al., 2017], analysing biological data

[Mahmud et al., 2018], autonomous driving [Shalev-Shwartz et al., 2016, Sallab et al.,

2017], industrial process control [Nian et al., 2020], and communications and networking

[Luong et al., 2019], just to name a few.

A common characteristic of these successes is that they utilise a very large sample of

interaction data. For example, in training AlphaGo [Silver et al., 2016] which plays the

board game Go, not only a set of 30 million human expert data was used in pre-training,

but also another set of 30 million self-play matches was used in the RL phase. Assume

that a human player can have 30 matches per day, that 30 million matches need 1 million

days, or 2738 years, to finish. Another example is OpenAI Five [OpenAI et al., 2019], a

game playing agent designed for the video game Dota 2. The agent was trained for 10

months, each day playing 180 years worth of game, resulting in a gigantic sample size of

54,000 years worth of game in total.

Apparently, it is difficult (if not impossible) to replicate the successes of AlphaGo and

the like in domains where obtaining data is more expensive. For example, in autonomous

driving, obtaining non-simulated data requires a real car in good condition, some specially

designed devices that allow computers to manipulate the car, and letting the car run in

real streets. Furthermore, for safety concerns, a human backup driver is usually needed,

so that when the autonomous driving system fails, the human driver can take over control.

Even this is not sufficient to prevent fatal accidents such as the one caused by an Uber

autonomous car in 2018 [BBC, 2018], and thus even more security measures must be

taken, further increasing the cost of obtaining real data. Although there are some driving

simulators that can provide cheaper data, most of them are inaccurate and sometimes

very different from the real driving environment (e.g. in [Sallab et al., 2017], a simulator

with a top-down perspective rather than an in-car one was used for experiments). All

these factors make it tremendously difficult in autonomous driving to obtain as much data

as in the cases of AlphaGo and OpenAI Five. In such cases, having a learning algorithm
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that works reasonably well with only a small sample of data becomes highly important.

The quality of being able to learn well with small sample size is called sample efficient.

There are many factors that decide the sample efficiency of an reinforcement learning

algorithm. A common factor nowadays is the utilisation of deep neural networks [LeCun

et al., 2015] as the function approximation module of the RL algorithm. It is well-known

that deep neural networks by themselves are already highly data-hungry, and combining

RL with it worsens the problem. Thus improving the neural network optimisation method

has been one main focus of the RL research community in recent years, many have been

quite successful and widely applied (e.g. TRPO [Schulman et al., 2015], DDPG [Lillicrap

et al., 2016], and PPO [Schulman et al., 2017]).

This thesis, on the other hand, investigates several factors that lie in the more foun-

dational part of RL and are independent of function approximation. The first factor is

exploration. In reinforcement learning, exploration encourages the agent to actively visit

states and try actions that have higher uncertainty. If exploration is not carried out prop-

erly, the learning agent may either prematurely converge to an inferior policy due to lack

of key information, or waste a lot of time collecting useless data.

There has been rich literature regarding exploration, many claiming to be significantly

improving the sample efficiency, some even theoretically near-optimal. However, bench-

marking has shown such claims to be questionable, where complex systematic exploration

strategies were outperformed by simple random strategies [Kuleshov and Precup, 2014,

Tijsma et al., 2016, Taiga et al., 2020]. We consider this mismatch between theory and

practice as a twofold problem. The first is that the cumulative-reward-based metrics of ex-

ploration efficiency used in existing analysis do not reflect practical performance in terms

of sample size. The second is that, due to being designed under the cumulative-reward-

based metrics, existing strategies do not actually care to reduce useless data collection

as long as such behaviour yield sufficient rewards. These make a theoretically sound

exploration strategy practically terrible.

The second factor been studied is the transformation bias of policy evaluation in
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model-based reinforcement learning. The agent estimates the utility (i.e. the state and

action values) of different policies and identifies the best one according to the utility,

and thus the accuracy of the utility estimates has direct impact on the performance of

learning algorithms. In model-based RL, the utility is obtained by solving the Bellman

equations. The solution of the equations is a nonlinear mapping from the estimated

transition probabilities of the environment to the state/action values. Such nonlinearity

introduces bias to the value estimates, which we call transformation bias.

Transformation bias has historically been considered insignificant and unimportant

compared to the variance of value estimates [Mannor et al., 2004]. However, our empirical

results show that the transformation bias can be significant and sometimes even as large

as the true values to be estimated, especially when the sample size is small. Without

proper correction, the only way to reduce the bias is to collect a large amount of data,

making the algorithm less sample efficient.

The third factor is the value comparison and policy selection. The execution of the

learning process can be seen as an infinitely repeatable experiment in probability theory

sense, and thus the estimated utilities are random variables following some distributions

decided by the environment and the algorithm. The distributions of the estimated utilities

are rarely symmetric, which makes it possible in a single learning task that some policies

are more likely to be overestimated while the others are more likely to be underestimated.

Consequently, naive policy selection that simply choose the policy with higher estimated

utility can be biased towards inferior policies that are more likely to be overestimated.

This problem is called unfairness by [Doroudi et al., 2017].

When the sample size is small, the distribution of estimated utilities tend to be more

skewed, which may increase the chance of selecting the wrong policies. Existing algorithms

without proper policy selection method have to rely on large sample size to negate such

effect, resulting in low sample efficiency.

This thesis aims to improve sample efficiency of model-based RL by investigating these

three factors. The remainder of this chapter is organised as follows. Section 1.2 specifies
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the scope of this thesis. Section 1.3 poses the research questions to be answered in the

thesis. Section 1.4 outlines the contributions of the thesis. Section 1.5 describes the

organisation of the following chapters of this thesis.

1.2 Scope of the thesis

Although since about 2014 the majority of RL research community has shifted the fo-

cus to model-free deep reinforcement learning in continuous Markov decision processes

(MDPs), this thesis limits its own scope to the sample efficiency of model-based RL in

finite (discrete) MDPs. The value of the researches presented in this thesis has frequently

been questioned by the reviewers of our paper submissions on the ground that the results

are not instantly applicable to the former setting. Thus, the remainder of this section is

dedicated to explain the reasons behind our decision.

First, deep RL is not the best solution to every RL problem (an obvious fact neglected

by many). Deep neural networks obtain their strong representation power and model

flexibility at the cost of being data-hungry, power consuming, and even sensitive to im-

plementation [Engstrom et al., 2019]. When resources are not sufficient to find a suitable

architecture, parameter setting and implementation, or when strong representation power

is not necessary at all, using deep RL is not a wise choice. Sometimes even simple random

search algorithms can provide competitive results at a much less cost [Mania et al., 2018].

The same argument holds for model-free vs model-based RL (the former has been more

popular but has worse sample efficiency than the latter in general [Luo et al., 2019,  Lukasz

Kaiser et al., 2020]).

Second, the common claim that discrete problems in RL are less challenging than

continuous ones and thus are less worthy to be studied is a fallacy. Consider two tasks,

where the first one is to draw random curves on a screen, while the second one is to

play contract bridge. The former is a continuous problem that can be dealt with without

effort (or even without learning at all), while the latter is a discrete problem that requires
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extensive experience. Thus, the difficulty of a learning task should not be judged solely

on the ground whether it is continuous or not. The same argument holds for the scale of

MDPs. If the difficulty of learning is positively correlated to the size of state space, then

multi-armed bandits (one-state MDPs) should be trivial, which is simply untrue.

Last but not least, not being instantly applicable does not mean irrelevant. On the

contrary, the insights gained from studying the problems at more fundamental level can

often help improve more sophisticated methods. All three factors discussed in this thesis

(exploration, transformation bias, and policy selection) can be potential factors to the

low sample efficiency of state-of-the-art RL algorithms as well.

1.3 Research questions

The three factors mentioned in Section 1.1 lead to three works, each presented in a separate

chapter of this thesis. The research questions that will be discussed in these chapters are

given in the following subsections respectively.

1.3.1 Explicit planning for efficient exploration

Exploration has been studied for more than 30 years, yet state-of-the-art RL algorithms

still struggle in exploration. The first work of this thesis points out that the low efficiency

is partly due to existing exploration strategies being designed under learning-process cu-

mulative reward based performance metrics rather than sample size based ones. When

learning efficiency in terms of sample size is of primary concern, existing strategies reduce

to hand-designed heuristics that lack global planning. As a result, existing strategies can

waste a lot of time visiting already well-known states and actions, reducing their overall

sample efficiency.

To resolve this problem, the following research questions are going to be answered in

the first work of this thesis.
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Q1.1 How to better analyse the sample efficiency of exploration strategies with a sample-

size-based performance metric from a planning-based point of view?

Q1.2 According to this new analysis, what are the weaknesses of existing exploration

strategies?

Q1.3 Can explicit planning for exploration significantly improve the sample efficiency?

1.3.2 Transformation bias of model-based RL and its correction

In model-based RL, the state/action values are estimated by solving the Bellman equa-

tions with estimated transition probabilities. The solution of the Bellman equations is a

nonlinear mapping from the transition probabilities to the state/action values. Even if

transition probability estimates are unbiased, such nonlinearity may make value estimates

biased. To distinguish it from other types of biases in RL, we call it transformation bias

in this thesis. Mannor et al. [2007] suggested that correcting the transformation bias is

unnecessary because it reduces quickly as sample size grows, and also is smaller than the

variance in general. However, our empirical study presented in this thesis shows that

when sample size is small, the transformation bias can be destructively large and thus has

profound impact to the sample efficiency of model-based RL if no correction is conducted.

To deal with the transformation bias of model-based RL, the second work presented

in this thesis will answer the following research questions.

Q2.1 How does the transformation bias relate to sample efficiency?

Q2.2 In what cases is the transformation bias remarkable and needs correction?

Q2.3 How to correct the transformation bias when sample size is small?
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1.3.3 Effectiveness of policy selection in model-based RL and
its improvement

Estimated state/action values are essentially statistics computed from interaction expe-

rience. Due to the randomness of transitions, the value estimates are random variables

that usually follow some asymmetric distributions. The asymmetry may make the agent

favour inferior policies that are more likely to be overestimated. There is little research

on policy selection of model-based RL, and existing methods have to rely on using larger

samples to reduce the chance of wrong comparison, resulting in low sample efficiency.

The third work presented in this thesis will answer the following research questions

regarding the effectiveness of policy selection.

Q3.1 How to measure the effectiveness of policy selection methods? Is the naive model-

based selector good under this measurement?

Q3.2 How to improve the effectiveness of policy selection?

Q3.3 How to use the improved policy selection methods to further improve overall model-

based RL performance?

1.4 Contributions of the thesis

The contributions of this thesis are as follows.

1. We propose the planning for exploration (PFE) problem and formulate it as an

augmented MDP. We show that given the exploration demand and true transitions,

the optimal exploration scheme can be found by solving the augmented MDP using

a modified version of value iteration algorithm. We show that sample efficiency

of exploration strategies can be analysed by comparing their behaviours with the

optimal exploration scheme.
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2. Exploration behaviours in a class of tower MDPs are analysed to illustrate the

benefit of explicit planning for exploration, and to expose two weaknesses of existing

methods, namely distance traps and reward traps.

3. We present an extensive study on the transformation bias of state/action value es-

timates, revealing the relationship between the scale of the bias and relevant factors

including sample size, scale of MDP, and transition dynamics.

4. We propose the Bootstrap-based Transformation Bias Correction (BTBC) method

which can significantly reduce transformation bias of state/action value estimates

even if sample size is small.

5. We propose two metrics for measuring the effectiveness of policy selection methods,

namely family-wise policy selection risk and family-wise unfairness, and show that

they are more suitable for measuring the overall effectiveness than the original strict

fairness proposed by [Doroudi et al., 2017] and the instance-wise policy selection risk.

We then analyse the naive model-based selector to show that it is not satisfactory

in terms of these metrics.

6. We propose the Bootstrap-based Policy Voting (BPV) method for policy selection

which has significantly better family-wise effectiveness than the naive model-based

selector, and also has less family-wise unfairness than the bias-corrected selec-

tor based on our BTBC. We then propose two policy refinement methods, Bias-

corrected Tournament (BCT) and Policy Voting Tournament (PVT), to improve

overall model-based RL performance.

1.5 Organisation of the thesis

The remainder of this thesis is organised as follows.

Chapter 2 provides more details on the background of this thesis, including a short

introduction to model-based reinforcement learning and a review of existing researches
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on exploration, bias correction, and policy selection. Importantly, it discusses the crucial

differences between the learning-while-serving workflow commonly assumed in literature

and the learning-then-serving workflow commonly used in industry, as well as their relation

to this thesis.

Chapter 3 introduces our work on explicit planning for exploration, which answers

research questions Q1.1-1.3 and leads to contributions 1 and 2.

Chapter 4 presents our study on the transformation bias of value estimates in model-

based RL, which answers research questions Q2.1-2.3 and leads to contributions 3 and

4.

Chapter 5 presents our research on the effectiveness of policy selection, answering

research questions Q3.1-3.3 and leading to contributions 5 and 6.

Finally, Chapter 6 summarises the thesis and suggests some potential future work.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter provides detailed background for the later chapters. Section 2.1 gives a short

introduction to model-based reinforcement learning. Section 2.2 discusses an important

deviation of researches from practice in RL, that is, the learning-while-serving workflow

followed by most RL researches vs the learning-then-serving workflow more often seen

in industry. Sections 2.3, 2.4, 2.5 respectively review the literature on exploration, bias

correction and policy selection, and point out their shortcomings. Section 2.6 shortly

introduces the statistical technique frequently used in this thesis called bootstrap. Section

2.7 summaries this chapter.

2.1 A brief introduction to model-based reinforce-

ment learning

This section shortly introduces the essential concepts of model-based reinforcement learn-

ing that are closely related to this thesis. A more comprehensive introduction can be found

in the textbooks [Sutton and Barto, 2018, Szepesvári, 2010, Wiering and Van Otterlo,

2012].
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2.1.1 Markov decision processes

In reinforcement learning, the learning agent interacts with the environment by taking

actions and observing the changes of the state of the environment. The interaction process

is often formulated by a (discounted, infinite horizon) Markov decision process (MDP)

M , which is a tuple (S,A, P, R, γ), where S is the set of states, A is the set of actions,

P : S × A × S 7→ [0, 1] is the transition probability function, R : S × A 7→ [Rmin, Rmax]

or R : S × A × S 7→ [Rmin, Rmax] is the reward function, and γ ∈ (0, 1) is a constant

called discount factor. There also exist several less common formulations such as the

undiscounted and finite-horizon MDPs, but these will not be the main focus of this thesis.

The current state represents the circumstance of the environment the agent is in. At

each time step t = 1, 2, 3, ... , the agent observes the current state St ∈ S, and picks an

action At ∈ A to execute. The state of the environment then changes to St+1 following

the probability distribution given by the transition function P , i.e. P(St+1 = s′|St =

s, At = a) = P (s′|s, a). By definition,
∑

s′∈S P (s′|s, a) = 1 for all s ∈ S and a ∈ A. It

is called Markov decision process because the next state St+1 is only dependent on the

current state St and action At, but not the ones in the past (St−1, At−1, St−2, At−2,...).

For convenience, selecting action a at state s is denoted (s, a) while the transition from

state s to s′ under action a is denoted (s, a, s′).

The reward function R indirectly provides information about the target behaviour to

be learnt by the agent. The basic idea of reinforcement is to reward the agent when it does

something right and to punish it when it does something wrong. This is implemented as

providing reward R(s, a) or R(s, a, s′) to the agent when transition (s, a, s′) takes place.

With a properly set reward function and learning algorithm, the agent seeking to maximise

total reward eventually learns the behaviour wanted by the RL user.

The interaction history with n transitions is represented as a trajectory ψn = (S1, A1,

R1, S2, A2, R2, ..., Sn, An, Rn, Sn+1). A data point (Si, Ai, Ri, Si+1) indicates that at time

i the transition (Si, Ai, Si+1) happened and yielded reward Ri. A trajectory of length n

has n such data points, ending at Sn+1 without action An+1.
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A (deterministic) policy π : S 7→ A specifies which action is going to be taken by the

agent at each state. The set of all possible policies for a given MDP is denoted Π. Policy

represents the learnt behaviour of the agent and is the output of RL.

The utility of a policy is indicated by its value functions. The discounted cumulative

reward (sometimes referred to as the return) of a trajectory ψn = S1, A1, R1, S2, A2,

R2, ..., Sn+1 is defined as Gn = R1 + γR2 + γ2R3 + ... + γn−1Rn. In infinite horizon

setting, the state value V π(s) of policy π is defined as the limit of the expected return

limn→∞ E[Gn] the agent obtains when starting from state s and following policy π forever,

i.e. V π(s) = limn→∞ E[Gn|S1 = s, At = π(St) (t ≤ n)]. The action value Qπ(s, a) is the

limit of the expected return when starting from taking action a at state s, then following

π thereafter, i.e. Qπ(s, a) = limn→∞ E[Gn|S1 = s, A1 = a,At = π(St) (2 ≤ t ≤ n)].

With 0 < γ < 1 and Rt bounded by some [Rmin, Rmax] for all t, we have the return

G ∈ [Rmin

1−γ ,
Rmax

1−γ ], and thus the state/action values are always bounded despite the infinite

summation. Note that using an infinite horizon in the utility definition does not mean that

the agent has to actually interact infinitely. Rather, it is more of a choice for theoretical

concern and mathematical convenience. By definition, it holds that V π(s) = Qπ(s, π(s)).

The relationship between the utility of different states and actions are given by the

Bellman equations. For any policy π and state s, the Bellman equation for state value

function V π is:

V π(s) =
∑
s′∈S

P (s′|s, π(s))
(
R(s, π(s), s′) + γV π(s′)

)
, (2.1)

and for action value function Qπ is:

Qπ(s, a) =
∑
s′∈S

P (s′|s, a)
(
R(s, a, s′) + γQπ(s′, π(s′))

)
. (2.2)

These equations can be proved by their definition.

A good policy should lead to high expected return. The optimal policy, denoted

π∗, is the one that can lead to maximum expected return, i.e. V π∗(s) ≥ V π(s) and
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Qπ∗(s, a) ≥ Qπ(s, a) for all policies π ∈ Π, states s ∈ S, and actions a ∈ A. For

convenience, V π∗ and Qπ∗ are denoted V ∗ and Q∗ respectively. It can be proved that the

following the Bellman optimality equations hold:

V ∗(s) = max
a∈A

∑
s′∈S

P (s′|s, a)
(
R(s, a, s′) + γV ∗(s′)

)
, (2.3)

Q∗(s, a) =
∑
s′∈S

P (s′|s, a)
(
R(s, a, s′) + γmax

a′∈A
Q∗(s′, a′)

)
. (2.4)

In addition, it holds that V ∗(s) = maxa∈AQ
∗(s, a). It is possible that more than one

policy has the same state/action values at all states, thus the optimal policy might not

be unique, but the optimal state/action value function is always unique (see Section 3.6

of [Sutton and Barto, 2018]).

2.1.2 Solving true MDPs via policy planning

If the true P and R are known, then the problem of computing utility for a given policy

reduces to solving a system of linear equations given by Equations 2.1 or 2.1, which can

be done by straightforward methods such as matrix inversion and Gaussian elimination.

Equations 2.3 and 2.4 involve maximisation operations and thus are slightly more compli-

cated. Policy planning algorithms such as Policy Iteration and Value Iteration [Puterman,

1994] can be used to compute V ∗ and Q∗ by iteratively solving these equations. It has

been proved that these algorithms converge to the true optimal values in the limit, or to

the near-optimal ones in polynomial time under some assumptions [Littman et al., 1995].

The optimal policy π∗ can easily be obtained by π∗(s) = argmaxaQ
∗(s, a) or equivalently

π∗(s) = argmaxa
∑

s′∈S P (s′|s, a)
(
R(s, a, s′) + γV ∗(s′)

)
.
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2.1.3 Model-based and model-free RL

Since in most RL settings the transition probability function P and reward function R

are unknown to the learning agent, V and Q must be estimated from the observations.

Existing methods can be put into two categories, namely model-based RL and model-free

RL, based on whether the algorithm maintains a model of the unknown MDP or not. As

discussed in Section 1.2, in this thesis we focus on model-based RL, though we will also

discuss briefly the transformation bias in model-free RL in Section 4.6.

Model-based RL creates a model MDP M̂ = (S,A, P̂ , R̂, γ) of the unknown true MDP

M = (S,A, P, R, γ), and updates it with collected transition and reward information. The

most straightforward way to update the model transition function is to use P̂ (s′|s, a) =

Ns,a,s′/Ns,a, where Ns,a is the sample size at (s, a) (that is, the number of times action a

was taken at state s), and Ns,a,s′ is the number of transitions (s, a, s′) occurred in that

sample. As for the rewards, R̂(s, a) = σ(s, a)/Ns,a or R̂(s, a, s′) = σ(s, a, s′)/Ns,a,s′ can be

used, where σ(s, a) and σ(s, a, s′) are the sum of the reward gathered along with state-

action pair (s, a) and transition (s, a, s′), respectively. In many RL settings the reward

function R is deterministic, and the estimation of R becomes trivial (i.e. R̂ = R).

After constructing a model MDP M̂ , model-based RL use it in place of the unknown

true MDP M as the input of the policy planning algorithms mentioned in the previous

section to compute estimated value functions V̂ , Q̂, V̂ ∗, or Q̂∗. The optimal policy of M̂

then can be obtained in the same way as introduced in Section 2.1.2. With the sample size

Ns,a → ∞ at every state-action pair (s, a), the model MDP M̂ converges in probability

towards the true MDP M , and thus the optimal policy of M̂ is a consistent estimator of

the true unknown optimal policy π∗.

Historically, model-based RL is considered expensive both in time and space complex-

ity, because it needs to store the whole transition function and iterate all entries when

computing state/action values. Model-free RL methods were then proposed to avoid these

problems by not estimating transition probabilities directly, but using visit frequencies

of each transition in a trajectory to approximate the effect of transition probabilities in
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value computation. A detailed discussion regarding the relationship between model-based

and model-free RL can be found in Chapter 8 of [Sutton and Barto, 2018].

Model-free RL has had much more popularity in the last 10 years because it is easier

to implement and to combine with function approximation techniques than model-based

RL, and has been successfully adapted to deep RL relatively earlier (e.g. DQN [Mnih

et al., 2015] and A3C [Mnih et al., 2016]). Model-based RL has regained attention in

recent years for being more sample efficient than model-free RL, and there have also been

much efforts to adapt it to deep RL, such as [Nagabandi et al., 2018, Luo et al., 2019,

 Lukasz Kaiser et al., 2020].

2.2 Learning-while-serving vs learning-then-serving

This section discusses an important deviation of RL academic research from industrial

practice, that is, the learning-while-serving and the learning-then-serving workflows. This

deviation, though very often completely neglected by the RL research community, is cru-

cial for understanding some gaps between theory and practice regarding sample efficiency.

In most researches, the workflow of RL is automatically assumed to be learning-while-

serving, where the agent is trained and deployed to the application at the same time, not

only synchronously, but also in the same MDP interaction process. That is, the agent is

assumed to learn by fulfilling its real-world duties. Such a setting closely resembles our

own experiences, in which we learn and improve ourselves based on the feedbacks we get

in our daily life.

However, the industry more often uses a learning-then-serving workflow when applying

RL, where the agent is first trained during its production process, then deployed to its

actual serving process with the policy produced in the previous process. Learning does

not happen in the serving process, and thus the learnt policy does not change after the

learning process is finished. Examples of explicit preference to this workflow in industry

can be found in [Nian et al., 2020].
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The separation of learning and serving processes has three important practical ben-

efits. First, it reduces the risk of undesirable incidents happening during service due to

unexpected changes of behaviour. No customer would like to see their autonomous cars

running into buildings, service robots damaging furnitures at home, bots acting stupidly

in video games, just because the learning agent decides to try something new. Such

incidents, if necessary for learning purpose, better happen only under controlled circum-

stances supervised by experts in the production phase.

Second, the separation allows quality control, where the manufacturer can test the

trained agent and decide whether it satisfies the specification of the product or not.

Conducting quality control is more difficult in the learning-while-serving workflow because

learning is not halted and the policy could change (sometimes drastically) after testing,

unless the learning process is completely converged (i.e. no new data could possibly

change the policy, which is difficult to guarantee in practice).

Third, the separation significantly reduces the cost of providing services, because run-

ning learning algorithms requires far more resources than simply executing a fixed policy.

The fast execution of RL policy is also a significant advantage of RL against traditional

control methods that relies on online searching and optimisation.

The deviation has crucial impact on both objective and evaluation of RL algorithms. In

learning-while-serving setting, the cumulative rewards of the learning process and serving

process is exactly the same thing. In learning-then-serving setting, on the other hand, the

cumulative rewards of the learning process and serving process are completely separated.

Since the cumulative reward in serving process decides the real-world value of the agent as

a product/service, this means that in learning-while-serving setting the learning-process

cumulative reward is exactly the objective to be maximised during learning. In contrast,

in learning-then-serving setting the objective of learning is to maximise expected serving

process cumulative reward, preferably with less steps of learning because longer learning

process means higher production cost.

Maximising learning-process cumulative reward leads to counter-intuitive scenarios
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where converging slower to the optimal policy could be a better choice. We use the

following example to show this point.

Example 2.1. Consider a task in which agents can press two buttons No and Yes, where

pressing No yields 0 reward while pressing Yes yields 1 reward. Consider two learning

agents Alice and Bob, where Alice presses No 100 times, then decides that Yes is better

and presses only Yes thereafter, while Bob presses No and Yes alternately for 150 steps,

then presses only Yes thereafter. Since the optimal policy is pressing only Yes, Alice

converges to the optimal policy at t = 101 while Bob converges at t = 151.

In this example, the undiscounted cumulative reward for Alice is GA
t = 0 for t ≤ 100

and GA
t = t − 100 for t > 100, while for Bob it is GB

t = bt/2c for t ≤ 150 and GB
t =

b150/2c+ t−150 = t−75 for t > 150. For the discounted case the expressions are slightly

more complicated, where for Alice it is GA
t = 0 for t ≤ 100 and GA

t = γ100(1−γt−100)
1−γ for

t > 100, while for Bob it is GB
t = γ(1−γ2bt/2c)

1−γ2 for t ≤ 150 and GB
t = γ(1−γ150)

1−γ2 + γ150(1−γt−150)
1−γ

for t > 150.

The curves of GA
t and GB

t in both undiscounted and discounted (with γ = 0.97) cases

are shown in Figure 2.1. It can be seen from the curves that, despite Bob converges to

the optimal policy slower than Alice, his cumulative reward of learning process is higher

than Alice at any time step t > 0.

In fact, in discounted setting with γ = 0.97, GB
t ≥ γ + γ3 ≈ 1.8827 for t ≥ 4,

while GA
t ≤

γ100

1−γ ≈ 1.5851, and thus even if Bob never presses the button Yes again (i.e.

converges to the wrong policy) after t > 4, his cumulative reward is still higher than

Alice, no matter how many times Alice presses Yes in the long run. It is thus very clear

that learning-process cumulative reward as a performance metric strongly favours early

exploiters and in some cases does not even care whether the agent learns a good policy

or not.

Such criteria is clearly problematic in the learning-then-serving setting where how fast

an agent learns a desirable policy is of primary concern. In the example above, both

agents eventually learns the same policy, which in an industrial setting means that two
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Figure 2.1: Cumulative rewards of two learning processes, where Alice converges to the
optimal policy much earlier than Bob, but her learning-process cumulative reward is lower
than Bob at every time step. (a) Undiscounted case. (b) Discounted case.

production processes eventually yield the same product. Meanwhile, Alice only uses 2/3

of the steps Bob needs to converge. Since total sample size is equivalent to the number

of learning steps, this means the production cost of Alice in terms of data is only 2/3 of

Bob. It is clearly inappropriate to still claim that Bob learns more efficiently than Alice.

Having the more practical view of sample efficiency in mind, we follow the learning-

then-serving setting throughout this thesis. Consequently, the sample efficiency of an

algorithm is evaluated either by the sample size needed to output a desirable policy, or

the quality of the output policy under a fixed sample size. It will not consider, say, the

cumulative reward collected during learning, or the number of steps taking suboptimal

actions during learning, which have been more common choices in RL literature. The

difference immediately affects the viewpoint regarding exploration, which is discussed in

the next section.

2.3 Exploration

In most RL settings, the agent starts from tabula rasa and relies on environment inter-

action to collect information. In traditional learning-while-serving workflow introduced
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in Section 2.2, there exists a so-called “exploration vs exploitation” dilemma, where the

agent has to decide whether to try actions that are deemed suboptimal by its current

knowledge but may bring more information and thus potentially more rewards in the

long run (exploration), or to choose actions with the highest estimated utility in order to

collect more short-term rewards (exploitation) [Sutton and Barto, 2018].

The dilemma becomes irrelevant in the learning-then-serving workflow followed by this

thesis, because the cumulative reward during learning is not the objective to be maximised

by the agent. Here the sole purpose of environment interaction during learning is to

collect information, and rewards are just part of such information. Thus, no exploitation

is needed in learning-then-serving setting. This scenario is called “pure exploration” in

literature on multi-armed bandits [Bubeck et al., 2009].

Many exploration strategies proposed for learning-while-serving RL can work ade-

quately in learning-then-serving RL, in the sense that algorithms using them can usually

avoid converging to undesirable policies due to lack of key information. However, since

they are designed to maximise cumulative reward of learning process rather than sample

efficiency directly, there is still a large space for improvement when applied to learning-

then-serving RL. The following subsections review common exploration strategies in RL,

their theoretical analysis and benchmarking results, then point out their shortcomings.

2.3.1 Exploration strategies

Exploration strategies are part of learning algorithms that manage the exploration vs

exploitation balance in learning-while-serving workflow and the scheme for exploration in

learning-then-serving workflow. Existing strategies can be broadly put into three cate-

gorises, namely random strategies, systematic strategies, and Bayesian approach.
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Random exploration strategies

The simplest yet widely applied exploration strategy is ε-greedy. At every learning step,

with ε probability the agent selects a random action from uniform distribution, and with

1 − ε probability it selects the action greedily with the highest estimated utility, where

ε ∈ (0, 1). Parameter ε is often initialised to a small value (e.g. 0.03) and annealed to

0 to let the agent exploit most of the time and eventually converge to the fully greedy

behaviour. Due to its simplicity, ε-greedy is widely used in applications, such as Atari

2600 game playing [Bellemare et al., 2013, Mnih et al., 2015] and robotics [Riedmiller

et al., 2009]. On the other hand, the exploration efficiency of ε-greedy is terrible due to it

relying mostly on luck to discover new information. Whitehead [1991] and Li [2012] have

shown that in some chain MDPs with n states, ε-greedy needs O(2n) steps just to reach

the goal state once.

Other random strategies conduct exploration by following some distributions such as

Boltzmann and Gaussian distributions, where actions with higher estimated utility are

more likely to be selected. Similar to ε-greedy, the degree of randomness is usually set

high initially and gradually reduce to 0, or sometimes adjusted adaptively during the

learning process [Derhami et al., 2010, Tokic and Palm, 2011]. These strategies are often

found in robotics [Whiteson et al., 2007, Kober et al., 2013] because its conservative

exploration behaviour (not selecting actions of low estimated utility) may help reduce

unwanted incidents that could damage the robots. It has also been adapted for deep RL

recently [Haarnoja et al., 2017].

Systematic Exploration

As opposed to the random strategies that rely on luck to discover new information, sys-

tematic exploration strategies attempt to reduce uncertainty through directed exploration.

The main ideas of systematic exploration, often described as “optimism in the face of un-

certainty” principle [Kaelbling et al., 1996], are as follows:

1. State-action pairs with less data have higher uncertainty.
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2. The utility of state-action pairs with high uncertainty should be intentionally over-

estimated to encourage the agent to visit them more often.

3. Collecting data at a state-action pair reduces its uncertainty as well as the corre-

sponding optimistic overestimation.

Early researches implemented the ideas by directly adding a handcrafted exploration

bonus f(s, a) to the value estimates Q̂(s, a). Agent greedily maximising Q̃(s, a)
def
=

Q̂(s, a) + f(s, a) thus automatically balances exploration and exploitation by selecting

actions with both high estimated values and high uncertainty. The bonuses were based

on visit recency [Sutton, 1990], visit frequency [Barto and Singh, 1990], value prediction

error [Moore, 1990, Schmidhuber, 1991], estimated modelling precision [Thrun and Möller,

1992], and optimistic initial values [Kaelbling, 1993].

Later, the exploration bonus developed into the interval estimation (IE) method [Kael-

bling, 1993]. Based on statistical techniques, the confidence interval (CI), or in particular

the upper limit of the CI, of value estimates are maintained and used to select actions.

The CI upper limit Q̃(s, a) of a value estimate Q̂(s, a) is always greater than or equal

to the value estimate Q̂(s, a) itself, and gets closer to Q̂(s, a) as the sample size grows.

Therefore, the upper limit Q̃(s, a) of the IE method works as a bonus-infused value es-

timates like other strategies mentioned above, but has more solid mathematical backing

than previous handcrafted bonuses.

Another branch of development in exploration bonus resulted in R-MAX [Brafman

and Tennenholtz, 2002, Kakade, 2003], in which all state-action pairs (s, a) with less than

m data points are labelled “unknown” and are optimistically assumed to have utility

Q̃(s, a) = Rmax

1−γ , where m > 0 is a parameter. Recall that Rmax

1−γ is the maximum possible

utility for any MDP with rewards no greater than Rmax, the “unknown” state-action

pairs thus always have Q̃(s, a) no less than (and in most cases higher than) the “known”

state-action paris (the ones with at least m data points). Thus, by choosing actions

with maximum Q̃(s, a), R-MAX guarantees exploration to the state-action pairs with

insufficient data. In addition, different from early bonus-based methods where the bonuses
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f(s, a) do not propagate together with the estimated values Q̂(s, a), uncertainty in R-MAX

propagates to other states through Q̃(s, a), which makes it possible for the agent to look

ahead and proactively move from the explored areas to the uncertain areas. This idea

later re-emerged as “deep exploration” [Osband et al., 2016].

Direct descendants of R-MAX include Delayed Q-learning [Strehl et al., 2009], Opti-

mistic Initial Model (OIM) [Szita and Lőrincz, 2008], MoR-MAX [Szita and Szepesvári,

2010], V-MAX [Rao and Whiteson, 2012], Increasingly Cautious R/V-MAX (ICR/ICV)

[Zhang et al., 2015], and Directed Delayed Q-learning [Oh and Iyengar, 2018]. Delayed

Q-learning is an adaptation of model-based R-MAX to model-free RL, while the others

encourage earlier exploitation during exploration (e.g. by maximising a linear combina-

tion of optimistic Rmax

1−γ and non-optimistic V̂ in V-MAX, or by using a much smaller m

in MoR-MAX).

The interval estimation method has also been extensively developed. This includes

Model-Based Interval Estimation (MBIE) [Strehl and Littman, 2005], Upper Confidence

Bound (UCB) [Auer et al., 2002], Upper Confidence Reinforcement Learning (UCRL)

[Auer and Ortner, 2006], and their many variants (e.g. UCRL2 [Jaksch et al., 2010], UC-

CRL [Ortner and Ryabko, 2012], UCRL-Factored [Osband and Van Roy, 2014], UCRLγ

[Lattimore and Hutter, 2014], UCBVI [Azar et al., 2017], and UCRL-V [Tossou et al.,

2019]).

UCRL is also applied to the Monte-Carlo Tree Search (MCTS) [Sutton and Barto,

2018, Browne et al., 2012] method and leads to the widely-known Upper Confidence Tree

(UCT) [Kocsis and Szepesvári, 2006]. UCT is common in Go-playing agents [Silver et al.,

2016].

Systematic exploration strategies mentioned above require to keep track of the degree

of uncertainty for each state-action pair, and thus had difficulty in applying to problems

with large or continuous state/action spaces. Recently, many effort has been put to adapt

them for deep RL. Bellemare et al. [2016] proposed the pseudo-count, which combines

the count-based exploration of R-MAX with the ideas of interval estimation and intrinsic
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motivation, and achieved higher efficiency than the simple optimistic initialisation trick

by Machado et al. [2015] in playing Montezuma’s Revenge, one of the most difficult games

of Atari 2600. Tang et al. [2017] proposed #Exploration which uses hash functions for

count-based exploration to reduce computational cost. Martin et al. [2017] proposed φ-

pseudocount which exploits the feature representation of deep neural networks. Pathak

et al. [2017] used the prediction error of feature space as exploration bonus. O’Donoghue

et al. [2018] proposed the uncertainty Bellman equation which is used to propagate the

exploration bonus in deep RL as R-MAX and similar strategies in finite MDPs. Machado

et al. [2020] utilised successor representation as exploration bonus.

Bayesian approach

Bayesian RL [Dearden et al., 1999, Guez et al., 2012, Ghavamzadeh et al., 2016] is an-

other approach to deal with exploration vs exploitation. Here the unknown transition

function P is assumed to be a random variable following some prior distribution P(P ).

After observing a trajectory ψt at time t, the posterior belief of P can be updated fol-

lowing Bayes’ rule P(P |ψt) ∝ P(ψt|P )P(P ). The MDPs are augmented to Bayes-adaptive

MDPs with the states being the combination of the original state information and the

trajectory of the learning process. The transition of augmented states is an integral of

the original transition P multiplied by their posterior P(P |ψ). Under such formulation,

greedily following the optimal policy of a BAMDP yields maximum cumulative reward

in its original MDP if the prior distribution of unknown P exactly matches the reality,

which automatically removes the exploration vs exploitation dilemma of learning-while-

serving RL. If this assumption does not hold, then the greedy policy of BAMDP is still

optimal within Bayesian framework, but does not correspond to any non-Bayesian opti-

mality and in general is worse than the true optimal policy in terms of cumulative reward

[Ghavamzadeh et al., 2016].

Due to the formulation of optimality being drastically different to traditional RL, this

thesis will not further consider the Bayesian approach to exploration, but only provides
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some pointers here: [Wyatt, 1998, Strens, 2000, Wang et al., 2005, Poupart et al., 2006,

Kolter and Ng, 2009, Guez et al., 2013, Osband et al., 2016, Russo et al., 2017, Agrawal

and Jia, 2017].

2.3.2 Analysis of exploration strategies

Theoretical efficiency of systematic exploration strategies has received much attention

and efforts among the RL research community, and numerous strategies with theoretical

guarantees have been proposed. The works on this topic can be put into two categories

according to the metric of efficiency being used, namely sample complexity and regret.

Sample complexity analysis

The sample complexity analysis is also known as Probably Approximately Correct (PAC)

analysis, which originated from [Valiant, 1984] for supervised learning and later adapted

to episodic reinforcement learning in [Fiechter, 1994]. It was then applied to undiscounted

fixed horizon RL in [Kearns and Singh, 2002] and the more common discounted infinite

horizon RL in [Kakade, 2003].

Sample complexity analysis in RL mainly concerns the number of suboptimal steps in

an infinitely long learning process. Step t is considered suboptimal if V ∗(St)−V algot(St) >

ε, where V ∗ is the optimal state value, V algot is the state value of the algorithm at step

t seen as a non-stationary policy, and ε > 0 is a parameter of near-optimality which

specifies the allowance for “approximately correct”. PAC analysis of an algorithm gives

an asymptotic bound to its sample complexity that holds for probability at least 1 − δ

under certain conditions on the parameter setting of the algorithm, where δ > 0 is also a

parameter of near-optimality which specifies the allowance for “probably correct”.

The bounds are usually polynomials of |S|, |A|, 1
1−γ , 1

ε
, and 1

δ
, where |S| and |A| are

the sizes of the state/action sets, and γ is the discount factor of MDP. The conditions on

algorithm parameters (directly or indirectly) specify how much exploration is needed. For

25



example, Strehl et al. [2009] proved a sample complexity upper bound O( |S||A|
ε3(1−γ)6

(|S| +

ln |S||A|
δ

) ln 1
δ

ln 1
ε(1−γ)

) for R-MAX under condition m = O( 1
ε2(1−γ)4

(|S| + ln |S||A|
δ

)), where

m is the parameter deciding how much data should be collected for each “unknown”

state-action pair before it is deemed “known” (see Section 2.3.1).

Sample complexity analysis has been conducted to Explicit Explore or Exploit (E3)

[Kearns and Singh, 2002], R-MAX [Kakade, 2003, Strehl et al., 2006], MBIE and MBIE-

EB [Strehl and Littman, 2005, 2008], OIM [Szita and Lőrincz, 2008], Delayed Q-learning

[Strehl et al., 2009], MoR-MAX [Szita and Szepesvári, 2010], V-MAX [Rao and Whiteson,

2012], UCRLγ [Lattimore and Hutter, 2014], ICR and ICV [Zhang et al., 2015], and

Directed Delayed Q-learning [Oh and Iyengar, 2018]. The best sample complexity upper

bounds for finite MDPs so far are achieved by MoR-MAX and UCRLγ.

Sample complexity analysis has also been generalised to cases other than finite MDPs.1

Strehl et al. [2007] studied the sample complexity in factored-state MDPs. Pazis and

Parr [2013] provided a sample complexity analysis in continuous MDP for the C-PACE

algorithm. Dann and Brunskill [2015] analysed the sample complexity in episodic fixed-

horizon learning problems for Upper Confidence Fixed-Horizon (UCFH) algorithm. Pazis

and Parr [2016] studied the case where multiple MDPs are available and can be explored

concurrently. Krishnamurthy et al. [2016] provided sample complexity analysis in a con-

textual decision processes similar to partially observable MDPs. There is also a more

general framework called Know What It Knows (KWIK) which applies not only to RL

but also supervised learning and active learning [Li et al., 2011]. Kolter and Ng [2009]

provided a PAC style analysis for a Bayesian algorithm called Bayesian Exploration Bonus.

Regret analysis

Regret analysis concerns the total loss of rewards the agent could have compared to an

optimal policy in undiscounted MDPs (γ = 1) with finite horizon (i.e. cumulative rewards

1There are also researches (e.g. [Zou et al., 2019]) concerning finite sample analysis of RL that looks
similar to PAC analysis but take entirely different approach to exploration. Such researches assume that
every state can be reached from any other state under any policy being considered, which in fact implies
infinite sample complexity in the majority of MDPs where good policies do not visit every state.
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only consider first t steps). Formally, the regret of an algorithm executed for t steps is

defined as tρ∗ −Gt, where ρ∗ is the average (per-step) reward of the optimal policy, and

Gt is the undiscounted cumulative reward of the algorithm till step t. Regret analysis of

an algorithm gives an asymptotic bound to its regret that holds for probability at least

1 − δ under certain conditions, where δ > 0 similar to sample complexity analysis. The

bounds are expressed in |S|, |A|, t, as well as some other metrics related the dynamics of

the MDP (e.g. its diameter [Auer et al., 2009]).

Regret has mostly been studied under the undiscounted fixed-horizon setting. The

regret upper bound of UCB1 algorithm for multi-armed bandit problems was studied in

[Auer et al., 2002]. It was then generalised to general RL problems in [Auer and Ortner,

2006] for UCRL algorithm. Notable follow-up researches include [Auer et al., 2009, Jaksch

et al., 2010] for UCRL2 algorithm, [Bartlett and Tewari, 2009] for REGAL algorithm

in weakly communicating MDPs, [Ortner and Ryabko, 2012] for UCCRL algorithm in

continuous MDPs, [Ortner et al., 2014] for Colored UCRL2 in restless Markov bandits,

[Azar et al., 2017] for UCB-VI, and [Tossou et al., 2019] for UCRL-V which closed the

gap between the upper bound and the best lower bound so far given by [Jaksch et al.,

2010]. In addition, [Agrawal and Jia, 2017] and [Fruit et al., 2018] analysed the regret

bounds of two Thompson sampling algorithms, optimistic PSRL and SCAL, respectively.

There is also a metric called average loss [Strehl and Littman, 2008] which is similar to

the regret, but also has strong connection to sample complexity. It considers not tρ∗−Gt

but
∑t

j=1(V ∗(Sj)−Gj). The differences between the two is that the total optimal reward

is trajectory-irrelevant in the former while trajectory-relevant in the latter, and that the

former is for undiscounted MDPs while the latter is for discounted MDPs. It was proved

in [Strehl and Littman, 2008] that if an algorithm has bounded sample complexity, then

it also has small average loss within bounded t.
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2.3.3 Benchmarking of exploration strategies

While many papers proposing new exploration strategies claimed theirs to be theoretically

or empirically superior, benchmarking of the exploration strategies has repeatedly led to

opposite conclusions. For example, in [Rao and Whiteson, 2012], experiments showed

that MoR-MAX performed much worse than MBIE in SixArms and Anchor domains,

and even worse than R-MAX in SixArms, in terms of learning-process cumulative reward

and per-step reward, despite MoR-MAX having much better theoretical sample com-

plexity. In [Kuleshov and Precup, 2014], exploration strategies for multi-armed bandits

(single-state MDPs) are extensively tested, and results showed that simple strategies such

as ε-greedy and Boltzmann selection significantly outperformed theoretically guaranteed

strategies in both learning-process regret and percentage of optimal action in most set-

tings. Empirical results of [Tijsma et al., 2016] showed that the theoretically guaranteed

UCB-1 was outperformed in learning-process cumulative reward by Boltzmann selection

in stochastic mazes. Recent exploration strategies inspired by the ones with theoretical

guarantees and adapted to deep RL were benchmarked by Taiga et al. [2020] in the Atari

2600 environment. Their results showed that the new strategies were not significantly

better in learning-process average score (episodic cumulative reward) than ε-greedy in

games considered difficult, and performed even worse than ε-greedy in easier games.

2.3.4 Shortcomings of existing researches on exploration

It is interesting to observe such a remarkable gap between what is guaranteed by the

theoretical analysis of exploration strategies and what is observed from empirical results.

Our understanding about the reasons behind the gap is as follows.

The principal problem here is that the learning-process cumulative reward is not a good

metric of sample efficiency. As shown in Figure 2.1 of Section 2.2, cumulative reward as

a performance metric is biased towards myopic learners that exploits frequently since the

early phase of learning, and is indifferent to how fast the agent finds out a desirable policy.
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Random strategies such as ε-greedy and Boltzmann selection are more myopic and exploit

earlier than systematic strategies, and thus are at an inherent advantage, especially when

the task is sufficiently easy such that even random strategies can find out desirable policies

without much effort.

What exactly, then, is guaranteed for the systematic strategies that follow the explore-

sufficiently-before-exploiting idea? The answer is still a better learning-process cumulative

reward, but the advantage is visible only in sufficiently long run against a sufficiently bad

competitor, such that discovering a better policy faster actually pays off. Let us consider

a variant of Example 2.1 presented in Section 2.2, given as follows:

Example 2.2. Consider a variant of Example 2.1 where Bob does not converge to the

optimal policy (selecting only Yes) at t = 151, but selects Yes 9 times and No once in

every 10 steps since t = 1, mimicking ε-greedy strategy with ε = 0.1. Alice still converges

to the optimal policy at t = 101 as in the original example.

The undiscounted learning-process cumulative reward of the agents in this case is

shown in Figure 2.2. Convergence to the optimal policy eventually pays off for the fast-

learner Alice, but it takes a much longer time (t ≥ 1001) compared to the time of conver-

gence (t = 101), and the difference at t = 1500 is not even visually significant, where Alice

wins by 1400 vs 1350, a mere 3.57% relative advantage. Note that in the discounted case

with γ = 0.97, Alice still cannot beat Bob in learning-process cumulative reward, just as

pointed out in Section 2.3.4. Considering that Alice has bounded sample complexity and

regret (both are 100) while Bob has unbounded ones, it is clear how poor such theoretical

guarantees translate into learning-process cumulative reward in average cases.

This puts the researches on sample efficiency in learning-while-serving workflow an

awkward position. While RL users hope their algorithms learn fast, the ultimate objective

of the learning-while-serving workflow not only does not care about how fast an algorithm

finds a good policy, it sometimes even punishes algorithms for learning fast through active

exploration. It is thus a misplaced idea to seek for high sample efficiency in learning-while-

serving setting.
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Figure 2.2: Cumulative rewards of two learning processes, where Alice converges to the
optimal policy at t = 101 while Bob never does. Convergence to optimal does not pay off
until t ≥ 1001.

For the reasons discussed above and in Section 2.2, when sample efficiency is of primary

concern, it is arguably better to consider a learning-then-serving workflow and avoid using

learning-process cumulative reward as performance metric. In the learning-then-serving

workflow, neither sample complexity analysis nor regret analysis are immediately usable in

anticipating the exploration efficiency of algorithms due to their direct connection to the

learning-process cumulative reward. Therefore, we need new tools for analysing sample

efficiency of exploration strategies in the learning-then-serving setting. On the other hand,

existing systematic exploration strategies can still work adequately as heuristics because

they at least demand sufficient exploration before convergence. Meanwhile, since these

heuristics are not designed to maximise learning-then-serving sample efficiency, there is

still much room for improvement, especially when in tasks where rewards do not indicate

good directions of exploration.
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2.4 Biases of state/action value estimates

2.4.1 Bias (and variance) in statistics

Bias of a point estimator is defined as the difference between the expected value of the

estimate and the true value being estimated [Casella and Berger, 2002]. Let θ̂ be an

estimator of some true value θ, then Bias(θ̂)
def
= E[θ̂] − θ is the bias of estimator θ̂. An

estimator is said to be unbiased if its bias is 0 (and thus E[θ̂] = θ) for all θ. Biases can

occur due to various reasons, such as problematic estimator designs, lack of data, wrong

sampling methods, and sometimes deliberate injection of biases for certain purposes.

Bias is sometimes discussed together with variance of estimators, which is defined as

Var(θ̂)
def
= E[(θ̂ − E[θ̂])2]. Bias describes the accuracy of an estimator, while variance

describes the precision of an estimator.

Since the values being estimated can vary in magnitude and sign, it is difficult to

compare the quality of estimators directly by their biases. Therefore, in this thesis, we

also use the (signed) relative error θ̂−θ
θ

and the (absolute) relative bias |E(θ̂)−θ
θ
| (×100%)

to measure the magnitude of the estimation error and the bias, respectively.

2.4.2 Transformation bias of model-based RL

Although the Bellman equations 2.1,2.2 of state/action values are linear equations, the

expressions of the solutions are nonlinear mappings from transition probabilities and re-

wards to state/action values. For example, given a certain policy, Equation 2.1 can be

rewritten in matrix form as:

V = (P�R)1 + γPV,

where V is the column vector of state values under that policy, P and R are transition

probability matrix and reward matrix under that policy, � denotes Hadamard product,
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and 1 denotes an all-1 column vector. Then the expression of the solution is:

V = (I− γP)−1(P�R)1.

This expression, seen as a function V = g(P ), is clearly nonlinear due to matrix inversion.

Generally, equation E[f(X)] = f(E[X]) holds if f(X) is a linear function of random

variable X. However, when f(X) is nonlinear, very often E[f(X)] 6= f(E[X]). Specifically,

by Jensen’s inequality, if f is convex, then E[f(X)] ≥ f(E[X]), and vice versa.

Now consider model-based RL where values are estimated by V̂ = g(P̂ ). The transition

probability estimator P̂ defined as P̂ (s′|s, a)
def
=

Ns,a,s′

Ns,a
(see Section 2.1) is unbiased. Thus

we have E[P̂ ] = P , which means g(E[P̂ ]) = g(P ) = V . Therefore, the nonlinearity of g

leads to E[V̂ ] = E[g(P̂ )] 6= g(E[P̂ ]) = V , which means that V̂ is a biased estimator of V .

To stress that the bias is due to the nonlinearity of transformation (used synonymously

with “function”), we call it transformation bias of model-based RL in this thesis.

Transformation bias has been extensively discussed in [Mannor et al., 2004, 2007,

Grünewälder and Obermayer, 2011]. Mannor et al. [2004, 2007] provided the expressions

for the second order approximation to the transformation bias and parametric variance

of model-based estimator. Their analysis suggested that the error caused by the variance

is typically much larger than the bias, and thus bias reduction is relatively unimportant

in general. The empirical result in a real-world mail catalogue problem with data from

1.72 million customers, reported in [Mannor et al., 2007], also showed that the bias of the

value estimate was small, both in relative value and compared to the standard deviation

(about 2.38% relative bias vs 5.26% standard deviation).

From a practical point of view, the results of [Mannor et al., 2004, 2007] have two major

problems. First, their expression for second order approximation to the transformation

bias relies on full knowledge of the true transition function P and reward function R. In

most RL settings these are not available to the agent. Thus, to use the expression to

compute the bias during learning, we have to use the estimated P̂ and R̂ to replace P

32



and R, just as what we do in computing V̂ . The expression of the bias is also a nonlinear

function, which introduces additional bias to the transformation bias estimates, and thus

is not suitable for bias correction purpose.

Second, their conclusion that the transformation bias is less important than the vari-

ance becomes invalid when sample size is small. As our empirical results presented in

Chapter 4 show, the transformation bias can become very large when sample size is small.

As will be elaborated later in Section 4.2, when the bias is sufficiently large to change the

relation between two estimated values, variance reduction become useless or even harm-

ful for value comparison. To make variance reduction useful, one should conduct bias

correction first in such cases.

Grünewälder and Obermayer [2011] also analytically studied the transformation bias.

They showed that any estimator satisfying the Bellman equations cannot be unbiased,

unless the MDP is acyclic (i.e. there is no way to start from a state and travel back to

it later), or the discount factor γ = 1 and an additional full information criterion (FI) is

fulfilled. Notably, since absorbing states (states that lead to themselves under any action)

also result in cycles in MDPs, being acyclic means any path in this MDP must eventually

lead to a state that has no action available (otherwise by the pigeon hole principle there

must be cycles). Such cases are usually discussed within the episodic MDP framework.

The other condition of unbiasedness requires γ = 1, which is never satisfied in discounted

MDPs where 0 < γ < 1. Therefore, in MDPs within the scope of this thesis, any algorithm

satisfying the Bellman equations suffers from transformation bias.

In addition, Grünewälder and Obermayer [2011] derived a Minimum Variance Unbi-

ased estimator (MVU) based on first-visit Monte-Carlo estimation (MC), which is un-

biased, but is not a model-based RL method and does not use the Bellman equations.

Since in this thesis we focus on model-based RL based on the Bellman equations, the

MVU method is out of our scope and thus will not be further discussed.
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2.4.3 Other biases in RL

Although transformation bias of model-based RL is one of the main focuses of this thesis,

there are also several other biases in RL. This section shortly reviews relevant researches

and discusses their relationship with ours.

Maximisation bias

Maximisation bias is a bias caused by the use of max operator in value estimators, which

can happen in both model-free and model-based RL that utilise the Bellman optimality

equations (see Equations 2.3,2.4). The use of max operator in value estimates results

in overestimation, which can be shown by Jensen’s inequality, e.g. E[maxa Q̂(s, a)] ≥

maxa E[Q̂(s, a)]. The bias was first systematically studied in [Ormoneit and Sen, 2002].

Mannor et al. [2007] proposed a cross-validation procedure to deal with the maximisation

bias. Van Hasselt [2010] proposed a similar method called Double Q-learning and showed

that this algorithm results in underestimation in most cases. Double Q-learning was

adapted to deep RL by [Van Hasselt et al., 2016] and improved by [Fujimoto et al., 2018].

Fox et al. [2016] proposed a different method called G-learning, which does not reduce the

bias directly, but tries to avoid converging to inferior policy due to the bias by directly

penalising early convergence (which is essentially an optimistic exploration strategy).

Maximisation bias and transformation bias occur independently in model-based RL.

In model-based RL that does not use the Bellman optimality equations directly (e.g.

algorithms that conduct policy improvement and value estimation separately), maximi-

sation bias does not occur due to the max operator being absent in value estimation,

while transformation bias still occurs. On the other hand, in rare occasions where MDP

is acyclic, by [Grünewälder and Obermayer, 2011] there is no transformation bias, but

algorithms using the Bellman optimality equations still suffers from maximisation bias.

In other cases, the two biases exist simultaneously and independently.

34



“Model bias”

The term “model bias” [Deisenroth and Rasmussen, 2011, Kurutach et al., 2018, Janner

et al., 2019, Grover et al., 2019] refers to the differences between the the leant model MDPs

and the true environment MDPs. In recent years, it has been a relatively popular research

topic in deep reinforcement learning because deep neural networks can easily overfit the

data and make wrong predictions at the state-action pairs where data is scarce, which

in turn is exploited by the planning algorithm to yield policies that have high estimated

utility but low actual utility. It is in fact a generalisation error which occurs in learning

model MDPs using supervised learning techniques, rather than a bias in statistical sense.

The relationship between the “model bias” and the transformation bias can be some-

what confusing, and thus will be clarified here. Let |M1 −M2| be the difference under

a certain measurement between two arbitrary MDPs M1 and M2. Let M be the true

unknown MDP and M̂ be a model MDP learnt from some data using some supervised

learning techniques. The “model bias” issue often refers to having a large |M − M̂ | which

leads to a large |V − V̂ |. Since no matter how good the algorithm is, a large |M − M̂ | can

still happen due to bad luck in environment interaction, it is more reasonable to consider

reducing the expectation E[|M−M̂ |]. Then the best (in terms of bias) supervised learning

algorithm should achieve E[|M − M̂ |] = 0.

Remarkably, the existence of transformation bias means that E[|V − V̂ |] > 0 happens

regardless of whether E[|M − M̂ |] = 0, because the nonlinearity of the mapping from

M̂ to V̂ breaks the unbiasedness of V̂ . In other words, having “optimal” supervised

learning algorithms for learning models does not automatically remove the bias of value

estimates. What is worse, due to the nonlinear relation, reducing the bias of model does

not necessarily reduce the bias of value estimates. Thus, transformation bias correction

is a necessary condition to guarantee the usefulness of model accuracy improvement.
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Off-policy bias

Off-policy bias is common in model-free off-policy value evaluation where state/action

values are estimated using the data generated by some behaviour policy different from the

target policy being estimated. Since model-free methods rely on the update frequencies

of state/action values to simulate the effect of transition probabilities in value estimation,

the mismatch between the two policies effectively changes the transition probabilities of

the Markov process and thus introduces significant bias. Off-policy bias is often dealt with

by the Importance Sampling (IS) method, first applied to RL by [Precup et al., 2000].

Several IS methods were reviewed and empirically compared together with model-based

RL in [Păduraru et al., 2013]. Some recent works on this topic can be found in [Jiang and

Li, 2016, Munos et al., 2016, Thomas and Brunskill, 2016, Doroudi et al., 2017, Hanna,

2019].

Although IS methods usually claim themselves to be unbiased, such unbiasedness is

often with respect to the off-policy bias but not the transformation bias. [Păduraru et al.,

2013] pointed out that IS methods need the behaviour policy to be fixed and known,

and that if the behaviour policy is not known but estimated from data then IS becomes

equivalent to model-based RL. Thus, when applied to full-scale RL where behaviour

policies are always (at least partly) results of estimation, it is likely that IS methods

suffer from a similar transformation bias as model-based RL, which cannot be resolved

solely by IS. Meanwhile, model-based RL does not suffer from off-policy bias because it

does not require the matching of behaviour and target policies.

2.5 Value comparison and policy selection

Although there is rich literature regarding improving the accuracy of state/action value

estimates, there is little research on how to compare the estimates to make decisions.

Most researches use naive comparison, i.e. if V̂1 > V̂2 then choose action/policy that

corresponds to V̂1. As will be elaborated in Chapter 5, such method is not reliable due
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to the various biases in the state/action value estimates as well as the asymmetry of the

distributions, especially when sample size is small.

This section reviews the work related to value comparison and policy selection.

2.5.1 Fairness of policy selection

To the best of our knowledge, [Doroudi et al., 2017] is the only published work that

discussed the problem where an algorithm can select a worse policy more often than a

better policy. They defined the fairness of policy selection as follows: an algorithm is

said to be fair if the probability of it selecting the optimal policy (with respect to true

state/action values) is greater than any other policies. In the case of comparing two

policies, being fair means the probability of selecting the optimal policy is at least 0.5.

Algorithms are allowed to refuse to output a policy if they have low confidence in their

own guesses, and thus the trivial algorithm that never outputs a policy is fair under their

definition.

They analysed the fairness of Monte-Carlo and Important Sampling algorithms and

showed that neither of them are fair. Specifically, they showed that IS favours myopic

policies as well as policies that produce shorter trajectories. They then proposed the

MC-fairness which requires the selection method to choose more frequently the policies

that have higher Monte-Carlo estimated values (and thus is easier to achieve than the

strict fairness). Two methods to improve the fairness of IS estimators were provided.

The true/false nature of the fairness makes it difficult to use when comparing two

methods that are both fair or both unfair. Also, the permission to not output policies is

somewhat impractical, in the sense that if an algorithm refuses to output policies often

then its real-world usefulness can be highly questionable (especially when restarting the

whole learning process is required to attempt to change the result).

Although their work focused on IS which is out of scope of this thesis, the definition of

fairness is closely related to what we are interested in, and thus will be further discussed

in Chapter 5.
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There is also a work by Jabbari et al. [2017] which discussed fair action selection in RL.

Their work required that a fair algorithm never chooses action a with probability higher

than another action a′ unless Q∗(s, a) > Q∗(s, a′). However, their Q∗ in fact refers to the

estimated action value Q̂∗, and thus the fairness requires the algorithm to frequently select

actions with higher estimated values. They found that this requirement strongly limits

the exploration ability of an algorithm, and thus proposed two relaxations of fairness and

an algorithm called Fair-E3 which was shown to satisfy the relaxed versions of fairness.

From our point of view, the fairness by Jabbari et al. [2017] is just requiring a high

degree of greediness during learning, which is improper in learning-then-serving setting

where exploration efficiency is of primary concern, while in learning-while-serving setting

the usefulness is also questionable because it neither directly leads to a higher learning-

process cumulative reward nor has any relevance to real-world fairness. Thus, we will not

consider their definition in the remainder of this thesis.

2.5.2 Relationship with maximisation bias

The maximisation bias discussed in Section 2.4.3 is ostensibly related to policy selection,

in the sense that both the maximisation operator in the Bellman optimality equation and

the policy selection process involves comparing two or more estimated state/action values.

However, the purpose of the value comparison in these two scenarios are different. The

output of the maximisation operator in the Bellman optimality equation is the maximum

estimated value for that state or state-action pair. Thus, the correction of the maximisa-

tion bias aims to improve the accuracy of the maximised estimated value, while whether

that value corresponds to a better action/policy is not of primary concern.

On the other hand, the output of the policy selection process we consider in Chapter

5 is a policy, and thus the effectiveness of the process is evaluated by the quality of the

output policy. The accuracy of the estimated value is only a factor that might or might

not positively affect the effectiveness of policy selection. In fact, we will show in Chapter

5 that an algorithm with an unbiased value estimator can still suffer from poor selection.
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Since both the purposes and the outputs of the two process are very different, in this

thesis we will not go into detail on the maximisation bias.

2.6 Bootstrap

Bootstrap in statistics is a resampling technique first proposed by [Efron, 1979] as a

more widely applicable alternative to the jackknife technique proposed by Quenouille and

Tukey [Quenouille, 1956, Miller, 1974]. An abundant literature is available on bootstrap,

jackknife, and their application to bias correction; see [Quenouille, 1956, Davison and

Hinkley, 1997, Rodgers, 1999, Shao and Tu, 2012, Jiao and Han, 2020] for some pointers.

The word “bootstrapping” in RL usually refers to the idea of estimating V (s) using

other value estimates V (s′). This occurs naturally when using the Bellman equations in

value estimation, and thus is extremely common in both model-based and model-free RL,

but not so in Monte-Carlo methods because these methods do not rely on the Bellman

equations. See [Sutton and Barto, 2018] for more information about “bootstrapping”

in this sense. This “bootstrapping” idea is very different from the statistical technique

mentioned above and it does not correct biases of value estimates. In this thesis, except

for this paragraph, the term “bootstrap” is always used in the first sense (the resampling

technique).

Statistical bootstrap has been used in RL mainly for generating data and estimating

confidence intervals. Some examples of such application can be found in [White and

White, 2010, Thomas et al., 2015, Hanna, 2019].

2.7 Chapter Summary

This chapter provides the background knowledge of model-based RL and bootstrap, dis-

cusses the important differences between learning-while-serving and learning-then-serving

settings, reviewed related works on exploration, value estimation biases, and value com-
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parison in policy selection, and pointed out the shortcomings of existing researches. The

shortcomings are summarised in the following list.

� Exploration of RL has mainly been studied under the learning-while-serving setting,

where learning-process cumulative reward needs to be maximised. However, in

real-world applications where sample efficiency is crucial, RL is often conducted

in a learning-then-serving workflow, where luearning-process cumulative reward is

irrelevant. Systematic exploration strategies still work adequately as heuristics in

this case, but also miss much chances to do significantly more efficiently. Existing

analysis of exploration efficiency also becomes unsuitable because the efficiency is

measured by metrics that are based on learning-process cumulative reward.

� Transformation bias has been considered insignificant, and few research has been

made for correcting the bias in model-based reinforcement learning. However, our

empirical results show that when the sample size is small, not correcting the trans-

formation bias can significantly reduce the usefulness of value estimates, making

successful learning very difficult. The second-order approximation of the transfor-

mation bias proposed by [Mannor et al., 2007] is not suitable for bias correction

when the sample size is small, because their approximation by itself suffers from a

similar transformation bias. The MVU estimator proposed by [Grünewälder and

Obermayer, 2011] is a Monte-Carlo method and is not directly applicable to model-

based RL.

� To the best of our knowledge, there is no systematic study on the policy selection

of model-based RL. Existing methods rely on naive policy selection, which has been

shown by [Doroudi et al., 2017] for Importance Sampling based RL to have high

risk of selecting inferior policies, and suffers from the same problem in model-based

RL according to our analysis, especially when sample size is small. In addition, the

fairness notion proposed by [Doroudi et al., 2017] is too strict and is practically un-

usable as a metric, which means that there is neither a good framework for analysing
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and comparing the effectiveness of policy selection methods, nor a method that can

improve it for model-based RL.
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CHAPTER 3

EXPLICIT PLANNING FOR EFFICIENT
EXPLORATION

3.1 Introduction

As reviewed in Section 2.3, exploration is a key factor to the sample efficiency of rein-

forcement learning algorithms. Systematic exploration strategies aim to improve sample

efficiency by encouraging active exploration when data is not sufficient. However, the ex-

ecution of such an idea has been more or less problematic in both learning-while-serving

workflow and learning-then-serving workflow. In the former case where early exploitation

is strongly favoured, conducting early exploration leads to a distinct disadvantage in terms

of learning-process cumulative reward for systematic strategies. In the latter case where

learning-process cumulative reward is irrelevant, the still-existing exploitation behaviours

make systematic strategies less efficient.

In this chapter, we consider the sample efficiency of exploration strategies in the

learning-then-serving workflow. Since learning-process cumulative reward becomes unim-

portant in this case, the cumulative-reward-based metrics reviewed in Section 2.3.2 are

no longer suitable. Thus, we need a sample-size-based metric for evaluating strategies,

as well as a method for analysing it. We can then use it to find out the weaknesses of

existing strategies, and see if there is a way to avoid such weaknesses.

For these purposes, we will formulate the planning for exploration (PFE) problem
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in Section 3.2, where the efficiency of an exploration scheme is evaluated by its explo-

ration cost, and the optimal exploration scheme of a PFE problem gives the most sample

efficient exploration behaviour in the corresponding MDP. We show that the optimal

exploration scheme of a PFE problem can be found by solving an augmented MDP gen-

erated from the original MDP. An algorithm called Value Iteration for Exploration Cost

(VIEC) will be proposed in Section 3.3 to solve such augmented MDPs. With the optimal

exploration schemes available, we can compare them with the exploration behaviours of

existing strategies to find out their weaknesses. We will use a class of tower MDPs to

analyse the exploration behaviour of ε-greedy, R-MAX, MBIE-EB, and optimal explo-

ration scheme, and compare their exploration costs in Section 3.4. Section 3.5 will give a

summary to this chapter.

The work presented in this chapter is published as [Zhang et al., 2019].

3.2 Formulation of the planning for exploration prob-

lem

3.2.1 The two-phase decomposition of exploration and the data
demands

As we discussed above, we need a sample-size-based metric for evaluating the sample

efficiency of exploration strategies. An immediate question is: why cannot we simply use

the total sample size when the algorithm converges as the metric? The answer is that it

is in fact very tricky in RL to confirm whether an algorithm has converged or not. The

estimated state/action values and the output policy might keep unchanged for a very

long time, but then change abruptly after some new information come in. Such abrupt

changes occur less frequently when the sample size is sufficiently large, but obtaining a

large sample just for confirming the convergence is counterproductive in a limited budget

setting. Thus, to evaluate the exploration efficiency, we need a different stopping criteria

for evaluation.
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Figure 3.1: Decomposition of RL.

To explain the new criteria, we first introduce our three-level decomposition of RL.

RL in the learning-then-serving workflow can be seen as a two-phase process, where in

the first phase (learning) the agent learns a policy, then in the second phase (serving)

the agent executes its policy to provide service. The learning phase itself can be seen as

another two-phase process, where in the first phase (exploration) the agent explores the

environment to collect data, and in the second phase (policy planning) the agent creates

a model MDP using the collected data and solve the MDP to obtain the policy. The

exploration phase can further be decomposed to a two-phase process, where in the first

phase (demand specification) a requirement to the data collection is specified, and then

in the second phase (demand fulfilment) the agent satisfies the requirement through the

actual environment interaction. The pair of phases at each level of decomposition can

either occur only once or be repeated for several times, according to the design of the

algorithms. Figure 3.1 gives an illustration to the decomposition.

In the demand specification phase, the agent is informed of how much data should be

collected through the subsequent environment interaction. Formally, we use data demand

(or demand for short) to represent the requirement to the data collection, defined as

follows.

Definition 3.1. In an MDP with |S| states and |A| actions, a data demand D is an

|S| × |A| matrix where entry D[s, a] = k ≥ 0 indicates that for state s and action a, at

least k more data should be collected in the subsequent demand fulfilment process.

After a demand matrix is specified and passed to the agent to fulfil, in the subse-
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quent demand fulfilment process the agent collects data through environment interaction.

Whenever an additional data point is collected, the remaining demand reduces accord-

ingly. For clarity, we write Dt to indicate the demand matrix when the agent enters

time step t. After some action At = a is executed at state St = s, the agent obtains a

data point (s, a, s′, r), and thus the corresponding entry in the demand matrix Dt[s, a] is

reduced by 1 if it is not already 0, while other entries remain unchanged. That is,

Dt+1[s, a] =


max{0, Dt[s, a]− 1} (s, a) = (St, At)

Dt[s, a] otherwise.

We define the following demand reduction function H for convenience:

H(D; s, a)
def
=


D − es,a D[s, a] > 0

D D[s, a] = 0,

where es,a is an |S|×|A| single-entry matrix whose entries are all zero except for es,a[s, a] =

1. Then the change from Dt to Dt+1 above can be simply denoted as Dt+1 = H(Dt;St, At).

Let Dinit be the initial data demand of a demand fulfilment process. As the process

proceeds, the data demand decreases gradually (i.e. D1 = Dinit ≥ D2 ≥ D3 ≥ ... ≥

Dt), and should eventually reduce to an all-zero matrix 0, which indicates the fulfilment

of the initial demand Dinit and thus the completion of the demand fulfilment process.

We can therefore treat the completion of the demand fulfilment process as the stopping

criteria, and evaluate the efficiency of exploration by considering the cost of the demand

fulfilment process. Since the distribution of the data obtained from exploration decides

the distribution of the output policy in the policy planning process, the fulfilment of a

proper data demand guarantees the quality of the policy in probability. In this way, we

avoid the difficulty in checking the convergence of policy and value estimates mentioned

at the beginning of this section, and make it possible to define an unambiguous sample-

size based metric for evaluating the exploration efficiency, which will be given in the next
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section.

The above discussion is based on the premise that the data demand is somehow deter-

mined and passed to the learning agent. Readers might ask: where does the demand come

from and who determines it? The answer lies in the design of systematic strategies. In

the researches on sample complexity reviewed in Section 2.3.2, concentration inequalities

such as Hoeffding’s and Chernoff’s were used to analyse how much data is sufficient for

achieving an (ε, δ)−optimality with respect to sample complexity. Thus, by setting the

relevant parameters of these strategies, a data demand is either explicitly or implicitly

passed to the agent, while during the learning process the agent is guided to fulfil that

data demand by some Q̃ defined by the exploration strategy.

For example, [Strehl et al., 2009] showed that m = O( 1
ε2(1−γ)4

(|S|+ln |S||A|
δ

)) is needed

for R-MAX to achieve polynomial sample complexity, where m specifies how many times

a state-action should be visited before a non-optimistic value evaluation is made for that

state-action pair. Thus, by following R-MAX, the agent visits every state-action pair

at least m times before the algorithm converges1. This directly translates to an initial

demand matrix Dinit with all entries being m.

For IE methods such as MBIE and UCRL, their parameters do not directly state the

data demand, but only specify the confidence level. However, the confidence intervals are

still made from concentration inequalities, and thus the demand can be mathematically

inferred from the confidence level parameter. For example, Strehl and Littman [2008]

showed that with a proper setting to the confidence level, MBIE guides the agent to visit

every state-action pair for O( 1
ε2(1−γ)4

(|S| + ln |S||A|
ε(1−γ)δ

)) times, which is slightly more than

R-MAX. Thus, the confidence level of IE methods is an indirect specification to the data

demand.

As discussed in Section 2.3.4, the sample complexity analysis is made for the learning-

while-serving workflow, and thus the demand specifications above are not directly appli-

1Due to the design of R-MAX there are some special cases where exploration stops prematurely, but
this can be avoided by setting the parameter Rmax to a value larger than the actual maximum reward of
the MDP.
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cable to the learning-then-serving workflow we are discussing in this thesis. It is theo-

retically possible to adapt these analyses to provide suitable parameter settings for the

learning-then-serving workflow. We can then use these parameter settings to infer the

data demands specified by these parameter settings, just as has been done in the above-

mentioned analysis.

However, we will not conduct such analysis here due to it being out of scope of this

chapter. Our main point in this chapter is, no matter what data demand is given to

the agent, there usually exists a more efficient way to fulfil it than following the existing

exploration strategies. Therefore, in the remainder of this chapter, we simply regard the

initial demand Dinit as known and fixed whenever the agent enters the demand fulfilment

process, while do not care about how such specification is made or whether it is good or

not under any standard (except that the demand should be satisfiable, which is given in

the next section).

3.2.2 The undiscounted augmented MDP of the PFE problem

The execution of demand fulfilment is highly important to the overall sample efficiency.

The undesirable consequence of thoughtless execution is presented intuitively in the fol-

lowing example.

Example 3.1. Suppose that you live in London and are curious about how it feels like

to travel between London and Tokyo, and between Tokyo and Sydney. You decide to try

out the outbound and return flights A and A’ between London and Tokyo, as well as the

outbound and return flights B and B’ between Tokyo and Sydney. Now, consider two

travel plans:

1. Take flight A to Tokyo, then B to Sydney, then B’ back to Tokyo, and then A’ back

to London.

2. Take flight A to Tokyo, then A’ back to London, then A to Tokyo again, then B to

Sydney, then B’ and A’ back to Tokyo and London.
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The first plan is more efficient because it only has 4 journeys while the second has 6.

Although the low efficiency of the second plan is obvious, it can actually be taken

by those carefully-designed systematic strategies, which will be elaborated in Section 3.4.

In the remainder of this section, we formulate the problem of finding good execution of

demand fulfilment process as the planning for exploration (PFE) problem.

Let D denote the demand space, i.e. the set of all possible demand matrices in a

learning task. Given an initial demand Dinit, since all demand matrices satisfy 0 ≤ D ≤

Dinit, the size of the demand space is at most (d+ 1)|S||A|, where d = maxs,aDinit[s, a].

The behaviour of an agent in demand fulfilment can be described as a mapping from

demands and states to actions, which we call an exploration scheme, formally defined as

follows.

Definition 3.2. An exploration scheme φ is a mapping D × S 7→ A, where φ(D; s) = a

indicates that action a should be taken when the demand is D and state is s.

Given a demand matrix D, we are interested in evaluating the efficiency of exploration

schemes fulfilling D. Since each step of environment interaction produces one data point,

the total sample size of a learning process equals to its total number of steps. When

obtaining data from environment interaction is expensive, an efficient exploration scheme

should be able to fulfil the demand with number of steps as few as possible. Thus, we can

use the expected number of steps required to fulfil a demand to evaluate the efficiency of

an exploration scheme.

To compute the total number of steps required to fulfil a given demand, we first for-

mulate the undiscounted augmented MDP of the planning for exploration (PFE) problem

as follows.

Definition 3.3. Given MDP M = (S,A, P, R, γ) and demand space D, the corresponding

undiscounted augmented MDP of the planning for exploration problem is given by M∆ def
=

(S∆,A, P∆, R∆), where S∆ def
= D×S is the augmented state space, P∆ : S∆×A×S∆ 7→
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[0, 1] is the augmented transition function s.t.

P∆(D′, s′|D, s, a) =


P (s′|s, a) D′ = H(D; s, a)

0 D′ 6= H(D; s, a),

and R∆ : S∆ ×A× S∆ 7→ {0, 1} is the augmented punishment function s.t.

R∆(D′, s′|D, s, a) =


1 D 6= 0

0 D = 0.

The definition of the augmented transition P∆ above is simply stating that the proba-

bility of a transition in augmented state space S∆ equals to its original transition probabil-

ity if the change of the demand is legitimate, and 0 otherwise. The augmented punishment

R∆ is 1 when the demand is not fully fulfilled, and 0 otherwise. Note that by definition

if at some time step t = τ there is Dτ = 0, then for all t ≥ τ we have Dt = 0 and thus

R∆
t = 0. Therefore, the undiscounted cumulative augmented punishment R∆

1 + R∆
2 + ...

equals to the number of steps in a trajectory before Dt becomes 0 for the first time, which

is exactly what we want to know.

We can thus use the expectation of the undiscounted cumulative punishment in the

PFE problem to measure the efficiency of an exploration scheme fulfilling a given demand

in the original MDP.

Definition 3.4. The (state) exploration cost Uφ(D; s) is the expected undiscounted cu-

mulative punishment obtained by starting from demand D, state s, and following φ there-

after, i.e. Uφ(D; s)
def
= E[

∑
tR

∆
t |D1 = D,S1 = s, Ak = φ(Dk;Sk) (k ≥ 1)].

Definition 3.5. The (action) exploration cost Cφ(D; s, a) is the expected undiscounted

cumulative punishment obtained by starting from demand D and state-action (s, a) then

following φ thereafter, i.e. Cφ(D; s, a)
def
= E[

∑
tR

∆
t |D1 = D,S1 = s, A1 = a,Ak =

φ(Dk;Sk) (k ≥ 2)].
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Lemma 3.1. Let δD,0 be the Kronecker delta which equals to 1 if D = 0 and 0 otherwise.

The following Bellman equations for the PFE problem holds.

Uφ(D; s) = (1− δD,0) +
∑
s′∈S

P
(
s′|s, φ(D; s)

)
Uφ

(
H
(
D; s, φ(D; s)

)
; s′
)
, (3.1)

Cφ(D; s, a) = (1− δD,0) +
∑
s′∈S

P (s′|s, a)Cφ

(
H(D; s, a); s′, φ

(
H(D; s, a); s′

))
. (3.2)

Proof. Since the augmented MDP of PFE is an MDP in itself and the exploration costs

are its corresponding utility functions, the above equations can be obtained by replacing

s with (D; s), P with P∆, R with R∆, π with φ, V with U , Q with C, and γ with 1 in

Equations 2.1 and 2.2, then reducing the equations using Definition 3.3.

In MDPs with bad connectivity, it is possible to assign demands that are impossible

to fulfil. For example, consider a two-state one-action MDP where s1 leads to s2 while

s2 leads to itself, both with probability 1. Any demand with D[s1, a] ≥ 2 can never be

fulfilled because it is not possible to visit s1 twice in one trajectory. Since it is practically

meaningless to assign a demand that is impossible to fulfil, in the remainder of this chapter

we assume all demands to be satisfiable (unless stated otherwise), defined as follows.

Definition 3.6. A demand D is said to be satisfiable if for any s ∈ S there exists some

exploration scheme φ such that Uφ(D; s) <∞.

3.2.3 Optimality in PFE

Let Φ be the set of all possible exploration schemes for a given PFE problem. Since the

objective of the PFE problem is to minimise exploration cost, the optimal exploration

scheme should have the smallest exploration cost at any state and demand.
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Definition 3.7. An exploration scheme is said to be optimal and denoted φ∗ if it satisfies

Cφ∗(D; s, a) = minφ∈Φ C
φ(D; s, a) for any D ∈ D, s ∈ S, and a ∈ A.

The existence of φ∗ and the uniqueness of Cφ∗ and Uφ∗ given a PFE problem with

satisfiable demands can be proved by simply adapting the corresponding lemmas for

general MDPs (see any textbooks, e.g. [Sutton and Barto, 2018]) to the augmented MDP

of PFE, and thus will not be repeated here. For convenience we write Cφ∗ as C∗ and Uφ∗

as U∗.

Lemma 3.2. Let δD,0 be the Kronecker delta which equals to 1 if D = 0 and 0 otherwise.

The following Bellman optimality equations for the PFE problem holds.

U∗(D; s) = (1− δD,0) + min
a∈A

∑
s′∈S

P
(
s′|s, a

)
U∗
(
H
(
D; s, a

)
; s′
)
, (3.3)

C∗(D; s, a) = (1− δD,0) +
∑
s′∈S

P (s′|s, a) min
a′∈A

C∗
(
H(D; s, a); s′, a′)

)
. (3.4)

Proof. By combining Lemma 3.1 with Definition 3.7.

By solving the Bellman optimality equations for PFE above, we can obtain the optimal

exploration scheme of a PFE problem, which is elaborated in the next section.

3.3 Solving the planning problem

Since the undiscounted augmented MDP of the PFE problem is a variant of general MDPs,

we can modify the Value Iteration algorithm to solve the Bellman optimality equations

for PFE.

Note that the new demands H(D; s, a) at the right-hand side of the Bellman optimality

equations for PFE satisfies H(D; s, a) ≤ D by definition, and thus we can arrange all

D ≤ Dinit by a topological ordering s.t. for any demands D(i) and D(j), D(i) < D(j)
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implies i < j. We can then iterate D only once, from the all-zero D = 0 up to the

initial demand D = Dinit, to compute all exploration costs, because when we compute the

exploration cost for some D(j), all exploration costs with D(i) (i < j) that are necessary

for computing D(j) have already been computed.

A simple choice of topological ordering is to treat the matrices as (|S| × |A|)-digit

numbers with radix d = maxs,aDinit[s, a] and use the natural ordering, i.e. D(0) =

(0...0; ...; 0...0), D(1) = (0...0; ...; 0...1), D(2) = (0...0; ...; 0...2), ... , D(|D|−1) = Dinit. We

can also skip the computation for D = 0 because their exploration costs are all 0 by

definition.

The pseudocode of the Value Iteration for Exploration Cost (VIEC) algorithm is pre-

sented in Algorithm 1.

Algorithm 1 Value Iteration for Exploration Cost (VIEC)

Input: Initial demand Dinit, transition P
Parameter: Stopping threshold ε0
Output: Optimal exploration scheme φ∗

1: Initialise all C(D; s, a) = 0, U(D; s) = 0
2: Create the list of demand matrices D(0), ..., D(|D|−1), arranged in natural ordering
3: for i = 1 to |D|−1 do
4: repeat
5: ε = 0
6: for s ∈ S do
7: for a ∈ A do
8: c = 1 +

∑
s′ P (s′|s, a)U

(
H(D(i); s, a); s′

)
9: ε = max{ε, |C(D(i); s, a)− c|}

10: C(D(i); s, a) = c
11: end for
12: U(D(i); s) = minaC(D(i); s, a)
13: end for
14: until ε < ε0
15: end for
16: Output φ∗ such that φ∗(D; s) = argminaC(D; s, a)

Similar to the original Value Iteration algorithm, as the stopping threshold ε0 → 0,

the exploration costs U → U∗ and C → C∗, thus φ→ φ∗. The proof for the convergence

to optimal in limit and to near-optimal in finite time can be adapted straightforwardly

from the convergence of the original VI algorithm (see [Puterman, 1994, Littman et al.,
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1995]) and will not be elaborated.

VIEC needs to enumerate all |D| = O(d|S||A|) demand matrices to compute the ex-

ploration cost at Dinit, and thus is highly computationally expensive. One might wonder

if time complexity can be significantly cut down by improving the computation method.

Unfortunately, this is not likely for exact computation, because in the simplest case where

all transitions are deterministic and all demands are either 0 or 1, the PFE problem be-

comes a combinatorial optimisation problem called (directed) rural postman problem1,

which is known to be NP-hard [Eiselt et al., 1995].

The main purpose of proposing VIEC is to show that the optimal exploration schemes

not only exist, but also can be obtained from computation in finite time. When analysing

the efficiency of demand fulfilment in relative simple MDPs, the optimal exploration

scheme can sometime be quite obvious (which is the case in Section 3.4), and in such

cases we do not need to actually run the VIEC algorithm in order to analyse exploration

strategies.

On the other hand, in real-world applications where obtaining data is much more

expensive than computation power, the potential benefit of applying a good exploration

scheme can possibly exceed the price for finding it. We might want to use VIEC in a

full-scale RL task, rather than treating it as a tool for efficiency analysis. In this case,

since the true transition function P is not known to the learning algorithm, we have to use

the estimated transition P̂ in place of P in VIEC to obtain an estimation of the optimal

exploration scheme φ∗.

The resulting exploration scheme φ̂∗ is the optimal scheme of the model MDP M̂ , which

does not necessarily equal to the true optimal exploration scheme φ∗ of M . However, we

can refine φ̂∗ iteratively using the data obtained during the demand fulfilment process.

With more data been collected, M̂ becomes closer to M , and thus φ̂∗ also becomes closer

to the true φ∗ in probability. Although an improving-over-time φ̂∗ is indeed not as good as

φ∗, it can still be used to avoid many problems in exploration such as the one mentioned

1In a rural postman problem, an extension to the well-known Chinese postman problem, the postman
is required to traverse a subset of edges in a road network at the minimum cost.
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in Example 3.1.

A full-scale model-based RL algorithm with iterative refinement of exploration scheme

is given in Algorithm 2

Algorithm 2 Model-based RL with Iterative Refinement of Exploration Scheme

Input: Initial demand Dinit

Output: Policy π

1: Initialise P̂ , R̂ randomly or based on prior knowledge, D1 = Dinit

2: φ = VIEC(D1, P̂ )
3: repeat
4: Collect data by following φ
5: Update P̂ , R̂,Dt using collected data
6: Update φ using VIEC(Dt, P̂ )
7: Update π using Value Iteration(P̂ , R̂)
8: until Dt = 0
9: Output π

3.4 Analysis of sample efficiency

In this section, we analyse the exploration efficiency, or more precisely the efficiency of

demand fulfilment, of some common exploration strategies by comparing their behaviours

with the optimal exploration scheme.

As reviewed in Section 2.3.1, systematic strategies such as R-MAX, MBIE, and UCRL

guide exploration by choosing actions with the maximum optimism-infused estimated

values Q̃(s, a). These Q̃ can be seen as predefined heuristics that are used in place of

the explicitly planning-based exploration schemes. While these heuristics are properly

designed to guarantee the completion of demand fulfilment in most cases, their designs do

not necessarily lead to highly efficient execution of demand fulfilment. Specifically, they

are prone to the following traps.

Distance traps. Although in systematic strategies such as the R-MAX family and

the IE methods the uncertainty at the distant states are propagated to Q̃(s, a) of the

current state through the Bellman equations, the discounting mechanism in the Bellman

equations makes the agent consider the uncertainty at the distant states less important
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than the uncertainty at the nearby states. Thus, existing strategies maximising Q̃(s, a)

tend to visit nearby uncertain states first, even if it is more efficient to visit distant

uncertain states first.

Reward traps. Q̃ in all systematic strategies are combinations of the estimated

utility that drives exploitation and the optimism that drives exploration. By choosing

actions with maximum Q̃(s, a), the agent (at least partly) consults the rewards in the

demand fulfilment process. Thus, these strategies tend to visit uncertain states with

higher rewards first, even if the rewards actually point to the area that ought to be

visited later.

Both traps can appear in any MDP and may significantly increase the exploration cost

of the demand fulfilment process. To give a clearer picture of how these traps affect the

exploration efficiency, this section introduces a class of MDPs called tower MDPs, and

analyse the exploration costs of the optimal exploration scheme, ε-greedy, R-MAX, and

MBIE-EB in the tower MDPs.

3.4.1 Tower MDPs

A tower MDP of height h has 2h states, which are put into two groups {s1, ..., sh} and

{s′1, ..., s′h}. The first group is called the upward states and the second group is called the

downward states. State s1 is start state where the interaction begins. Figure 3.2 provides

an illustration of a tower MDP.

The arrows in Figure 3.2 shows how transition works in tower MDPs. To simplify

the analysis, all transitions in tower MDPs are deterministic. At each upward state sk,

there is an action a that transits the agent to the next upward state sk+1 if k < h (solid

arrows in Figure 3.2), and also an action a′ that transits to the corresponding downward

state s′k (dashed arrows). Each downward state s′k is an m-armed bandit with m actions

a1, ..., am. By pulling an arm at s′k, the agent receives some rewards (specified later) and

is transited to the downward state s′k−1 (k > 1) or the start state s1 (k = 1). The actions

of bandits are collectively drawn as the double arrows in Figure 3.2.
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a a1, ..., am

a a1, ..., am

a a1, ..., am

a a1, ..., am

a′

a′

a′

a′

a′

a1, ..., am

Figure 3.2: A tower MDP of height h.

The optimal policy involves how many levels the agent should climb from s1, and

which arms it should play at each bandit. For example, suppose the reward of the bandit

is 1 with probability 0.1 and 0 with probability 0.9 for a1 at s′h , and is constantly 0 for

all other arms and states. Also suppose that the discount factor γ is sufficiently close to

1. Then the optimal policy is to climb to the top of the tower from s1, play a1 at s′h,

then play arbitrary arms at s′h−1,...,s′1 to go back to s1. For another example, suppose the

reward is 1 with probability 0.1 for a1 at s′1 and 0 otherwise, then the optimal policy is

to take a′ at s1, then take a1 at s′1.

To decide which policy is optimal, the agent has to collect information about the

rewards of the bandits. Since the rewards of the bandits are stochastic, each bandit arm

should be played for several times to obtain the reward distribution. Thus, we can assign

an initial demand Dinit where the entries equal to some d > 0 for all bandit arms (s′i, aj).

For all non-bandit actions (si, a) and (si, a
′), the initial demand is 0 since there is no

uncertainty regarding their dynamics and rewards.

3.4.2 Optimal exploration scheme

From the structure of tower MDPs, it is easy to see that the most efficient way to fulfil

the demand at the bandits is to climb up to the top s′h, play each bandit once and back
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to s1, repeating for m × d times. Therefore, the following exploration scheme is optimal

in tower MDP of height h:

φ∗(D; s) =


a s ∈ {s1, ..., sh−1}

a′ s = sh

ai s ∈ {s′1, ..., s′h}, i = argminj{D[s, aj] > 0}.

The optimal exploration scheme is not unique in tower MDPs because the order of choos-

ing arms (i in the above definition) can in fact be arbitrary. However, their exploration

costs are the same, which is given as follows.

Lemma 3.3. The exploration cost of φ∗ is 2hmd in tower MDPs.

Proof. Executing the exploration scheme φ∗ results in a trajectory that consists of base

sequence [s1a, s2a, ...sh−1a, sha
′, s′hai, s

′
h−1ai, ...s

′
1ai], repeating d times, with i iterating

from 1 to m. The length of this base sequence is 2h, and thus the total exploration cost

is 2hmd.

3.4.3 ε-greedy

It is a well-known fact that random strategies such as ε-greedy are not sample efficient due

to their randomness in exploration. With probability (1− ε), ε-greedy selects the action

with maximum Q̂(s, a), and with probability ε, it selects a random action from a uniform

distribution. Also, when all actions have the same Q̂(s, a), it selects actions uniformly

randomly. In tower MDPs, such randomness leads to an exponential exploration cost,

given in the following lemma.

Lemma 3.4. The worst-case exploration cost of ε-greedy with parameter 0 < ε < 1 is

Ω(hmd (2
ε
)h) in tower MDPs.

Proof. At the beginning of exploration, Q̂ is 0 for all state-action pairs. Thus, it has 0.5

probability to select a and 0.5 probability to select a′ at any s1, ..., sh. As a result, the
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probability of it first taking a′ and arriving at downward state s′j is 0.5j for j < h and is

0.5h−1 for j = h.

After arriving at some s′j, the agent is aware of the rewards from the multi-armed

bandits. From this time point, ε-greedy starts taking actions with maximum Q̂ with high

probability, and thus falls into the reward trap.

To obtain the worst-case lower bound, we only need to construct one example where

the bound holds. To this end, let the reward of the bandits be 0.01 with probability 1 for

all arms at s′1, be 1 with probability 1 for s′h, and be 0 otherwise. With a discount factor

sufficiently close to 1, this makes ε-greedy try to take the path [s1s2...sj−1sjs
′
js
′
j−1...s

′
1s1]

repeatedly, and only with probability 0.5ε at each upward si it wanders into some other

state that is not in the path.

Notably, there is probability p = 0.5 that the first s′j the agent visits is s′1. In this

case, the probability that ε-greedy later wanders into s′h through h− 1 successive random

exploration starting from s1 is only p′ = (0.5ε)h−1. The average number of trials it needs

to reach s′h from s1 is 1
p′

. Thereafter, the number of steps ε-greedy fulfilling the demand

at s′h is at least n = 2hmd. Thus, the expected exploration cost of ε-greedy is at least

p · 1
p′
· n = 0.5 · 1

(0.5ε)h−1 · 2hmd = hmd (2
ε
)h−1.

The above computation ignores all the addition steps wasted in the paths taking a′

at states si with i < h, as well as by playing the wrong arms that have already been

tried d times due to the random exploration. Thus, the final expected exploration cost of

ε-greedy is Ω(hmd (2
ε
)h).

3.4.4 R-MAX

Re-describing in the terms used in this chapter, R-MAX [Brafman and Tennenholtz, 2002,

Strehl et al., 2009] works as follows. At time t, every state-action pair (s, a) with demand

Dt[s, a] > 0 is labelled “unknown” and its Q̃(s, a) is set to Vmax := Rmax

1−γ , where Rmax is the

maximum reward of the MDP. State-action pairs with Dt[s, a] = 0 are labelled “known”

and their Q̃(s, a) is computed from the Bellman optimality equation (see Section 2.1).
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R-MAX always chooses actions with maximum Q̃(s, a).

Lemma 3.5. The worst-case exploration cost of R-MAX with its exploration parameter

mR-MAX = d is Ω(h2md) in tower MDPs.

Proof. Let the reward of the bandit arm (s′h, ai) be 1 with probability 0.1 and 0 with

probability 0.9 for all ai. Let the reward of all other bandits at s′j with j < h be 0. At the

beginning of exploration, all actions in downward states are “unknown” and thus their

Q̃(s′i, aj) = Vmax = 1
1−γ . All Q̃ for a and a′ are computed from the Bellman optimality

equation.

At sh, the only action available is a′ which leads to the “unknown” s′h, thus Q̃(sh, a
′) =

γVmax = γ
1−γ . At state sh−1, choosing action a which leads to sh has action value

Q̃(sh−1, a) = γQ̃(sh, a
′) = γ2

1−γ . Meanwhile, choosing action a′ which leads to s′h−1 has

action value Q̃(sh−1, a
′) = γQ̃(s′h−1, a(·)) = γVmax = γ

1−γ . Since 0 < γ < 1, we have

Q̃(sh−1, a) < Q̃(sh−1, a
′), and thus R-MAX chooses a′ at sh−1. The above analysis can be

repeated for sh−2, sh−3, ..., s1 to show that at this stage Q̃(sj, a) = γ2

1−γ and Q̃(sj, a
′) = γ

1−γ

for all j < h, and thus R-MAX selects a′ at any s1, ..., sh. Since the agent starts from s1,

this results in R-MAX repeating [s1a
′s′1a(·)] until all a1, ..., am at s′1 are tried d times.

After the demand at s′1 are satisfied, it becomes “known” and thus Q̃(s′1, a(·)) changes

from Vmax to γmax{Q̃(s1, a), Q̃(s1, a
′)}. Since Q̃(s1, a

′) = γQ̃(s′1, a(·)) and Q̃(s1, a) = γ2

1−γ ,

it must hold that Q̃(s′1, a(·)) = γQ̃(s1, a) = γ3

1−γ and Q̃(s1, a
′) = γ4

1−γ < Q̃(s1, a). Thus,

R-MAX chooses a at s1 and travels to s2. Then, since as previously proved Q̃(s2, a) <

Q̃(s2, a
′), R-MAX chooses a′ at s2, resulting in repeating [s1as2a

′s′2a(·)s
′
1a(·)] until all

a1, ..., am at s′2 are tried d times and become “known”.

The above analysis can be repeated for s3, s4, ..., sh to show that R-MAX takes the

path [s1s2...sjs
′
j...s

′
1], each repeated md times, with j iterating from 1 to h. The total

number of steps of such a process is 2md + 4md + ... + (2h)md = h(h + 1)md. Since at

the last loop the agent fulfils the final demand at s′h and does not need to return to s1,

the exploration cost of R-MAX is h(h+ 1)md− (h− 1). Thus, the worst-case exploration

cost is Ω(h2md) in tower MDPs.
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3.4.5 Interval estimation

Interval estimation methods use the upper limit of confidence intervals (CIs) to drive

exploration. The lower and upper limits of the CIs in these strategies usually take the form

of X(s, a)± β√
Ns,a

, where X is the quantity being estimated, which can be either P , R, V ,

or Q, while β is a parameter decided by the confidence level, and Ns,a is the amount of data

collected at (s, a). For example, MBIE-EB maintains confidence intervals for R, where the

upper limit is stored as R̃(s, a)
def
= R̂(s, a) + β√

Ns,a
. Since Ns,a = 0 results in division by 0,

we assume that they are regarded as 1 in division if equals to 0. MBIE-EB chooses actions

with maximum Q̃(s, a) computed from Q̃(s, a) = R̃(s, a) +γ
∑

s′ P̂ (s′|s, a) maxa′ Q̃(s′, a′),

which is an optimistic estimate due to using R̃ in place of R̂.

Lemma 3.6. The worst-case exploration cost of MBIE-EB is Ω(h2m + hmd) in tower

MDPs.

Proof. To simplify the analysis, we first consider the tower MDP with m = 1, i.e. all

downward states are 1-armed bandits. We also assume for now that the parameter β

of MBIE-EB is set to a sufficiently large value s.t. in R̃(s, a)
def
= R̂(s, a) + β√

Ns,a
, the

estimated reward R̂(s, a) is negligible1 and thus R̃(s, a) = β√
Ns,a

.

Due to the structure of tower MDP, the max operator in the Bellman optimality

equation is essentially choosing between paths [s1...sjs
′
j...s

′
1s1] of different j. Let Q̃j

denotes the optimistic utility Q̃ starting from s1 and following the j-th path, R̃j denotes

R̃ provided by the bandit at s′j, and Nj denotes Ns′j ,a1
which is the sample size at the

bandit of s′j. By solving the Bellman equation, we have Q̃j = γj

1−γ2j
∑j

i=1 γ
j−iR̃i.

At the beginning of learning, for all i we have Ni = 0 which are regarded as 1, and

thus R̃i = β. Then, Q̃j = β
1−γ (1 − 1

1+γj
). Clearly, we have Q̃1 > Q̃2 > ... > Q̃h, and

therefore MBIE-EB chooses the path [s1s
′
1s1] as the first several steps. Then, although

the first visit to s′1 changes N1 to 1, R̃1 is still β, and thus the path [s1s
′
1s1] is repeated

once more, changing N1 to 2, which reduces R̃1 to β√
2
.

1This can be achieved by choosing a sufficiently small δ in β = 1
1−γ

√
ln(2|S||A|d/δ)

2 , see [Strehl and

Littman, 2008] for more details.
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The expression Q̃j = γj

1−γ2j
∑j

i=1 γ
j−iR̃i can be seen as a weighted sum of R̃i, where Q̃j

weights R̃i by γ2j−i

1−γ2j = γ−i( 1
1−γ2j − 1). Clearly, R̃i is weighted less with a larger j. Thus,

when R̃1 is reduced, Q̃2 is reduced less than Q̃1. As N1 grows, Q̃2 eventually exceeds Q̃1,

at which point MBIE-EB stops taking the path [s1s
′
1s1] and starts taking [s1s2s

′
2s
′
1s1].

The same analysis can be repeated to show that after N2 is sufficiently large, MBIE-EB

will change to [s1s2s3s
′
3s
′
2s
′
1s1], then [s1...s4s

′
4...s

′
1s1], and so on, until for the first time sh

is reached. Thereafter the path [s1...shs
′
h...s

′
1s1] will be repeated until all bandits are tried

d times. For the sake of brevity we do not elaborate how many times each [s1...sjs
′
j...s

′
1s1],

is repeated; it suffices to say that each path is taken at least twice, since as explained

above the first visit does not change R̃j. Thus, the exploration cost of MBIE-EB is at

least 2(2 + 4 + ...+ 2(h− 1)) + 2hd = 2h(h− 1) + 2hd.

Now consider the case of m ≤ 2 where there is more than one arm in each bandit. In

this case, Q̃j = γj

1−γ2j
∑j

i=1 γ
j−i maxk∈{1,...,m} R̃i,k, where R̃i,k = β

Ns′
i
,ak

. Thus, Q̃j does not

change until all arms at s′i are tried the same number of times. Therefore, the exploration

cost of MBIE-EB at m ≤ 2 is simply m times the cost at m = 1, that is, at least

2h(h− 1)m+ 2hmd = Ω(h2m+ hmd).

Note that in the above analysis for MBIE-EB, β is assumed to be sufficiently large

such that the rewards R are negligible. However, in reality this makes MBIE-EB likely

to over-explore, i.e. collect more data than needed at some state-action pairs, which is

not desirable. On the other hand, with a smaller β, the rewards R takes more effect in

R̃, which makes MBIE-EB weaker to the reward trap as ε-greedy does. Specifically, by

using the same reward setting as the one used in the analysis of ε-greedy, MBIE-EB can

be lured to taking paths [s1...sjs
′
j...s

′
1s1] (j < h) more often than in the analysis above,

further increasing its exploration cost.

61



Strategy Exploration cost Weakness
Optimal scheme Θ(|S||A|d) -
ε-greedy Ω(|S||A|d · 2|S|) Distance trap, reward trap
R-MAX Ω(|S|2|A|d) Distance trap
MBIE-EB Ω(|S|2|A|+|S||A|d) Distance trap, reward trap

Table 3.1: Summary of results in tower MDPs.

3.4.6 Discussion

The exploration costs analysed in the previous subsections can be rewritten in terms of

|S|, |A| and d by replacing |S| = 2h and |A| = m. The results are presented in Table 3.1.

Clearly, ε-greedy is the worst exploration strategy in tower MDPs because of the

exponential term in its exploration cost. Both R-MAX and MBIE-EB have polynomial

exploration costs, and thus are far better than ε-greedy, but they are still worse than

the optimal exploration scheme. MBIE-EB appears to be better than R-MAX, but the

difference in reality is not significant because usually |S| � d and both strategies are

quadratic to |S|. Thus, there is still a very large room for improvement for R-MAX and

MBIE-EB.

The exploration costs of R-MAX and MBIE-EB share some similarity with their sam-

ple complexity. R-MAX and MBIE-EB have sample complexity upper bound quadratic

to the size of state space |S| and linear to the size of action space |A|, which is the

same as their exploration costs. Interestingly, there is a variant of R-MAX called MoR-

MAX which has a sample complexity upper bound linear to both |S| and |A|, which is

much better than R-MAX with respect to |S|, while its exploration behaviour in tower

MDPs is exactly the same as R-MAX1, and thus has the same worst-case exploration cost

Ω(|S|2|A|d). The difference between the sample complexity and the exploration cost with

respect to |S| is possibly because in the sample complexity analysis early exploitation

before completing exploration is allowed as long as such exploitation is sufficiently good,

1MoR-MAX achieves a better sample complexity upper bound by using a much smaller threshold than
R-MAX when deciding whether an “unknown” state-action pair becomes “known”, and forces the agent
to discard all the collected data and restart exploration when it finds itself converging prematurely. Thus,
given the same threshold (i.e. data demand), the behaviour of MoR-MAX and R-MAX is the same.
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while in our exploration cost analysis early exploitation does not bring in any benefit and

only increases the cost. Since in the learning-then-serving workflow exploitation during

learning is not needed, this difference suggests that sample complexity bound cannot be

used to evaluate sample efficiency in learning-then-serving workflow.

The “Weakness” column lists the weaknesses found in the exploration cost analysis.

Both ε-greedy and IE methods are prone to the reward trap because their exploration

behaviour can be altered by the rewards of the MDP. As long as the reward setting does

not coincide with the correct order of exploration, the rewards are just distraction to the

demand fulfilment process and should be ignored.

Some readers may argue that reward function can be properly designed such that it

both expresses the optimality of desirable policies and points out the areas that should

be explored first. However, in reality finding a suitable reward function is already a

very difficult task for RL users. It usually involves manual tweaking the function to

see whether the learnt policy satisfies the requirement of the application or not, which is

expensive in terms of both manpower and data (see the researches on inverse reinforcement

learning, e.g. [Abbeel and Ng, 2004]). It is thus unwise to further require the RL users to

design reward functions that both fulfil their own purpose and guide exploration efficiently,

especially in limited budget setting.

As for the distance trap, both R-MAX and MBIE-EB are weak to it because they

tend to explore nearby uncertain state-action pairs first (e.g. s′1 at the beginning of ex-

ploration). The underlying reason behind such a weakness is the use of the discount

γ < 1 in propagating the uncertainty. Specifically, both R-MAX and IE algorithms use

optimistic Q̃ to express the uncertainty, and use the discounted versions of the Bellman

equation to propagate it to other state-action pairs. A large uncertainty in a farther state

is discounted more and thus becomes much smaller when passed to the current state,

making them less likely to be explored first. This is an unavoidable problem when ex-

pressing the data demand and the estimated utility in one single Q̃, because the estimated

utility must be discounted in MDPs with γ < 1. The solution of our planning for explo-
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ration problem does not suffer from distance trap because the exploration costs and the

estimated utility are completely separated, and the exploration costs are not discounted

when passing through the augmented undiscounted MDP of the PFE problem.

Tower MDPs in the above analysis use deterministic transitions for the sake of sim-

plicity. In non-deterministic cases, the distance trap becomes even more harmful for the

existing strategies weak to it. For example, suppose that taking a′ from s1 still transits

the agent to s′1 with probability 1, but taking a from s1 transits to s2 with probability 0.5

and remains at s1 with probability 0.5. This further increases the gap in Q̃ between taking

a and a′, making the IE methods choose a′ at s1 more often than previously analysed.

We choose tower MDPs in the analysis because it is easier to demonstrate the effects

of distance and reward traps in these MDPs. Meanwhile, the two traps are not limited

to tower MDPs, but can occur in any types of MDPs and make existing strategies in-

efficient. In some easier cases the difference in exploration costs between the optimal

scheme and existing strategies might not be as large as O(|S||A|d) vs O(|S|2|A|d), but

even a difference in constant factor can still be significant in practice, especially when

environment interaction is expensive. Since the exploration schemes computed from ex-

plicit planning for exploration are not affected by distance and reward traps, they can

potentially be highly useful for improving sample efficiency even if they are only estimates

and/or approximations to the true optimal schemes.

3.5 Chapter summary

In this chapter, we have formulated the planning for exploration (PFE) problem, proposed

the exploration cost of demand fulfilment process as a metric for evaluating the sample

efficiency of exploration, showed that the optimal exploration scheme can be obtained by

solving an augmented undiscounted MDP, and proposed the Value Iteration for Explo-

ration Cost (VIEC) algorithm to solve it. These answer the research question Q1.1 (“How

to better analyse the sample efficiency of exploration strategies with a sample-size-based

64



performance metric from a planning-based point of view?”) proposed in Section 1.3.1 and

lead to contribution 1 in Section 1.4.1

We have then analysed the exploration behaviours and the corresponding exploration

costs of the optimal exploration scheme, ε-greedy, R-MAX, and MBIE-EB, pointed out

the two weaknesses of existing strategies (i.e. distance trap and reward trap), and showed

that the optimal exploration scheme computed from solving the PFE problem is im-

mune to these traps and thus has much less exploration cost than the other strategies.

These answer the research questions Q1.2 (“According to this new analysis, what are the

weaknesses of existing exploration strategies?”) and Q1.3 (“Can explicit planning for

exploration significantly improve the sample efficiency?”) in Section 1.3.1, and lead to

contribution 2 in Section 1.4.2

1Contribution 1: “We propose the planning for exploration (PFE) problem and formulate it as an
augmented MDP. We show that given the exploration demand and true transitions, the optimal explo-
ration scheme can be found by solving the augmented MDP using a modified version of value iteration
algorithm. We show that sample efficiency of exploration strategies can be analysed by comparing their
behaviours with the optimal exploration scheme.”

2Contribution 2: “Exploration behaviours in a class of tower MDPs are analysed to illustrate the
benefit of explicit planning for exploration, and to expose two weaknesses of existing methods, namely
distance traps and reward traps.”
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CHAPTER 4

TRANSFORMATION BIAS OF MODEL-BASED
RL AND ITS CORRECTION

4.1 Introduction

As reviewed in Section 2.4.2, in model-based RL, there is a particular factor that can possi-

bly reduce significantly the overall accuracy of state/action value estimates, which we call

the transformation bias. To recapitulate, the Bellman equations form a system of linear

equations, where state/action values are the unknowns while the transition probabilities

(multiplied by some constants) are the coefficients. Although the equations themselves

are linear, the solution of such a system is a nonlinear mapping from the transition prob-

abilities to the state/action values. For example, the Bellman equation for state value in

matrix form is V = (P�R)1 + γPV, which is a linear equation of V, while its solution

V = (I−γP)−1(P�R)1 is a nonlinear mapping from P to V. Due to the nonlinearity, the

state/action value estimates are biased, regardless of whether the transition probability

estimates are biased or not.1

The transformation bias has been studied by [Mannor et al., 2004, 2007], in which

second order approximations to the bias and variance of the estimated values are proposed.

Their analysis suggests that the magnitude of the variance is much larger than the bias

1By the Bellman equations 2.1 and 2.2 the action values Q are just linear transformation of state
values V , and thus they have the same mathematical properties with respect to their transformation
bias. For brevity this chapter mainly discusses V , but the results are easily applicable to Q.

66



in general, and therefore correcting the bias is less useful than reducing the variance.

However, our empirical investigation on the transformation bias, which will be pre-

sented later in this chapter, shows that the transformation bias can be large enough to

make the value estimates completely useless, especially when the sample size per state-

action pair is small. As will be explained in Section 4.2, when the bias is sufficiently large

to change the relation between two state/action values, having a low variance can even

increase the probability of making wrong decisions. Without bias correction, the only way

to reduce the negative effect of the transformation bias is to collect a larger sample, which

is not desirable when obtaining data is expensive. Thus, correction of the transformation

bias is of great importance in a limited budget setting.

In this chapter, we present our detailed study on the transformation bias which reveals

its several important characteristics. Firstly, both positive and negative transformation

bias can happen in model-based RL, making some value estimates more likely to be over-

estimated while the others underestimated. Secondly, values that are related to Markov

chains with low connectivity tend to have large bias, while the ones related to almost fully

connected Markov chains tend to have small bias. Thirdly, under the same sample size

per state-action, the magnitude of the bias increases with the number of states, meaning

that guaranteeing the model accuracy is not sufficient for guaranteeing the accuracy of

value estimates.

To reduce the bias and thus improve the learning efficiency, we propose Bootstrap-

based Transformation Bias Correction (BTBC) for model-based RL. BTBC utilises the

well-known statistical technique of bootstrap to estimate the unknown transformation

bias. At the cost of an increase in the computation time, BTBC can effectively reduce

the bias of value estimators without requiring more data, which is helpful when obtaining

new data is much more expensive than computational resources.

The remainder of this chapter is organised as follows. In Section 4.2, we explain

the reason why bias-variance trade-off is problematic and bias correction is important in

model-based RL. In Section 4.3, we present our detailed study on the transformation bias,
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revealing several of its important properties that have not been mentioned in literature.

In Section 4.4, we propose the BTBC method for correcting the transformation bias. In

Section 4.5, we present our experiment results to show the empirical efficiency of BTBC. In

Section 4.6, we briefly discuss the implicit transformation bias in model-free RL. Finally,

in Section 4.7, we give a summary to this chapter.

4.2 The problematic bias-variance trade-off and the

importance of bias correction in RL

In supervised learning, there is a classic idea of bias-variance trade-off which claims that

low-bias predictions can only be achieved at the cost of high variance, and that it is

usually more beneficial to give up unbiasedness for low variance in order to achieve low

overall estimation error (e.g. [Geman et al., 1992, Hastie et al., 2009]).

However, simply trading bias for variance can be problematic in reinforcement learning.

In RL, having estimates with low errors is not the final objective of learning. Rather, the

objective is to make informed decisions, i.e. to choose actions/policies that lead to high

learning/serving process cumulative rewards. In this context, perhaps somewhat counter-

intuitively, having higher variance in value estimates does not necessarily leads to worse

performance when the estimates are biased.

Figure 4.1 gives an illustration of problematic bias-variance trade-off. Suppose that

we are comparing two state values V = 3 and V ′ = 4, which are represented in Figure

4.1 by the thin and thick vertical lines at x = 3 and x = 4, respectively. Obviously, the

correct answer of the comparison is V < V ′. For simplicity, suppose that the estimated

state value V̂ ′ happens to be V̂ ′ = V ′ = 4. Let us consider three estimators V̂1, V̂2, and

V̂3 of V , whose estimates follow normal distributions V̂1 ∼ N (3, 1), V̂2 ∼ N (5, 1), and

V̂3 ∼ N (5, 0.52), respectively. Their probability density functions are presented by the

three curves in Figure 4.1.

As can be seen from the figure, V̂1 has no bias but high variance, V̂2 has high bias and
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Figure 4.1: Problematic bias-variance trade-off in RL.

high variance, and V̂3 has high bias but low variance. From the pure value estimation

point of view, V̂2 seems to be the worst one due to being higher in both bias and variance,

and if we blindly follow the trade-off dogma, then the unbiased high-variance V̂1 should

be worse than biased low-variance V̂3.

These relations change dramatically when we consider the value comparison problem

V̂ vs V̂ ′. The regions of the three distributions at the left side of the thick line x = 4

indicate the probability density of V̂ < 4 = V̂ ′. The areas of these regions are thus the

probabilities of yielding the correct answer V̂ < V̂ ′ by the three estimators. Interestingly,

V̂1 has the most areas in x < 4, then follows by V̂2, while V̂3 has the least. The estimator

deemed the best in pure value estimation scenario, V̂3, becomes the worst one in terms of

probability of successful value comparison. Even estimator V̂2, which has the same bias

as V̂3 but a higher variance, is more likely to success in value comparison. In other words,

reducing the variance actually increases the chance of failure in this case.

Indeed, it is not difficult to construct opposite cases where reducing the variance does

help. The key factor deciding whether variance reduction helps or not is in fact the

magnitude of the bias. Intuitively, if the biases of estimators change the relation between

two values (i.e. V > V ′ but E[V̂ ] < E[V̂ ′], or the opposite), then variance reduction

makes the estimates more concentrated to the wrong values and thus increases the chance
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of failure. If the relation is not changed by the bias, then variance reduction helps.

The problem is, both kinds of cases can happen at the same time in one single MDP,

and it is difficult to discern which kind of case it is for a specific pair of value estimates

without knowing their true values. Therefore, to ensure the usefulness of variance reduc-

tion, or more generally the accuracy improvement of estimated values, the most reliable

way is thus to always consider the potential negative effect of the biases first, and if nec-

essary reduce such effect by either directly conducting bias reduction/correction, or use

more deliberate value comparison methods that are strong to the biases of value estimates

(which will be elaborated in Section 5). If none of these are conducted, then the only way

to reduce the bias is to collect a larger sample, resulting in low sample efficiency.

4.3 A detailed study of the transformation bias in

model-based RL

As discussed in Section 2.4, both the transformation bias and the maximisation bias of RL

comes from the Bellman equations. For simplicity, we mainly focus on Bellman equation

for V̂ π in this chapter in which the max operator is not directly involved. However, our

results can easily be generalised to other forms as well.

Since bias correction often requires additional computation and makes algorithms

more complicated, it is important to know in what kind of MDPs the bias is remarkable

and harmful. Although Mannor et al. [2007] provides a second order approximation to

the transformation bias, the resulting mathematical expressions are rather difficult to

interpret. Therefore, in the following subsections we present our systematic study of the

transformation bias based on both analysis and empirical results.

4.3.1 The direction of the transformation bias

Unlike the maximisation bias which always results in E[V̂ ] > V , the the transformation

bias can occur in both directions E[V̂ ] > V and E[V̂ ] < V . To show this, we give two
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simple examples as follows.

Example 4.1. Consider an MDP with two states s1 and s2, one action a, transition

matrix
[

1−p p
1 0

]
, reward

[
0 0
1 0

]
, and discount factor γ ∈ (0, 1). Let V1 and V2 be the state

values by taking a at s1 and s2, respectively. By the Bellman equation, we have

V1 = (1− p)γV1 + pγV2

= (1− p)γV1 + pγ(1 + γV1)

=
pγ

1− (1− p)γ − pγ2
,

which is a concave function of p for p ∈ [0, 1]. Seeing the estimated state value V̂1 = V1(p̂)

as a function of the estimated transition probability p̂, by Jensen’s inequality we have

E[V1(p̂)] ≤ V1(E[p̂]) and therefore E[V̂1] ≤ V1.

Example 4.2. Consider an additional action a′ in the MDP of Example 4.1 which leads

to the same transition matrix as a, but has a different reward matrix
[

1 0
0 0

]
. Let V ′1 and V ′2

denote the state values by taking a′ at s1 and s2, respectively. By the Bellman equation,

we have

V ′1 = (1− p)(1 + γV ′1) + pγV ′2

= (1− p)(1 + γV ′1) + pγ(γV ′1)

=
1− p

1− (1− p)γ − pγ2
,

which is a convex function of p at p ∈ [0, 1], and thus by Jensen’s inequality E[V̂ ′1 ] ≥ V ′1 .

As can be seen from the examples, both E[V̂ ] ≤ V and E[V̂ ] ≥ V can happen. The

inequalities are strict if and only if p 6= 0 and p 6= 1, which means that in these examples

the estimated values are biased as long as the transitions are not deterministic.

More importantly, these two examples together show that positive and negative bias

can occur simultaneously for different value estimates in the same MDP. When pγ < 1−p

and thus p < 1
1+γ

, we have V1 < V ′1 . Since E[V̂1] ≤ V1 and V ′1 ≤ E[V̂ ′1 ], we have
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E[V̂1] < E[V̂ ′1 ], which means that the transformation bias is harmless in this case. On

the other hand, when pγ > 1 − p and thus p > 1
1+γ

, we have V1 > V ′1 . In this case,

E[V̂1] ≤ V1 and V ′1 ≤ E[V̂ ′1 ] make V̂1 and V̂2 more likely to get mixed or even lead to the

wrong conclusion V̂1 < V̂2, and therefore the transformation bias clearly becomes harmful.

This is an important characteristic of the transformation bias that differs from other

biases of RL such as the maximisation bias. The maximisation bias is known to be always

E[V̂ ] > V , which means that when comparing two values V and V ′, their estimated values

V̂ and V̂ ′ are shifted to the same direction. If the biases of V̂ and V̂ ′ have similar scale,

then V1 < V2 implies E[V̂1] < E[V̂ ′1 ] while V1 > V2 implies E[V̂1] > E[V̂ ′1 ], and therefore

the maximisation bias is harmless. In other words, it is harmful only when there is a

significant difference between the scales of the biases among different estimated values.

In contrast, since transformation bias can occur in both directions, even if the biases of

two value estimates have the same scale, it can still be harmful for learning.

4.3.2 The effect of transition dynamics

In [Grünewälder and Obermayer, 2011], it is shown that cyclic Markov chains (or cycles

for short) in MDPs lead to non-zero transformation bias. However, it is not clear from

their results how multiple cycles interact. The transition dynamics in Examples 4.1 and

4.2 are both cycles, but they lead to different directions in the transformation bias. For

convenience, we say a cycle is positive if it leads to a positive transformation bias, and

negative if it leads to a negative bias. What if a state/action value consists of both types

of cycles?

Our extensive experiments showed a general finding that an MDP with better connec-

tivity often has less transformation bias, and vice versa. Our explanation to this finding

is, in a fully connected MDP with uniformly random non-zero transition probabilities

and random rewards, the positive and negative cycles are equally likely to happen, and

thus their corresponding positive and negative transformation biases cancel each other,

leading to a small final bias on average. With more connections removed from the MDP,
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the positive and negative biases become more likely to be unbalanced, resulting in a larger

final bias.

To illustrate this, consider a class of (n−1) MDPs with n states and 1 action, denoted

{Mn
k }, in which Mn

k with connectivity parameter c = k (1 ≤ k < n) has transition

probability function:

Pi,j =


1/min{c+1, n−i+1} i6=n, i≤j≤min{i+c, n}

0.5 i = n, j = 1 or n

0 otherwise.

Thus the agent transits from si to si, si+1, ..., si+c (or sn if i + c > n) with a uniform

distribution when i 6= n. At sn, the agent transits to either sn or s1 with probability 0.5.

Thus, with c = k, the transition by taking an action at a state at most leads to k + 1

different states.

At c = 1, the transition matrix is the sparsest and thus the MDP has the worst

connectivity in {Mn
k } with the same n, while at c = n − 1 the transition is the densest

and thus the MDP has the best connectivity. For example, the transition matrix for n = 5

with c = 1, ..., 4 are



1/2 1/2 0 0 0

0 1/2 1/2 0 0

0 0 1/2 1/2 0

0 0 0 1/2 1/2

1/2 0 0 0 1/2


,



1/3 1/3 1/3 0 0

0 1/3 1/3 1/3 0

0 0 1/3 1/3 1/3

0 0 0 1/2 1/2

1/2 0 0 0 1/2


, ...,



1/5 1/5 1/5 1/5 1/5

0 1/4 1/4 1/4 1/4

0 0 1/3 1/3 1/3

0 0 0 1/2 1/2

1/2 0 0 0 1/2


.

The reward is 1 when the agent moves from sn to s1, and 0 otherwise. The discount

factor γ is 0.9.

We fixed n = 20 and conducted the following experiment to obtain the transformation

bias of V̂ (s1). In each run, we collected m = 20 transition data (s, s′) at each state s

(and thus 400 data in total in each run), used them to construct a model MDP M̂ , then
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Figure 4.2: Bias vs connectivity.

computed V̂ (s1) by solving Bellman equation.1 Such process was repeated 1000 times

and the relative bias |E[V̂ (s1)]−V (s1)
V (s1)

| × 100% was computed.2

The relative biases under different c are shown by the circle points in Figure 4.2. The

relative bias was 30.8% at c = 1, but was only around 5% at c ≥ 6. This clearly shows

that lower connectivity leads to larger transformation bias, and vice versa.

If an RL problem is closer to fully connected (i.e. high connectivity, dense transition

matrix), then the risk of having a large transformation bias is low. However, in real-world

applications, it is very often that each state-action pair only leads to a limited subset of

states (i.e. low connectivity, sparse transition matrix). For example, in a Shogi playing

task, the next state must comes from playing a legal move at the current state. Although

the branching factor of Shogi is relatively large (about 80) among board games, it is almost

negligible compared to its state space (1071) [Iida et al., 2002]. In a robot navigation task,

1Note that in this chapter we do not consider the problem of data demand fulfilment that has been
elaborated Chapter 3. Rather, we simply consider the case where the data demand is fulfilled perfectly,
i.e. no excess data is obtained beyond demand d = m. This does not affect the generality of our results.

2The bias studied here is in fact a negative one. To present in a more intuitive way, the curves in
Sections 4.3.2-4.3.4 show the absolute value of the bias.
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Figure 4.3: Chain MDP with n states.

the robot can only be transited to an adjacent location after each movement action, rather

than anywhere in the whole space. Such cases correspond to {Mn
k } with low connectivity

c, and thus can be expected to have relatively large transformation bias.

4.3.3 The effect of the number of states

In this section, we study the impact of the number of states. Since a cycle is the essential

unit for causing transformation bias, in this subsection we focus on chain MDPs, illus-

trated in Figure 4.3. A chain MDP with n states has a cycle of length n, i.e. [s1s2...sns1].

Chain MDPs also correspond to the case of c = 1 in {Mn
k }, which is the one with the

least connectivity and thus the largest transformation bias.

We fixed the sample size per state-action m = 20 and obtained the estimated V̂ (s1)

in chain MDPs under different number of states n, ranging from 5 to 800. The process

was repeated 1000 times for each n to get the empirical distributions of V̂ (s1).

The relative bias of V̂ (s1) under different n is shown in Figure 4.4. The result

was approximately y = aebx + c with a = −0.9955 (−1.001,−0.9905), b = −0.008263

(−0.008342,−0.008185), and c = 1.001 (0.9991, 1.002), in which the numbers in paren-

theses give the 95% confidence bounds to the coefficients. The R-squared goodness of fit

was 0.9998. The curve shows a fast growth at lower n, while converges to about 1 with

higher n.

The relative bias being 1 means that the bias of V̂ (s1) was as large as the true

value V (s1). To better understand what had happened, we obtained the distribution

of V̂ (s1)/V (s1) at n = 800, which is presented in Figure 4.5. As can be seen from the

distribution, in these 1000 runs, almost all estimated V̂ (s1) were less than 0.01V (s1) and
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Figure 4.4: Bias vs number of states.

a large portion of them were less than 0.004V (s1). Needless to say, 0.004V (s1) is a terrible

(if not completely useless) estimate of V (s1).

Note that with sample size per state-action m = 20, each estimated transition proba-

bility p̂ has mean 0.5 and variance 0.5 · (1− 0.5)/20 = 0.0125 1, which makes a relatively

accurate model of the true MDP. This implies that a slight error in the model MDP can be

greatly magnified and bring into the state/action value estimates by the transformation

bias. It also suggests that correcting the transformation bias might be more helpful than

solely improving the model accuracy.

4.3.4 The effect of sample size per state-action

To have a clearer picture of how increasing the sample size affects transformation bias,

we fixed the number of states n = 200 and changed the sample size per state-action m

from 5 to 800. The process was repeated 1000 times for each m.

1The variance of a random variable X following binomial distribution B(n, p) is np(1 − p), thus the
variance of p̂ = X/n is np(1− p)/n2 = p(1− p)/n.
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Figure 4.6: Bias vs sample size per state-action.
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Figure 4.7: Sample size per state-action to achieve ≤ 10% relative bias vs number of
states.

The relative bias of V̂ (s1) under different m is shown in Figure 4.6. The data was

fitted for x = g(y) and resulted in the fitting x = log a
log(1−by)

with a = 0.9983 (−44.14, 46.14),

b = 5.929× 10−5 (−1.565, 1.565), and the R-squared goodness of fit was 0.9712.

As we increased m, the bias decreased relatively fast when m is small, but was still

more than 25% of the true value at around m = 100. It eventually reduced to near 0 at

m = 800, but that is an exceptionally high price considering that each transition is just

a simple Bernoulli event with p = 0.5.

From a practical perspective, it is interesting to know how large sample size is needed

under different MDP size to maintain the same level of bias. Therefore, we conducted

another experiment as follows. The number of states n changed from 5 to 500, and a

binary search was used to find out the minimum sample size per state-action m needed

to let the relative bias of 1000 runs no more than 10%.

The result is shown in Figure 4.7. The curve was, somewhat surprisingly, linear

y = ax + b with a = 1.462 (1.428, 1.495), b = −5.789 (−15.6, 4.018), and R-squared
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goodness of fit 0.9960, indicating that to maintain the same level of transformation bias,

the sample size per state-action m should increase linearly with the number of states

n. Since there are n states in chain MDPs and each requires m = an + b data, this

result suggests that O(|S|2|A|) data in total need to be collected just for preventing the

transformation bias from growing with |S|. It can be a substantial price in MDPs with

large state spaces.

4.3.5 Putting the results together

The key findings from the previous subsections are highlighted as follows.

1. Both positive and negative transformation bias can occur for different value esti-

mates in one single MDP.

2. MDPs with higher connectivity (the ones that are closer to complete graphs) tend

to suffer less from the transformation bias, while the ones with lower connectivity

suffer more. (Figure 4.2)

3. Transformation bias increases with the number of states, even if the model accuracy

remains the same. (Figure 4.4)

4. With low connectivity and large number of states, transformation bias can become

as large as the true value being estimated in some cases, making the value estimates

completely useless. (Figure 4.5)

5. To maintain the same bias level, the sample size per state-action needs to be in-

creased proportionally to the number of states. The total amount of data thus

increases quadratically with the number of states. (Figure 4.7)

In addition, we have some well-fitted (in terms of R-squared score) relations between

the the relative bias η, the number of states n, and the sample size per state-action m in

chain MDPs:

� η ≈ −0.9955e−0.008263n + 1.001.

� m ≈ log 0.9983
log(1−5.929×10−5η)

.

� m ≈ 1.462n− 5.789.
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There is one surprisingly simple formula that can cover all three relations listed above,

which is

η = C −K n/m, (4.1)

where C > 0 and K ∈ (0, 1) are constants decided by the transition dynamics and the

reward setting.

Although the empirical formula given in Equation 4.1 is only accurate in chain MDPs,

in other general MDPs the relations between η, n and m is likely to be similar. Thus,

we can use Equation 4.1 as a simple mathematical model of the transformation bias to

estimate the potential scale of the bias before running experiments.

In particular, the formula can be used for tuning the sample size per state-action m

in a multi-episode learning process. Suppose that we first run a learning algorithm with

m = m1, find the learning result disappointing, then run another episode of learning

process with m = m2 > m1, and find the result somewhat better but still unsatisfying.

We then need to run one more episode with m = m3 > m2 to further improve the learning

result. To find a suitable m = m3, we can represent the quality of the previous results

at m = m1 and m = m2 as η1 and η2, put them into the formula above to obtain two

equations for C and Kn, i.e. 
η1 = C − (Kn) 1/m1

η2 = C − (Kn) 1/m2 .

We can obtain the values of C and Kn by solving these equations.1 Then, by expressing

the wanted result as η3, we can make an informed guess of possibly suitable sample size

per state-action setting m = m3 by

m3 =
logKn

log(C − η3)
.

The resulting m3 might not be an accurate estimate to the actual minimum sample size

1Note that we only need to know Kn as a whole, because we usually do not need to change the number
of states n. Also, the solution might not be unique and we might need to choose one based on some
domain knowledge.
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needed to achieve η3 if the underlying MDP is very different from chain MDPs. However,

we can still use this value as a reference when deciding whether we should just collect

more data or whether we should improve the learning algorithm (by e.g. bias correction)

in order to achieve η3 in a limited-budget setting.

4.4 Bootstrap-based Transformation Bias Correction

for model-based RL (BTBC)

Since transformation bias can be disastrous in some cases and relying on large samples can

be costly, we propose a method called Bootstrap-based Transformation Bias Correction for

model-based RL (BTBC for short) to help reduce the transformation bias without needing

more data. BTBC is based on the resampling technique of bootstrap in statistics.

4.4.1 Single-depth BTBC

Before we propose the more complicated full-scale BTBC, we first introduce a single-

depth version of it. Single-depth BTBC works as follows. Let N collectively represent

all transition counts {Ns,a,s′} and N∗,∗ represents sample sizes at each state-action pair

{Ns,a}. By definition, transition counts Ns,a,s1 , ..., Ns,a,sn at (s, a) follow multinomial

distribution with Ns,a trials and probabilities P (s1|s, a), ..., P (sn|s, a). For convenience,

we write this as N ∼ Multinomial(N∗,∗;P ). Expressing the state value estimator as

function V̂ (N) and the unknown true value as V (P ), the bias of V̂ is

Bias(V̂ )
def
= E[V̂ (N)]− V (P ).

Since E[V̂ (N)−Bias(V̂ )] = E
[
V̂ (N)−

(
E[V̂ (N)]−V (P )

)]
= V (P ), we have that V̂ (N)−

Bias(V̂ ) is an unbiased estimate of V (P ).

With only one instance of N we cannot directly compute E[V̂ (N)], nor do we know

the true value V (P ). However, we can estimate Bias(V̂ ) using bootstrap. Specifically,
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the following steps are taken:

� Estimate transition probabilities P̂ from data N by P̂ (s′|s, a)
def
= Ns,a,s′/Ns,a.

� Generate k bootstrap data N+
1 ,N

+
2 , ...,N

+
k from P̂ . Each N+

i is a collection of

transition counts such that N+
i ∼ Multinomial(N∗,∗; P̂ ).

� Compute the estimated bias of estimator V̂ by

B̂ias(V̂ )
def
=

1

k

(
V̂ (N+

1 ) + ...+ V̂ (N+
k )

)
− V̂ (N).

Lemma 4.1. limk→∞ B̂ias(V̂ ) is a consistent estimator of the unknown true Bias(V̂ ).

Proof. Since by definition V̂ (N) = V (P̂ ), we have limk→∞ B̂ias(V̂ ) = E[V̂ (N+)]− V (P̂ ),

which equals to the true Bias(V̂ ) = E[V̂ (N)]−V (P ) if P̂ = P . As Ns,a →∞ for all (s, a)

we have P̂
p→ P , thus limk→∞ B̂ias(V̂ ) is a consistent estimator of the unknown true bias

Bias(V̂ ).

With the estimated bias of V̂ computed from bootstrap, we have the bias-corrected

estimator of V which is

Ṽ
def
= V̂ (N)− B̂ias(V̂ )

= V̂ (N)−
(

1

k

(
V̂ (N+

1 ) + ...+ V̂ (N+
k )
)
− V̂ (N)

)
= 2V̂ (N)− 1

k

(
V̂ (N+

1 ) + ...+ V̂ (N+
k )

)
. (4.2)

4.4.2 Remarks on single-depth BTBC

Readers might ask why not simply use the average of bootstrapped value estimates

avg[V̂ (N+
i )] =

1

k

(
V̂ (N+

1 ) + ...+ V̂ (N+
k )

)

as the corrected value estimate, as what has been done in many other application of the

bootstrap method. The answer is that in the context of bias correction, using avg[V̂ (N+
i )]
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Figure 4.8: Illustration of wrong and correct use of bootstrap for bias corrections. A
correct use of bootstrap leads to a Ṽ close to the true V drawn by the thick vertical line,
while a wrong use leads to one close to the dashed vertical line, which actually increases
the bias.

is simply wrong. It is of great importance that Equation 4.2 not only differs from the

simple avg[V̂ (N+
i )], but also changes the sign to it when computing the bias-corrected

estimate Ṽ .

An illustration of the wrong and the correct bias correction is given in Figure 4.8. In

this figure, the true value V = 2.5 is shown as the thick vertical line. The estimated value

V̂ is biased with E[V̂ ] = 2 < V , which is given by the thin vertical line. The distribution

of the value estimates is given by the thin curve. When using V̂ (N) to generate bootstrap

values V̂ (N+
1 ),...,V̂ (N+

k ), there is a transformation bias between V̂ (N+
i ) and V̂ (N) similar

to the one between V̂ (N) and V , i.e. E[V̂ (N+
i )]−E[V̂ (N)] ≈ E[V̂ (N)]−V . The distribu-

tion of the average bootstrap values thus is placed farther from V , as shown in the dashed

curve in the figure, with its expectation E[V̂ (N+
i )] ≈ E[V̂ (N)] − (V − E[V̂ (N)]) = 1.5,

drawn with the dashed vertical line.
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Clearly, if we simply use avg[V̂ (N+
i )] =

(
V̂ (N+

1 ) + ... + V̂ (N+
k )
)
/k as the corrected

value estimate of V , then it not only fails to correct the bias in V̂ , it even increases

the bias and thus is completely counterproductive. On the other hand, by using Ṽ =

V̂ (N) +
(
V̂ (N)− avg[V̂ (N+

i )]
)

in single-depth BTBC, we shift V̂ (N) back towards V by

V̂ (N)− avg[V̂ (N+
i )] , which makes the resulting Ṽ closer to the true value V .

Readers might also ask whether the estimated B̂ias(V̂ ) of single-depth BTBC suffers

from transformation bias or not, since its computation involves the Bellman equation. The

answer is no. The process of BTBC estimating the transformation bias can be considered

from another perspective: it pretends the estimated V̂ (N) to be the ground truth, and

use the bootstrap process to deliberately generate a transformation bias in V̂ (N+). Since

it already knows the “ground truth” V̂ (N) and can generate arbitrarily many data sets

N+, it can accurately compute the transformation bias of V̂ (N+) seen as an estimator

of V̂ (N). This bias is then used as the estimate of the transformation bias B̂ias(V̂ ) for

V̂ (N), in this case treated as the estimated value of interest rather than the ground

truth. In other words, BTBC estimates the transformation bias of interest from another

real transformation bias of similar property, and thus does not suffer from it, but in fact

benefits from it.

4.4.3 Full BTBC

Since in practice we cannot generate infinite bootstrap samples, we have to use a finite

k in BTBC. In this case, the computation of the expectation is no longer accurate and

the resulting bias-corrected Ṽ is still slightly biased. To reduce this remaining part of

the bias, we can re-apply the bias correction process given above recursively to estimate

Bias(B̂ias(V̂ ))
def
= E[B̂ias(V̂ )] − Bias(V̂ ), then further to Bias(B̂ias(B̂ias(V̂ ))), and so on,

until the remaining bias is negligible. This recursive process leads to what we call full

BTBC, in contrast to the single-depth BTBC. (In the remainder of this thesis, when we

say BTBC we refers to the full BTBC, unless stated otherwise.)

The pseudo-code of full BTBC is given in Algorithm 3. BTBC can be put into any
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Algorithm 3 Full BTBC for model-based RL

Input: number of bootstrap samples b, depth d, transition counts N
Output: bias-corrected estimated state value function V̂

1: Compute transition probabilities P̂N using N
2: V̂ = BellmanSolution(P̂N)
3: for i = 1 to d do
4: V̂ = V̂+ RecursiveBootstrap(b, i, N)
5: end for

Algorithm 4 RecursiveBootstrap(b, d, N)

Input: number of bootstrap samples b, depth d, transition counts N (not necessarily the
original input to Algorithm 1)
Output: (−bias) of the current estimator

1: Compute transition probabilities P̂N using N
2: if d == 1 then
3: Θ = BellmanSolution(P̂N)
4: else
5: Θ = RecursiveBootstrap(b, d− 1, N)
6: end if
7: T = 0
8: for j = 1 to b do
9: Generate bootstrap data N+ using P̂N, i.e. N+

s,a,∗ ∼ Multinomial(Ns,a; P̂N(∗|s, a))
10: if d == 1 then
11: Compute P̂N+ using N+

12: T = T + BellmanSolution(P̂N+)/b
13: else
14: T = T + RecursiveBootstrap(b, d− 1,N+)/b
15: end if
16: end for
17: Return (Θ−T)

85



model-based RL algorithm by replacing its original planning method (e.g. Value Iteration)

with Algorithm 3. The original planning method is used in Algorithms 3 and 4 in the

form of V̂ = BellmanSolution(P̂ ).

Algorithm 4 is a helper method for Algorithm 3 which recursively computes the bias

at different depths. At depth d = 1, Algorithm 4 estimates the biases of every state

values; at d = 2, it estimates the biases of the estimated biases at d = 1, and so on. All

the biases are eventually passed to Algorithm 3 and are used to correct the biases of the

state value estimates. Note that each call of Algorithm 4, including the recursive ones,

creates its own b sets of bootstrap data N+, so that no dependency in bootstrap data

occurs between different calls.

The drawback of such design is that the total number of BellmanSolution calls in

Algorithm 4 is O(bd) , which can be very expensive with large d. However, our empirical

results on BTBC (presented in Section 4.5) suggest that setting of 1 ≤ b ≤ 2 and 1 ≤ d ≤ 4

might be sufficient for bias correction in practical use. In this case, O(bd) becomes just

a constant factor, and thus as long as the BellmanSolution method used in BTBC is

computationally efficient, BTBC is also computationally efficient.

4.5 Empirical Evaluation of BTBC

4.5.1 Parameters of BTBC

There are two parameters in BTBC, the number of bootstrap samples b and the maxi-

mum depth of recursion d. To see how these parameters affect the effectiveness of bias

correction, we conducted sensitivity analysis for BTBC executed on chain MDPs, which

are shown to have relatively large bias in Section 4.3.

We first tested the effectiveness of BTBC under different number of bootstrap samples

b, ranging from 1 to 15. The depth parameter d was set to 2. The sample size per state-

action pair m was set to 20, while the number of states n = 100. The (signed) relative error
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Figure 4.9: Signed relative error vs bootstrap size.

V̂ (s1)−V (s1)
V (s1)

of the state value estimate V̂ (s1) was collected in each run. The experiment

was repeated 1000 times under each b to get the distribution of the signed relative errors.

The result is shown in Figure 4.9. The thick and thin lines represent the results for

BTBC and uncorrected estimator, respectively. The solid lines are the average relative

error (i.e. empirical relative bias) while the dashed lines are the 0.25 and 0.75 quantiles.

The uncorrected value estimate V̂ (s1) had bias about −0.56V (s1) and thus E[V̂ (s1)] ≈

0.44V (s1), indicating a remarkable bias. BTBC reduced the bias to about −0.13V (s1),

and thus the bias-corrected estimate has E[Ṽ (s1)] ≈ 0.87V (s1) which is much closer to

the real value V (s1) than the uncorrected one.

Somewhat surprisingly, changing the number of bootstrap samples b did not lead to

any significant difference in relative bias. Even the very aggressive b = 1 could reduce

as much bias as b = 15. After a closer look at the result we noticed that the variance

of the relative error became slightly smaller (from 0.1996 to 0.1927) when b increased

from 1 to 2. We then repeated the whole experiment under b = 1 and 2 for 15 times,

and observed this small improvement consistently, with a 8.89% reduction of variance on
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Figure 4.10: Signed relative error vs bootstrap depth.

average when b changed from 1 to 2. This suggests that increasing b reduces the variance

of bias-corrected value estimates, but does not have strong impact on the bias itself.

The effectiveness of BTBC under small bootstrap size b is an interesting phenomenon

because in Section 4.4 we have shown that theoretically BTBC should work better with

a larger b = k. Our hypothesis is that the transformation bias is “distributed” over the

whole transition dynamics and thus having a few bootstrap models in model-based RL is

effectively having a large number of bootstrap samples in the case of univariate estimation.

This however still lacks firm evidence and is left to future work.

The second parameter investigated was the bootstrap depth d. We tested BTBC under

d ranging from 1 to 8, each repeated 1000 times, with number of bootstrap samples b = 2,

sample size m = 20, and number of states n = 100 .

The result is shown in Figure 4.10. Clearly, the bootstrap depth d had more impact

on the effectiveness of bias reduction than the bootstrap size b. At d = 1, the relative bias

was 28.8%, which is still very large, while at d = 4 it was reduced to less than 0.1%, which

means that d = 4 is sufficient in this setting to completely remove the bias of V̂ (s1).
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The effectiveness of BTBC under small depth d can be explained as follows. The

recursive bootstrap described in Algorithm 4 can be seen as a process of expanding the

bias as an infinite series and correcting the terms one by one, and thus correcting only

the first several terms (i.e. using a small d) can often provide sufficiently good results.

The idea of treating bootstrap as expansion can be found in [Hall, 1992].

Considering that using a larger b and d increases the computational cost, we suggest

setting 1 ≤ b ≤ 2 and 1 ≤ d ≤ 4 in practical use.

4.5.2 Effectiveness and scalability of BTBC

To show the effectiveness of BTBC in correcting transformation bias, we compared it

with the second-order approximation method proposed by [Mannor et al., 2007]. Since

their bias estimation method relies on full knowledge about the true transition P , it is

not directly applicable in general RL setting where P is unknown. Thus, we used the

estimated transition P̂ in place of P when estimating the bias using their approximation.

The resulting bias-corrected estimator is denoted Mannor07 in this section.

The experiment was conducted in chain MDPs. We set the sample size per state-action

m = 20 and changed the number of states n from 5 to 120. The parameters of BTBC were

set to number of bootstrap samples b = 1 and depth d = 3 based on the recommendation

of the last section. The relative error V̂ (s1)−V (s1)
V (s1)

of the state value estimate V̂ (s1) in 1000

runs for each n was collected. The results of 1000 runs were then put into 20 groups (50

runs each) to compute the standard deviation of the average relative error.

Figure 4.11 shows the average relative errors of uncorrected estimator, BTBC, and

Mannor07. The shaded areas show the values within one standard deviation of the average

relative errors. It can be seen from the curves that both BTBC and Mannor07 significantly

reduced the transformation bias, but BTBC did much better. At n = 120, the uncorrected

estimator had bias −0.645V , Mannor07 reduced it to −0.268V , while BTBC estimator

only had −0.115V . The curves also show that the bias of the uncorrected estimator grew

quickly with the number of states, while for BTBC it grew notably slower, which indicates
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Figure 4.11: Average relative error vs number of states.

that BTBC has good scalability with respect to the MDP size.

To see how well BTBC performs when sample size per state-action is particularly

small, we conducted another experiment where the number of states n was fixed to 60,

and the relative errors under different sample size per state-action m ranging from 8 to

20 was tested. BTBC still used b = 1 and d = 3.

Note that with a small m such as 8 and 9, there is a remarkable probability1 that some

Ni,i+1 = 0, which indicates that the agent fails to reach the goal sn of the chain MDP. In

this case, the estimated value becomes constantly 0 and no bias correction method can

change it. Since it is more of a data collection problem than bias correction, whenever

such cases happened in this experiment, we considered it a invalid run and reran the

process until all Ni,i+1 6= 0. The results of 1000 valid runs for each m was collected and

put into 20 groups to compute the standard deviation.

Figure 4.12 shows the average relative error of each estimators under different settings

1At m = 8 and n = 60 the probability of Ni,i+1 = 0 for at least one i is 1 − (1 − (1 − 0.5)m)n =
1− (1−0.58)60 = 0.2093. Thus, in every 1000 runs there are about 209 runs that have at least one Ni,i+1

being 0.
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Figure 4.12: Average relative error vs sample size per state-action pair.

of m. Clearly, BTBC worked well even under a small sample size per state-action. The

bias of BTBC was −0.105V at m = 8, but quickly reduced to near-0 as m increased.

Mannor07 performed much worse, where the bias was −0.297V at m = 8, and even with

m = 20 there was still a notable bias −0.083V , which was worse than BTBC at m = 9.

The ineffectiveness of Mannor07 at small sample size is due to it using an estimator of

the transformation bias that in itself suffers from transformation bias (i.e. nonlinear with

respect to P̂ ). BTBC does not suffer from this problem because it estimates the unknown

bias by deliberately generating another transformation bias in a known environment, as

explained in Section 4.4.2.

The effect of increasing the sample size for the uncorrected estimator can also be

observed from Figure 4.12 as well. The bias for the uncorrected estimator was −0.651V

at m = 10 and was −0.400V at m = 20, which means that even doubling the sample

size did not help reduce the bias by half. Even Mannor07 at m = 8 was better than the

uncorrected at m = 20, and thus we recommend conducting bias correction in model-

based RL whenever obtaining data is expensive.
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4.5.3 Performance in maze domain

To show the effectiveness of BTBC in more complicated MDPs, we tested BTBC in a maze

problem shown in Figure 4.13. In this problem, the task is to find a policy that can travel

safely from the start point (represented by “S” in the figure) to the goal (“G”), collecting

all three flags (“F”) on the way, and avoiding the traps (circles) and walls (black blocks).

State is represented by a vector (x, y, f1, f2, f3) containing both the position (x, y) and the

boolean values f1, f2, f3 representing whether the corresponding flag has been obtained

or not. The agent moves to the intended direction with probability 0.7 and to the other

three directions with probability 0.1 randomly. It receives reward 100k at the goal, where

k is the number of flags collected, then loses all flags and returns to the start. If it walks

into a trap, it loses all flags and returns to the start without reward. Discount factor γ is

0.9.

The signed relative bias of the uncorrected and BTBC estimates of the optimal state

value V̂ ∗(sstart) under different sample sizes per state-action m, ranging from 5 to 15,

were collected. We did not test Mannor07 in this experiment due to its substantial

computational cost. Each case was repeated 1000 times and put into 10 groups to draw

the box plot.

The result is shown in Figure 4.14. At m = 5, the median of the relative bias was

greatly reduced from 28.0% to 1.5% by BTBC. Even the sample size was tripled to 15,

the median of the relative bias for uncorrected estimator was still 9.7%, far worse than
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Figure 4.14: Performance of BTBC in the maze problem.

BTBC under m = 5. The p-value of two-sample t-test on uncorrected vs BTBC under

m = 15 was 5.35 × 10−4, while for uncorrected under m = 15 vs BTBC under m = 5 it

was 1.79× 10−3, thus in both cases the BTBC estimator had significantly less bias than

the uncorrected one at the 0.5% significance level.

4.6 Regarding transformation bias in model-free RL

In previous sections of this chapter, we have studied the transformation bias in model-

based reinforcement learning. Before we summarise our results presented in this chapter,

we digress a little and discuss the transformation bias in model-free RL.

We start from the mathematical connection between model-free and model-based RL,

which is given by [Sutton and Barto, 2018]. Concretely, consider using Equation 2.1 to
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estimate state values from trajectory ψ = S1, A1, R1, ... . Since

V̂ π(s) =
∑
s′∈S

P̂ (s′|s, π(s))
(
R̂(s, π(s), s′) + γV̂ π(s′)

)
=
∑
s′∈S

Ns,π(s),s′

Ns,π(s)

(
R̂(s, π(s), s′) + γV̂ π(s′)

)
=

1

Ns,π(s)

·
∑

(Sk,Ak)=(s,π(s))

(
Rk + γV̂ π(Sk+1)

)
,

it is clear that V̂ π of model-based estimator is essentially a cumulative moving average

of Tk
def
=
(
Rk + γV̂ π(Sk+1)

)
over the trajectory. Re-writing the above summation in an

incremental style, we get the mathematically equivalent update rule

V̂ π
k (Sk) =

nk − 1

nk
V̂ π
k−1(Sk) +

1

nk
Tk,

where nk stands for the sample size NSk,π(Sk) at step k in trajectory ψ. Then, by further

changing the weight nk−1
nk

and 1
nk

to (1 − α) and α respectively, where α ∈ (0, 1) is a

parameter called learning rate, we get the exponentially weighted moving average [Hunter,

1986] as an approximation to the cumulative moving average of Tk, i.e.

Ṽ π
k (Sk) = (1− α)Ṽ π

k−1(Sk) + αTk. (4.3)

Equation 4.3 is the well-known model-free Temporal Difference (TD) estimator pro-

posed by [Sutton, 1984]. It does not need to keep track of Ns,a,s′ and Ns,a, has less

per-update computation time, and converges with probability 1 to the true value under

certain conditions [Dayan, 1992]. There exist several other model-free estimators such as

Q-learning [Watkins, 1989] and Sarsa [Rummery, 1995], all of them have similar charac-

teristics.

Now, let us consider the transformation bias in model-free RL. As elaborated in pre-

vious sections, the transformation bias of model-based RL is due to the matrix inversion

involved in solving the linear system given by the Bellman equation. In model-free RL, we
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do not compute matrix inversion, and thus the transformation bias seems to be absent.

However, as discussed above, the state/action value estimators in model-free RL are

just approximations to the corresponding model-based estimators (by e.g. changing cu-

mulative moving average to exponentially weighted moving average). Let V̌ denotes the

model-free estimator and V̂ be the corresponding model-based estimator. V̌ being ap-

proximation to V̂ means that given the same data set, the stationary mean of V̌ is V̂

[Perry, 2011]. Since the model-based V̂ has transformation bias, this means the model-

free V̌ at best converges to a biased estimate of the true V . In this sense, it is reasonable

to say that model-free estimators suffer from an implicit transformation bias.

Since model-free RL does not store the estimated transition function, we cannot di-

rectly use bootstrap to estimate this implicit transformation bias as in BTBC for model-

based RL. However, if the interaction history is stored, which is done in many RL algo-

rithms using batch updates, then it might be possible to conduct bootstrap by resampling

these data. The effectiveness of such method is left to future work.

4.7 Chapter summary

In this chapter, we have pointed out in Section 4.2 why transformation bias is harmful and

should be corrected in model-based RL. We have presented in Section 4.3 our study on

the relation between the scale of the transformation bias η, the transition dynamics, the

sample size per state-action m, and the number of states n, which eventually leads to an

empirical formula η = C −K n/m for chain MDPs, where C and K are constants decided

by the transition dynamics. We have shown that the transformation can be remarkably

large when the sample size does not grow as fast as the number of states, which makes

learning particularly difficult when sample size is small. These results answer the research

questions Q2.1 (“How does the transformation bias relate to sample efficiency?”) and Q2.2

(“In what cases is the transformation bias remarkable and needs correction?”) in Section

95



1.3.2 and lead to contribution 3 in Section 1.4.1

We have then proposed Bootstrap-based Transformation Bias Correction (BTBC) in

Section 4.4 for correcting the transformation bias of model-based RL. We have presented

our empirical results in Section 4.5 to show that BTBC can significantly reduce the trans-

formation bias even with a small sample size, at the cost of an increased computational

cost. This answers the research questions Q2.3 (“How to correct the transformation bias

when sample size is small?”) in Section 1.3.2 and leads to contribution 4 in Section 1.4.2

We have also briefly discussed the implicit transformation bias in model-free RL in

Section 4.6, which can be an interesting topic for future work.

1Contribution 3: “We present an extensive study on the transformation bias of state/action value
estimates, revealing the relationship between the scale of the bias and relevant factors including sample
size, scale of MDP, and transition dynamics.”

2Contribution 4: “We propose the Bootstrap-based Transformation Bias Correction (BTBC) method
which can significantly reduce transformation bias of state/action value estimates even if sample size is
small.”
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CHAPTER 5

EFFECTIVENESS OF POLICY SELECTION IN
MODEL-BASED RL AND ITS IMPROVEMENT

5.1 Introduction

In the last chapter we have discussed how the transformation bias affects the result of value

comparison, and also have elaborated how to reduce the bias without collecting a larger

sample. However, we have not gone into detail about how to measure the effectiveness of

value comparison, or how the proposed bias correction method improves the effectiveness.

This chapter elaborates our study regarding value comparison and policy selection.

Reinforcement learning can be seen as an iterative process of value estimation and

value comparison. When value comparison happens at policy level, i.e. comparing V π(s)

vs V π′(s) or Qπ(s, a) vs Qπ′(s, a), it is a policy selection problem where the algorithm

chooses one policy between π and π′. Value comparison can also happens at action level,

which is a very similar problem and will not be elaborated in this chapter.

The question then arises whether we can use the quality of value estimation (accu-

racy, unbiasedness, etc.) to represent the effectiveness of policy selection. The answer is

negative. Doroudi et al. [2017] provided a good example for multi-armed bandit problem,

which we slightly modified to fit the setting of model-based RL, presented as follows.

Example 5.1. [Doroudi et al., 2017] Consider an one-state two-action MDP with self-

transition and stochastic reward, where action a1 yields reward r with probability 1, while
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action a2 yields reward 1 with probability p and reward 0 with probability 1 − p, where

r < p < 0.5. Discount factor is γ > 0. Policy π1 selects a1, while policy π2 selects a2.

By the Bellman equation V π1 = r/(1 − γ) and V π2 = p/(1 − γ), and thus V π1 < V π2 .

However, with one observation for each action, the model-based estimated value for π1

is V̂ π1 = r/(1 − γ), while for π2 it is V̂ π2 = 1/(1 − γ) > V̂ π1 with probability p and

V̂ π2 = 0 < V̂ π1 with probability (1 − p). Therefore, a naive policy selector selects the

inferior π1 with probability (1− p) > 0.5, which is worse than random guessing.

In the above example, both value estimates are unbiased, but a naive comparison

between these two unbiased value estimates still leads to a result worse than random

guessing. Thus, although as discussed in Section 4.2 unbiasedness of value estimates can

be very useful, it is still not sufficient for guaranteeing good policy selection outcomes.

The reason behind the poor policy selection in the example above is the asymmetry of

the distribution for V̂ π2 . It has probability p < 0.5 to be larger than its true value, and has

probability (1−p) > 0.5 to be less than both its true value and V̂ π1 . Thus, its distribution

is skewed towards the smaller value, making V̂ π2 more likely to be underestimated.

Note that (1 − γ)V̂ π2 is binomial distributed B(m, p), where m is the sample size.

Since a binomial distribution is more asymmetric with a smaller m, this suggests that

policy selection can be more problematic when sample size is small.

As reviewed in Section 2.5.1, Doroudi et al. [2017] proposed the notion of fairness for

reinforcement learning, in which an algorithm is said to be fair if it outputs the optimal

policy with probability larger than any other policies in any possible MDPs. However,

they also showed that it is very difficult to achieve strict fairness. For two unfair selectors,

their definition can only tell that both are unfair, and thus is not informative enough to

be used in comparing the effectiveness of policy selectors.

Therefore, in this chapter, we propose the notion of policy selection risk, which is

a quantitative metric and is more suitable for comparing different methods than the

original fairness of [Doroudi et al., 2017] In particular, the family-wise policy selection

risk measures the likelihood of a policy selector making wrong decisions in a family of
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MDPs, and thus is more comprehensive than its instance-wise version. We also propose

the family-wise unfairness metric as an extension of the strict fairness, which can be used

in a manner similar to the family-wise policy selection risk to represent the overall (soft)

fairness of a selector in a family of MDPs.

We propose a policy selector called Bootstrap-based Policy Voting (BPV) that works

better than the naive model-based policy selector in terms of both family-wise policy

selection risk and family-wise unfairness. We also propose a tournament-based policy

refinement mechanism that can utilise the improved policy selectors, and apply both

BPV and BTBC (proposed in the previous chapter) to the policy refinement mechanism

to improve overall performance of model-based RL algorithms without needing to acquire

a larger sample.

The remainder of this chapter is organised as follows. In Section 5.2, we provide our

definition of the instance-wise and family-wise policy selection risk as well as the family-

wise unfairness, and present the analysis for some basic selectors. In Section 5.3, we

propose our Bootstrap-based Policy Voting method for policy selection. In Section 5.4,

we propose two tournament-based policy refinement methods, Policy Voting Tournament

(PVT) and Bias-corrected Tournament (BCT), for general model-based RL. In Section

5.5, we present our empirical results for these proposed methods. Finally, we summary

this chapter in section 5.6.

5.2 Family-wise policy selection risk and unfairness

In this section, we give our definitions of the instance-wise and family-wise policy selection

risk as well as the family-wise unfairness, analyse their properties and give some examples,

and discuss their relation with the original fairness proposed by [Doroudi et al., 2017].

99



5.2.1 Pairwise policy selector

A policy selector W is a mapping W : Ψ × 2Π 7→ Π, where Ψ is the set of all possible

interaction histories (i.e. the data), Π is the set of all policies, and 2Π is the power set

of Π (i.e. the set of all subsets of Π). Thus, given a data set obtained from environment

interaction and a set of candidate policies, a policy selector outputs one of the candidate

policies that it considers the best. For simplicity, in this chapter we mainly discuss

pairwise policy selectors where the number of the candidate policies is 2, and thus the

selector only needs to choose between some {π1, π2}.

The random guesser WRan randomly chooses policies uniformly regardless of data:

WRan(ψ, {π1, π2})
def
= Uniform{π1, π2}. (5.1)

The naive model-based policy selector WMB is defined as

WMB(ψ, {π1, π2})
def
=


π1 V̂ π1

ψ > V̂ π2
ψ

π2 V̂ π1
ψ < V̂ π2

ψ

Uniform{π1, π2} V̂ π1
ψ = V̂ π2

ψ ,

(5.2)

where V̂ψ is the model-based value estimate V̂ computed from data ψ for some unknown

true value V of interest. By definition, the naive selector simply compares two estimated

values and chooses the policy with the higher estimated value. Most model-based RL

algorithms either explicitly use WMB to decide their output policies, or implicitly use it

through action selection.

5.2.2 Instance-wise policy selection risk

In Example 5.1, the naive policy selector chooses the better one of the two candidate

policies with probability less than 0.5. Since random guessing between two policies chooses

the better one with probability 0.5, the naive selector is worse than random guessing in
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this case.

The problem of choosing inferior policy with high probability is formulated as the

fairness problem by [Doroudi et al., 2017]. However, as pointed out in Sections 2.5.1 and

5.1, their definition is too strict and is unsuitable for comparing different selectors. For

example, their fairness cannot tell the difference between two fair selectors that choose π∗

with probabilities 0.501 and 0.999, although the latter is obviously better than the former.

Also, from a practical perspective, there is no real difference between a fair selector that

chooses π∗ with probability 0.501 and an unfair selector that chooses π∗ with probability

0.499 in a pairwise policy selection problem. Therefore, although fairness can partly reflect

the effectiveness of a selector, it is neither informative nor decisive. To better compare

the selectors, we need a quantitative metric for measuring their effectiveness.

To this end, a straightforward idea is to directly use the probability of choosing the

inferior policy in a pairwise policy selection problem instance, given as follows.

Definition 5.1. A pairwise selection problem instance is a tuple ξ = (M,V π, {π+, π−}),

where M is an MDP, V π
M is some state/action value function of interest, π+ and π− are

two policies s.t. π+ is better than π− with respect to V π
M , i.e. V π+

M > V π−
M .

Definition 5.2. Let ξ = (M,V π, {π+, π−}) be a selection problem instance. Let πWM =

W (ψ, {π+, π−}) be the output of selector W given data ψ generated from M . Then the

policy selection risk of W in ξ is Risk(W ; ξ)
def
= P(πWM = π−).

By this definition, a policy selectorW has a positive risk if it does not always choose the

better policy π+ among {π+, π−}. Although zero-risk under this definition is generally

not achievable for non-oracle selectors, the size of the risk can nevertheless be used to

indicate the (in)effectiveness of the policy selector in a specific problem instance.

5.2.3 Family-wise policy selection risk

The problem with Risk(W ; ξ) given in Definition 5.2 is, because it is an instance-wise

measurement, a selector can have lower risks in some selection problem instances while
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have higher risks in some other instances than another selector. For example, consider

the following variant of Example 5.1:

Example 5.2. Change the reward r in Example 5.1 to p < r < 1. In this case, since

V π1 = r/(1 − γ) and V π2 = p/(1 − γ), policy π1 that is inferior in the original example

becomes superior than the alternative π2. Since WMB still chooses π1 with probability

(1− p) > 0.5, it becomes better than random guessing WRan in this case.

The strong connection between Risk(W ; ξ) and selection problem instance ξ makes it

still difficult to use in comparing two selectors. Doroudi et al. [2017] required that a fair

selector is no worse than WRan in all possible selection problems, but this requirement

practically rules out every non-oracle selector because Example 5.1 can be made arbitrarily

hard by using a sufficiently small r and p.

To address this, we propose family-wise policy selection risk, or family-wise risk for

short, which considers the overall risk of a selector across a family of selection problem

instances. To define the family-wise risk, we start with the definition of the MDP family

as follows.

Definition 5.3. Let π1 and π2 be two policies for state space S and action space A. A

set of MDPs {M(x)} with state space S and action space A is said to be a (π1, π2)-family

of MDPs with parameter x ∈ [−xmax, xmax] if for each x = k ∈ [−xmax, xmax], there is

exactly one MDP M(k) ∈ {M(x)} s.t. V π1
M(k)
− V π2

M(k)
= k, where V π

M is some value function

of interest for policy π in MDP M , and xmax > 0.

By definition, M(x) with x > 0 are the MDPs in {M(x)} where V π1
M(x)
− V π2

M(x)
> 0 and

thus π1 is better, while M(x) with x < 0 are the ones where π2 is better. M(0) is the MDP

where π1 and π2 are equally good.

The family-wise policy selection risk is formally given as follows.

Definition 5.4. The family-wise policy selection risk of policy selector W with respect
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to {M(x)} over policies {π1, π2} is defined as

Risk{M(x)}(W )
def
=

∫ 0

x=−xmax

P(πWM(x)
= π1) dx+

∫ xmax

x=0

P(πWM(x)
= π2) dx, (5.3)

given that P(πWM(x)
= π) as a function of x is integrable on [−xmax, xmax].

Since by definition when x ∈ [−xmax, 0) we have V π1
M(x)
− V π2

M(x)
< 0, the first integral

gives the overall risk of W in policy selection problem instances within {M(x)} where π2 is

the ground truth answer. Similarly, the second integral gives the overall risk in instances

where π1 is the ground truth answer.

Note that in Definition 5.3 we do not explicitly require the similarity between MDPs

within the same family. Rather, we only require that there is some parameter x that

can differentiate the MDPs and express the gap between the values of the two candidate

policies. That being said, when we conduct analysis in practice, we should always choose

meaningful families of MDPs in order to make the corresponding P(πWM(x)
= π) integrable.

This can in general be achieved by fixing the transition core and change the reward

function smoothly, or fixing the reward and change the transition smoothly. We will give

an example of constructing a MDP family in the next section.

5.2.4 Analysis of family-wise policy selection risk

This section analyses the family-wise policy selection risk for some basic selectors, and

points out several important properties of the family-wise risk. We start with the corol-

laries that give the family-wise risk for some trivial selectors.

Corollary 5.1. Risk{M(x)}(W
∗) = 0 for oracle selector W ∗ def

= argmaxπV
π.

Proof. By definition P(πW
∗

M = π1) = 0 if V π1
M − V

π2
M = x < 0, and P(πW

∗
= π2) = 0 if

V π1
M − V

π2
M = x > 0, thus Risk{M(x)}(W

∗) = 0 + 0 = 0.

Corollary 5.2. Risk{M(x)}(WRan) = xmax for random guesser WRan.
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Figure 5.1: An illustration of the family-wise policy selection risk. The area of the grey
region equals to the family-wise risk of the selector drawn in solid curve.

Proof. By definition P(πWRan = π1) = P(πWRan = π2) = 0.5, thus Risk{M(x)}(WRan) =

0.5(0− (−xmax)) + 0.5(xmax − 0) = xmax.

Corollary 5.3. Risk{M(x)}(W=1) = Risk{M(x)}(W=2) = xmax for trivial selectors W=1 and

W=2 which always selects π1 and π2, respectively.

Corollary 5.4. Risk{M(x)}(Wworst) = 2xmax for the worst selector which always gives the

wrong answer, i.e. Wworst
def
= argminπV

π.

Corollary 5.5. Family-wise risk is at least 0 and at most 2xmax.

Thus, we can divide family-wise risk by xmax to obtain the normalised family-wise

risk, which is between 0 and 2. Selectors W ∗,WRan,W=1, and Wworst have normalised

family-wise risk 0, 1, 1, and 2, respectively.

Figure 5.1 gives an illustration of the family-wise risk. The x-axis of this figure is the

parameter x = V π1 − V π2 while y-axis the probability of selecting π1. The oracle selector

W ∗, the random guesser WRan, and some general selector W are given by the dashed line,

the dotted line, and the s-shape curve, respectively.

104



The grey region in the figure indicates the difference between the oracle and selector

W . In fact, the area of the grey region equals to the family-wise risk of W . Thus, a larger

area indicates a larger likelihood of making wrong decisions.

It can be seen clearly from the figure that (1) selector W makes less mistakes than

the random guesser in general; (2) W has stronger overall tendency to choose π1, and

thus makes less mistakes when x > 0 than when x < 0. These two points suggest that a

selector does not need to be fair in order to be better in terms of family-wise risk than

the random guesser. In fact, moving up/down the curve (and thus changing the overall

tendency of favouring a particular policy) does not change the effectiveness as long as it

does not go through the inverse-Z-shaped curve of the oracle. This property is formally

given by the following lemma.

Lemma 5.6. Let W , W ′ be two selectors s.t. P(πWM(x)
= π1) = P(πW

′
M(x)

= π1) + c for all

M(x) ∈ {M(x)}, where c is a constant. Then Risk{M(x)}(W ) = Risk{M(x)}(W
′).

Proof. By definition, we have

Risk{M(x)}(W ) =

∫ 0

x=−xmax

P(πWM(x)
= π1) dx+

∫ xmax

x=0

(
1− P(πWM(x)

= π1)
)
dx

=

∫ 0

x=−xmax

(
P(πW

′

M(x)
=π1) + c

)
dx+

∫ xmax

x=0

(
1−

(
P(πW

′

M(x)
=π1) + c

))
dx

= Risk{M(x)}(W
′) +

∫ 0

x=−xmax

c dx−
∫ xmax

x=0

c dx

= Risk{M(x)}(W
′).

Thus, making a selector choose a policy more often by a fixed probability at any x

does not change the family-wise risk of that selector.

This is illustrated in Figure 5.2, where two selectors W and W ′ have the same family-

wise risk due to Lemma 5.6. The grey region in this figure indicates the difference between

the two selectors. Compared to W ′, the family-wise risk of W is increased by part of the

grey region at x < 0, and is decreased by another part of the grey region at x > 0. Since

the difference of the probability selecting π1 is the same at any x ∈ [−xmax, xmax], these
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Figure 5.2: An illustration of Lemma 5.6, where W and W ′ have the same family-wise
risk.

two regions have the same area, and thus the two selectors have the same family-wise

risk, despite that selector W has stronger overall tendency to select policy π1 than W ′.

For the same reason, the trivial selectors W=1 and W=2 in Corollary 5.3, which always

choose π1 and π2 respectively, have the same family-wise risk as the random guesser.

The rationale behind this is that if we assume all MDPs in {M(x)} occurs in real-world

applications with equal probability, then a selector with less family-wise risk has higher

overall probability to make the correct decision. Since under this setting both the trivial

selectors W=1, W=2, and the random guesser WRan make right and wrong decisions with

a 50/50 chance, they should be regarded equally good (or equally bad), which is correctly

reflected by the family-wise risk. As for the selectors W and W ′ in Figure 5.2, although

W is worse than W ′ when x < 0 , it is also better than W ′ when x > 0, and thus the gain

and the loss neutralise each other, making the two selectors equally good in general.

Let us now go back to the example given by [Doroudi et al., 2017], where naive model-

based selector WMB is worse than random guesser WRan at r < p, but better at r > p.

Let x = V π1 − V π2 = r
1−γ −

p
1−γ = r−p

1−γ , then we have r = (1 − γ)x + p. Thus, we can
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create a family of MDPs by varying r, given as follows.

Definition 5.5. Let x ∈ [−θ, θ] where θ > 0. Let M(x) be the MDP given in Example

5.1 but with r = (1 − γ)x + p. In this way we construct a (π1, π2)-family {M(x)} with

parameter x ∈ [−θ, θ].

Lemma 5.7. The naive model-based selector WMB is as good as the random guesser WRan

with respect to the family-wise policy selection risk on {M(x)} given in Definition 5.5 when

θ ≤ p
1−γ , and is strictly better than WRan when θ > p

1−γ .

Proof. By Corollary 5.2.4, the family-wise policy selection risk of random guesser WRan

is Risk{M(x)}(WRan) = θ. Now consider the family-wise risk of WMB.

(1) When θ ≤ p
1−γ , since 0 < p < 0.5, we have 0 ≤ (1−γ)(−θ)+p ≤ r ≤ (1−γ)θ+p ≤

2p < 1. Thus 0 ≤ V̂ π1 = V π1 = r
1−γ ≤

2p
1−γ <

1
1−γ . Since V̂ π2 is 0 with probability (1− p)

and is 1
1−γ with probability p, WMB selects π1 with probability (1− p) and selects π2 with

probability p, as in Example 5.1. Its family-wise risk is

Risk{M(x)}(WMB) =

∫ 0

x=−θ
(1− p) dx+

∫ θ

x=0

p dx

= (1− p)θ + pθ = θ = Risk{M(x)}(WRan).

(2) When p
1−γ < θ ≤ 1−p

1−γ , we have (1−γ)(−θ)+p < 0, and thus when x ∈ [−θ,− p
1−γ ),

we have r < 0. In this case, V̂ π2 ≥ 0 > V̂ π1 holds whatever the observation of the reward

of a2 is, which means WMB always choose π2 correctly when x ∈ [−θ,− p
1−γ ). Therefore,

its family-wise risk becomes

Risk{M(x)}(WMB) =

∫ − p
1−γ

x=−θ
0 dx+

∫ 0

x=− p
1−γ

(1− p) dx+

∫ θ

x=0

p dx

=
p(1− p)

1− γ
+ pθ < (1− p)θ + pθ = θ = Risk{M(x)}(WRan).

(3) When θ > 1−p
1−γ , we have (1 − γ)θ + p > 1, and thus when x ∈ ( 1−p

1−γ , θ], we have

r > 1. In this case, V̂ π2 ≤ 1 < V̂ π1 holds whatever the observation of the reward of

107



a2 is, which means WMB always choose π1 correctly when x ∈ ( 1−p
1−γ , θ]. Therefore, its

family-wise risk becomes

Risk{M(x)}(WMB) =

∫ − p
1−γ

x=−θ
0 dx+

∫ 0

x=− p
1−γ

(1− p) dx+

∫ 1−p
1−γ

x=0

p dx+

∫ θ

x= 1−p
1−γ

0 dx

=
p(1− p)

1− γ
+
p(1− p)

1− γ
=

2p(1− p)
1− γ

< 2pθ < θ = Risk{M(x)}(WRan).

Putting the above together, the lemma is proved.

By Lemma 5.7, the naive model-based selector is at least as good as the random

guesser in terms of family-wise risk, and is strictly better than the random guesser as long

as a sufficiently large family of MDPs are covered.

Note that Lemma 5.7 only discusses the case of sample size per state-action m = 1.

With m > 1, it can be derived that the family-wise risk of WMB is

Risk{M(x)}(WMB) = θ − 1

1− γ

(
G
(
p− (1− γ)θ

)
+G

(
p+ (1− γ)θ

)
− 2G(p)

)
, (5.4)

where G(y)
def
=
∫
I1−p(m−y, y+1)dy, and Iz(a, b) = Beta(z;a,b)

Beta(a,b)
is the regularised incomplete

beta function. It can be shown that under proper setting of θ the function G(y) is

convex, and thus Risk{M(x)}(WMB) < θ = Risk{M(x)}(WRan). Also, as m gets larger,

G
(
p − (1 − γ)θ

)
+ G

(
p + (1 − γ)θ

)
− 2G(p) becomes larger and thus Risk{M(x)}(WMB)

becomes smaller, and eventually converges to 0 as m → ∞. Therefore, the family-wise

risk correctly reflects the fact that although WMB is not very good with small sample size

m, it is still far better than random guessing with a larger sample size.

That being said, being only marginally better than the random guesser when sample

size is small is only borderline acceptable in applications where obtaining data is expensive.

Therefore, we still need to develop selectors that can work better than naive WMB under

small sample size, which will be elaborated in later sections.
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5.2.5 Family-wise unfairness

As elaborated in the last section, a selector does not need to be fair in order to be better

in general than the random guesser. Lemma 5.6 shows that a selector strongly favours

one policy can be as good as a more balanced selector in terms of family-wise bias. The

rationale behind this is that although a selector can be disadvantaged in some MDPs for

being “biased” (in the general sense) toward some particular policies, such a bias can be

beneficial in some other MDPs, and thus the additional gain and loss caused by the bias

is neutralised as long as the bias is universal (i.e. has the same amount of bias in all

MDPs).

However, there are also cases in practice where being relatively “fair” (in general sense)

can be helpful. An example to such cases is given as follows.

Example 5.3. Consider two MDPs M1, M2 and two policies π1 and π2, where π1 is better

in M1 and is worse in M2 than π2. Selector W1 selects π1/π2 with probability 0.9/0.1 in

M1 and 0.7/0.3 in M2, while selector W2 selects π1/π2 with probability 0.6/0.4 in M1 and

0.4/0.6 in M2. The overall risk of W1 is 0.1 + 0.7 = 0.8, and for W2 it is 0.4 + 0.4 = 0.8,

thus the two selectors have the same overall risk.

Now, suppose that we need to run the learning algorithms until they output the correct

policy in each MDP once. Then the average number of runs W1 needs is 1/0.9 + 1/0.3 ≈

4.44, while for W2 it is 1/0.6 + 1/0.6 ≈ 3.33, and therefore selector W2 needs less runs on

average than W1.

Note that in this example W1 is strongly biased towards π1, while W2 does not. This

implies that the property of not being biased toward a particular policy can still have

practical meaning in some scenarios.

Since the fairness proposed by [Doroudi et al., 2017] is not suitable for comparing

selectors, we extend their idea and combine it with our family-wise formulation as follows.

Definition 5.6. The family-wise unfairness of policy selector W with respect to {M(x)}
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Figure 5.3: An illustration of family-wise unfairness. The area of the grey region equals
to the family-wise unfairness of the selector drawn in solid curve.

over policies {π1, π2} is defined as

Unfairness{M(x)}(W )
def
=

∫ 0

x=−xmax

max

{
0, P(πWM(x)

= π1)− 0.5

}
dx

+

∫ xmax

x=0

max

{
0, P(πWM(x)

= π2)− 0.5

}
dx.

In the integrals above, only the the extra parts of the regions where W chooses the

wrong policies with more than 0.5 probability is considered. An illustration to this in-

terpretation is given in Figure 5.3, where the area of the grey region corresponds to the

family-wise unfairness of the selector.

Corollary 5.8. The family-wise unfairness of a strictly fair selector is 0.

Corollary 5.9. The family-wise unfairness of random guesser WRan is 0.

Corollary 5.10. The family-wise unfairness of trivial selectors W=1 and W=2 which

always select π1 and π2 respectively is 0.5xmax.
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Corollary 5.11. The family-wise unfairness of the worst selector Wworst which always

selects the inferior policy is xmax.

Corollary 5.12. In the MDP family given by Definition 5.5 with xmax = θ ≤ p
1−γ , the

naive model-based selector WMB has Unfairness{M(x)}(WMB) = (0.5− p)xmax.

Thus, the family-wise unfairness of naive model-based selector lies between a strictly

fair selector and a trivial selector that always choose one specific policy. These corollaries

give examples to how our family-wise unfairness describes the overall soft fairness property

of selectors quantitatively, which is more informative than the strict fairness given by

[Doroudi et al., 2017].

5.3 Bootstrap-based Policy Voting

5.3.1 The method

As discussed in Section 5.2.4 (see Equation 5.4), the naive model-based policy selector

WMB is better than the random selector WRan in terms of family-wise policy selection risk

when sample size is sufficiently large, but with a small sample it becomes only marginally

better than WRan in the family of MDPs given in Definition 5.5. Section 5.2.5 also shows

that WMB has non-zero family-wise unfairness.

Note that the value functions in the MDPs of Definition 5.5 do not suffer from the

transformation bias, because both V π1 = r
1−γ and V π1 = p

1−γ are linear functions with

respect to the unknown random variables. This implies that correcting the transformation

bias by methods such as our BTBC proposed in Chapter 4 is not sufficient for achieving

good performance in policy selection.

These observations inspire us to design policy selection methods that can work better

than the naive model-based selector, especially when sample size is small. Although there

is nothing much can be done with sample size per state-action m as small as 1, when it

becomes around 10 there should be a much larger room for improvement.
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To this end, we propose Bootstrap-based Policy Voting (BPV) method for policy

selection. The algorithm can be seen as an adaption of our single-depth BTBC, originally

designed for value estimation bias correction, to policy selection. Specifically, given the

collection of the transition counts N
def
= {Ns,a,s′} and the sample size at each state-action

pair N∗,∗
def
= {Ns,a}, the following steps are taken:

1. Estimate transition probabilities P̂ from data N by P̂ (s′|s, a)
def
= Ns,a,s′/Ns,a.

2. Generate k bootstrap sample N+
1 ,N

+
2 , ...,N

+
k from P̂ , where each N+

i is a collection

of transition counts such that N+
i ∼ Multinomial(N∗,∗; P̂ ).1

3. For each bootstrap sample N+
i , compute V̂ π1(N+

i ) and V̂ π2(N+
i ) for candidate poli-

cies π1 and π2.

4. For each i, let yi
def
=
(
2V̂ π1(N) − V̂ π1(N+

i )
)
−
(
2V̂ π2(N) − V̂ π2(N+

i )
)
. The i-th

bootstrap votes for π1 if yi > 0, votes for π2 if yi < 0, and gives both π1 and π2 0.5

vote if yi = 0.

5. Count the votes and select the policy in {π1, π2} that has the most votes.

The first three steps of BPV is the same as single-depth BTBC, where k bootstrap

samples of transition counts are generated from the estimated transition probabilities and

then are used to compute bootstrap state/action values of interest. The last two steps

are very different from BTBC. In the original single-depth BTBC, the bootstrap values

V̂ (N+
i ) are averaged and used in the form of

(
2V̂ (N) − avg[V̂ (N+

i )]
)

to compute the

bias-corrected value estimates. In BPV, on the other hand, the bootstrap values V̂ (N+
i )

are used to compute
(
2V̂ π(N) − V̂ π(N+

i )
)

separately for each bootstrap without taking

average, and the computed values are then used to decide the vote from that bootstrap.

The results from these bootstraps are put together in the last step by choosing the policy

that has received the most votes.

Note that BPV does not directly compare the values V̂ (N+
i ) computed from the boot-

strap samples, but use them to shift the original V̂ (N) by
(
V̂ (N)− V̂ (N+

i )
)

and compares

these shifted value estimates, similar to what is done in BTBC. The rationale behind this

1See Section 4.4.1 for more detailed description regarding the generation of bootstrap samples.
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design is the same as BTBC, which has already been elaborated in Section 4.4.2, and thus

will not be repeated here.

The pseudo-code of BPV is given in Algorithm 5.

Algorithm 5 Bootstrap-based Policy Voting (N, {π1, π2})
Input: transition counts N, candidate policies {π1, π2}
Parameter: number of bootstrap samples b
Output: one of the candidate policies

1: Compute transition probabilities P̂N using N
2: V̂1 = BellmanSolution(P̂N, π1)
3: V̂2 = BellmanSolution(P̂N, π2)
4: vote1 = vote2 = 0
5: for j = 1 to b do
6: Generate bootstrap data N+ using P̂N, i.e. N+

s,a,∗ ∼ Multinomial(Ns,a; P̂N(∗|s, a))

7: Compute P̂N+ using N+

8: V̂ +
1 = BellmanSolution(P̂N+ , π1)

9: V̂ +
2 = BellmanSolution(P̂N+ , π2)

10: if 2V̂1 − V̂ +
1 > 2V̂2 − V̂ +

2 then
11: vote1 = vote1 + 1
12: else if 2V̂1 − V̂ +

1 < 2V̂2 − V̂ +
2 then

13: vote2 = vote2 + 1
14: else
15: vote1 = vote1 + 0.5
16: vote2 = vote2 + 0.5
17: end if
18: end for
19: Return πi ∈ {π1, π2} s.t. i = argmaxj∈{1,2}votej

5.3.2 Connection with BTBC selector

We can also apply BTBC to policy selection by replacing the uncorrected value estimates

in naive model-based selector with the bias-corrected ones:

WBC({π1, π2})
def
=


π1 Ṽ π1 > Ṽ π2

π2 Ṽ π1 < Ṽ π2

Uniform{π1, π2} Ṽ π1 = Ṽ π2 ,

(5.5)
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where Ṽ π = 2V̂ π(N) − avg[V̂ π(N+
i )] is the bias-corrected value estimate of single-depth

BTBC. As pointed out in the last section, the main difference between the BTBC selector

WBC and the BPV selector WPV is that WBC takes average over
(
2V̂ π(N)− V̂ π(N+

i )
)

first,

then compare the results to decide a single vote, while BPV compare
(
2V̂ π(N)− V̂ π(N+

i )
)

first to get b votes, then adds up the votes to get the voting result.

Let sign(x) be the sign function which equals to 1, 0, and -1 for x > 0, x = 0, and

x < 0, respectively. The operation of comparing two values x1 and x2 can be represented

by sign(x1 − x2). Let yi
def
=
(
2V̂ π1(N) − V̂ π1(N+

i )
)
−
(
2V̂ π2(N) − V̂ π2(N+

i )
)
, then the

BTBC selector is mathematically equivalent to

fBC({yi}) = sign(avg(yi)),

while the BPV selector is equivalent to

fPV({yi}) = sign(avg(sign(yi))).

The selectors output π1 if the above f value is 1, and output π2 if f is -1.

It is clear that the two selectors are different, but which one is better? Our obser-

vation is that they can be similarly good in terms of family-wise policy selection risk

in general, but BPV selector tends to be better in terms of family-wise fairness, thanks

to the additional sign operation before taking average. To explain this, consider the

case where {yi} = {3, 3, 2,−1,−8}. Since there are three positives and two negatives,

fPV({yi}) = sign(avg(sign(yi))) = sign((3− 2)/5) = 1, while fBC({yi}) = sign(avg(yi)) =

sign((3 + 3 + 2 − 1 − 8)/5) = −1. As can be seen from the process of computation, the

final vote by the BTBC selector is heavily weighted by the “outlier” −8, while for BPV

the −1 and the −8 have the same weight in the final result.

Due to such property, BTBC selector is more likely to select policies whose estimated

value distributions have heavy right tails (i.e. the ones that have small but non-negligible

probability to yield very large returns), while BPV is less affected by heavy tails and thus
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is more likely to have better family-wise fairness than BTBC.

5.4 Utilising the improved policy selection

The discussion on policy selection in previous sections is mainly for pairwise policy se-

lection where the number of candidate policies is two. In this section, we first propose

a simple tournament method to conduct policy selection with more than two candidate

policies, then propose a bootstrap policy generation method for generating candidate poli-

cies from a learnt model, and finally combine them with the improved policy selection

methods proposed in Section 5.3 to further improve overall model-based RL performance.

5.4.1 The tournament method for multi-policy policy selection

The policy selection methods proposed in the last section are for pairwise policy selection.

When there are more than two candidate policies, we can conduct a single-elimination

tournament of pairwise policy selection to choose the best policy.

Specifically, let π1, π2, ..., πn be n candidate policies, arranged in a random order. In

the first round, we conduct pairwise policy selection for {π1, π2}, {π3, π4}, and so on, and

if the last policy πn does not have a competitor then it automatically wins. The winners

(the policies been selected) of the first round then goes to the next round, and the process

is repeated until there is only one policy left. This champion policy is then chosen as

the output of the tournament process. In this way, we can choose one policy from n

candidates by conducting (n− 1) pairwise policy selection.

Due to the randomness occurred in generating bootstrap samples in our bootstrap-

based selectors, the policy selection result does not have transitivity, i.e. W{π1, π2} = π1

and W{π2, π3} = π2 in one tournament does not imply W{π1, π3} = π1, and even the

same W{π1, π2} does not necessarily give the same result (unless there is a sufficiently

large gap in their values).

However, since we are only interested in the average utility of the final winner and
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do not care about the complete ranking, the single-elimination tournament is sufficient

for our purpose. The random allocation of the initial positions in the tournament for the

policies makes no policy be favoured over others in probability, and therefore the best

policy with respect to the order decided by the selector has the most probability to win

the tournament.

That being said, single-elimination tournament is not necessarily the tournament

method that has the highest probability of selecting the best policy. Appleton [1995] con-

ducted simulations on different tournament methods under different settings, and found

that both seeded draw-and-process tournament and round-robin-played-twice tournament

are better than single-elimination in terms of the probability of selecting the best com-

petitor. The application of these more sophisticated tournament methods to multi-policy

policy selection is left for future work.

5.4.2 Bootstrap policy generation

Most RL algorithms only output one policy, and many model-based RL algorithms (e.g.

the ones that use Value Iteration algorithm for policy planning) do not explicitly conduct

policy selection. However, we can still use the bootstrap method to generate multiple

candidate policies, and conduct tournaments to find policies that can possibly better

than the original output policy.

Let N
def
= {Ns,a,s′} be the transition counts of the learning process and N∗,∗

def
= {Ns,a}

be the corresponding sample size at each state-action pair. The bootstrap policy generation

process consists of the following steps:

1. Estimate transition probabilities P̂ from data N by P̂ (s′|s, a)
def
= Ns,a,s′/Ns,a.

2. Generate k bootstrap sample N+
1 ,N

+
2 , ...,N

+
k from P̂ , where each N+

i is a collection

of transition counts such that N+
i ∼ multinomial(N∗,∗; P̂ ).

3. Use a policy planning algorithm (e.g. Value Iteration) to compute the optimal

policy π̂+
i with respect to each bootstrap model M̂+

i
def
= (S,A, P̂+

i , R̂, γ), where P̂+
i

is computed from N+
i in the same way as P̂ .
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In this way, we can easily generate k candidate policies for policy selection tournament.

Due to the inherent similarity between the bootstrap samples N+
i and the original data

N, the quality of the generated policies π̂+
i is close to the original output policy π in most

cases, and thus they are good competitors to π in the tournament.

5.4.3 Tournament-based policy refinement

By combining the single-elimination tournament method for multi-policy policy selection

with the bootstrap policy generation method, we obtain a general policy refinement pro-

cess for model-based RL, which can be used regardless of whether the original learning

algorithm explicitly conducts policy selection or not.

Algorithm 6 Tournament-based Policy Refinement
Input: transition counts N
Parameter: tournament size k
Output: a refined policy

1: Compute transition probabilities P̂N using N
2: (Original output policy) π1 = PolicyPlanning(P̂N)
3: for i = 2 to k do
4: Generate bootstrap data N+ using P̂N, i.e. N+

s,a,∗ ∼ Multinomial(Ns,a; P̂N(∗|s, a))

5: Compute P̂N+ using N+

6: πi = PolicyPlanning(P̂N+)
7: end for
8: Number of remaining competitors n = k
9: while n > 1 do

10: for i = 1 to bn/2c do
11: πi = PolicySelection(π2i−1, π2i)
12: end for
13: if n mod 2 == 1 then
14: πdn/2e = πn
15: end if
16: n = dn/2e
17: end while
18: Return π1

The pseudocode of this combined process is given in Algorithm 6. With tournament

size k, Algorithm 6 generates (k − 1) policies by bootstrap at Lines 3-7, then let them

and the original policy compete in a single-elimination tournament at Lines 8-17. The
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winners of the policy selection at each round override the policies at first dn/2e positions

of the array of policies {πi}, and thus the output policy at Line 18 does not necessarily

equals to the original output policy computed at Line 2.

The policy selector used in the algorithm is represented with PolicySelection(π, π′).

By using the BTBC selector given in Section 5.3.2 we get the Bias-corrected Tournament

(BCT) method, while by using the BPV selector given in Section 5.3.1 we get the Policy

Voting Tournament (PVT) method.

Note that the bootstrap samples generated at Line 4 are not used in bootstrap-based

policy selection. The selectors have to create their own bootstrap samples in order to make

the tournament meaningful. Also, although in Section 5.4.1 we have mentioned that the

random allocation of the initial positions in the tournament makes it “fair” (in general

sense) to all candidate policies, the random allocation is not necessary in Algorithm 6

because (k − 1) candidates are generated by independent random processes.

Although we can also apply the naive model-based selector to Algorithm 6, it is prac-

tically meaningless because it simply chooses policies with maximum estimated utility,

which is exactly the original output policy, unless there are some generated policies that

happen to have the same estimated utility as the original output policy.

Algorithm 6 does not guarantee to output a policy different from the original output,

nor does it guarantee to output a policy that has higher true state/action value than the

original output. There can be cases where the policy generation process fails to generate

a better policy, and cases where the policy selector fails to pick the better one from

the candidates. However, as can be seen from our experiment results presented in the

next section, with a proper policy selector such as BTBC-based WBC and BPV-based

WPV, Algorithm 6 can utilise the information from the collected data more efficiently and

achieve a better overall performance than naive model-based learning, even if the sample

size is relatively small.
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5.5 Experiments

5.5.1 Policy selection

This section presents our empirical results for the policy selectors including the naive

model-based WMB, the transformation bias corrected WBC, and Bootstrap-based Pol-

icy Voting WPV. The transformation-bias-corrected WBC used the single-depth BTBC

method, so that WBC and WPV create the same number of bootstrap samples under the

same setting of bootstrap size parameter b.

The double chain MDP family

To evaluate the family-wise metrics proposed in Section 5.2, we construct an MDP family

based on the chain MDPs as follows.

Definition 5.7. Let n ≥ 3 be the chain length and γ ∈ (0, 1) be the discount factor. A

double chain with length n, forward probability p, and parameter x is defined as follows.

1. The states are s1, s2, ..., sn. The agent starts interaction from the start state s1.

State sn is called the goal, and state sbn/2c is called the mid-point.

2. At states si with i 6= n and i 6= bn/2c, the agent has one action a1. Taking this

action transits the agent to si+1 with probability p, and to si with probability (1−p).

3. At the goal sn, there is one action a1 which transits back to s1 with probability p

and yields reward r1 = 1, and transits to sn with probability (1−p) with no reward.

4. At the midpoint sbn/2c, there are two actions a1 and a2. Action a1 transits the agent

to sbn/2c+1 with probability p, and to sbn/2c with probability (1 − p). Action a2

transits the agent back to s1 with probability p and yields reward

r2
def
=
F (n)− x
F (bn/2c)

,

where

F (k)
def
=

1

γ
· (γp)k

(1− γ(1− p))k − (γp)k

119



1 2 3 4 5 6

p p p p p

1− p 1− p 1− p 1− p 1− p 1− p

p, +r1

1− p
p, +r2

Figure 5.4: Double chain MDP with n = 6 states. Solid arrows are transitions by taking
action a1, while dashed arrows are the ones by taking a2.

and x is the parameter of the double chain, and transits the agent to sbn/2c with

probability (1− p) without reward.

Lemma 5.13. Let π1 be a policy which selects a1 at all states. Let π2 be a policy which

selects a2 at state sbn/2c, and selects a1 at other states. Let state value V π(s1) be the utility

of interest. Then the double chain MDPs given in Definition 5.7 forms a (π1, π2)-family

of MDPs with parameter x.

Proof. By the Bellman equation it can be shown that V π1(s1) = F (n) and V π2(s1) =

r2F (bn/2c). Since r2
def
= F (n)−x

F (bn/2c) , we have x = V π1(s1) − V π2(s1) and thus the lemma is

proved.

Figure 5.4 gives an illustration of a double chain MDP with length n = 6.

The computation of family-wise risk and family-wise unfairness involves integrals with

respect to the parameter x. In the experiments, we used middle Riemann sum1 for

approximation.

We conducted experiments under the following setting. Unless stated otherwise, the

number of states n, the discount factor γ, and the forward probability p of the double

chain MDP were set to n = 50, γ = 0.97, and p = 0.7. To test the effectiveness under a

small sample size, we set the sample size per state-action m = 10. As for the range of the

parameter x of MDP families, we set x ∈ [−0.3V π1 , 0.3V π1 ], where V π1 is the true state

value of π1 at s1.

1The sum of rectangles with height being the function value of the middle point of each small intervals.
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Figure 5.5: Normalised family-wise policy selection risk vs bootstrap size.

Effect of bootstrap size

In the first experiment, we changed the bootstrap size b of single-depth BTBC selector

WBC and BPV selector WPV from 2 to 20 in order to see their family-wise risk and family-

wise unfairness metrics under different bootstrap size. In each run, a dataset with 10

observations of transitions for each state-action pair was obtained, and sent to selectors

WMB, WBC, and WPV for them to select one from {π1, π2}. Each setting of b was tested

for 1000 runs to get the empirical distributions of the selection results.

The results of the experiment are presented in Figures 5.5 and 5.6. Both of the

family-wise metrics were normalised by the half-length of the domain of x (i.e. 0.3V̂ π1) so

that their values can be roughly interpreted as “average probability” (though it is more

appropriate to compare their ratio rather than the absolute values). The shaded areas

represent the intervals within one standard deviation (green - WMB; red - WBC; blue -

WPV).

As can be seen from Figure 5.5, in terms of family-wise risk, our selectors WBC and

WPV were worse than the naive model-based selector WMB at bootstrap size b = 2, but

121



2 4 6 8 10 12 14 16 18 20

bootstrap size

0

0.005

0.01

0.015

0.02

0.025

0.03
fa

m
ily

-w
is

e 
un

fa
irn

es
s

naive model-based
bias-corrected
policy voting

Figure 5.6: Normalised family-wise unfairness vs bootstrap size.

became much better with a larger b. Since family-wise risk indicates the overall possibility

of choosing wrong policies in different MDPs, these results indicate that our selectors were

remarkably better than the naive model-based selector in correctly selecting the better

candidate policy.

Specifically, at b = 20, the normalised family-wise risk was 0.120 for WBC, 0.122 for

WPV, while for naive WMB it was about 0.171 for all b. Thus, WBC and WPV made about

(0.171− 0.120)/0.171 ≈ 29.8% and (0.171− 0.122)/0.171 ≈ 28.7% less mistakes in policy

selection than WMB, respectively. Considering that the sample size per state-action m

was only 10, the above results clearly shows that our selectors could make better use of

the information hidden inside a small sample.

It is interesting to see that the bootstrap size parameter b of our BTBC selector had

remarkable effect in policy selection, in contrast to our previous results in transformation

bias correction presented in Chapter 4, where changing b did not lead to a significant

change to the result (see Figure 4.9). One explanation to this is, by increasing the boot-

strap size, the variance of the bias-corrected value estimates were reduced, which was
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Figure 5.7: Probability of selecting π1 under different x
V π1

= V π1−V π2
V π1

.

helpful for policy selection but did not have direct impact on the accuracy of value esti-

mation.

The result of the family-wise unfairness shown in Figure 5.6 is also very interesting.

As can be seen from the figure, both of our selectors had less family-wise unfairness than

the naive selector, and with b ≥ 4, the BPV selector had less family-wise unfairness

than the BTBC selector, which is in accordance with our analysis in Section 5.3.2. More

importantly, the BTBC selector showed an increasing trend of being unfair under a larger

b. A possible reason for this is, as b increased and the variance of the corrected value

decreased, the heavy tail of the distribution became more apparent and thus were more

likely to drive the BTBC selector to select the corresponding policy.

To have a clearer picture of the family-wise metrics, we draw the curves of the proba-

bility of choosing π1 under different MDP family parameter x = V π1 − V π2 , in the same

manner as in Figure 5.1. The curves are shown in Figure 5.7.

Clearly, the BTBC selector showed a strong tendency of selecting policy π1, which is
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Figure 5.8: Normalised family-wise policy selection risk vs number of states.

the one that collects rewards from the goal of the chain, while naive model-based selector

showed a strong tendency of selecting π2, which is the one that collect rewards from the

mid-point. Since π1 involves more transitions than π2 and thus has a heavier right tail in

its value estimate distribution, these results are in accordance with our analysis that the

BTBC selector favours policies with heavy right tails. The results also indicate that the

naive model-based selector had the opposite tendency and disliked such policies.

Effect of number of states

As discussed in Section 4.3.3, the transformation bias of model-based RL increases with

the number of states under the same sample size per state-action pair. We are interested

in whether this also happens in terms of family-wise metrics of policy selection, and thus

conducted experiment under different number of states.

Specifically, we fixed the bootstrap size b of BTBC and BPV selectors to 20, and

changed the number of states n from 30 to 100. The sample size per state-action m was

still set to 10. Each selector under each n were tested 1000 runs.
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Figure 5.9: Normalised family-wise unfairness vs number of states.

The empirical normalised family-wise risk and family-wise unfairness under different

number of states n are shown in Figures 5.8 and 5.9. Figure 5.8 shows that the family-

wise risk of the naive model-based selector increased quickly with the number of states

(from 0.154 at n = 30 to 0.309 at n = 100), while for our bias-corrected and policy

voting selectors it increased much slower (from 0.121 to 0.146 and from 0.126 to 0.156).

In Figure 5.9, the family-wise unfairness of the naive model-based selector also increased

remarkably from 0.0070 to 0.0715, while for our WBC and WPV it was almost unchanged.

These results indicate that for the naive model-based selector, the family-wise risk and

the family-wise unfairness do increase with the number of states, while our bootstrap-

based selectors can scale far better with respect to the number of states.

Effect of sample size per state-action

To see how the sample size per state-action m affects the family-wise metrics, we also

conducted experiments under different m ranging from 8 to 20. The number of states was

fixed to 50 and the bootstrap size was set to 20. Figures 5.10 and 5.11 show the empirical
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Figure 5.10: Normalised family-wise policy selection risk vs sample size per state-action.

normalised family-wise risk and family-wise unfairness, respectively.

From Figure 5.10 it can be seen that the family-wise risk reduced as the sample size

per state-action m grew, but the relations between the selectors did not change much.

Both of our bootstrap-based selectors WBC and WPV were significantly better than the

naive model-based selector WMB . At very small sample size m ≤ 10, the BTBC selector

was slightly worse than the BPV selector, but the difference was not significant except

for m = 8.

Figure 5.11 showed that the family-wise unfairness also reduced with the sample size

per state-action for WMB and WBC. For WPV, it was close to 0 even for very small m, far

better than both WMB and WBC. Thus, when fairness is needed and sample size is small,

BPV can be a better choice than BTBC.
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Figure 5.11: Normalised family-wise unfairness vs sample size per state-action.

5.5.2 Policy refinement through tournaments

This section presents our empirical results for our tournament-based policy refinement

methods including the Bias-corrected Tournament (BCT) and the Policy Voting Tourna-

ment (PVT).

Performance metrics

The tournament-based policy refinement methods have two separate parts, where the

first part generates the competitors for the tournament, and the second part conducts

the tournament to decide the champion. Thus, we define several performance metrics to

indicate the effectiveness of each part as well as the overall performance, given as follows.

Definition 5.8. Let k be the total number of runs. In these k runs, let k∗ be the number

of the runs where the original output policy is optimal, and k+ be the number of the runs

where at least one policy generated by bootstrap is better than the original output policy.

Let kWwin and kWlose be the number of runs where the champion policy of the tournament
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with selector W is better than and worse than the original output policy, respectively.

Then the metrics are defined as follows.

� Rate of Generating at least one Better policy: RGB = k+/(k − k∗).

� Rate of Successful/Unsuccessful Refinement when at least one better policy is gen-

erated: RSRW = kWwin/k
+, RURW = kWlose/k

+.

� Overall Improvement: OIW = RGB(RSRW − RURW ) = (kWwin − kWlose)/(k − k∗).

RGB measures the effectiveness of bootstrap policy generation. RSR and RUR mea-

sure the effectiveness of policy selection tournament when the policy generation is suc-

cessful. OI measures the effectiveness of the policy refinement method as a whole.

The modified maze domain

Since our double chain MDPs used in the previous section has only two distinct policies, it

is not suitable for testing policy generation where more than one policy can be generated.

Thus, we modified the maze domain previously used in Section 4.5.3 for the experiments.

The map of the maze been used was still the one presented in Figure 4.13 of Chapter

4. However, the transitions and the rewards were modified to increase the number of sub-

optimal but still sufficiently competitive policies. Specifically, in the modified maze, the

goal reward is set such that the true state value at the start state for policies obtaining

less than three flags and entering the goal with minimum expected number of steps is

90% of the true state value for the optimal policy which obtains all three flags before

entering the goal. In addition, entering the traps no longer sends the agent back to the

start state. Instead, the agent is forever trapped at that trap position, and at each step

thereafter receives a reward such that the state value at the start state for a policy which

intentionally enters that trap with minimum expected number of steps is 95% of the

true optimal state value. To make these reward settings possible, the transition of the

movement actions at general states is changed to having 0.7 probability to move to the

intended direction while having 0.3 probability to stay at the current position. Without

this change, it is not possible to find the appropriate reward settings using Value Iteration.
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Under this setting, the optimal policy is still the one that collects all three flags and

enters the goal with minimum expected number of steps, but the policies that enters the

goal with less flags and the ones that intentionally enters the traps also have 90% and

95% of the optimal utility, which makes figuring out the true optimal policy more difficult

in the modified maze than the original maze.

Results

We conducted an experiment to see how the performance metrics proposed in Definition

5.8 change with the size of the tournament (i.e. the number of candidate policies). In this

experiment, the following process was repeated 200 times for each setting of tournament

size to get the average results. In each run, we first obtained a dataset containing m = 8

transition observations for each state-action pair. Then the dataset was passed to naive

model-based RL algorithm with Value Iteration as policy planning method to obtain the

original output policy. Then, the dataset and the original output policy were passed to

the tournament-based policy refinement methods (Bias-corrected Tournament and the

Policy Voting Tournament) to yield the final result of the tournament process. Finally,

the results of the 200 runs were put together to compute the metrics.

We set the bootstrap size parameter b = 20 for BTBC and BPV. The tournament

size was set to 2, 4, 8, 16, ..., 128. The results are shown in Figures 5.12, 5.13, and

5.14. Clopper-Pearson method [Clopper and Pearson, 1934] was used to compute the

95% confidence intervals. Note that the x-axes of these figures are drawn in logarithmic

scale.

From Figure 5.12 it can be seen that the rate of generating at least one policy bet-

ter than the original output increased with the tournament size. This is not surprising

because when the original output is not optimal, each bootstrap-generated policy has an

independent chance to be a policy better than the original in terms of its true utility,

and thus a larger tournament size means a bigger chance of generating at least one better

policy through bootstrap policy generation.
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Figure 5.12: Rate of Generating at least one Better policy (RGB) vs tournament size in
the modified maze domain.
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Figure 5.13: Rate of Successful/Unsuccessful Refinement when at least one better policy
is generated (RSR, RUR) vs tournament size in the modified maze domain. The pair of
curves above y = 0.2 are RSR, while the ones below y = 0.2 are RUR.
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Figure 5.14: Overall Improvement (OI) vs tournament size in the modified maze domain.

Figure 5.13 shows the rates of successful and unsuccessful refinement given that at

least one better policy was generated. The curves above y = 0.2 are RSR and the ones

below y = 0.2 are RUR. Red and blue areas show the confidence intervals of results for

BCT and PVT, respectively. As can be seen from the curves, the BCT and PVT methods

had very similar rate of success and failure in this experiment, though BCT performed

slightly better than PVT in terms of this metric when the tournament size is larger. The

reason for the better performance of BCT is possibly that the optimal policy (collect all

flags and go to the goal) in the modified maze domain involves a much longer cycle than

the suboptimal policies (collect less flags and/or go into the traps), and thus its estimated

value distribution is more heavily tailed. This gave advantage to the family-wise unfair

BTBC selector which has shown to be favouring policies with such a property.

It is also interesting to see that the increased tournament size did not also increase the

rate of successful refinement. This is possibly due to the fact that when the tournament

becomes larger, although the average number of policies better than the original one

increases, the number of matches they need to win in order to become the final champion
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also increases. Thus, the gain and the loss due to having a larger tournament neutralised

with each other, which resulted in an almost fixed rate of successful refinement in this

experiment.

Finally, Figure 5.14 shows the overall improvement obtained by using our policy re-

finement methods. Although increasing the tournament size did not increase the rate of

successful refinement given that at least one better policy was generated, the tournament

size being larger increased the probability of generating better policies, and thus when the

two parts were combined, the overall improvement increased with the tournament size.

Since by definition the value of the overall improvement metric is the probability

of outputting a policy better than the original one minus the probability of outputting

a worse one given that the original policy is not optimal, an OI score about 0.3 is a

remarkable improvement for the overall performance. Considering that the sample size

per state action m was only 8 in this experiment, the result showed that our policy

refinement methods were highly effective in improving the learning quality when sample

size is small.

5.6 Chapter Summary

In this chapter, we have proposed the family-wise policy selection risk and the family-

wise unfairness as metrics for policy selection. We have analysed the properties of the

two family-wise metrics and have shown that they are more suitable for representing the

overall effectiveness of policy selection methods than the instance-wise risk and the strict

fairness. We have also shown that the naive model-based policy selector is marginally

better than the random guesser in terms of family-wise selection risk and also has non-

zero family-wise unfairness in some family of MDPs, and thus needs to be improved. This

answers the research question Q3.1 (“How to measure the effectiveness of policy selection

methods? Is the naive model-based selector good under this measurement?”) in Section
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1.3.3 and leads to contribution 5 in Section 1.4.1

We have then proposed the Bootstrap-based Policy Voting (BPV) selector, and com-

pared it with the bias-corrected selector based on our BTBC proposed in Chapter 4. We

have further proposed two policy refinement methods, Bias-corrected Tournament (BCT)

and Policy Voting Tournament (PVT). We have presented our empirical results on these

methods, showing that both BTBC and BPV selectors had much less family-wise policy

selection risk than the naive model-based selector, that BPV had less family-wise un-

fairness than BTBC, that both BCT and PVT could significantly improve the overall

model-based RL performance even when the sample size is small. This answers the re-

search questions Q3.2 (“How to improve the effectiveness of policy selection?”) and Q3.3

(“How to use the improved policy selection methods to further improve overall model-

based RL performance?”) in Section 1.3.3 and leads to contribution 6 in Section 1.4.2

1Contribution 5: “We propose two metrics for measuring the effectiveness of policy selection methods,
namely family-wise policy selection risk and family-wise unfairness, and show that they are more suitable
for measuring the overall effectiveness than the original strict fairness proposed by [Doroudi et al., 2017]
and the instance-wise policy selection risk. We then analyse the naive model-based selector to show that
it is not satisfactory in terms of these metrics.”

2Contribution 6: “We propose the Bootstrap-based Policy Voting (BPV) method for policy selection
which has significantly better family-wise effectiveness than the naive model-based selector, and also has
less family-wise unfairness than the bias-corrected selector based on our BTBC. We then propose two
policy refinement methods, Bias-corrected Tournament (BCT) and Policy Voting Tournament (PVT), to
improve overall model-based RL performance.”
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This chapter summarises the conclusions of Chapters 3, 4, and 5, then suggests directions

for future research.

6.1 Conclusions

The ultimate goal of this thesis is to make reinforcement learning more sample efficient, i.e.

work better when the sample size is small due to the limited budget and the expensiveness

of data collection. To this end, we have studied the exploration, the transformation bias

correction, and the policy selection of model-based reinforcement learning in finite MDPs.

Exploration decides how efficient the data is collected, while transformation bias correction

and policy selection decide how well the data is used in finding good policies.

Our contributions are summarised in the following list, and are given more details in

the subsequent subsections.

� We pointed out that the existing exploration strategies and their analysis are un-

suitable in the learning-then-serving workflow due to their connection to learning-

process cumulative reward. We proposed the planning for exploration (PFE) prob-

lem where the task of fulfilling data demands are formulated as augmented undis-

counted MDPs and can be solved by our Value Iteration for Exploration Cost

(VIEC) algorithm. We showed that the efficiency of exploration strategies can be
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better analysed under the PFE formulation.

� We analysed the exploration costs of the optimal exploration scheme, ε-greedy,

R-MAX, and MBIE-EB in tower MDPs to expose the weakness of the existing

strategies to the distance trap and reward trap, and to show the advantage of

explicit planning for exploration.

� We conducted a systematic empirical study on the transformation bias of model-

base RL, showing that the relative scale of the bias η increases with the number of

states n and decreases with connectivity and sample size per state-action m. For

chain MDPs we obtained an empirical formula η = C −K n/m, where C and K are

constants decided by the transition dynamics.

� We proposed the Bootstrap-based Transformation Bias Correction (BTBC) method

to correct the transformation bias of model-based RL. Experiments showed that it

worked well even with a small sample size.

� We proposed the family-wise policy selection risk and family-wise unfairness metrics

to measure the overall effectiveness of policy selection methods. We gave analysis

to the effectiveness of some basic selectors, which showed that our metrics are more

informative than the strict fairness.

� We proposed the Bootstrap-based Policy Voting (BPV) method that has better

effectiveness of policy selection than the naive model-based selector and less family-

wise unfairness than our BTBC selector. We then proposed two policy refinement

methods, Bias-corrected Tournament (BCT) and Policy Voting Tournament (PVT),

that can improve overall model-based RL performance without requiring additional

data.
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6.1.1 Explicit planning for efficient exploration

In Chapter 3, we considered the exploration efficiency in the learning-then-serving work-

flow. Most existing researches on exploration assume the learning-while-serving workflow,

where learning-process cumulative reward is the objective to be maximised. However, in

reality, many applications of RL is made under the learning-then-serving workflow, where

the agent learns a policy in a learning process and provides service in a separate serv-

ing process, which makes the learning-process cumulative reward completely irrelevant

to both the overall learning performance and the sample efficiency. Consequently, most

existing methods reduce to mediocre heuristics, and the theoretical guarantees become

inapplicable.

In the learning-then-serving workflow, exploration efficiency is decided by how much

data an algorithm collects in the learning process in order to produce a policy that can

work sufficiently well in the serving process. We showed that since the quality of the

final policy can be guaranteed by collecting sufficient data for each state-action pair, the

general exploration problem can be translated into a data demand fulfilment problem,

where the agent needs to collect the specified amount of data with number of steps as

few as possible. A better solution to such a demand fulfilment problem thus collects less

amount of redundant data, which leads to better overall sample efficiency.

We formulated the problem of data demand fulfilment for exploration, and showed that

the optimal exploration scheme, which fulfils the data demand with minimum exploration

cost, can be obtained by solving a corresponding augmented undiscounted MDP. The

augmented undiscounted MDP can be solved by our Value Iteration for Exploration Cost

(VIEC) algorithm if the transition probabilities of the original MDP are given. The

exploration cost can be used as a sample-size-based efficiency metric for exploration, and

is more suitable than the existing metrics such as sample complexity and regret that are

based on learning-process cumulative reward.

Under our demand fulfilment formulation, we analysed the exploration efficiency of

several important exploration strategies, such as ε-greedy, R-MAX, and MBIE-EB, in
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tower MDPs. By comparing their behaviours and exploration costs with the optimal ex-

ploration scheme, we discovered that the existing strategies are weak to distance traps and

reward traps when used in the learning-then-serving workflow, and that the exploration

scheme obtained from explicit planning for exploration does not suffer from these traps.

Thus, explicit planning for exploration can improve the sample efficiency of model-based

RL and is more promising than the existing strategies in the learning-then-serving setting.

6.1.2 Transformation bias of model-based RL and its correction

In Chapter 4, we studied the transformation bias of model-based RL. The estimated

state/action values are nonlinear functions to the estimated transition probabilities, and

thus no matter the estimated transitions are unbiased or not, the estimated state/action

values are biased. The correction of the transformation bias was historically considered

unimportant, has rarely been studied, and was not conducted in most researches and

applications. However, our empirical study showed that the transformation bias can be

surprisingly large and has significant impact on the overall RL performance when the

sample size is small, and thus should not be ignored.

Through an empirical study, we revealed that the relative bias of the estimated

state/action value η, the number of states n, and the sample size per state-action m

satisfy the formula η = C −K n/m in chain MDPs, where C and K are constants decided

by the transition dynamics. This indicates that to prevent the bias from increasing with

the number of states, the sample size per state action has to be proportional to the num-

ber of states, which means that the total sample size has to increase quadratically with

the number of states. Thus, when obtaining data is expensive, correcting the transition

bias can be of great help for improving the accuracy of value estimates.

We proposed our Bootstrap-based Transformation Bias Correction (BTBC) method to

correct the transformation bias of model-based RL without needing additional data. We

showed through empirical results that BTBC can effectively reduce the transformation

bias and thus improves the overall sample efficiency of model-based RL. In particular, we
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showed that our BTBC worked well even when sample size per state-action is notably

small. This is not possible for the second-order approximation method proposed by [Man-

nor et al., 2007], which is affected by its own transformation bias when estimating the

transformation bias of state/action values.

6.1.3 Effectiveness of policy selection in model-based RL and
its improvement

In Chapter 5, we studied the policy selection process of model-based RL, which, to the best

of our knowledge, has not been systematically studied specifically for model-based RL by

other researchers. The policy selection process uses the estimated state/action values to

decide the output policy, which has direct impact on the quality of the final product of RL.

Due to the asymmetry of the distributions of estimated values, some values are more likely

to be overestimated than the others, even if the transformation bias is absent/corrected.

Thus, the naive policy selection method, which directly compare the estimated values to

decide the output policy, is more likely to select the inferior policies that are likely to be

overestimated.

To measure the effectiveness of policy selectors, we proposed two metrics, family-wise

policy selection risk and family-wise unfairness, that can represent the overall properties

of selectors in families of MDPs. We showed that these metrics are more suitable for

comparing different selectors than the strict fairness by Doroudi et al. [2017] (which was

originally proposed for Importance Sampling based RL) and our instance-wise policy

selection risk. We gave analysis to some elementary selectors as well as the naive model-

based selector, showing that the naive model-based selector is unsatisfactory in both

family-wise policy selection risk and family-wise unfairness.

To improve the effectiveness of policy selection, we proposed our Bootstrap-based

Policy Voting (BPV) selector. We compared it with the bias-corrected selector based

on our BTBC for transformation bias correction, revealing both their connections and

the important property that BPV selector is in general better in terms of family-wise
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unfairness than BTBC selector.

We also proposed a tournament-based method for policy selection problem that has

more than two candidate policies, as well as a bootstrap-based policy generation method

that can generate arbitrarily many candidate policies from the obtained data. We com-

bined these two methods with our improved policy selectors to produce the Bias-corrected

Tournament (BCT) and Policy Voting Tournament (PVT) methods for policy refinement,

which can be used after the basic model-based RL process is ended to further improve

the quality of the output policy without needing new data.

We presented our results for both the proposed selectors and the policy refinement

methods. The results showed that both BPV and BTBC selectors can have significantly

less family-wise policy selection risk and family-wise unfairness than the naive model-

based selector, though the BTBC selector has higher family-wise unfairness than the

BPV selector. The results also showed that the policy refinement methods based on the

two selectors can significantly improve the overall performance of model-based RL with a

small sample size.

6.2 Future work

In Section 1.2, we clarified that this thesis focuses on model-based RL in finite MDPs. This

is because the model-based RL in finite MDPs is already complicated enough, especially

when the sample size is, or required to be, small. On the other hand, in reality, many

applications are better formulated as continuous MDPs. Thus, to make our results more

widely applicable, generalising them to continuous MDPs is of high importance.

Apart from generalisation to continuous space, there exist many other interesting

directions for future research, which are listed as follows.

� Approximation to the computation of the exploration cost. As pointed out in Section

3.3, VIEC requires computation time exponential to the sizes of the state and action

spaces. This is unavoidable (unless P=NP) for exact computation because even the
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simplest case of the planning for exploration problems is NP-hard. However, there

might exist both fast and sufficiently good approximation to the exact computation.

Similar approximations have been proposed for Bayesian RL, of which the exact

computation is intractable. It might be possible that such approximation methods

for Bayesian RL, or at least the ideas behind those approximations, can be adapted

to planning for exploration to find sufficiently good exploration schemes, which is

helpful for improving the exploration efficiency of RL.

� Finite-sample analysis to the quality of the estimated exploration scheme. We did

not provide analysis to how good the output exploration scheme by VIEC will be

if the true transition probabilities are not available and the estimated ones are

used instead. It might be possible to apply concentration inequalities to analysis

the (ε, δ)-optimality of the estimated exploration schemes, although such analysis

might be only of theoretical interest and is not very useful in practice.

� Extending the transformation bias correction method to cover the modelling er-

ror. The model learnt by model-based RL in finite MDPs can exactly represent the

transition information contained in the collected data, and thus the bias studied in

Chapter 4 comes purely from the nonlinear transformation. When approximation

techniques are applied to the model construction and representation, there is an

additional modelling error caused by the inability to exactly expressing the infor-

mation from the data, which cannot be reduced by our BTBC method. However,

it might be possible to adapt the bootstrap-based method to either directly reduce

the modelling error, or indirectly reduce its impact on the estimation result. By

doing so, the collected data can be used in a more efficient way, making RL work

better with a smaller sample size.

� Transformation bias in model-free RL. In Section 4.6, we pointed out that because

the model-free methods can be seen as approximations to model-based methods, it is

possible that model-free methods also implicitly suffer from the transformation bias.
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This topic needs further investigation, and if the existence of the transformation

bias in model-free RL is confirmed, then a bias correction method can be helpful for

improving the sample efficiency of model-free RL.

� Exploiting the family-wise unfairness. As shown in the experiment results presented

in Section 5.5.2, the generally more unfair BTBC selector can still lead to results

as good as (or even slightly better than) the BPV selector, when used in policy

refinement. It will be useful if we can classify the MDPs by whether the policies

with heavy tails in their estimated value distributions are better or not. If such clas-

sification can be done without actually running the experiment (according to, say,

domain knowledge), then we can possibly exploit such information by intentionally

choosing selection methods that are family-wise unfair (so that they are more likely

to choose the better policies in specific subset of MDPs).

� Extension to action selection. When value comparison is conducted at the action

level, it becomes an action selection problem, where the algorithm has to choose one

action from the candidates. This problem shares great similarity with policy com-

parison, and also has strong connection with the maximisation bias of the Bellman

equation based algorithms. In fact, since Monte-Carlo methods that do not rely on

the Bellman equations also have to choose actions, there should be a general selec-

tion problem that applies to all RL approaches. Formulating such a problem and

adapting our methods to it can possibly be very helpful for improving the overall

RL efficiency.

141



LIST OF REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement

learning. In Proceedings of the Twenty-First International Conference on Machine

learning, 2004.

Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning:

worst-case regret bounds. In Advances in Neural Information Processing Systems, pages

1184–1194, 2017.

David R. Appleton. May the best man win? Journal of the Royal Statistical Society:

Series D (The Statistician), 44(4):529–538, 1995.

Peter Auer and Ronald Ortner. Logarithmic online regret bounds for undiscounted rein-

forcement learning. In Advances in Neural Information Processing Systems 19, pages

49–56. MIT Press, Cambridge, MA, USA, 2006.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed

bandit problem. Machine learning, 47(2-3):235–256, 2002.

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for re-

inforcement learning. In Advances in Neural Information Processing Systems, pages

89–96, 2009.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for
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István Szita and András Lőrincz. The many faces of optimism: A unifying approach.

In Proceedings of the 25th International Conference on Machine Learning, pages 1048–

1055, New York, USA, 2008. ACM. ISBN 978-1-60558-205-4.
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