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Hybrid Query Optimization for Hard-to-Compress
Bit-vectors

Gheorghi Guzun · Guadalupe Canahuate

Abstract Bit-vectors are widely used for indexing and

summarizing data due to their efficient processing in

modern computers. Sparse bit-vectors can be further

compressed to reduce their space requirement. Spe-

cial compression schemes based on run-length encoders

have been designed to avoid explicit decompression and

minimize the decoding overhead during query execu-

tion. Moreover, highly compressed bit-vectors can ex-

hibit a faster query time than the non-compressed ones.

However, for hard-to-compress bit-vectors, compression

does not speed up queries, and can add considerable

overhead. In these cases, bit-vectors are often stored

verbatim (non-compressed).

On the other hand, queries are answered by execut-

ing a cascade of bit-wise operations involving indexed

bit-vectors and intermediate results. Often, even when
the original bit-vectors are hard-to-compress, the in-

termediate results become sparse. It could be feasible

to improve query performance by compressing these

bit-vectors as the query is executed. In this scenario

it would be necessary to operate verbatim and com-

pressed bit-vectors together. In this paper, we propose

a hybrid framework where compressed and verbatim

bitmaps can coexist and design algorithms to execute

queries under this hybrid model. Our query optimizer is
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able to decide at run time when to compress or decom-

press a bit-vector. Our heuristics show that the appli-

cations using higher density bitmaps can benefit from

using this hybrid model, improving both their query

time and memory utilization.

1 Introduction

From business analytics to scientific analysis, today’s

applications are increasingly data-driven, proliferating

in data stores that are rapidly growing. To support effi-

cient ad hoc queries, appropriate indexing mechanisms

must be in place. Bit-vector based indices, also known

as bitmap indices, are popular indexing techniques for

enabling fast query execution over large scale data sets.

Because bit-vector based indices can leverage fast bit-

wise operations supported by hardware, they have been

extensively used for selection and aggregation queries in

data warehouses and scientific applications.

A bitmap index is used to represent a property or

attribute value-range. For a simple bitmap encoding,

each bit in the bitmap vector corresponds to an object

or record in a table and bit positions are set only for the

objects that satisfy the bitmap property. For categor-

ical attributes, one bitmap vector is created for each

attribute value. Continuous attributes are discretized

into a set of ranges (or bins) and bitmaps are gener-

ated for each bin. Selection queries such as point and

range queries are executed by means of intersections

and/or unions of the relevant bitmaps.

When simple encoding is used and a large number of

bit-vectors are created for a data set, the index grows

larger but also the bit-vectors are sparser and there-

fore amenable for compression. Bitmap indices are com-

pressed using run-length based encoding. A run refers
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to a set of consecutive bits with the same value, i.e.,

all 0s or all 1s. Sparse bitmaps will have long runs

of zeros. Current bitmap compression techniques min-

imize the compression overhead in query time by al-

lowing operations to work directly over the compressed

bitmaps [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Most of them can

be considered as extensions of Word Aligned Hybrid

(WAH) encoding[4, 11]. These approaches are effective

for sparse bitmaps but impose an overhead for harder-

to-compress bitmaps, as the compression is not signifi-

cant when compared to the verbatim bitmap and there

is a decoding overhead during query processing.

Depending on the quantization resolution, the

bitmaps can have a higher or lower density. With lower

quantization resolutions, the bitmaps become denser

and thus harder to compress. Another example of high

density bit-vector index is the bit-sliced index (BSI) [12]

which encodes the binary representation of the at-

tribute value using one bit-vector to represent each

binary digit. Since BSI bitmaps exhibit a high bit-

density, i.e. a large number of bits is set in each bitmap,

they do not compress well. An example of applications

using BSI indices are the top-k (preference) queries,

which was proposed in [13, 14] and shown to outper-

form threshold-based algorithms and sequential scan.

The denser bit-vector indices are hard to compress.

Compressing them does not save significant storage

space. While decoding the compressed bitmap during

the query execution imposes a penalty. Because of these

reasons, many applications using dense bit-vector based

indices do not apply any type of compression. How-

ever, many of the real-world queries involve a cascade

of bitwise logical operations over the bit-vector index.

In many cases these queries aim to retrieve only a very

small percentage of the tuples. Thus the intermediate

results of the bitwise operations become sparse and can

benefit from compression. Compressing the sparse in-

termediate results can help reduce the memory utiliza-

tion, and often speed-up the query. One critical con-

dition is that these compressed intermediate bit-vector

results should be operable with either other compressed

or verbatim bit-vectors.

In this paper, a hybrid query processing and op-

timization is proposed where queries are executed

over both verbatim and compressed bitmaps together.

Heuristics are defined to decide when a bitmap column

should be compressed/decompressed at run-time. We

evaluate our approach for selection and top-k queries.

Selection queries are executed using synthetically gen-

erated bit-vectors with varying densities, and top-k

queries are executed over real and synthetically gen-

erated data, using bit-sliced indices (BSI).

The benefit of this hybrid model is the avoid-

ance of decoding overhead by storing hard-to-compress

bitmaps as verbatim and still be able to reduce the in-

dex space by compressing the sparse bitmaps.

The primary contributions of this paper can be sum-

marized as follows:

– This is the first work that performs queries using

both verbatim and compressed bit-vectors operating

them together.

– We defined query optimization heuristics to decide

at run-time whether the resulting bitmap column

should be compressed or not.

– We evaluate the proposed approach for selection and

top-k (preference) queries and over equality encoded

bitmaps and bit-sliced indices.

– We perform experiments over both synthetic and

real data-sets.

The rest of the paper is organized as follows. Sec-

tion 2 presents background and related work. Sec-

tion 3 describes the queries and algorithms to oper-

ate verbatim and compressed bitmaps together. Sec-

tion 4 presents the hybrid query optimization and the

rationale behind the optimization heuristics. Section 5

shows the experimental results over both real and syn-

thetic data-sets. Finally, conclusions are presented in

Section 6.

2 Background and Related Work

This section presents background information for

bitmap indices and bitmap compression.

The topic of bitmap indices was introduced in [15].

Several bitmap encoding schemes have been devel-

oped, such as equality [15], range [16], interval [16],

and workload and attribute distribution oriented [17].

Several commercial database management systems use

bitmaps. BSI [15, 18] can be considered a special case

of the encoded bitmaps [19]. With bit-sliced indexing,

binary vectors are used to encode the binary represen-

tation of the attribute value. One BSI is created for

each attribute.

Figure 1 shows an example for a data set with two

attributes each one with 3 distinct values (cardinal-

ity=3). For the equality encoded bitmaps, one bitmap

is generated for each attribute value and the bit is set

if the tuple has that value.

For the BSIs, since each attribute has three pos-

sible values, the number of bit-slices for each BSI is

dlog23e = 2. The first tuple t1 has the value 1 for at-

tribute 1, therefore only the bit-slice corresponding to

the least significant bit, B1[0] is set. For attribute 2,

since the value is 3, the bit is set in both BSIs. The
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Raw Data Equality Bitmaps Bit-Sliced Index (BSI) BSI SUM
Attrib 1 Attrib 2 Attrib 1 Attrib 2

Tuple Attrib 1 Attrib 2 =1 =2 =3 =1 =2 =3 B1[1] B1[0] B2[1] B2[0] S[2]3 S[1]2 S[0]1

t1 1 3 1 0 0 0 0 1 0 1 1 1 1 0 0
t2 2 1 0 1 0 1 0 0 1 0 1 0 0 1 1
t3 1 1 1 0 0 1 0 0 0 1 0 1 0 1 0
t4 3 3 0 0 1 0 0 1 1 1 1 1 1 1 0
t5 2 2 0 1 0 0 1 0 0 1 1 0 1 0 0
t6 3 1 0 0 1 1 0 0 1 1 0 1 1 0 0

1S[0]=B1[0] XOR B2[0], C0 = B1[0] AND B2[0]
2S[1]=B1[1] XOR B2[1] XOR (C0)
3S[2]=C1=Majority(B1[1],B2[1],(C0))

Fig. 1: Simple example of equality encoded bitmaps and bit-sliced indexing for a table with two attributes and

three values per attribute.

SUM for the two BSIs is also shown in the figure. In

this case, the maximum value of the sum is 6 and the

number of bit-slices is dlog26e = 3. The addition of

the BSIs representing the two attributes is done using

efficient bit-wise operations. First, the bit-slice sum[0]

is obtained by XORing B1[0] and B2[0] i.e. sum[0] =

B1[0]⊕B2[0]. Then sum[1] is obtained in the following

way sum[1] = B1[1] ⊕ B2[1] ⊕ (B1[0] ∧ B2[0]). Finally

sum[2] = Majority(B1[1], B2[1], (B1[0] ∧ B2[0])). BSI

arithmetic for a number of operations is defined in [18]

and top-k (preference) query processing over BSIs is

defined in [13, 14]. BSI is a compact representation of

an attribute as only dlog2 valuese vectors are needed to

represent all values. However, their high density makes

them hard to compress any further.

Other types of bitmap indices are typically com-

pressed using specialized run-length encoding schemes

that allow queries to be executed without requir-

ing explicit decompression. Byte-aligned Bitmap Code

(BBC) [1] was one of the first compression techniques

designed for bitmap indices using 8-bits as the group

length and four different types of words. BBC com-

presses the bitmaps compactly and query processing

is CPU intensive. Word Aligned Hybrid (WAH) [2]

proposes the use of words instead of bytes to match

the computer architecture and make access to the

bitmaps more CPU-friendly. WAH divides the bitmap

into groups of length w − 1 and collapse consecutive

all-zeros/all-ones groups into a fill word. Recently, sev-

eral bitmap compression techniques that improve WAH

by making better use of the fill word bits have been

proposed in the literature [3, 4, 5, 6, 20, 21]. Previous

work has also used different segment lengths for encod-

ing [7, 20, 21] and there exists a unified query processing

framework using variable length and in theory, different

compression methods based on WAH [7].

However, because WAH-based methods require one

bit for each word to indicate the type of word, the

groups created are not aligned with the verbatim

bitmaps where the bit-vector is divided into groups of

w-bits. Operating a compressed bitmap with a verbatim

bitmap would be very inefficient as the miss-alignment

of the row identifiers would need to be resolved at query

time.

Luckily, there exists one method, WBC or Enhanced

WAH (EWAH) [4, 11], that divides the bitmap into

groups of w-bits, not w− 1-bits. EWAH uses two types

of words: marker words and literal words. Half of a

marker word is used to encode the fills. The upper half

(most significant bits) of the fill word encode the fill

value and the run length, and the remaining bits are

used to represent the number of literal words following

the run encoded in the fill. This implicit word type elim-

inates the need for a flag bit for each word to identify

the type of word.

Figure 2 shows a verbatim bitmap and its EWAH

encoding. The verbatim bitmap has 182 bits (6 32-

bit words). The EWAH bit-vector always starts with
a marker-word. The first half of a marker-word repre-

sents the header. For a 32-bit word length as in this

case, the first 16 bits indicates the type and number of

fill words. The second half of the a marker-word, tells

the number of literals that follow a marker-word (1 in

the example). After the literal word, another marker-

word follows. The first bit (0) indicates a run of zeros

and the value 3 is the number of words in the run. The

second half of the marker word indicates that there are

two literals following the fill.

In this work EWAH is used as the compression

method to support an efficient hybrid query process-

ing involving verbatim and compressed bitmaps.

An example of systems that could benefit from the

Hybrid query optimization is the Bitmap Index for

Database Service (BIDS) [22] proposed for indexing

large scale data-stores. BIDS indexes the data using

Equality Bitmaps and Bit-Sliced indices. Depending on

the attribute cardinality of the data it decides whether

to use equality encoded bitmaps, bit-sliced index, or
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Verbatim Bitmap (in hex) 400003C0 00000000 00000000 00000000 001FFFF0 000001FF

EWAH Bitmap (in hex) 0000 0001 400003C0 0003 0002 001FFFF0 000001FF

Fig. 2: A verbatim bitmap and its EWAH encoding.

not to create an index for an attribute. The created

index, either equality encoded bitmaps or bit-sliced in-

dex, is then compressed using WAH. Even when the

bit-sliced indices are not effectively compressed it is still

necessary to compress them using WAH in order to en-

able operations between the equality encoded bitmaps

and the bit-sliced indices during query processing. This

is where BIDS can benefit from the proposed hybrid

model. If integrated into BIDS, bitmaps would only

be compressed when the compression is effective and

no overhead would be imposed to process the higher

density bitmaps. Our query processing is able to op-

erate compressed and verbatim bitmaps together. Fur-

thermore, our query optimizer decides at query time

whether the intermediate results should be compressed

or not.

Roaring Bitmaps [10] proposes an alternative or-

ganization to run-length compression. It proposes to

divide the bitmaps into chunks of 216 bits and if

sparse, store the row ids as an offset within the block

and if dense, store as a verbatim bitmaps. This ap-

proach is very effective for sparse bitmaps but de-

faults to verbatim bitmaps for denser bitmaps. We com-

pare our approach to roaring bitmaps and show that

the hybrid approach outperforms roaring for hard-to-

compress bitmaps.

The next section introduces the proposed hybrid

query processing and optimization over verbatim and

EWAH-compressed bitmap indices. For clarity, we de-

fine the notations used further in this paper in Table

1.

3 Hybrid Query Processing

Consider a relational database D with m attributes and

n tuples. Bitmap indices are build over each attribute

value or range of values and stored column-wise. Query

processing over bitmaps is done by executing bit-wise

operations over one or more bitmap columns.

A selection query is a set of conditions of the form

A op v, where A is an attribute, op ∈ {=;<;≤;>;≥}
is the operator, and v is the value queried. We refer to

point queries as the queries that use the equal operator

(A = v) for all conditions, and range queries to the

queries using a between condition (e.g. v1 ≤ A ≤ v2).

Term Description

w Computer architecture word size

n Number of tuples or rows in the data

m Number of attributes or dimensions in the

data

c Attribute cardinality, number of equality

bitmaps created for the attribute

p Number of slices used to represent an at-

tribute in a BSI bitmap

s Number of set bits in a bitmap

d = s
n Density of a bitmap

e Bit that indicates the storage format of a

bitmap. e = 0 for verbatim bitmaps and

e = 1 for compressed bitmaps.

V A verbatim bitmap

C A compressed bitmap

H Hybrid- operation which could involve a

verbatim and a compressed bitmap

T The threshold compression ratio starting at

which the bitmaps are stored in a com-

pressed form

Table 1: Notation Reference

The values queried, vi, are mapped to bitmap bins,

bi, for each attribute. If the bitmaps correspond to the

same attribute then the resulting bitmaps are ORed

together, otherwise they are ANDed together. In the

case of selection queries, the resulting bitmap has set

bits for the tuples that satisfy the query constraints.

Equality encoded bitmaps can support selection

queries and have been shown to be optimal for point

queries. These bitmaps are sparse (even more for higher

cardinalities), and therefore can benefit from compres-

sion. However, compression comes with a cost during

query processing since it requires more time to decode

the columns. In some cases, however, compression can

speed up the queries and also reduce the space footprint

of the bitmaps. This is typically the case for highly com-

pressed columns. For very hard to compress bitmaps,

where the number of set bits is higher, compression may

not able to reduce the size but still imposes an overhead

during query time.

Consider for example a data set uniformly dis-

tributed where each one of 100 attributes is divided into

two bins. Each bitmap column individually is not able
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to compress at all (as the expected bit-density is 0.5).

In this case, it may seem beneficial to store the bitmaps

as verbatim bitmaps, uncompressed, therefore avoiding

decoding overhead during query time. However, con-

sider a point query over several of the dimensions for the

same data-set. The expected density quickly decreases

with each added dimension. For 4, 10, and 20 attributes

queried the expected density for a point query would be

0.06, 0.001, and 0.000001, respectively. In this case, the

use of compression would speed up the query consider-

able as the number of dimensions increases.

More recently, bit-sliced indexing (BSI) was pro-

posed to support top-k (preference) queries [13, 14].

Queries are executed using bit-wise operations to pro-

duce the products, additions, and find the top k scores.

As an example of such algorithms, we include the SUM

operation as presented in [14, 18]. Algorithm 1 shows

the pseudo-code for the addition of two BSIs, A and B,

with a number of slices q and p, respectively. The result

is another BSI S with MAX(p, q)+1 slices. A“Carry”

bit-slice CS is used in Algorithm 1 whenever two or

three bit-slices are added to form Si, and a non-zero

CS must then be added to the next bit-slice Si+1. An

example of a BSI sum was shown earlier in Figure 1.

Together with a MULTIPLY algorithm (not shown

in this paper), the SUM algorithm produces a BSI en-

coding, the weighted sum for all the attributes, while

the Top-K algorithm (also not shown) generates the re-

sulting bitmaps with set bits for the top k tuples. With

these algorithms, top-k queries can be executed over

BSI using AND, OR, XOR, and NOT operations over

the bitmaps. Compression was not used in [14]. The

reason might be that BSIs would not be able to com-

press considerably due to their high density. However,

one can expect that the bitmap representing the carry

bit (Lines 2, 6, 13, and 20 in Algorithm 1) would be

very sparse. Another highly compressible bitmap corre-

sponds to the all-zeros bitmap used when shifting dur-

ing the multiplication operation. Moreover, if the user

specifies a constraint for the query with high selectiv-

ity, then all the slices could benefit from compression

before computing the SUM.

Our goal in this paper is to design a space where ver-

batim and compressed bitmap columns can be queried

together and compression is used not only to reduce

space but also to speed up query time.

In order to enable this hybrid query processing, the

bitmap index representation is extended with a header

word. The first bit in this word is the flag bit, e, to

indicate whether the bitmap column is stored verba-

tim (e = 0) or compressed (e = 1); and the remaining

w − 1 bits store the number of set bits in the bitmap.

The number of set bits is used to estimate the density

Algorithm 1: Addition of BSI’s. Given two BSI’s, A

and B, we construct a new sum BSI, S = A + B, using

the following pseudo-code. We must allow the highest

order slice of S to be S[MAX(s, p) + 1], so that a carry

from the highest bit-slice in A or B will have a place.

Input: A,B
Output: S

1 S[0] = A[0] XOR B[0] ; // bit on in S[0] iff bit on

// either A[0] or B[0]
2 CS = A[0] AND B[0] ; // CS is "Carry" bit-slice

3 for i = 1; i <MIN(q, p); i++ ; // While there are

// bit-slices in A and B

4 do
5 S[i] = (A[i] XOR B[i] XOR CS) ; // one (or

three)

// bit on gives bit on in Si

6 CS =Majority(A[i], B[i], C) ; // two (or more)

bits

// on gives bit on in CS

7 end

8 if q > p ; // if A has more bit-slices than B

9 then
10 for i = p+ 1; i ≤ q; i++ ; // loop until

// last bit-slice

11 do
12 S[i] = (A[i] XOR CS) ; // 1 bit on gives bit

on

// in S[i]; CS might be ∅
13 CS = (A[i] AND CS) ; // two bits on gives

// bit on in CS

14 end

15 end

16 else
// B has at least as many bit-slices as A

17 for i = q + 1; i ≤ p; i++ ; // continue loop

// until last bit-slice

18 do
19 S[i] = (B[i] XOR CS) ; // one bit on gives

// bit on in S[i]
20 CS = (B[i] AND CS) ; // two bits on gives

// bit on in CS

21 end

22 end

23 if CS is non-zero ; // if still non-zero Carry

// after bit-slices end

24 then
25 S[MAX(q, p) + 1] = C ; // put Carry into final

// bit-slice of S

26 end

of the resulting bitmap during query optimization as

described in the next section.

In our hybrid space, there are three possibilities

when operating two bit-vectors: both of them are com-

pressed, both are verbatim, or one is verbatim and the

other one is compressed. The first two cases (both com-

pressed or both verbatim) present no challenge since the

operations for these cases already exist. We developed

query algorithms that operate an EWAH compressed

bit-vector with a verbatim bitmap. We chose EWAH
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as our compression scheme because its word length is

equal to the computer word length (w) used for verba-

tim bitmaps. Thus, by using EWAH we maintain the

alignment with the verbatim bitmaps.

Algorithm 2 shows the pseudo-code for a general

bit-wise operation ◦ between two bit-vectors: one com-

pressed and the other verbatim, and produces a result

that can be either verbatim or compressed. The input

bit-vectors C and V correspond to the compressed and

verbatim bit-vectors, respectively. While C has a more

complex data structure and requires more sophisticated

access to its words, V represents a simple array and its

words can be accessed directly without any decoding

required. This is the reason our hybrid model is able to

speed up query execution of hard-to-compress bitmaps

when compared to EWAH or other bitmap compression

methods, as there is no decoding overhead for bit-vector

V . The size of C is always smaller than or equal to the

size of V , and thus Algorithm 2 will perform maximum

|C| iterations for the AND operations and maximum

|V | iterations for the OR and XOR operations. Where

|C| is the size of C, and |V | is the size of V in words.

Algorithm 2: Operates a compressed bit-vector C

with a verbatim bit-vector V

Input: C, V

Output: R

1 pos = 0 ;

2 while C has more words do
3 R.appendWords(C.runningBit ◦

V.sub(pos, C.runLen), C.runLen);

4 pos+ = C.runLen;

5 for i=1 to C.NofLiterals do

6 R.append(C.activeWord ◦ V [pos]);

7 pos++;

8 end

9 end

10 return R

Having defined the input data for Algorithm 2 we

will now proceed to describe its steps. Because EWAH

starts always with a marker word, Algorithm 2 starts

by processing this word. Recall that half of the marker

word stores the fill count (runLen in the Algorithm)

and the other half stores the number of following literals

(NofLiterals in the Algorithm). The fill count and the

bit value for run of fills together with the correspond-

ing words from the verbatim bitmap are passed into the

appendWords method (Line 3). This method, depend-

ing on the fill bit value and the logical operation to be

performed ◦, will add a stream of homogeneous bits,

or a stream of values resulting from operating the fill

bit with the words from V . This number of consecutive

words is equal to the fill count that was just decoded.

Next, the active position pos within V is updated (Line

4). Then, each of the following literal words in C (Line

5) is operated with the corresponding word in V (Line

6), and the active position within V is updated (Line

7). After the consecutive literals in C are exhausted,

the next word in C will be again a marker word and

Algorithm 2 iterates to Line 3 until all the words in the

compressed bitmap C have been exhausted.

The append procedures (Lines 3 and 6) encode the

resulting word(s) into the result bitmap R, which could

be EWAH compressed or verbatim. The algorithm to

decide whether the result should be compressed or not

is discussed in the next section.

Note that the running time for the Hybrid algorithm

described above is proportional to the size of the com-

pressed bitmap for intersections (AND) and comple-

ment (NOT) operations, and proportional to the non-

compressed bitmap for union (OR) and XOR opera-

tions.

Our goal in this work is to identify the cases where

it is beneficial to operate a bit-vector in a compressed

form or in a verbatim form. We shall compress if com-

pression can improve, or does not degrade the query

time. Our assumption is that if Algorithm 2 is called,

the compressed bitmap is sparse (compression reduces

the size considerably) and the verbatim bitmap is dense

(marginal or no benefit from compression). In this

case, operating a verbatim and compressed bitmap to-

gether would be more efficient than operating two-

compressed or two-verbatim bitmaps together. Operat-

ing two verbatim bitmaps requires the traversal of the

entire bitmap regardless of the bit-density. Thus, the

proposed hybrid algorithm opens the possibility to re-

duce the memory requirement during query processing

and speed up the query at the same time. The next sec-

tion describes how this hybrid scheme can be exploited

to improve the query performance over bit-vectors.

4 Hybrid Query Optimization

Let us identified the three cases for operating two

bitmap columns as: VV when both of them are ver-

batim, CC when both of them are compressed, and as

VC the hybrid case, when one of them is verbatim and

the other is compressed. Regardless of the input for-

mat, the result of operating two bitmap columns can

be encoded either as a verbatim bitmap or as a com-

pressed one. The decision of whether the result should

be compressed or not is made by the query optimizer

as described next.
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Let us denote by n the number of bits in each

bitmap, and by si the number of set bits in bitmap i.

The bit-density is then defined as di = si
n . The bitmap

encoding format, verbatim (0) or compressed (1), is de-

noted by the flag bit ei.

Consider the bit-vectors B1 and B2 with bit-

densities d1 and d2, respectively. Algorithm 3 shows

the pseudo-code for query optimization of the bi-

nary bit-wise operations. Given two bitmaps B1 and

B2 with bit-density and stored format (d1, e1) and

(d2, e2), respectively and a bit-wise operation OP

∈ {AND,XOR,OR}, our query optimization algo-

rithm estimates the resulting bit-density d and decides

whether the result should be compressed (e = 1). The

density parameters α, β, andγ are used to indicate the

maximum bit-density for which compressing the result-

ing bit-vector from AND, OR, and XOR operations,

would be beneficial for subsequent operations.

Algorithm 3: Query optimization for AND, OR, and

XOR bitwise operations

Input: d1, d2, e1, e2,OP
Output: d, e

1 e = 0;
2 if (OP == AND) then
3 d = d1d2;
4 if (d < α )‖ d > 1− α) then
5 e = 1;
6 end

7 end

8 else if (OP == OR) then
9 d = d1 + d2 − d1d2 ; // d=d1+d2 for equality

// bitmaps from the same attribute

10 if ((e1 == 1 & e2 == 1 & (d < β)‖(d > (1− β))))
then

11 e = 1;
12 end

13 end
14 else if (OP == XOR) then
15 d = d1(1− d2) + (1− d1)d2;
16 if ((e1 == 1 & e2 == 1 & (d < γ)‖(d > (1− γ))))

then

17 e = 1;
18 end

19 end

By default the encoding format of the result is ver-

batim (Line 1).

For ANDs (Lines 2-7), the result is compressed when

the expected density of the resulting bitmap is smaller

than α or it is larger than 1 − α. It is easy to see that

for ANDs, the number of 1s in the result will always be

less than or equal to the bitmap with smaller number

of 1s.

For ORs (Lines 8-13), the result is compressed only

when the two input bitmaps are compressed and the

expected density of the result is smaller than β, or when

the expected density of the result is greater than 1−β.

For ORs, the number of ones in the result is at least

the number of ones in the bitmap with a larger number

of 1s. If either one of the bitmaps is not compressed

chances are that the result should not be compressed

either. The other extreme is the case when the number

of set bits in the results is so high that runs of 1s can

be compressed efficiently. The comparison with 1 − β
allows us to compress bitmaps with a bit-density close

to 1.

For XORs (Lines 14-19), the result is compressed

only when the two input bitmaps are compressed and

the expected density is smaller than γ or greater than

1− γ for the same reasons discussed previously for the

OR operation. OR and XOR operations exhibit the

same performance behavior.

For both, OR and XOR operations, both input bit-

vectors have to be compressed in order to output a com-

pressed result. Otherwise there is an overhead to the

query if the result is compressed at low bit-densities.

In the case of the NOT operation, the complement

bitmap is kept in the same form as the input bitmap,

i.e. if the input bitmap is compressed, the complement

bitmap would also be compressed.

4.1 Bit-Density Estimation

The bit-densities of the input bitmaps are used to de-

cide whether the result should be compressed or left

as a verbatim (uncompressed) bitmap. For the indexed

bitmaps we store the number of set positions and the

densities are easily computed. However, for the subse-

quent query operations involving the resulting bitmaps,

we use estimated bit-densities, as computing the actual

densities can be expensive. The expected density of the

resulting bitmap is estimated using the densities of the

input bitmaps. In this paper we assume that the dis-

tribution of the set bits in the two input bitmaps are

independent and compute the expected density using

the probability of set bits in the result bitmaps. It is

typical for query optimizers to make this assumption in

query selectivity estimations and even when for most

real data sets not all the attributes are independent,

this estimation gives reasonable performance as we will

show in the experimental results over real data sets.

For the NOT operation, the bit density can be com-

puted easily since the number of set bits in the comple-

ment of bitmap B1 would be n− s1 as:

dNOT = 1− d1
The bit-density of the bitmap resulting from AND-

ing the two bit-vectors can be computed as the product
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of the two bit-densities. This is the probability that the

same bit is set for both bit-vectors:

dAND = d1 × d2

Similarly, the bit-density of the bitmap resulting

from ORing the two bit-vectors can be computed as

the sum of the two bit-densities. This is the probability

that the bit is set for either one of the bit-vectors minus

the probability that the bit is set in both bit-vectors:

dOR = d1 + d2 − d1d2

This is how the expected density is computed when

bitmaps from different attributes are ORed together

and for all BSI encoded bitmaps. For equality encoded

bitmaps, however, since only one bit is set for all the

bitmaps of an attribute, d1d2 is known to be zero and

the bit-density in the case when two bitmaps from the

same attribute are ORed together is estimated by:

d′OR = d1 + d2

For XOR, the bit-density of the resulting bitmap

corresponds to the probability that only one bit is set

between the two bitmaps and can be estimated as:

dXOR = d1(1− d2) + (1− d1)d2

These bit-densities are only approximations of the

actual resulting bitmap vectors bit-densities, given

that we assume independence between the operated

bitmaps. However, in section 5 we compare the deci-

sions made by the optimizer using the estimated den-

sity against the decisions made using the densities of

the intermediate results by computing them at query

time. We show that the difference is usually under 5%.

4.2 The Threshold Parameters α, β, and γ

The values for α, β, and γ should be sensitive enough to

trigger the compression of the resulting bitmap without

degrading the query performance.

The append procedure from Algorithm 2, line 6, is

responsible for appending a literal or a fill to the re-

sulting bitmap. Given the decision taken in Algorithm

3, this procedure can append to a compressed bitmap

or to a verbatim bitmap. Appending to a verbatim

bitmap takes constant time. However appending to a

compressed bitmap is more expensive. Previous evalu-

ation of the EWAH open source algorithm[9] , shows

that appendLiteral and appendFill for EWAH use on

average 3 to 4 conditional branching instructions, and

takes up to 5 to 15 times longer to execute than a simple

append to a non-compressed bitmap[23]. The construc-

tion of the resulting bitmap in a bit-wise operation will

be proportional to the size of the input bitmaps [4].

Considering this, we shall select α, β, and γ depend-

ing on the bit-density of the output bitmaps, which

can be estimated from the input vector densities. The

decision about compressing the result should be con-

sidered when the input bit-vectors have a density that

allows having a compression ratio between 0.2 to 0.06

or better( 1
5 and 1

15 ). Further we will work with bitmap

densities instead of compression ratios given that we

operate with both, compressed and verbatim bitmap.

For a uniformly distributed EWAH bitmap vector

x, the compression ratio can be estimated as:

CRx ≈ 1− (1− dx)2w − d2wx (1)

where, CRx is the compression ratio

(compressed/non-compressed), dx is the bit den-

sity for bitmap vector x, and w is the word length used

for run length encoding. In this paper we use w=64 to

match the computer architecture of our experimental

environment. To compensate for the overhead of

compressing the bit-vector, the expected compression

ratio should be between 0.2 and 0.06, obtained when d

is between 0.002 and 0.0005 (Equation 1). A smaller

bit-vector contains fewer words, however it takes longer

to decode and operate them.

Given the above reasoning, in Algorithm 3, for the

unions, we choose the more conservative boundary.

Thus, if the denser bit-vector has a density smaller than

or equal to 0.0005, then the maximum density the result

can have is 0.001 and the minimum can be 0.0005. The

resulting bit-vector has the maximum possible density

when none of the set-bit positions coincide in the op-

erated bit-vectors. The minimum possible density for

the result occurs when all the set-bits have the same

positions for both bit-vectors being operated. Hence we

pick β, and γ to be between these two values. In our

evaluations we use β = γ = 0.001

For the intersections, if the sparser input bit-vector

has a density smaller than or equal to 0.002, then the

maximum probable density of the resulting bit-vector is

0.002. This is the case when both bit-vectors being oper-

ated have the same set-bit positions. Because this rarely

happens, we can set a lower threshold for α and com-

press the result more aggressively. We choose a value

between 0.002 and 0.00004, which is the probable den-

sity in the case when both bit-vectors being operated

have the same density.

These values for the threshold parameters α, β, and

γ are true for a 64-bit CPU. For a CPU with a dif-

ferent word length, these values will change, based on

Equation 1. However, the steps followed in this section

for determining these three parameters are the same.

We later set up an experiment in section 5.2, where we
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vary the input bitmap densities and execute all possible

scenarios that Algorithm 3 can encounter. The goal of

the experiment is to validate the limits discussed in this

section for these three parameters.

4.3 The big picture

The density estimation methods for the set of basic op-

erations supported by bitmap indices shall be sufficient

for computing the bit-vector densities in more complex

queries. For a bit-vector based index, a more complex

query is usually composed by a cascade of basic bit-

vector operations (intersections, unions, complements,

exclusions). For instance, a range query may contain a

series of unions, or a point query may contain several

intersections.

Our hybrid compression method is designed to work

with hard-to-compress bit-vectors. The bit-sliced index

is a bit-vector index that is hard-to-compress because

of a high set-bit density. It is usually preferred over the

bitmap index when working with high cardinality do-

mains. Some of the queries supported by the bit-sliced

index are: range queries, aggregations, top-k, and term

matching queries.

The more complex queries such as top-k preference

queries aim to retrieve a small portion of the data, and

at the same time they involve a high number of basic

bit-vector operations. This means that the final result,

as well as many intermediate results from the bit-wise

operations, produce low density bit-vectors. This is one

of the cases when the hybrid query optimizer can help

speeding up the query, and reduce memory utilization,

by compressing the sparse intermediate results.

In the next section we evaluate the performance of

our proposed approach using synthetically generated

data sets, to cover different densities and distributions,

as well as real data sets. We perform top-k preference

queries over bit-sliced indices to evaluate the hybrid

scheme and the query optimizer over real data.

5 Experimental Evaluation

In this section we show the feasibility and efficiency of

the proposed hybrid model. We first describe the ex-

perimental setup and the data sets used, which include

a set of synthetic data sets as well as five real data

sets. Then we evaluate the derived values for param-

eters α, β and γ for the different bit-wise operations.

Then we show that the overhead incurred by the query

optimization at run time is negligible when compared

to an all verbatim or all compressed bitmap set up. Fi-

nally, we compare the performance of the Hybrid model

with verbatim bitmaps, and compressed bitmaps with

WAH, EWAH and Roaring Bitmaps, for point, range,

and top-k queries.

5.1 Experimental Setup

The synthetic data sets were generated using two differ-

ent distributions: uniform and zipf. The attribute car-

dinality of the generated data varies from 10 to 10,000,

and the number of rows from 10,000,000 to 100,000,000

depending on the experiment. The zipf distribution

is representative for many real-world data sets, it is

widely assumed to be ubiquitous for systems where ob-

jects grow in size or are fractured through competition

[24]. These processes force the majority of objects to be

small and very few to be large. Income distributions are

one of the oldest exemplars first noted by Pareto [25]

who considered their frequencies to be distributed as a

power law. City sizes, firm sizes and word frequencies

[24] have also been widely used to explore the relevance

of such relations while more recently, interaction phe-

nomena associated with networks (hub traffic volumes,

social contacts [26], [27]) also appear to mirror power-

law like behavior. The zipf distribution generator uses

a probability distribution of:

p(k, n, f) =
1/kf∑n

i=1(1/if )

where n is the number of elements determined by car-

dinality, k is their rank, and the coefficient f creates

an exponentially skewed distribution. We generated a

few data sets for f varying from 0 to 3. Further, we

varied the number of rows, number of attributes as well

as their cardinality to cover a large number of possible

scenarios.

The bit-sliced index does not follow the exact same

distribution as the data set, however, the distribution

of the data set is reflected in the cardinality of the bit-

vectors. For instance in a zipf-1 data set the bit-slices

with higher position index will have a lower cardinality

than those on the same position index in a uniformly

distributed data set.

We identified that using our hybrid model over a BSI

index when performing top-K queries can improve the

query times as well as the memory utilization (the size

of the index plus the size of the generated intermediate

results) when compared to other bitmap compression

systems. Thus, in this section we use a set of real data

sets to support our results obtained with synthetic data.

These data sets are part of the UCI Machine Learning

Repository [28]:
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– Higgs. This data-set was used in [29] and con-

tains 11 million simulated atomic particles collision

events. We use the first 21 attributes that are the

kinematic properties measured by the particle de-

tectors in the accelerator. These are all real numbers

and we considered 8 significant digits.

– Kegg. This is the KEGG Metabolic Relation Net-

work (Directed) data-set. It is a graph data, where

Substrate and Product compounds are considered as

Edges while enzyme and genes are placed as nodes.

There are 53, 414 tuples in this data set, and 24 at-

tributes, with real and integer values. For the real

values we considered 8 significant figures.

– Network. This data-set was used for The Third In-

ternational Knowledge Discovery and Data Mining

Tools Competition, which was held in conjunction

with KDD’99. The data set contains 4, 898, 431 rows

and 42 attributes with categorical and integer val-

ues. It contains nine weeks of raw TCP dump data

for a local-area network (LAN) simulating a typical

U.S. Air Force LAN.

– Internet. This data comes from a survey con-

ducted by the Graphics and Visualization Unit at

Georgia Tech October 10 to November 16, 1997. We

use a subset of the data that provides general demo-

graphics of Internet users. It contains over 10, 000

rows and 72 attributes with categorical and numeric

values.

– Poker. In this data set each record is an example of

a hand consisting of five playing cards drawn from

a standard deck of 52. Each card is described us-

ing two attributes (suit and rank), for a total of 10

predictive attributes, plus one Class attribute that

describes the “Poker Hand”. The data set contains

1, 025, 010 instances and 11 attributes with categor-

ical and numeric values.

All experiments were executed over a machine with

a 64-bit Intel Core i7-3770 processor and 16 GB of mem-

ory, running Linux 3.4.11-2.16. Our code was imple-

mented in Java, and the Java version used for these

experiments is 8.25 with the server mode enabled. The

main reason for implementing this hybrid query opti-

mization in Java is because we ultimately want to in-

tegrate it with the open source software stacks, that

are Java based. During the measurements, the queries

were executed at least 10 times, and the results for the

first run were discarded to avoid measuring the just-

in-time compilation. The following runs were averaged

and reported.

(a) AND operation.

(b) OR operation.

(c) XOR operation.

Fig. 3: Execution time for different bit-wise operations

over two bit-vectors as the bit-density of the bit-vectors

decreases. Each alternative is identified with the encod-

ing format of the operands and the result (e1e2−e). For

example, VV-C indicates the case where both operands

are verbatim and the result is stored compressed.

5.2 Setting the query optimization parameters

The query optimization parameters, α, β, and γ, refer

to the maximum bit-density at which compression of

the resulting bitmap would be beneficial for AND, OR,

and XOR operations, respectively.
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In order to find suitable values for these parame-

ters, we randomly generated bitmap columns with vary-

ing bit densities and perform bit-wise AND, OR, and

XOR operations using all possible scenarios for the in-

put/output encoding:

– Both inputs are verbatim bitmaps and the result is

stored verbatim (VV-V) or compressed (VV-C)

– Both inputs are compressed bitmaps and the result

is stored verbatim (CC-V) or compressed (CC-C)

– One input is verbatim, the other is compressed, and

the result is stored verbatim (VC-V) or compressed

(VC-C)

The goal of this experiment is to find the values of

α, β, and γ for which subsequent operations exhibit

better performance than verbatim bitmaps.

Figure 3 shows the execution time for the three bit-

wise operations over bitmaps with 100M tuples for all

six scenarios. The densities of the input bitmaps vary

from 0.005 to 10−5.

Figure 3a shows the execution time of an AND op-

eration between two columns with the given bit-density.

The bit-density of the resulting bitmap is expected

to be lower than the input bitmaps. However, when

both input bitmaps are verbatim, there is a consider-

able overhead to compress the result as can be seen by

the line VV-C in the figure. Therefore we pick a small

enough value for α to guarantee that the overhead is

justified by the performance obtained in future opera-

tions.

In the case of ORs and XORs (Figures 3b and 3c),

the expected bit-density of the result is higher than the

input bitmaps so β and γ are used to ensure that only

bitmaps with enough low bit-density are compressed.

As seen in the figure, in all cases, at low bit-densities

the execution time for the bit-wise operations involving

at least one compressed bit-vector is faster than ver-

batim bitmaps. For an AND operation, the smallest

penalty for compressing the result between two verba-

tim results occurs at densities smaller or equal to 0.002

for the input vectors. This makes for a density smaller

or equal than 0.002, or on average 0.0004 for the result.

Which confirms our pick for α in the previous section.

For OR and XOR operations it is worth to maintain

a compressed result only if the input bitmap densities

are lower than 0.001 (at 0.001 CC-C becomes faster

than CC-V). Thus the density of the result should be

between 0.001 and 0.002 at this point. We choose the

more conservative value and pick β = γ=0.001. A bit

density of 0.001 means that there is one set bit for every

1,000 bits in the bitmap. For 100M, this is an average

of 100K set bits per bitmap column. Further in our ex-

periments we use α = 0.0004 and β = γ = 0.001. These

values are within the intervals estimated in Section 4.2,

and thus validate our estimations.

Because our hybrid model can query verbatim with

compressed bitmaps, it makes sense not only to com-

press/decompress on-the-fly during query execution but

also to start with a index that is a mix of verbatim and

compressed bitmaps. The decision about whether the

bitmap index should be compressed or not initially is

application dependent. It is a matter of whether the

trade-off between query time and memory utilization

is justified. We use a threshold T to decide whether

to start with a compressed or a verbatim bitmap. If

the bitmap compression ratio is smaller than T , then

the Hybrid starts with a compressed bitmap. Otherwise

with a non-compressed bitmap.

5.3 Point queries

Point queries only involve AND operations between

bitmaps from different attributes. To measure the ef-

fect of query dimensionality (i.e. number of bitmaps

involved in the point query), we varied the number

of bitmaps ANDed together from 2 to 15. Because

these are AND operations, the density of the resulting

bitmap vector decreases as the point query dimensional-

ity grows. We perform this experiment using uniformly

generated data sets, with densities varying from 10−1

to 10−2. Each bitmap has 100 million bits. The query

times are showed in Figure 4.

We compare five different methods in this exper-

iment: Verbatim, EWAH, WAH, Roaring bitmaps and

Hybrid. Hybrid refers to the proposed scheme, where

the initial compression threshold T varies between 0.1

and 0.9 (each indexed bitmap is compressed if the com-

pression ratio is smaller or equal to the compression

threshold, e.g. H:0.1-H:0.9). In our figures, the Hy-

brid is denoted by H. The number following the colon

sign denotes the compression threshold T , that deter-

mines whether to start with a compressed or a verbatim

bitmap. Note that for the synthetic data sets all the

bitmaps have the same density within an index, and

thus, even if the decision is made for each bitmap in-

dividually, all the bitmaps should start with the same

decision: compressed or verbatim.

Figure 4a shows the point query times for a uni-

form randomly generated data set with the bit den-

sity equal to 10−1, as the dimensionality of the query

increases from 2 to 15. Because the set-bit density is

so high, WAH and EWAH cannot compress, the Roar-

ing bitmap however achieves a compression ratio of 0.5.

The Hybrid, being based on EWAH, starts with a non-

compressed index regardless of the initial compression

threshold selected. As figure 4a shows, the resulting
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(a) d=10−1 (b) d=10−2

Fig. 4: Performance of point queries as query dimensionality increases for different densities

(a) d=10−1 (b) d=10−2

Fig. 5: Execution time for 1-dimensional range queries with increasing the percentage of the range queried.

bitmap after the first three dimensions, for the Hybrid,

is verbatim. After operating the fourth dimension, the

result gets compressed, and the Hybrid pays a small

penalty for this conversion. However as the dimension-

ality grows, the Hybrid operates the compressed result

from the previous operation with the verbatim bitmap

indexed. This way, from the fourth dimension to the

15’th, the Hybrid takes about 0.2 ms to complete the

and operations, while Roaring takes 1.8, EWAH takes

34.5 and EWAH 136.4 ms. Overall for this density, the

Hybrid is faster than all of the other methods we com-

pare to, except Verbatim at 4 dimensions.

In Figure 4b the bit-density of the generated bitmap

is 10−2. Because the density is lower, when starting with

verbatim bitmaps (H:0.1-H:0.6), the Hybrid starts to

compress the result after the third dimension is being

ANDed. Once the Hybrid starts compressing the result,

it execute the AND operations much faster as the result

becomes sparser. The time elapsed between ANDing

the third and the 15’th dimension for the Hybrid was

0.16 ms, while for Roaring was 0.66 ms. If the Hybrid

selects the compressed bitmaps to start with (H:0.7-H-

0.9), then it performs exactly as EWAH.

5.4 Range queries

The range queries are performed, when it is necessary

to retrieve all records between a lower and a higher

boundary, within a bitmap index it means a cascade of

OR operations between the bitmap columns of the at-

tribute queried. Because these are OR operations, the

density of the result is expected to grow with the in-

crease in the range. We perform this experiment using

uniformly generated data sets, with densities varying

from 10−1 to 10−2. Each bitmap has 100 million bits.

Figure 5 shows the query times for range queries when

the percentage of queried bitmap columns for the at-

tribute varies from 10% to 50%.

For range queries, because the density of the re-

sulting bitmap increases, the Hybrid chooses to keep

the result as verbatim for higher densities. In Figure
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(a) d=10−1 (b) d=10−2

Fig. 6: Execution time for multi-dimensional range queries as the number of dimensions increases.

5a the Hybrid starts with non-compressed bimtaps and

it performs similarly to the verbatim scheme. In Fig-

ure 5b if T is smaller than 0.7 then the Hybrid starts

with non-compressed bitmaps, and performs similarly

to Figure 5a. Otherwise the Hybrid starts with com-

pressed bitmaps. However, because the density of the

resulting bitmap increases as the range increases, the

Hybrid doesn’t compress the result and outperforms

EWAH in terms of query time.

Range queries involving more than one attribute

are called multi-dimensional range queries. This type

of query is closer to a real life query scenario, involving

a string of OR and AND operations. Figure 6 shows

the execution time for multi-dimensional range queries

as the number of attributes queried varies from 2 to 15

with a fixed percentage of the attribute range queried

set to 20%. We perform this experiment using uniformly
generated data sets, with densities varying from 10−1

to 10−2. Each bitmap has 100 million bits.

The range queries lead to an increase in density for

the intermediate result, however the AND operations

then decrease their density. Because of that, after a few

dimensions, the Hybrid is able to compress the inter-

mediate result and perform AND operations using Al-

gorithm 2. The compression of the intermediate results

helps the Hybrid to outperform the verbatim scheme

as the dimensionality grows in Figure 6 (when start-

ing with non-compressed bitmaps). When starting with

compressed bitmaps, the Hybrid performs similarity to

EWAH, or better.

5.5 Top-k queries

As the previous experiments show, the Hybrid scheme

competes well with the existing bitmap compression

methods. However it outperforms all of them, including

the verbatim (no- compression) scheme for high density

bitmaps. With this in mind, we identified that applying

our Hybrid compression to a bit-sliced index can benefit

its applications in terms of query time even when com-

pared to a non-compressed bit-sliced index. Moreover,

in terms of memory utilization, the Hybrid is close to

the performance exhibited by EWAH while being up to

an order of magnitude faster than EWAH.

Top-K or preference top-K queries over a bit-sliced

index is an important application that can benefit from

our Hybrid scheme. Top-K queries are performed over

a BSI index as defined in [14]. In a Top-K query where

all attributes are weighted equally, the values are added

together and tuples with the top k values are reported

as the query answers as showed in Algorithm 1 and

then the top-K algorithm described in [14]. Depend-

ing on the number of slices per attribute, Algorithm
1 can perform a number of AND, XOR and OR oper-

ations (at least 4-XOR, 5-AND, and 2-OR operations

per added attribute). The top-K algorithm performs 2-

AND, 1-OR and 1-NOT operation for each slice in the

aggregated attribute. In the following experiments we

computed the top-20. However as shown in [14], k does

not have a significant impact on the algorithm running

time, since it operates with bit-slices.

In the following experiments we use three synthet-

ically generated data sets and also real data sets, to

cover a large enough range of distributions and densi-

ties. We present the results in terms of top-k query time

and memory utilization. We focus on memory utiliza-

tion rather than on the index size because the BSI index

is usually a high-density bitmap index and hard to com-

press. However, because the bit-slices are operated mul-

tiple times, the intermediate results can become sparser

and there are opportunities for compression. We also

add for comparison a näıve Hybrid method that com-

presses the intermediate result if it can achieve a com-
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pression ratio of 0.5 or better. This is denoted by H-0.5

in our figures. For the Hybrid method (H) we set the

initial threshold T to 0.5. However this is application

dependent and can be changed depending on the need

for space or faster queries.

Figure 7 shows the results in terms of execution time

and memory utilization over synthetic data when top

k queries are executed over BSI indices. The data sets

contain 5 attributes with normalized values with 6 dec-

imal positions, 10 million rows, and generated using

three different distributions: uniform, zipf-1 (f=1) and

zipf-3 (f=3).

For the uniform data-set (Figure 7a), The index had

100 slices, an average of 20 slices per attribute. Only the

Roaring bitmap was able to compress the initial index,

with a compression ratio of 0.64, however in terms of

Top-K query times it was two times slower than the

Hybrid. The Hybrid scheme, also was faster than the

verbatim by about 2%. In terms of memory utilization,

the Hybrid performed similarly to WAH and EWAH,

however it was several times faster (3.6x faster than

EWAH and 6.6x faster than WAH).

With the zipf-1 skewed data set, results showed in

Figure 7b, the results were similar to those Figure 7a.

For the zipf distribution with f=3 (Figure 7c), the

skew in the data is significantly higher than in zip-1

and thus the bit-slices are highly compressible. Hav-

ing the compression threshold T set to 0.5, the Hybrid

started with 79 compressed bit-slices out of 100. As

shown in Figure 7c, even if the Verbatim scheme has a

very forthright query algorithm without requiring any

decoding/encoding, the execution time for the top-K

queries is 2 times higher than the Hybrid scheme. This
again underlines the potential of compression not just

for storage-space purposes but also for speeding up pro-

cessing. At the same time, The Hybrid was 2.8 times

faster than the Roaring bitmap, even if the Roaring

bitmap compressed the bit-slices better. The Hybrid

scheme also used only 5% more memory than WAH

and EWAH and was 4.3 times faster than WAH and 3

times faster than EWAH.

Furthermore, to show that our synthetically gen-

erated data-sets accurately represent the performance

gains that can be obtained over real-world data, we per-

form top-K queries over the real data-sets described at

the beginning of this section. The results in terms of

of execution time and memory utilization for the real

data-sets are shown in Figure 8.

For the Higgs data set, the bit-sliced index contains

607 bit-slices(an average of 29 slices per attribute). The

BSI-sum algorithm (Algorithm 1), together with the

top-K algorithm performed 234 XOR operations, 345

AND operations and 244 OR operations for this data

set. From a total of 823 logical operations executed, 131

of their results were compressed and 692 were not. The

Hybrid scheme was 5% faster and used 7% less memory

than the Verbatim scheme, was 14% faster and used

33% more memory than the Roaring bitmap. When

compared to WAH and EWAH, the Hybrid scheme, was

5 times faster than EWAH and an order of magnitude

faster than WAH, while using under 1% more memory

than these two schemes.

The bit-sliced index for the Kegg data set has 243

bit-slices, and the Hybrid compressed 44 of them, to

start with. From a total of 252 logical operations per-

formed, the Hybrid compressed 26 of their results, and

226 where not compressed. The BSI-sum algorithm (Al-

gorithm 1), together with the top-K algorithm per-

formed 86 XOR operations, 110 AND operations and

68 OR operations for this data set. In terms of query

time, the Hybrid outperformed all the other schemes. It

was 5% faster than Verbatim, 3 times faster than Roar-

ing, 1.7 times faster than H-0.5, 8.2 times faster than

WAH, and 7.5 times faster than EWAH.

The network data-set is in a way similar to the zipf-

3 data, its values having a higher skewing factor. The

bit-sliced index for the network has 207 bit-slices, and

the Hybrid compressed all of them, to start with. From

a total of 311 logical operations performed, the Hy-

brid compressed 197 of their results, and 114 where not

compressed. The BSI-sum algorithm (Algorithm 1), to-

gether with the top-K algorithm performed 104 XOR

operations, 139 AND operations and 68 OR operations

for this data set.

5.6 Evaluation of the optimizer

To measure the overhead of our query optimizer we

set-up a scenario where the hybrid model should have

exactly the same running time (if neglecting the over-

head imposed by the optimizer) as when operating with

only verbatim bitmaps or only compressed bitmaps.

Multi-dimensional queries involving a variable number

of bitmaps (between 2 and 10) were executed for AND,

OR, and XOR operations and the results are shown in

Figure 9.

For the AND queries we randomly generated uni-

form distributed low density bitmaps (d = 10−4) with

100M bits. Since these bitmaps are highly compressible,

the hybrid model starts only with compressed(EWAH)

bitmaps. Because the AND optimization keeps the re-

sult compressed when the input is compressed, and the

density is below the threshold, our optimizer always

keeps the result as a compressed bitmap. We measured

the time required by our hybrid model to execute 45

AND queries and run the same set of queries using only



Hybrid Query Optimization for Hard-to-Compress Bit-vectors 15

(a) Uniform distribution (b) Zipf distribution (f = 1) (c) Zipf distribution (f = 3)

Fig. 7: TopK queries over synthetic data sets with 5 attributes, 10M rows. Each attribute is represented by a BSI

with 20 slices (normalized values with 6 decimal positions).

(a) Higgs data set (b) Kegg data set (c) Network data set

Fig. 8: TopK queries over real data sets.

Fig. 9: The query overhead created when the optimizer

cannot improve query time

compressed bitmaps. The difference is reported as the

optimization overhead.

Following the same methodology, for OR and XOR

operations we generated uniformly distributed high-

density bitmaps (d ≈ 0.05) with 100M bits and present

the cumulative query time of 45 queries. Because when

performing OR and XOR operations over these bitmaps

the results are not compressible, our query optimizer

keeps the results as verbatim. We ran the same set of

queries over verbatim bitmaps and report the difference

as the optimization overhead.

As Figure 9 shows, the overhead that the query op-

timizer brings is very modest (around 0.2%). It is worth

noting that this is a worse case scenario where the op-

timizer cannot improve the query time over the non-

hybrid model. As we will see in the next experiments,

the overhead is more than justified by the overall im-

provement in query time and memory utilization.

To evaluate the effect of our bit-vector independence

assumption, we compare the decisions made by the opti-

mizer using the estimated density against the decisions

made using the densities of the intermediate results by

computing them at query time. Then we count the num-

ber of times the estimations led to a different decision

than the actual computed densities. Table 2 shows the

number of mismatches for real data sets when perform-

ing the top-k queries.

One could argue that simply computing the bit-

vectors density will never produce errors, and could

offset the computing time by always taking the “right”

decision, and producing faster queries. To verify if this

is the case, we set to measure the top-k query times

for six data sets (3 synthetically generated, and 3 real),

one of which has high attribute correlation. The average
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Fig. 10: Top-K query times for data sets with average attribute correlation: [Uniform=0.0002]; [Zipf-1=0.0003];

[Zipf-3=0.00032]; [Keg=0.26]; [Poker=0.02]; [Internet=0.024]

Table 2: Percentage of mismatch optimization decisions

when using estimated vs. measured density for the in-

termediate results

Data set HIGGS Kegg Network

Total operations 823 252 311

Number of mismatches 4 8 18

Mismatch % 0.48 3.2 5.8

attribute correlation for the Kegg data set is 0.26, how-

ever the correlation between some attributes is as high

as 0.7. Figure 10 shows the top-k query times for the

six data sets. The Uniform, Zipf-1, and Zipf-3 are

synthetically generated data sets, while Kegg, Poker,

and Internet are real data sets. The average attribute

correlation is provided in the figure description. In this

figure we compare the query time when using density

estimation, and when computing the bit-vector density.

We also measure the query time for a combination be-

tween the two approaches to determine the density of

the resulting bit-vector. Correction@10 means that if

one of the bit-vectors being operated has its density

resulted from previous 9 bit-wise operations using esti-

mation, then the 10th bit-wise operation will use a scan

and compute. For Correction@20 the density calcula-

tion is used every 20th operation. We use this technique

for diminishing the effects of density estimation error

propagation. Even if we make use of the POPCNT CPU

instruction when computing the bit-vectors cardinality,

the estimation still outperforms the other approaches,

even for highly correlated data sets, where there may

be a higher density estimation error.

To conclude, in this section, performed a series of

experiments and showed that the proposed Hybrid com-

pression and query optimization scheme, can be efficient

over hard-to-compress bit-vectors. While the overhead

added by the query optimizer is very low, it opens the

possibility to exploit compression for the intermediate

results, even when the initial index is not compressible.

This often translates in faster queries and less memory

utilization during query processing.

6 Conclusion

We have introduced a novel algorithm to perform bit-

wise operations over compressed and verbatim bit-

vectors. The proposed hybrid model exploits the fast

query execution over verbatim bitmaps avoiding the de-

coding overhead of hard-to-compress bitmaps and still

is able to reduce the memory utilization by compressing

the sparse bitmaps. Furthermore, the bitmaps are only

compressed when the use of compression will further

improve execution time of subsequent operations.

With the proposed technique, we are able to com-

press and decompress the bitmaps at run time using the

estimated density as a performance predictor. We show

that the hybrid approach always outperforms the use of

verbatim only bit-vector in terms of both, query time

and memory utilization. At the same time, we show

the scenarios when this model can outperform com-

pressed only bitmaps. For the top-K queries performed

over real data-sets we achieved up to an order of mag-

nitude faster queries when compared to the run-length

compressed schemes, and up to 11 times less memory

used when compared to the verbatim scheme.

Future work involves the evaluation of the hybrid

model over other types of queries for which the usage
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of bit-vectors and bitmap indices have been proposed,

such as skyline queries and term matching queries [30].
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