
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Faculty Research, Scholarly, and Creative Activity 

1-1-2018 

Distributed query-aware quantization for high-dimensional Distributed query-aware quantization for high-dimensional 

similarity searches similarity searches 

Gheorghi Guzun 
San Jose State University, gheorghi.guzun@sjsu.edu 

Guadalupe Canahuate 
University of Iowa 

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca 

Recommended Citation Recommended Citation 
Gheorghi Guzun and Guadalupe Canahuate. "Distributed query-aware quantization for high-dimensional 
similarity searches" Proceedings of the 21stInternational Conference on Extending Database Technology 
(EDBT), March 26-29,2018 (2018): 373-384. https://doi.org/10.5441/002/edbt.2018.33 

This Conference Proceeding is brought to you for free and open access by SJSU ScholarWorks. It has been 
accepted for inclusion in Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F1313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.5441/002/edbt.2018.33
mailto:scholarworks@sjsu.edu


Distributed query-aware quantization for high-dimensional
similarity searches

Gheorghi Guzun
San Jose State University

San Jose, California
gheorghi.guzun@sjsu.edu

Guadalupe Canahuate
The University of Iowa

Iowa City, Iowa
guadalupe-canahuate@uiowa.edu

ABSTRACT
The concept of similarity is used as the basis for many data ex-
ploration and data mining tasks. Nearest Neighbor (NN) queries
identify the most similar items, or in terms of distance the closest
points to a query point. Similarity is traditionally characterized us-
ing a distance function between multi-dimensional feature vectors.
However, when the data is high-dimensional, traditional distance
functions fail to significantly distinguish between the closest and
furthest points, as few dissimilar dimensions dominate the dis-
tance function. Localized similarity functions, i.e. functions that
only consider dimensions close to the query, quantize each dimen-
sion independently and only compute similarity for the dimensions
where the query and the points fall into the same bin. These quanti-
zations are query-agnostic. There is potential to improve accuracy
when a query-dependent quantization is used.

In this paper we propose a Query dependent Equi-Depth (QED)
on-the-fly quantization method to improve high-dimensional sim-
ilarity searches. The quantization is done for each dimension at
query time and localized scores are generated for the closest p frac-
tion of the points while a constant penalty is applied for the rest
of the points. QED not only improves the quality of the distance
metric, but also improves query time performance by filtering out
non relevant data. We propose a distributed indexing and query
algorithm to efficiently compute QED. Our experimental results
show improvements in classification accuracy as well as query
performance up to one order of magnitude faster than Manhattan-
based sequential scan NN queries over datasets with hundreds of
dimensions.

1 INTRODUCTION
Nearest Neighbor (NN) searches over high-dimensional data are
ubiquitous in information retrieval, machine learning, and multi-
media data mining. These searches are often performed through k
nearest neighbor (kNN) queries over multi-dimensional feature
vectors. Spatial and multimedia objects can be represented as
feature vectors characterizing their shape and/or content. Social
network data objects, for instance can be represented by links
with other data objects, history actions, preferences, etc. Applica-
tion domains such as spatial data-bases[8], computer vision [5],
multimedia and social network applications [29] can all benefit
from a more efficient method for finding nearest neighbors in high
dimensional spaces.

However, due to the rapid advancements in data generation
and collection, it is increasingly challenging to process similarity
searches in a rapid and meaningful way on these larger and more
complex datasets. Existing methods for finding nearest neighbors

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
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using tree-based indexing for spatial data [36] and low dimen-
sional data [13, 23, 24], suffer from the curse of dimensionality
when applied to high-dimensional spaces. Moreover, not only pro-
cessing time degrades, but also the ability to characterize similarity
using a distance function for high-dimensional spaces is greatly
reduced[3]. The reason is that distances between data points in
high-dimensional spaces, are usually very concentrated around
their average [7]. This makes it difficult to distinguish between
the closest and furthest data points [3].

To overcome this limitation, localized distance functions [1, 37,
39] have been proposed in the literature. These functions only con-
sider dimensions that are close to the query point to characterize
similarity providing a better distinction between closer and further
points and often improving the accuracy of the results. The IGrid
index [1] efficiently supports the computation of a partial distance
called PiDist and its performance scales well for high dimensional
data. IGrid pre-process the data and define equi-populated par-
titions (bins) over each dimension independently. The points in
these partitions are then mapped to buckets and only the points
that fall into the same bucket as the query point are considered
similar for that dimension. The points with the largest cumula-
tive similarity are then retrieved after all dimensions have been
processed. As stated in the paper, the accuracy of the results are
affected by the binning strategy and the number of bins used.

In this paper, we expand on the ideas proposed in [1, 15] and
define a query-dependent quantization strategy that further im-
proves the accuracy of the results. The main idea is to use the
query itself to determine a range for which the points falling
within are considered similar. Note that considering a fixed in-
terval around the query value for each dimension is not a viable
option. Since the distribution of each attribute varies, a small in-
terval could yield empty bins, while a large interval could include
all the points. Determining the range needs to consider the data
values in the attribute. We want to define a bin for each dimension
where the number of points is roughly the same for each dimen-
sion. This novel function, called Query dependent Equi-Depth
(QED) quantization, can be used with traditional distance func-
tions (e.g. Euclidean, Manhattan) to improve their accuracy in
high-dimensional spaces. In order to efficiently support QED over
big-data, we design a distributed indexing and efficient query algo-
rithm. The proposed approach includes the usage of compressed
bitmap-based indexing and low level parallel bitwise operations.

Our approach does not require any pre-computations for quan-
tization, or excessive storage or memory. On the contrary, the
index requires less storage than the data itself. The index and
query algorithms are designed for parallelism and can run on
centralized systems as well as cluster systems. In this work we
evaluate the distributed indexing and query processing on a Spark
cluster, however it is suitable for other distributed environments
as well. With QED quantization, as shown in our performance
evaluation we observe an improvement in query time of up to one
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order of magnitude when compared to Sequential Scan on high
dimensional data.

We also evaluated the kNN classification accuracy of the pro-
posed QED quantization on a set of nine high-dimensional datasets
and observed an average improvement in accuracy of 2.4% for
Manhattan distance and 10.95% for Hamming distance when using
QED quantization.

The primary contributions of this paper can be summarized as
follows:

• We present a bitmap-based, distributed index for answer-
ing similarity searches and nearest neighbor queries. The
cumulative distance is computed in parallel through an op-
timized distributed aggregation that uses task mapping by
slice depth at its core.

• We formalize the cost for the distributed aggregation and
optimize the partition size to balance the memory shuffling
and parallel processing trade-off.

• We propose a novel Query dependent Equi-Depth quantiza-
tion (QED) for improved similarity searches. This dynamic
quantization not only improves accuracy but also execution
time because it reduces the amount of data processed by
only considering, for each dimension, the closest points to
the query.

• We introduce a power function using the number of tuples
and the number of dimensions as a heuristic to determine
the number of points that are considered similar in each
dimension and empirically evaluated it.

• We evaluate the kNN classification accuracy of QED on
a number of labeled real datasets and the performance of
the proposed index and query algorithms in a distributed
setting.

The rest of the paper is organized as follows. Section 2 presents
related work on NN searches. Section 3 describes the index struc-
ture, the proposed quantization, and the parallel query optimiza-
tion for similarity searches. Section 4 provides an experimental
evaluation of QED over a Spark/Hadoop cluster. Finally, conclu-
sions are presented in Section 5.

2 RELATED WORK
This section presents related work for high-dimensional similarity
searches and nearest neighbor queries. The most recent exact
nearest neighbor searches are using localized similarity functions.
While some of the most recent approximate nearest neighbor
searches use hashing or product-quantization techniques.

2.1 High-dimensional Similarity using Localized
Functions

As described in [37], for high-dimensional applications where
human cognition is the target judge of object similarity, it is more
important to closely match a subset of attributes rather than pro-
vide some least total distance measurement over all the attributes.
The similarity function, called Dynamic Partial Function (DPF)
[37], considers only the smallest N distances between all dimen-
sions to compute the similarity. Since the method is so sensitive to
N , the k-N-match problem is introduced in [37] and the authors
propose the use of a frequent k-N-match algorithm, where the
most frequent k objects appearing in the k-N-match solutions for
a range of N values. It is worth noting that DPF is not a distance
since the triangle inequality does not hold.

In [1], quantization was used to create equi-populated parti-
tions for each dimension to bound the worst case performance

of the query. Quantization has been widely used to improve the
accuracy of classifiers and clustering algorithms as it reduces the
noise of the data and simplifies the models. Supervised methods
use the class label and a training dataset to make an informed
decision about the optimal split points. Unsupervised methods
rely solely on the statistics collected about the data. Examples
of unsupervised methods are equi-width (divide into intervals of
the same length) and equi-populated or equi-depth (divide into
intervals with the same number of data objects). Examples of
supervised methods are entropy-Minimum Description Length
Principle (MDLP) [9], chi-merge [25], class-attribute interdepen-
dent maximization (CAIM) [26], and Class-attribute Contingency
Coefficient (CACC) [38], among others. A detail survey of quan-
tization methods can be found in [11].

After quantization, each attribute is represented using discrete
values and points are considered “close” if they fall into the same
bin. Hamming distance is the preferred distance metric for discrete
domains and is defined as:

Hamm(x, y) =
d∑

i=1

{
0 ifxi = yi
1 otherwise

where x and y are the high-dimensional quantized vectors, d
is the number of dimensions and xi denotes the value of x for
dimension i. The evaluation of the Hamming function produces
discrete values in the range [0,d]. This is a source of ambiguity
when defining similarity as the distance score is the same for an
increasing number of nearest neighbors. To break these ties a
weighted hamming distance function can be used. PiDist [1]
computes the normalized Manhattan distance over the continuous
values for the dimensions where the two points fall into the same
discretization range. When equi-populated ranges are used, the
attribute is forced to follow a uniform distribution and the distance
between the continuous values is used to capture similarity.

PiDist is defined as:

PiDist(X ,Y ,kd ) =


∑

i ∈S [X ,Y ,kd ]

(
1 −

|xi − yi |

mi − ni

)p 
1
p

where kd is the number of splits for each dimension, S [X ,Y ,kd ]
is the set of dimensions for which the two objects lie in the same
range, and mi and ni are the upper and lower bounds of the
corresponding range in dimension i.

This function accumulates benefit for each attribute for which
a data object maps to the same quantization as the query object.
It does not differentiate between data and query objects that do
not map to the same quantization. Therefore, a data point is not
excessively penalized for a few dissimilar attributes.

2.2 Approximate nearest neighbor searches
Given the difficulty of answering exact nearest neighbor searches,
approximate nearest neighbor searches were introduced to solve
the NN problem in high dimensional spaces [10, 12, 20–22]. Local
Sensitive Hashing (LSH)[12] hashes the data so that similar items
fall into the same buckets. However, data sets are typically not
distributed uniformly over the space, and as a result, the buckets of
LSH are unbalanced, causing the performance of LSH to degrade.
Data Sensitive Hashing (DSH) [10] aims to keep the buckets
balanced with the help of a new hash family, while preserving the
nearest neighbor relations.

Hashing techniques require the pre-computation of the hash
tables without prior knowledge of the query. The accuracy of a
similarity search is determined by the number and the quality of
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Raw Data Bit-Sliced Index (BSI) BSI SUM
Attrib 1 Attrib 2

Tuple Attrib 1 Attrib 2 B1[1] B1[0] B2[1] B2[0] sum[2] sum[1] sum[0]
t1 1 3 0 1 1 1 1 0 0
t2 2 1 1 0 0 1 0 1 1
t3 1 1 0 1 0 1 0 1 0
t4 3 3 1 1 1 1 1 1 0
t5 2 2 1 0 1 0 1 0 0
t6 3 1 1 1 0 1 1 0 0

Figure 1: Simple BSI example for a table with two attributes and three values per attribute.

the hash functions along with other tuning parameters. A higher
number of hash functions can result in higher a probability of
grouping similar objects together, however this can also result in a
significant storage overhead. Moreover, with addition of new data,
the hash index has to be re-computed. While QED uses some of
the same concepts by projecting data into smaller ranges, it does
not come with the storage overhead required by the hash index,
and uses the query directly for data projection. Moreover, QED is
an exact similarity function.

We compare QED against a distributed LSH 1 implementation
and show that QED could present advantages in terms of smaller
index size, and better accuracy for some applications.

3 DISTRIBUTED QED FOR HIGH
DIMENSIONAL SIMILARITY SEARCHES

Consider a relation R and query vector Q . Every object in R is
represented bym attributes or numeric scores. The query vector
Q = {q1, . . . ,qm } is also represented bym values. The task is to
find the k most similar objects to Q in R. This k nearest neighbor
(kNN) query can either compute the similarity between each data
object and the query and retrieve the k objects with the highest
score or, inversely, compute the distance between each object and
the query and retrieve the k objects with the smallest distance.

In high dimensional spaces however, many distance functions
such as Manhattan and Euclidean metrics are not as effective and
the quality of the answer returned by the kNN query degrades. The
reason these functions are directly affected by the dimensionality
of the data lies in the fact that the dominant components are the
dimensions for which two points are farthest apart. With higher
dimensionality, the probability of having high discrepancies be-
tween two points in at least one dimension increases. The authors
of [1, 3] show that for Lp -norm distance functions, the averag-
ing effects of the different dimensions start predominating with
increasing dimensionality. To prevent this, the authors of PiDist
[1] show that imposing a proximity threshold for each dimension,
beyond which the degree of dissimilarity is not relevant, could
improve accuracy in nearest neighbor and similarity searches.

They achieve this by quantizing the indexed space into a fixed
number of bins which are either equi-width or equi-depth (equi-
populated). These quantizations are performed over the dataset
without considering the query points. Even when a query point
lies close to the boundary of a bin, only the points within the bin
are considered for computing the similarity. In this section we
describe a novel equi-depth quantization method that considers
the query value for defining the bin boundaries and it is done
on-the-fly during query execution.

1https://github.com/mrsqueeze/spark-hash

3.1 Bit-sliced indexing
In order to efficiently support QED over large datasets, we design
a distributed indexing and efficient query algorithm. The proposed
approach includes the usage of compressed bit-vector indexing
and low level parallel bitwise operations. As shown previously
[16, 18], this setup can leverage SIMD instructions and use the
processing hardware more efficiently, for arithmetic operations.

Bit-sliced indexing (BSI) was introduced in [30], and it encodes
the binary representation of attribute values with binary vectors.
Therefore, ⌈log2values⌉ vectors, each with a number of bits equal
to the number of records, are required to represent all the values
for a given attribute.

Figure 1 illustrates how indexing of two attribute values and
their sum is achieved using bit-wise operations. Since each at-
tribute has three possible values, the number of bit-slices for each
BSI is 2. For the sum of the two attributes, the maximum value is 6,
and the number of bit-slices is ⌈log2 6⌉ = 3. The first tuple t1 has
the value 1 for attribute 1, therefore only the bit-slice correspond-
ing to the least significant bit, B1[0] is set. For attribute 2, since the
value is 3, the bit is set in both BSIs. For example, the addition of
the BSIs representing the two attributes is done using efficient bit-
wise operations. First, the bit-slice sum[0] is obtained by XORing
B1[0] and B2[0]: sum[0] = B1[0] ⊕B2[0]. Then sum[1] is obtained
in the following way: sum[1] = B1[1]⊕B2[1]⊕ (B1[0]∧B2[0]). Fi-
nally sum[2], which is the carry, ismajority(B1[1],B2[1], (B1[0]∧
B2[0])), wheremajority(A,B,C) = (A ∧ B) ∨ (A ∧C) ∨ (B ∧C).

BSI arithmetic for a number of operations, including the addi-
tion of two BSIs, is defined in [34]. Previous work [19, 33], uses
BSIs to support preference and top k queries efficiently. BSI-based
top k for high-dimensional data [16, 19] was shown to outperform
current approaches for centralized and distributed query process-
ing. In this work we adapt the distributed BSI query processing
for NN queries. Furthermore, each individual bit-vector is com-
pressed. The compression mechanism is described in section 3.6.

3.2 Query Dependent Equi-Depth Quantization
Further in this section we describe a novel function, called Query
dependent Equi-Depth (QED) quantization, which can be used
with traditional distance functions (e.g. Euclidean or Manhattan)
to improve their accuracy in high-dimensional spaces. QED is im-
plemented using a distributed bitmap-based index, and is designed
with performance considerations in mind.

The main idea with localized functions is that for each dimen-
sion, if the data point has its respective dimension within threshold
x then the distance to the query is considered for that dimension
otherwise a dissimilarity penalty larger than x is assigned.

For this work, instead of directly specifying x , we consider
parameter p as the minimum number of data points that should
be contained within the query bin boundaries. Parameter p is
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Figure 2: High level system overview

expressed as a percentage. Given the query value for dimension i,
qi , we find the ⌈pn⌉ smallest distances to qi and define a similar
bin around the query point.

To illustrate the proposed dynamic quantization, consider a
1-dimensional dataset with values:

{{r1, 9}, {r2, 2}, {r3, 15}, {r4, 10},
{r5, 36}, {r6, 8}, {r7, 6}, {r8, 18}}

and query {q, 10}. If using Manhattan distance, the distance be-
tween the data points and the query are:

{{r1, 1}, {r2, 8}, {r3, 5}, {r4, 0},
{r5, 26}, {r6, 2}, {r7, 4}, {r8, 8}}

For QED, if parameter p = 0.35 (35% of the population), only
the 3 points with the smallest distances, i.e. {r1, r4, and r6}, will
be considered according to their distance. The rest of the points
will be given a larger penalty δi to characterize a large dissimilarity.
This normalization of the larger differences gives point r5 a chance
to make it as a NN in the cases where there are other many
dimensions for which r5 is really close to the query.

The value of the penalty, δi , can be assigned a constant larger
than the distances computed within the query-dependent interval
for each dimension. In the case of PiDist, the penalty assigned
to dissimilar points is 1 and the distance for similar points is
normalized to less than 1. Another approach could be to make δi
to represent a number larger than the largest distance between the
query and the closest p elements in dimension i.

Equation 1 shows the Manhattan distance between a data point
a and the query q after applying the QED quantization.

QEDManhattan(a, q) =
d∑

i=1

{
| ai − qi | ifa ∈ Pi

δi otherwise
(1)

Where Pi is the subset of points closest to the query in dimen-
sion i, and δi is the penalty for the points outside the similar range
in dimension i.

Performing QED for kNN queries without an index would slow
the execution time, as it needs to dynamically compute a range
for each dimension based on the query, in addition to computing
the distance. We choose to implement QED on top of a bit-sliced
index because BSI provides a compact representation of numeric
values and an implicit ordering of the values as the set bits in the
most significant bit-slice represent the largest values. In the next
section we show how using the BSI index can in fact improve the
performance of the kNN query.

3.3 Distributed Bit-Sliced Index (BSI)
Figure 2 depicts a high level overview of the proposed system.
There are two main components: the indexing module and the
query engine. The indexing module encodes each attribute into
a bit-sliced index (BSI), compresses and partitions them, and
generates the metadata required by the query engine to ensure
correctness of the execution plan. The query engine encodes the
user query into a BSI, runs the distributed kNN query, and returns
the k nearest neighbors to the query.

We support both vertical (a subset of the attributes) and horizon-
tal (a subset of the rows) partitioning. Distributed query algorithms
are developed to minimize shuffling, improve load balancing, and
maximize cluster utilization. For this work, we use Apache Spark
and its Java API to distribute the workload across the cluster.

3.3.1 Indexing. Let us denote by Bi the bit-sliced index
(BSI) over attribute i. Bi [j] is a binary vector containing n bits
(one for each tuple), where j represents the jth bit in the binary
representation of the attribute value. j can hold a value between
0 and the number of slices s used to represent values from 0 to
2s − 1. The bits are packed into words, and each binary vector
encodes ⌈n/w⌉ words, where w is the computer architecture word
size (64 bits in our implementation).

For every attribute i in R we create a Bit-sliced index Bi . The
BSI index is then partitioned and distributed across the nodes of a
cluster. The BSIAttr class serves as a data structure for an atomic
BSI element included in a partition. Each partition can include
one or more BSIAttr objects. A BSIAttr object can represent all
the attribute tuples (in the case of vertical-only partitioning) or
only a subset (in the case of horizontal, or vertical and horizontal
partitioning). Furthermore, a BSIAttr object can carry all of the
attribute bit-slices or only a subset of them. The BSIAttr metadata
generated includes information regarding the data type, encoding,
number of slices, partition mapping. An example of attribute
partitioning and use of metadata for partition mapping is shown
in Figure 3.

We extended the BSI to handle signed numbers (both 2’s com-
plement and sign and magnitude) and represent decimal numbers
using a fixed point format for each attribute. For every decimal
BSI, the position of the decimal point is maintained as metadata
for the attribute. To perform arithmetic operations between two
attributes with different precision, namely a and b, where a > b,
the decimal point for the second attribute is moved (a − b) posi-
tions by multiplying the second attribute by the appropriate power
of 10. Multiplication by a constant, as in this case, can be done
efficiently by adding the logically shifted BSI to the original BSI
for every set bit in the binary representation of the constant.
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Figure 3: Example of vertical and horizontal partitioning of
a BSI Attribute.

At query time, a BSI index is also generated for each partition
using the attribute values in the query. Since the query value is
constant, compressed bit-slices of all 0s or all 1s are used to
generate a BSI with as many bits as objects in the partition in
order support the bit-wise operations between the query and the
BSIAttr . The hybrid query execution model [14] allows us to
operate compressed and verbatim bit-vectors together and the
results are dynamically compressed/decompressed as needed.

3.3.2 Query Engine. For developing the distributed algo-
rithm we identified three main steps in the kNN query processing:
compute the distance between the query Q and each BSIAttr ,
accumulate the partial distances for all dimensions, and retrieve
the k closest points as the answer to the query. For an efficient
execution of these three steps we are proposing a dynamic query
aware quantization method called QED, and integrate it with al-
gorithms for parallel execution of BSI arithmetic operations. In
the following sections we describe in more detail the different
components of the query engine.

3.4 Distributed kNN Query Processing
Most parts of the three-step process described earlier must be exe-
cuted in parallel for achieving good scalability and performance.
The computation of the absolute value of the difference between
the query and each attribute BSI for all dimensions in parallel, ag-
gregating all the distances into a single SUM_BSI also in parallel,
and performing the top-k operation over the result BSI (can be
executed in a single node or in parallel). We apply the same slice
mapping distributed BSI aggregation developed for preferences
queries [16]. This approach, described next, outperforms other
parallel baseline implementations such as tree-reduction (adding
pairs of BSIs together and using multiple reduce rounds) and its
optimization Group Tree Reduction that reduces together groups
of BSIs to reduce the number of rounds and the amount of data
shuffled.

3.4.1 SUM_BSI Using Slice Mapping. It is true that the
compact representation of the BSI makes the baseline implementa-
tions highly competitive versus their array counterparts. However,
most of the performance gains, if not all, come from the reduced
size of the BSI, and not necessarily because the algorithms are
efficient. We propose an aggregation algorithm that promotes the
bit-slices as the processing data units and applies the lessons-
learned in computer arithmetic optimization to further improve

the performance of the parallel aggregation. The basic idea of
this approach lies in the use of the bit-slice depth as the mapped
key and implement a two-phase aggregation algorithm, shown
in Figure 4. In the first phase, the slices are added by bit-depth,
producing a weighted partial sum BSI. In the second phase, all the
partial sums are added together in a method similar to a carry-save
adder.

Consider a dataset where m = 128 attributes are added using
10-nodes. Let us now assume that each attribute’s value is within
1M = 220, so every attribute i can be further partitioned into a set
of 20 vertical bit-slices: {Bi [d] | 19 ≥ d ≥ 0}. In the proposed
two-phase algorithm, the first task is to map all the bit-slices with
the same depth (d) to a single node. Then addition is performed
over 128 BSIs containing only 1 slice each, producing 20 partial
sum BSIs. Each partial sum is in the range [0, 128] and would
require at most 8 slices. Next, these partial sums are added using
their original depth d as their “weight.” For example, the partial
sum for the bit-slices of depth d = 2 would have a weight of
2d = 4. Because the weight is always a power of 2, this weighting
scheme can be done efficiently by bit-shifting. Since the BSIs are
stored column-wise, this shift can be represented using an offset
and never materialized.

It is also possible to perform the parallel aggregation using
groups of bit-slices to reduce data shuffling. In the previous ex-
ample, with a group size of д = 2, we could have slices 0 and 1
from all 128 attributes added together in the same node during the
first stage. This ability to group the slices and divide the attributes
(e.g., half of the depth 0 slices added in one node and the other
half in another), allows us to balance the load and keep all the
nodes busy longer.

For clarity in describing our algorithms, we use the example
illustrated in Figure 4. In the first phase, every BSI attribute has its
slices mapped locally to based on their depth d . The splitting of the
BSI attribute in individual bit-slices allows for a finer granularity
of the indexed data and for a more efficient parallelism during
the aggregation phase. The pseudo-code of the mapping step is
shown in the first Map() function of Algorithm 1. Every mapper
has a BSIAttr (containing multiple slices) as input, and outputs
a set of BSIAttrs that contain one bit-slice each. These bit slices
are mapped by their depth in the input BSIAttr . Although there
is an overhead associated with encapsulating each bit-slice into a
BSIAttr , by creating a higher level of parallelism, we also achieve
better load balancing and resource utilization.

Still in the first phase, the aggregation is done by the Reduce-
ByKey() function of Algorithm 1. In this step, all the bit-slices
with the same key (depth) are aggregated into a BSIAttr . Line 9
of Algorithm 1 performs the summation of two BSIs. We use the
same addition logic as the authors in [35]. However, we achieve
a parallelization of the BSI summation algorithm by splitting the
BSIAttr into individual slices and executing their addition in par-
allel similarly to a carry-save adder. The offset of the resulting
BSIAttrs are saved in the o f f set field of each BSIAttr object to
ensure the correctness of the final aggregated result. The summa-
tion is optimized by aggregating the bit-slices on the same node
first, then on the same rack, and then across the network. Thus,
trying to minimize the network throughput. The aggregation by
depth is done locally first.

After aggregating partial local results, the second phase initi-
ates to complete the aggregation by depth through shuffling the
partial sums and reducing by their depths. The final step of the
aggregation is done by reducing all the BSIs (pSum) produced in

377



0
1
1
1
0

1
0
1
1
1

1
0
1
0
0

0
0
0
1
0

0
1
0
0
1

0
1
1
1
0

B3 B2 B1 B0

B3

B3 B2 B1 B0

B3

+ =

0
1
0
0
0

0
0
1
1
1

B3[1] B3[0]

0
0
0
1
1

1
0
1
1
1

B2 B2

+ =

0
0
0
1
1

1
0
1
0
0

B2[1] B2[0]

1
0
0
0
0

1
0
1
0
0

B1 B1

+ =

1
0
0
0
0

0
0
1
0
0

B1[1] B1[0]

0
0
0
1
0

1
0
1
0
0

B0 B0

+ =
1
0
1
1
0

B0[0]

0
1
0
0
1

0
0
0
1
1

1
0
0
0
0

1
0
1
0
0

...

Map() ReduceByKey()

Phase I

attr 1

attr 2

Reduce()

Phase II

Map()

0
1
0
0
0

0
0
1
1
1

0
0
0
1
1

1
0
1
0
0

1
0
0
0
0

0
0
1
0
0

1
0
1
1
0

B0[0]

B3[1] B3[0]

B2[1] B2[0]

B1[1] B1[0]

Top 3
results

0
1
0
1
1

1
0
1
0
0

0
0
1
0
0

0
0
1
0
0

1
0
1
1
0

0
1
0
1
1

B[0]B[1]B[2]B[3]B[4]

+

Figure 4: SUM_BSI Using Slice Mapping Example

the previous ReduceByKey() stage, regardless of their key. The
final result (attSum) of this reduce phase is a single BSI attribute
in the case of vertical only partitioning, or a set of BSI attributes,
that should be concatenated, in the case of vertical and horizontal
partitioning. Concatenation is straight forward, as each BSI in a
partition has the same number of bits corresponding to the same
rowIds.

3.4.2 Cost Estimations and Query Optimization. It is
possible to estimate the complexity of the two-phase distributed
aggregation and the expected amount of data shuffling. These
estimations can help in choosing the most optimal partitioning
strategies (group slicing) for the distributed aggregation, thus
finding the best compromise between parallelism and the cost of
network communication.

Note that the mapping in the first phase (Figure 4) does not
produce any shuffling since it aggregates only the slices from
attributes found on the same node. Data shuffling occurs twice in
our two-phase aggregation. The first time is between the reducers
of phase 1 and the mappers of the phase 2, and the second time
data is shuffled between the mappers and reducers of the second
phase. The amount of data shuffled depends on the number of
nodes, partitions, tasks (or the number of attributes per task), and
the number of slices per group. The number of slices per group
can vary from 1 to s, where s is the highest number of slices per
attribute in the dataset. In Figure 4 the slices are mapped into
groups of one.

In order to determine the amount of data shuffled between the
phase 1 and the phase 2, we should find first the number of outputs
created by the reducers of phase 1. Given m attributes with s
maximum slices per attribute, a attributes per node, and д slices
per group, each node produces s

д partial aggregations by depth.
The size of each of these partial aggregations is in the worst case:⌈

log2(д + a)
⌉

(2)

This represents the number of slices each partial aggregation
by depth contains after the reduce phase 1. The total number of

slices shuffled at this stage is:

Sh1 =

[
(min

(⌈
s

д

⌉
,
⌈m
a

⌉)
− 1

]
·

⌈m
a

⌉
·
⌈
log2(д + a)

⌉
(3)

Algorithm 1: Two phase distributed BSI aggregation by slice
depth

Map(): //Map slices by depth
begin

Input: RDD<BSIAttr> indexAtt
Output: RDD<Integer, BSIAttr> byDepth

1 int sl iceDepth=0;
2 while indexAtt has more slices do
3 bsi = new BSIAttr();
4 bsi .add(indexAtt .nextSlice());
5 byDepth.add(new Tuple(sl iceDepth, bsi));
6 sl iceDepth++;
7 end
8 return byDepth

end
ReduceByKey()://Reduce by depth - first reduce phase
begin

Input: RDD<Integer, BSIAttr> byDepth1, byDepth2
Output: RDD<Integer, BSIAttr> pSum

9 pSum = byDepth1.SUM-BSI(byDepth2);
10 return pSum

end
Map():
begin

Input: RDD<Integer, BSIAttr> par tSum
Output: RDD<BSIAttr> pSum

11 pSum = par tSum._2();
12 return pSum

end
Reduce(): //Second reduce phase
begin

Input: RDD<BSIAttr> pSum1, pSum2
Output: RDD<BSIAttr> sumAtt

13 sumAtt = pSum1.SUM-BSI(pSum2);
14 return sumAtt

end

378



The mappers of the second phase produce s
д outputs, each with

the size: ⌈
log2(д + a)

⌉
+
⌈
log2(

m

a
)

⌉
=

⌈
log2

(д + a)m

a

⌉
(4)

The total number of slices shuffled between the mappers and
reducers of the second phase is:

Sh2 =

(⌈
s

д

⌉
− 1

) ⌈
log2

(д + a)m

a

⌉
(5)

The total amount of data shuffled is the sum of the results from
Equations 3 and 5:

Sh = Sh1 + Sh2. (6)

The amount of data shuffled decreases as д - the number of
slices per group increases, or as a - the number of attributes per
node increases. However, less data shuffling means a higher load
on individual tasks. We further analyze the time complexity for
each individual task, and its impact on the total query time in the
two-phase distributed aggregation.

The cost of summing two BSI attributes is linear on the number
of slices and the number of rows in the attributes. If v is the
number of slices of the attribute with a higher number of slices,
then the cost of adding the two attributes is equal to the cost of
executing v bitwise logical operations between two vectors. Given
that the number of slices per group is a constant, д is the number
of slices for each depth-shifted attribute in the reduce phase 1.
Adding all the depth-shifted attributes within one node has the
following complexity:

T1 =

log2 a∑
i=1

(д + i). (7)

There are m
a partial sums with the same key per task, to com-

plete the aggregation of partial sums shifted by depth. Thus the
cost of this aggregation is:

T2 =

⌈log2m/a⌉∑
i=1

(
д +

⌈
log2 a

⌉
+ i

)
(8)

Finally, the cost of aggregating the partial sums shifted by depth
into one final attribute, is given by:

T3 =

⌈log2 s/д⌉∑
i=1

(
д +

⌈
log2 a

⌉
+
⌈
log2

m

a

⌉
+ i

)
(9)

When taking into consideration the time complexities from
Equations 7, 8, and 9, one must account for the different number
of tasks executed in these three steps. For example, if T1 has a
weight of one, i.e.WT1 = 1, then the number of tasks for T2 and
T3 is different. ForWT1 = 1, the weight for T2 is:

WT2 =
1

⌈ma ⌉
(10)

since there are fewer tasks for T2 than T1 by a factor of m
a .

While the weight for T3 is:

WT3 =
1

⌈ma ⌉ ⌈
s
д ⌉

(11)

In this case, there are s/д fewer tasks than in the previous step.
Using the time complexities discussed above, together with the

data shuffle estimations, it is possible to find the optimum values
for the number of slices per group (д) and the number of initial
tasks/attributes per task.

3.5 QED over the distributed BSI
QED can be done gracefully with the BSI index without imposing
any overhead when compared to the computation of the Manhattan
distance without indexing, as shown in Algorithm 2. We operate
on top of a BSI index representing the distance between the query
and the data points in each dimension. Thus we define the penalty
δi as the truncation of the most significant bits for the largest
distances as depicted in Figure 5.

Algorithm 2: QED Quantization
Input: BSI A, int p
Output: BSI S

1 BitSlice penalty = (A[A.size − 2] XOR A.siдn);
2 for (i = A.size − 2; i >= 0; i − −) do
3 penalty = (penalty OR (A[sSize] XOR A.siдn));
4 if penalty.count() >= n − p then
5 sSize = i;
6 break;
7 end
8 end
9 BSI S = new BSI(sSize);

10 for (i = 0; i < sSize; i++) do
11 S[i] = (A[i] XOR A.siдn);
12 end
13 S .addSlice(penalty);
14 return S

QED can be included in the calculation of the absolute value
of the distance between query and each dimension as shown in
Algorithm 2. In datasets with large attribute ranges, the output
of Algorithm 2 is significantly smaller in size than the size of
the actual distance measures, for most distributions. This is very
important because the result of this operation is further processed
to aggregate and rank similar objects. As a result of reducing
significantly the output size of this step, the overall execution
time of the kNN query is generally improved. The number of
bit-vectors required to encode a difference attribute is equal to the
number of bits required to encode the difference range. Where the
difference range is the maximum difference between the query
dimension and the same dimension of any of the ⌈pn⌉ tuples, and
their minimum difference.

In large datasets where the number of tuples is high, p should
typically be small, and most of those p closest tuples are much
closer than the attribute range. Thus the reduction in size of the
result of Algorithm 2. A more detailed discussion on parameter p
follows in section 3.5.1.

For a better understanding of Algorithm 2, we show how the
distance BSI attribute between the query and the data points used
in our previous running example is quantized using QED in Figure
5. For simplicity, all the distances are positive in Figure 5 (leftmost
BsiAttribute). Starting from the most significant bit-slice, the bit-
slices in the distance attribute are OR-ed until the count of set-bits
in the resulting bit-slice (the penalty bit-slice) is equal or greater
than (n − p). At this point the bit-slices that were operated are
dropped and replaced with one single penalty bit-slice.

The effect of this quantization is the identification of the fur-
thest (n − p) points from the query for one given dimension, and
reducing their distance, while keeping an accurate distance for the
close points. Hence avoiding over penalizing a point if only a few
dimensions are far from the query.

379



Figure 5: Query dependent Equi-Depth(QED) quantization with population range p = 35%

Figure 5 and Algorithm 2 use Manhattan distance along with
QED quantization. However it is also possible to use other distance
metrics such as Euclidean or Hamming.

Equation 12 shows the Hamming distance between a data point
a and the query q after applying the QED quantization.

QEDHamming(a, q) =
d∑

i=1

{
0 ifa ∈ Pi

1 otherwise
(12)

Where Pi is the subset of points closest to the query in dimen-
sion i.

3.5.1 Estimating parameter p. The main idea of QED is to
use the query itself for determining a range in which the points
falling within are considered similar. Determining this range needs
to consider the data values in the attribute. Thus we want to define
a bin for each dimension where the percentage of points p in each
bin is roughly the same for each dimension. We define p as a
fraction of the total number of rows n in the dataset.

The value of p is directly influenced by the data dimensionality
and the total number of rows in the dataset. Intuitively, for large
datasets with a large number of tuples, p should be small, as even
a small p would represent a large number of candidate points.
Conversely, as the number of dimensions increases, p should also
increase to prevent all the tuples from being penalized in many
dimensions.

Inspired by the Pareto principle [31], where only the vital few
produce the majority of results, we define the power function
given in Equation 13 as a heuristic to estimate p:

p̂ =
( m

m + n

) 1
lg(n) (13)

For this power distribution, we use the number of attributes, m,
as the scale, and the number of tuples, n, to derive the shape. We
made the power function m

m+n to guarantee a number less than 1.
Figure 6 shows the estimated values of p for four datasets

with 1M, 10M, 100M, and 1B tuples as the number of attributes
increases. We empirically evaluated this estimations over two large
datasets and observed that the estimations for p were at or near the
point with maximum accuracy for the task of kNN classification.

3.6 Bitmap Compression
For further optimization, in our setup, we apply compression
to each individual bit-vector, when suitable [14]. Most types of
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Figure 6: Estimated values of parameter p for maximizing
accuracy of the kNN query results with QED

bitmap (bit-vector) compression schemes use specialized run-
length encoding schemes that allow queries to be executed without
requiring explicit decompression.

Word-Aligned Hybrid Code (WAH) [40] proposes the use of
words to match the computer architecture and make access to
the bitmaps more CPU-friendly. WAH divides the bitmap into
groups of length w − 1, where w is the CPU’s word size. WAH
then collapse consecutive all-zeros or all-ones groups into a fill
word.

Recently, several bitmap compression techniques that improve
on WAH by making better use of the fill word bits have been
proposed in the literature [27, 41], and others. Previous work have
also used varying segment lengths s within s ≤ w encoding [17].

In this work we use our recently proposed bit-vector com-
pression scheme [14], which is a hybrid between the verbatim
scheme and the EWAH/WBC [27] bitmap compression. This hy-
brid scheme compresses the bit-vectors if the bit density is below
a user-set threshold. Otherwise the bit-vectors are left verbatim.
In our experiments we begin with compressed bit-vectors if the
compressed size for the bit-vector is 0.5 or smaller than the size
of the uncompressed bit-vector. The query optimizer described
in [14] is able to decide at run time when to compress or decom-
press a bit-vector, in order to achieve faster queries. We choose
this compression scheme due to its capability of operating with
denser bitmaps, which is the case for the bit-vectors inside the
bit-sliced index, and it allows for uncompressed bit-vectors to
be operated with compressed ones. Nonetheless, it is possible to

380



apply other compression models, such as the one proposed in [6].
The compression model is orthogonal to the contributions of this
work.

4 EXPERIMENTAL EVALUATION
In this section we evaluate the proposed indexing, quantization,
and distributed kNN querying algorithms in terms of classifica-
tion accuracy and query performance. When evaluating the query
speed of the kNN query with QED quantization, we set p = p̂ as
described in Equation 13. In our evaluations we use two distance
metrics with QED: QED with Manhattan distance (QED-M), and
QED with Hamming distance (QED-H).

4.1 Experimental Setup
We implemented the proposed index and query algorithms in
Java, and used the Java API provided by Apache Spark to run our
algorithms on an in-house Spark/Hadoop cluster. The Java version
installed on the cluster nodes was 1.7.0_79, Spark version 1.6.1.
and Hadoop version 2.4.0.

Our Hadoop stack installation is built on the following hard-
ware: There is one Namenode (master) server (Two 6-core In-
tel Xeon E5-2420v2, 2.2GHz, 15MB Cache; 48 GB RAM at
1333 MT/s Max). The cluster also contains four Datanode (slave)
servers (two 6-core Intel Xeon E5-2620v2, 2.1 GHz,15MB Cache;
64 GB RAM at 1333 MT/s Max). As cluster resource manager we
used Apache Yarn. The namenode and datanodes are connected to
each other over 1 Gbps Ethernet links over a dedicated switch. Un-
less otherwise noted, we use all the available hardware resources
in this cluster for running the experiments.

In our experiments we used a number of real datasets to evaluate
the proposed indexing and querying. We used nine datasets from
the UCI repository [4] for accuracy evaluation, and two larger
datasets (HIGGS[2], and Skin Data [32]) were used on the
Spark/Hadoop cluster for performance measurements. The number
of dimensions in the datasets range from 19 to 279 and the number
of classes from 2 to 24. The Skin-Images dataset contains integer
numbers (image pixel values), while the other datasets contain
real numbers. The details of the characteristics of the data and the
class distribution can be found in Table 1.

Dataset Rows Cols Classes
anneal 798 38 5
arrhythmia 452 279 13
dermatology 366 33 6
higgs 11M 28 2
horse-colic 300 26 2
ionosphere 351 33 2
musk 476 165 2
segmentation 210 19 7
skin-images 35M 243 2
soybean-large 307 34 19
wdbc 569 30 2

Table 1: Description of the characteristics of the real datasets
used in the experiments.

4.2 QED Classification Accuracy
Classification accuracy is computed over the labeled data using
the leave-one-out methodology as the number of correct classifica-
tions divided by the total number of tuples in the data set. Voting
was used to decide the class for each data point. Table 2 shows
the best classification accuracy when using kNN classification
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Figure 7: kNN Classification accuracy as the number of near-
est neighbors (k) increases for Horse Colic dataset. (Dataset:
HourseColic, 300 rows, 26 attributes, 2 classes (99/201))

for each method. We vary the number of nearest neighbors used
in classification k = {1, 3, 5, 10}, and report the best result for
each distance function. For quantization, we apply Equi-width and
Equi-Poplulated partitioning varying the number of bins/clusters
from 3 to 20 {3, 5, 7, 10, 15, 20}. The same number of bins/clusters
was used for all the dimensions. The only case where attributes
could be quantized using a different number of bins/clusters than
the one provided as a parameter was the categorical attributes
with less categories than the number of bins/clusters provided. In
that case each value was considered as a bin/cluster. For dynamic
quantization we set p as a percentage of the number of rows.
We vary p = {60%, 50%, 40%, 30%, 25%, 20%, 10%, 5%, and 1%}.

For each function metric we report the best result, and then the
best accuracy for each dataset is highlighted in bold in Table 2.
As shown in the table, QED is able to improve the results for
Manhattan and Hamming in most datasets. QED using Manhattan
is consistently better than Manhattan with no quantization (8/9)
with up to 7.35% accuracy increase (2.4% on average). For Ham-
ming distance, QED quantization outperformed no-quantization
in 7/9 cases with up to 57.7% accuracy improvements (10.95% on
average).

4.2.1 Evaluation of Parameter k. When using nearest neigh-
bor searches for classification purposes, the number of neighbors
considered is often crucial for the accuracy of the classifier. In
this experiment we evaluate the effect of k (the number of near-
est neighbors) when QED is used in k-Nearest Neighbor (kNN)
classification.

Figures 7 and 8 show the classification accuracy for several
distance functions as the number of neighbors k increases for
two different datasets. In figure 7 for the Horse-colic dataset, the
classification accuracy increases gradually for QED (QED-M with
Manhattan distance, and QED-H with Hamming distance), while
the other distance functions are more sensitive to the value of
k. Regardless of the value picked for k, QED-H has the high-
est accuracy among the measured distance functions for kNN
classification for this dataset.

As Figure 8 shows for the Arrhythmia dataset, QED-M (with
Manhattan distance) has the highest accuracy. It is worth noting
that while the accuracy performance for other distance functions
decreases as k increases, classification accuracy for QED is not
significantly affected.

4.2.2 Evaluation of Parameter p. The p parameter deter-
mines the number of tuples for each dimension to be considered
similar for distance computation, while the other tuples get a dis-
similarity penalty. Expressed as a percentage, p falls within the
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Hamming PiDist/iGrid
Dataset Euclidean Manhattan QED-M NQ EW ED QED-H EW ED
anneal .934 .939 .964 .986 .984 .980 .994 .990 .990
arrhytmia .659 .653 .701 .602 .686 .646 .650 .695 .635
dermatology .975 .978 .986 .975 .973 .883 .921 .981 .970
horse-colic .740 .770 .783 .780 .827 .857 .867 .833 .843
ionosphere .866 .909 .943 .809 .926 .860 .920 .929 .903
musk .882 .893 .916 .819 .876 .870 .878 .868 .887
segmentation .843 .886 .881 .586 .871 .857 .924 .900 .876
soybean .873 .899 .938 .909 .912 .902 .821 .909 .922
wdbc .940 .949 .949 .692 .967 .951 .967 .961 .960

Table 2: Leave-one-out best classification accuracy using k-nearest neighbor (k ∈ {1, 3, 5, 10}) classification with different distance
functions and quantization methods (NQ=No Quantization, EW=Equi-witdth, ED=Equi-depth, QED=Query-dependent Equi-
depth). The best result for each dataset is highlighted in bold.
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Figure 8: kNN Classification accuracy as the number of near-
est neighbors (k) increases for Arrhythmia dataset. (Dataset:
Arrhythmia, 452 rows, 279 attributes, 13 classes)

interval (0, 1]. If p = 1 then the results of the kNN query are the
same for both QED-M and Manhattan distance. Clearly, the value
of p affects the accuracy of the kNN query results.

In this experiment we vary the value of p from 0.01 to 0.6 and
measure the kNN classification accuracy. We chose the two largest
of the datasets: HIGGS and Skin-Images, as a higher number of
data objects results in a more robust evaluation of p. The accu-
racy is reported after running 1000 queries obtained by random
sampling. We compare the kNN classification accuracy results of
QED against sequential scan Manhattan distance and a distributed
implementation of Locality Sensitive Hashing (LSH).

The LSH implementation and parameter choice was largely
based on the description in chapter 3 of [28]. The LSH number
of bins was set to 10000, number of hash functions: 25, and the
number of hash tables: 4. For all three methods 5 nearest neighbors
were considered for classification.

Figures 9 and 10 show the kNN classification accuracy results
as the value of parameter p varies. The filled marker is the p value
computed using Equation 13 from Section 3.5.1, and in both cases
it is at, or near the highest accuracy point.

4.3 Index size
Given the rapid advancements in data collection, not only the
data becomes more complex and harder to analyze, but also its
size requires more computational resources. As described earlier,
we make use of the BSI index to represent data in a more com-
pact form. A smaller index size should enable performance gains
through less network shuffling, fewer CPU cycles required for
processing, and less memory utilization and I/O.
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Figure 9: The impact of the p parameter on kNN classifica-
tion accuracy (Dataset: HIGGS, 11M rows, 28 attributes, 2
classes)
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Figure 10: The impact of the p parameter on kNN classi-
fication accuracy (Dataset: Skin-Images, 35M rows, 243 at-
tributes, 2 classes)

An important advantage of the BSI index is that it has a compact
size. The compression comes not only from using a lower number
of bit-slices per attribute than the number of bits used in a Long
or Double data type, but also from compressing each individual
bit-slice (where beneficial) using a hybrid bitmap compression
scheme [14]. The compression of the bit-slices occurs only if it
can improve the query performance.

Figure 11 shows the size of the BSI index in comparison with
the size of the raw data, the LSH index, and the PiDist (10 and 20)
index for the HIGGS and Skin Images datasets. Five LSH hash
tables were generated using 25 hash functions and 10,000 bins.
PiDist-10 refers to the PiDist index with the bin size of 10, while
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Figure 11: Index sizes for the HIGGS and Skin-Images
datasets.

PiDist-20 has the bin size of 20. These are some of the bin sizes
that where shown to perform well in [1].

The Skin Images dataset has a higher compression ratio than
HIGGS when compared to the raw data size. This is mostly due to
the low cardinality of this dataset, which has RGB encoded pixel
values. The HIGGS dataset requires approximately 60 slices per
attribute to encode its values, while the Skin Images dataset only
requires 8 bit-slices per attribute (values from 0 to 255).

Because the BSI index does not require accesses to the raw
data, and due to its small size, it is possible to fit more information
into memory and less network communication is required when
the kNN queries are performed in a distributed setting.

4.4 Performance impact of data cardinality
Given that the BSI index is sensitive to data cardinality, we set up
to measure the scalability of the QED quantization method when
compared to running NN searches over the BSI index without
QED quantization. We use the HIGGS dataset for this experiment
as its data has high cardinality. We vary the number of bit-slices per
attribute for indexing from 15 to 60. Note that while it is possible
to encode any attribute with any number of slices, using less than
⌈loд2ci ⌉ slices, where ci is the attribute cardinality, results in a
lossy compression where the values are approximated to some
degree. This approximation however, could have little effect on
the kNN classification accuracy depending on the dataset. The
evaluation of the BSI approximation is left as a subject for future
work.

The query time is reported in milliseconds per query, and was
obtained by averaging the kNN classification query times over
1000 queries. As Figure 12 shows, with the increase in cardinality,
the query speed degrades at a much slower pace for QED-M than
BSI Manhattan (without QED quantization). As mentioned in the
previous section when describing Algorithm 2, the performance
improvements is largely due to a smaller output, independent of
the attribute cardinality, and consequently less data shuffling and
processing in the aggregation phase. Running the same queries
with Manhattan distance without any indexing took approximately
two seconds. Thus, the kNN query time using BSIs was two to
five times faster than sequential scan, while QED-M achieved an
improvement in performance of one order of magnitude.

4.5 QED query time performance
Many of the existing indexing techniques fail to run faster than
sequential scan when tested against high dimensional data. Thus,
the approximate nearest neighbor searches became a solution that
improves on query time performance by trading off accuracy.
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Figure 13: kNN query performance comparison. (Dataset:
HIGGS, 11M rows, 28 attributes, 2 classes)

0

2000

4000

6000

LSH Man(SS) BSI-M QED-M QED-H PiDist-10 PiDist-20

Ti
m

e 
(m

s)

Figure 14: kNN query performance comparison. (Dataset:
Skin-Images, 35M rows, 243 attributes, 2 classes)

We ran a total of 1000 kNN classification queries over the
HIGGS and Skin Images datasets, with the configuration for LSH
and PiDist described earlier. Figures 13 and 14 show the average
query time per query in milliseconds. Because the number of
nearest neighbors k in kNN classification applications is generally
low, we set k in our query speed evaluations to 5 and do not vary
it. Increasing k, however, doesn’t impact the query performance
in any significant way because the scores are computed for all
the points in the dataset regardless of k. The best query times
were achieved when using the QED quantization over the BSI
index. The average query time for QED-M was only 14% of the
average Sequential Scan query time for the HIGGS dataset. For
the Skin Images data set the QED Manhattan query time was 20%
of Sequential Scan query time.

5 CONCLUSION
In this work we described the indexing structure and the methods
for on-the-fly Query dependent Equi-Depth (QED) quantization to
improve high-dimensional similarity. The quantization is done for
each dimension at query time and localized scores are generated
for the closest p% of the points. A constant penalty is applied for
the rest of the points. By normalizing the penalty for values out-
side the similarity range we are able to improve nearest neighbor
searches in high dimensional spaces.
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We evaluated the kNN classification accuracy of the proposed
QED quantization on a set of nine high-dimensional datasets
and observed an average improvement in accuracy of 2.4% for
Manhattan distance and 10.95% for Hamming distance when using
QED quantization.

The index structure and the query algorithms that support the
kNN searches were designed with distributed processing in mind.
We implemented several BSI arithmetic operations such as: addi-
tion with a constant, absolute value, and various transformation
of the BSI attribute. The index can be partitioned vertically as
well as horizontally and makes for a fine level of task granularity
and load balancing. Because each dimension is indexed indepen-
dently, this approach is also scalable for high dimensional data.
We evaluated the scalability for datasets up to 243 dimensions
on a Spark/Hadoop cluster. We also show that when using QED
quantization, the kNN query performance is very robust and does
not decrease significantly with the increase in data cardinality.

Due to a smaller index size, the ability to partition the index
vertically and horizontally, and the fast bitwise operations, the BSI
index proves to be a good data structure for performing distributed
Nearest Neighbor searches with query aware quantization at run
time. With QED quantization, in our performance evaluation we
observe an improvement in query time of up to one order of mag-
nitude when compared to Sequential Scan on high dimensional
data.

As future work we plan to investigate further the penalty ap-
plied for dissimilar dimensions and under what conditions the
normalization of the penalty or the distance would improve the
accuracy of nearest neighbor searches. More work is also required
in expanding the distance metrics for which the QED quantization
can be applied.
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