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ABSTRACT 

ACOUSTIC LENS DESIGN USING MACHINE LEARNING 

by Wei-Ching Wang 

This thesis aims to contribute to the development of a novel approach and efficient 

method for the inverse design of acoustic metamaterial lenses using machine learning, 

specifically, deep learning, generative modeling, and reinforcement learning.  Acoustic 

lenses can focus incident plane waves at the focal point, enabling them to detect structures 

non-intrusively. These lenses can be utilized in biomedical engineering, medical devices, 

structural engineering, ultrasound imaging, health monitoring, etc. 

Finding the global optimum through a traditional iterative optimization process for 

designing the acoustic lens is challenging. It may become infeasible due to high dimensional 

parameter space and the compute resources needed. Machine learning techniques have been 

shown promising for finding the global optimum. Generative modeling is a powerful 

technique enabling recent advancements in drug discoveries, organic molecule development, 

and photonics. We combined generative modeling with global optimization and an analytical 

form of gradients computed by means of multiple scattering theory. In addition, 

reinforcement learning can potentially outperform traditional optimization algorithms. Thus, 

in this thesis, the acoustic lens is modeled using two machine learning techniques, such as 

generative modeling, using 2D-Global Topology Optimization Networks (2D-GLOnets), and 

reinforcement learning using the Deep Deterministic Policy Gradient (DDPG) algorithm. 

Results from the aforementioned methods are compared with traditional optimization 

algorithms.  
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1. INTRODUCTION 

Metamaterials [1], [2] are artificially engineered materials with properties not available in 

nature. Their capabilities surpass traditional materials and can manipulate sound, ultrasound, 

and vibrations as well as acoustic, elastodynamic, optical, electromagnetic, and mechanical 

waves. In this thesis, we consider sound scattering from planar configurations of multiple 

scatterers embedded in acoustic media, and develop effective machine learning techniques 

for the design of acoustic metamaterial lenses, by specifically employing deep learning (DL), 

generative modeling, and reinforcement learning (RL) techniques. The optimization methods 

such as gradient-based optimization algorithms, topology optimization, and genetic 

algorithms (GA) can search for optimal solutions in the acoustic design. However, due to the 

non-convexity and high non-linearity of the optimization problem, the realization of inverse 

design of broadband acoustic lens using traditional optimization algorithms may become 

computationally expensive and infeasible. Moreover, it is challenging to find a global 

optimum of the absolute pressure at the focal point operating at multiple frequencies using an 

iterative optimization process due to the form of the objective function, which involves the 

evaluation of the root mean square of the function evaluated at various wavenumbers [3], [4]. 

Recent research on nanophotonics [5], mechanics, and acoustics using RL and generative 

modeling has shown groundbreaking results [6]–[8]. The 2D-GLOnets [3] and Deep 

Deterministic Policy Gradient (DDPG) [6], have previously shown to be effective and 

promising method for finding globally optimal solutions [6], [7], [9]. Inspired by the 

tremendous success using RL [10]–[12] and generative modeling [13] to solve inverse design 

problems in nanophotonics and acoustics [6], we are going to model acoustic lens using RL 
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algorithms, such as DDPG, and to implement the generative model, such as the 2D-Global 

Topology Optimization Networks (2D-GLOnets) for acoustic lens design, leveraging the 

analytical gradient information provided to the model. 

1.1. Literature Review 

1.1.1. State-of-the-Art of Metamaterials 

Metamaterials [1], [2] are artificially-engineered materials that can control and guide the 

flow of energy in a desired manner. Metamaterials have the exotic properties, i.e., wave 

steering [14], beam forming [15], negative Poisson ratio [16], negative mass density [17], 

[18], negative refraction [19], cloaking [20], [21], superfocusing [22], etc. 

Metamaterials are used to design passive acoustic cloaks that can render an object 

"acoustically" invisible to the incident waves. Using the transformation acoustics or change-

of-variables method to map the cloaked area to the point with diminishing scattering strength, 

the acoustic cloaking theory is developed first by Norris [20]. An acoustic cloak [20] is a 

device enclosing an object so that no matter from which directions the incident sound 

propagates, it passes around as if the object were not present. In 2010, Chen et al. [21] 

designed acoustic cloaks that surround or are located outside the object. 

The interior cloaking involves steering waves around an object to conceal its presence 

[23]. The external cloaking is accomplished using complementary media and wave scattering 

cancellation [23]. In modern military technology, the "invisibility cloak" is particularly 

crucial in aerospace engineering applications, sonar and stealth technologies where objects 

that are cloaked are not detected by radar-like devices [23]. 
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Another application of metamaterials is acoustic lenses made of metamaterial that can 

focus the incident plane waves at a certain focal point [3], [24]. Applications of acoustic 

lenses encompass biomedical imaging [25], ultrasonic transducers [26], and structural health 

monitoring [27]. Metamaterial lenses made from subwavelength Helmholtz resonators could 

focus ultrasound waves [28]. A focus with a width of 60.5 kHz and a half-wavelength is 

ascertained [28]. The experimental results are validated by the numerical simulation of the 

effective mass density and compressibility [28]. 

Besides, Semperlotti et al. [27] presented that acoustic lenses can be employed in 

structural health monitoring for structural damage detection. With the recent medical 

technology advancement, acoustic lenses can also be utilized to project ultrasonic beams at a 

desirable distance [29]. Improvements to the ultrasound-guided procedures can be made by 

implementing an acoustic metamaterial lens [26]. An acoustic lens was designed by 

Amirkulova et al. [3] using gradient-based optimization; the lens was comprised of a set of 

rigid cylinders or a set of elastic shells immersed in water. 

Aside from acoustic lens, phononic crystal is another example of metamaterials. Unique 

properties, such as negative bulk modulus and negative mass density, can be achieved by 

manipulating a phononic crystal at the atomic level [30]. Zhou et al. [22] showed that 

acoustic superfocusing beyond the diffraction limit is possible with solid phononic crystal 

lenses [22]. It was found that it is more suitable for ultrasonic imaging applications to use 

solid lenses rather than fluid phononic lenses. As opposed to achieving superfocusing effects, 

Lu et al. [31] lately proposed using phononic lattices to suppress acoustic waves and 

vibration to mitigate sound pollution in the urban area. 
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Furthermore, metasurfaces are also of the most exciting applications of metamaterials. 

More recently, Li et al. [32] have demonstrated active self-tuning metasurfaces that have the 

ability to extend their bandwidth beyond that of passive electromagnetic wave absorbers. 

Possible applications include conformal antennas, leaky wave structures [32], etc. Patela et 

al. [33] designed biosensors using graphene metasurfaces. Graphene metasurfaces can be 

used to develop a leaky-wave structure and show high biosensing sensitivity. Therefore, its 

application will be impactful in biosensing technology. Patela et al. [34] also proposed a 

tunable broadband metasurface solar absorber at high and low frequencies. Future 

development of efficient solar cells can benefit from the solar design. 

1.1.2. Traditional Optimization Methods 

In 2004, Håkansson et al. [35] solved the inverse design of acoustic lenses made of 

cylindrical rigid scatterers for airborne sound focusing using genetic optimization algorithms 

and the multiple scattering theory (MST) [36]. In recent years, Reis et al. [37] proposed GA 

integrated with the asymptotic homogenization schemes for inverse design of lattice 

metamaterials. The linear elastic analysis design space has been explored regarding genetic 

representations of the optimization process. Sigmund [38] discussed how topology 

optimization could be applied to various fields, such as aerospace and automobile industries. 

Andkjær and Sigmund [39]–[41] modeled an acoustic cloak to obscure an aluminum cylinder 

from the airborne sound, utilizing finite element analysis (FEA) and gradient-based topology 

optimization. Topology optimization can be a valuable method in identifying the optimal 

topologies and shapes to maximize or minimize objective function and improve the design 

process [42]. It can be applicable in many fields, such as metamaterial [43], nanophotonics 
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[44], etc. Esfarjani et al. [43] provided a comprehensive review focusing on topology 

optimization of additive-manufactured metamaterial structures. Nguyen [45] employed 

topology optimization to design material microstructures with negative effective Poisson’s 

ratio in unit cell geometries. A parameterized level set function is successfully applied to find 

the optimized design ready to get 3D-printed [45]. Besides, computation time can benefit 

from the feasibility of the reduced order modeling approach, but it requires more research in 

future work [45]. 

Amirkulova et al. [3], [46] developed a gradient-based optimization (GBO) approach to 

design acoustic cloaks and lenses. Amirkulova et al. [3], [47] derived analytical formulas for 

the gradients of absolute pressure at the focal point with respect to the scatterers’ positions 

and supplied it to GBO algorithms for optimal optimization at multiple frequencies and 

angles of plane wave incidences. 

Besides metamaterial design, Mattoso et al. [44] focused on nanophotonic structures that 

can concentrate energy. The governing equation is Maxwell’s equations in the frequency 

domain. Specifically, the goal is to maximize the system’s energy as a function of silicon 

dioxide and silicon distribution in a small region of the nanophotonic device utilizing the 

topological derivative method. Finally, experiments have been carried out to demonstrate 

hotspots with high energy density and validate the design. 

1.1.3. Inverse Design Using Deep Learning 

Applications of inverse design using DL encompass the design of nanophotonic devices 

[48], plasmonic waveguide systems [49], metasurface optical filters [50], etc. Campbell et al. 

[51] conducted a literature review on numerical optimization techniques for meta-devices. 
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The fully connected neural networks (FCNN) make it possible to learn the relation between 

geometric configuration and optical response. FCNN is particularly useful for the inverse 

design of nanophotonics. Peurifoy et al. [52] employed a FCNN to design an optical cloak 

and to expedite the design process to approximate the solution of the Maxwell equations. The 

FCNN is run reversely, with fixed output to the desired value, and lets the FCNN obtain good 

accuracy. Fan et al. [53] considered acoustic scattering utilizing a single scatterer as a 2D 

image-to-image regression problem using convolutional neural networks (CNN). Meng et al. 

[54] formulated the problem of inverse acoustic scattering using an FCNN to reconstruct the 

shape of an obstacle with far-field information. Han et al. [50]’s DL inverse model capable of 

generating a diverse range of device structures ensures speed and accuracy. One 

disadvantage of the model [50] is that certain conditions result in the disappearance of 

gradients. Li et al. [55] proposed tandem FCNN for inverse design of ultra-thin underwater 

acoustic metasurfaces at low frequency. This FCNN include a forward network that has been 

pretrained and a reverse network. A diffuse underwater acoustic metasurface was created 

[55] successfully using the designed metasurface elements. Ma et al. [56] implemented a 

deep-learning accelerated framework to design Magneto-mechanical metamaterials capable 

of satisfying specific target deformations with strain restriction. This DL model utilizes CNN 

to replace the used FEA software that is computationally expensive. A wide range of 

deformation tunability has been shown for magneto-mechanical metamaterials. However, it 

is time-consuming to prepare data set. Even though a larger amount of data is desired, they 

have limited capacity to collect it [56]. DL results [56] have been validated by using FEA 

software. 



 

7 

1.1.4. Generative Modeling in Inverse Design 

Generative modeling searches for patterns in input data without supervision. Models are 

capable of generating their own data based on the original training dataset [57]. Generative 

models have the ability to learn a real distribution, and, therefore, are helpful in inverse 

design [57]. With the nature of generative modeling, automated design synthesis can 

revolutionize engineering design in the modern era [57]. Particularly, generative modeling 

can be applied to engineering-related problems to enable automated design synthesis. 

Applications of generative modeling include acoustics [58], material science [59], and 

imitation learning [60]. Therefore, generative modeling has been applied to solve various 

inverse design problems [59] where generating the data can be expensive or when data is not 

available. Inverse materials design will be aided by data-driven generative models with high-

performance computations and material databases [59]. Studies have demonstrated that the 

performance of the generative model is contingent on training dataset quality and size [59]. 

Despite the possibility of high-speed fundamental calculations used to create material 

portfolios, it takes considerable time when structures get complex [59]. 

Generative Adversarial Network (GAN) [61], GLOnets [13] and Variational Autoencoder 

(VAE) [62] are three commonly used network architectures for material design which will be 

discussed next. 

1.1.5. Generative Adversarial Networks (GANs) 

Lately, GANs [13], [63], [64] have been triumphant and viable in recent years. Boget 

[65] presented promising results using GANs for adversarial non-linear regression, provides 

excellent estimation and approximates the probability density function. The conditional GAN 
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(cGANs) [63] is capable of performing multi-modal learning. The Wasserstein GAN 

(WGAN) [64] has been proven to enhance the stability of learning and avoid mode collapse. 

Developments of the inverse design of molecular components [66], metasurfaces [13], and 

optical cloaks [67] benefited from using deep generative models. It has been exhibited that 

using GANs, a global optimizer for dielectric metasurfaces, can be built in the field of 

electromagnetism [68]. In recent work, Gurbuz et al. [69] used conditional GANs annexed 

with finite element simulation carried out in COMSOL, a multiphysics simulation software, 

to create acoustic metamaterials for broadband sound insulation. Lai et al. [8] implemented 

conditional WGANs for total scattering cross section (TSCS) suppression. This model [8] 

integrates the WGANs with CNN and CordConv layer [70]. Due to the similar nature of 

electromagnetic and acoustic waves [9], [68], the similar idea of optimizing the 

electromagnetic waves will be utilized for our cloak design. 

1.1.6. GLOnets: Combining Global Optimization with Generative Modeling 

As an alternative to GAN, Jiang and Fan [13], [71] proposed a generative model for a 

design of 1D metagratings. Fan’s group [13], [71], [72] proposed a global optimization 

technique, a generative modeling combined with gradient-based optimization. Unlike the 

traditional optimization scheme, the proposed 1D-GLONets consider a population of optimal 

devices simultaneously. The 1D-GLONets optimizes the deflection efficiency as a function 

of wavelength and outgoing angle. Chen et al. [73] further proposed reparameterization that 

applies to 1D-GLOnets to impose geometric constraints to constrain the devices. 

Motivated by the works of Fan’s group [13], [71], [73], Zhuo and Amirkulova [7], [9] 

generalized this idea to solve 2 dimensional (2D) constrained optimization problems and 
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implemented a 2D-GLOnets generative model for broadband acoustic cloak design where the 

gradient information [46] was used to update the weights of the generator. They successfully 

showed exciting results that outperformed conventional optimization solver fmincon. It has 

been shown [7] that the 2D-GLOnets outperformed traditional optimization algorithms, 

which motivates us to apply the 2D-GLOnets model developed by Zhuo and Amirkulova [9] 

to the acoustic lens design problem. 

1.1.7. Variational Autoencoders 

Variational Autoencoders (VAE) are a deep generative model that consists of an 

autoencoder that can reduce dimensions and extract features [59]. In molecular informatics, 

Blaschke et al. [74] investigated the effectiveness of generative autoencoders in mapping 

molecule structures into continuous latent spaces. Novel chemical structures are generated 

using inverse quantitative structure-activity relationship and generative adversarial 

autoencoders [74]. Utilizing a probability distribution as a constraint on the encoder 

networks, VAE allow for better generalization [75]. A scalable integrated architecture for the 

data-driven metamaterial design at multiple scales is presented, employing the continuous 

and structured latent space of the VAE model [76]. Wang et al. [76] integrated VAE with a 

regressor for mechanical engineering properties, such as stiffness matrix, etc. The generative 

neural networks model extracts characteristics [76]. Mechanical properties can be tuned, and 

candidate structures are generated following the extracted features. Results show the latent 

space vector arithmetic can be employed to map microstructure topology and mechanical 

properties [76]. One huge advantage of the model is that it can consider metamaterial 

families and multiscale metamaterial systems design [76]. Nevertheless, the current model 
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only depends on the homogenization theory that considers the linear elasticity of materials. In 

addition, Ahmed et al. [58] introduced DL techniques that have a network similar to 

autoencoders and VAE for the inverse design of an acoustic cloak. The autoencoder-like [58] 

networks, consisting of an inverse network followed by a pre-trained forward network, 

implement the core-shell acoustic cloak with multiple layer thicknesses and spectral 

response. The forward network is responsible for the design parameters and spectral response 

relationships. The inverse network is accountable for the relationship between the spectral 

response predicted by the pre-trained forward network and the design parameters [58]. One 

drawback of the model is that growing the number of layers raises the complexity, which 

significantly increases the training time [58]. 

Tran et al. [77], [78] proposed conditioning can be performed using two methods: 

supervised VAE (SVAE) and conditional VAE (CVAE) for acoustic cloak design with 

minimal TSCS. FCNN serves as the forward design. In inverse design, combining VAEs, 

supervised and unsupervised learning, and the Gaussian process predicts optimal scatterer 

arrangements for a minimal TSCS [79]. The SVAE model is constructed with a neural 

network regressor that takes the encoded latent variables z as input and predicts TSCS based 

on the latent variables. A concatenation of latent variables z with TSCS and CVAE. The 

latent variables are conditioned to reflect TSCS; therefore, the neural networks model is 

allowed to encode the physics of the problem. Intriguingly, Ahmed et al. [80] utilized a 

variational inference approach in an encoder-decoder architecture in which the decoder 

possesses a pre-trained generator and a forward model [80]. Results showed great accuracy 

for phaseless acoustic scattering. One of the model’s advantages is that complex calculations 
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are not required. The method could be further extended to automatic recognition of 

underwater objects [80]. 

1.1.8. Deep Reinforcement Learning in Inverse Design and Optimization 

More recently, deep reinforcement learning (RL) [5] is an essential part of the field of 

machine learning. It enables automating tasks performed by agents [81]. Deep RL 

applications include adaptive control, autonomous driving, planning in chess, job-shop 

scheduling, robotics, etc [82]. More recently, model-free deep reinforcement learning [5] has 

been applied in inverse design of molecule structures [83]–[89], photonic devices [90]–[92], 

and of acoustic metamaterials [6]. 

A properly trained networks can lead to high performance beyond the parameters 

provided in the training dataset. So et al. [93] examined the state-of-the-art work done on 

inverse designs of nanophotonics using RL [5] algorithms. Lengeling et al. [94] elaborated 

on the latest R&D in reverse molecular design, reviewed the methods to obtain reverse 

designs, and focused on customized materials from the starting point of specific required 

functions. 

In RL, an agent intends to make the best decision in accordance with the given reward at 

each step [90]. It has been proven that the RL algorithms, such as AlphaZero and AlphaGo 

Zero, are capable of mastering chess, shogi, and Go through Self-Play. The AlphaZero 

algorithm, utilizing Monte Carlo Tree Search, is able to teach itself to play chess, shogi, and 

Go [95]. Sajedian et al. [90] utilized a Double Deep Q networks (DDQN) to increase the 

efficiency of the metasurface’s hologram structure. Thanks to implementing neural networks, 

DDQN not only optimizes but also learns from the problem. The algorithms search for the 
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parameter space to find the highest reward in the least time possible. The input for DDQN is 

the initial structure of the design. The DDQN model structure is where the simulating 

environment serves as feedback. The structure state consists of geometrical properties and 

types of the structure material. The agent is awarded or penalized by the reward system based 

on the action selected. 

In addition to DDQN using a discrete action space, the Deep Deterministic Policy 

Gradient (DDPG) introduces the idea of the use of a replay buffer and a separate target 

network [96], [97]. DDPG uses an actor-critic method and continuous action space. The actor 

in DDPG maps the state to a deterministic action [97]. It significantly improves the stability 

of training process [97]. Shah et al. [6] employed DDQN and DDPG algorithms to search for 

design parameters of scatterers that reduced the root mean square of the TSCS and to 

implement acoustic cloak. The gradient of the pressure amplitude function was utilized to 

accelerate calculation speeds. It was ascertained that the performance of DDPG generally 

performed better than that of DDQN [6]. 

In addition, the DDPG has various applications, such as control engineering [98], 

molecular generation [99], optimal drug dosing for patients [100], etc. The DDPG can be 

applied to docking an autonomous underwater vehicle (AUV) to an underwater platform. The 

DDPG model allows the AUV to attain performance comparable to optimal control [98]. 

This DDPG model [98] shortens the docking time. However, its bang-bang control behavior 

is hard to achieve due to physical limits in reality. Therefore, a change in the loss function 

might be required to improve the model [98]. 
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In oncology, several factors, including the stage of the tumor, the patient’s weight, and 

the white blood cell count, determine the optimal treatment schedule and drug dose [100]. 

Therefore, chemotherapy treatment must be properly scheduled and personalized to lower the 

patient’s survival rate. Optimal scheduling for patients can benefit from DDPG and DDQN 

[100]. Even though the RL algorithms, such as DDPG and DDQN, are not as optimal as the 

traditional optimization techniques, it has been shown that the RL algorithms have the 

potential to outperform conventional optimization algorithms. Additionally, DDPG offers 

better performance and learns more rapidly thanks to continuous action space [100]. 

The structure of 3D chemical molecules can be predicted using conventional algorithms, 

such as stochastic iterative processes. Traditional algorithms are generally computationally 

expensive. Kim et al. [99] have demonstrated that the water structure predicted by DDPG is 

the same as the density functional theory calculation. However, one of the disadvantages of 

the DDPG model is slow convergence; therefore, the reward function might need to be 

modified [99]. 

1.2. Research Outline 

The thesis consists of 6 chapters. Chapter 2 presents methodologies and acoustics 

preliminaries. The problem formulation and machine learning framework for acoustic lens 

design will be described. Chapter 3 introduces the 2D-GLOnets model architecture and 

discusses the 2D-GLOnets generative model results for acoustic lens design. Chapter 4 

introduces fundamentals of RL and elaborates on RL results for broadband acoustic lens 

design. Chapter 5 summarizes the findings of the thesis. Chapter 6 describes future work. 
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2. METHODOLOGIES AND ACOUSTICS PRELIMINARIES 

2.1. Problem Formulation 

We consider multiple scattering in the context of the acoustic time-harmonic wave 

equation in two dimensions. The governing equation for the acoustic pressure p(x), x ∈ ℛ2, is 

the Helmholtz equation [3]: 

 ∇2 p + k2 p = q, (2.1) 

where k = ω/c is the wavenumber, c is the acoustic speed, ω is the frequency, and q 

represents the sources. In problems considered in this thesis, we do not take into account 

sources, i.e., q = 0, but consider a normal plane wave incidence to realize the Luneburg lens 

behavior. Note that the acoustic Luneburg lens can focus the plane incident wave on the other 

side of the lens at the focal point. 

The particle velocity in the fluid v is related to the pressure by the momentum equation 

given by [101]: 

 −𝑖𝜔𝜌𝑓𝑣 =  −𝛻𝑝, (2.2) 

where 𝑝𝑓 is the mass density of fluid. c and ρ f are constants. 

The total acoustic pressure field p(x) is defined as the sum of incident pinc and scattered 

psc pressure fields: 

 p = pinc + psc. (2.3) 

Time harmonic dependence e−iωt is assumed but omitted in the following. 
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The incident field is a plane wave interacting with a given configuration of M separate 

scatterers. For simplicity, we consider circularly cylindrical scatterers, such as rigid cylinders 

shown in Fig 1. 

 

Fig. 1: An arbitrary planar configuration of M rigid cylinders S 

m with radius am, m = 1, M and position vector rm. The vector x 

describes the position of arbitrary point P with respect to origin 

O. 

For a single scattering problem, the coefficients of scattered pressure Bn are related to 

incident field coefficients An in T-matrix form and comply with the continuity of 

displacement and pressure at the interface r = a and are as follows [102]: 

 Bn = TnnAn   (2.4) 

where Tnn are components of transition matrix T [102]. For rigid cylinders, the transition 

matrix components are of the form: 

  (2.5) 

where ka is a normalized wavenumber, Jn(x) is the Bessel function of the first kind of order 

n, Hn
(1)(x) is the Hankel function of the first kind of order n. 
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Following [3], our goal is to maximize the acoustic pressure at the focal point by 

rearranging the positions of scatterers denoted by the set of vectors {rm} as shown in Fig. 1. 

The focal point is at x f ; it is fixed and pre-defined as depicted in Fig. 2. 

 

Fig. 2: Near-field of the focal point xf. The plane incident wave 

of unit amplitude is denoted by 𝑝inc. The x is the position of 

arbitrary point P. The 𝑟𝑓 is the magnitude of vector xf. 

In accordance with Amirkulova et al. [3], we define 𝑝𝑓 or equivalently 𝑝𝑓 ({rm}) to be the 

total acoustic pressure at the focal point for a given set of the position vectors {rm}: 

 p f ({rm}) = p(x f ). (2.6) 

The absolute value is |p| = (pp*)1/2, and * denotes the complex conjugate. 

2.2. Position Dependent Acoustic Pressure Field at the Focal Point 

The total field p(x) is defined by Equation 2.3 as the sum of incident pinc and scattered 𝑝𝑠𝑐 

pressure fields, 𝐱 is a position vector of point P with respect to origin O. The incident wave is 

the plane wave of unit amplitude in direction 𝜓 and the plane incident pressure at fixed focal 

point Pf is: 

 pinc(x f ) = eikeψ·x f . (2.7) 

The scattered field in the neighborhood of cylinder Sm is given by [3] 
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n 

  (2.8) 

where xm is a position vector of point P with respect to the cylinder center at Om: 

 xm = x − rm, (2.9) 

and the function V ±(x) is defined as 

  (2.10) 

where Hn
(1) is the Hankel function of the first kind of order n. 

Introducing Equation 2.7 and Equation 2.8 into Equation 2.3 and evaluating it at the focal 

point 𝑝𝑓 defines the total pressure at the fixed focal point [3]: 

  (2.11) 

Putting this formula into practice, it is mandatory that the infinite sum in Equation 2.11 

be truncated, and that this equation be vectorized. To carry this out, let N be the truncation 

value of the infinite sum in Equation 2.11 chosen; therefore, the sum converges. Practically, 

the value of N depends on frequency. We select the value as: N = 2ka. We define b, 

𝐯 ϵ 𝐶𝑀×(2𝑁+1). The components of the scattering coefficient vector b = { Bn
(j)}, j 𝜖 (1,M), n 

𝜖(-N, N), and Bn
(j) = {Bn(r j)}, and written in the column vector form [3]: 
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n 

  (2.12) 

The elements of the dual vector v = {V ( j)} = {Vn (r j)} were defined into the form [3]: 

  (2.13) 

where 

 r f m = x f − rm, 

is the position of focal point with respect to local coordinate at Om and rm is the position of 

scatterer with respect to origin at O. Then the total pressure field at the focal point can be 

written in vector form as [3]: 

 𝑝𝑓 = eikeψ·x f + vT b. (2.14) 

2.2.1. Absolute Pressure Amplitude and its Gradients with Respect to Scatterers’ Positions 

To perform broadband optimization, we chose our objective function as root mean square 

(RMS) of a set of absolute pressure at the focal point |𝑝𝑓| evaluated over some range of 

normalized wavenumbers kia (i = 1, 2, ..., Nk), i.e., |𝑝𝑓({rm})|RMS [3]: 

  (2.15) 
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The real valued vector q j defined as gradient of the absolute value of total pressure field 

|𝑝𝑓({rm})| with respect to positions r j was evaluated in [3] as: 

  (2.16) 

where * indicates the complex conjugate, |𝑝𝑓| is defined by Equation 2.14, and the relevant 

complex valued gradient vectors are:   

  (2.17) 

The broadband gradient vectors were defined with respect to positions r j: 

  (2.18) 

which was found in terms of the individual single frequency gradients as [3]: 

  (2.19) 

where |𝑝𝑓|RMS is defined by Equation 2.15 and q j(kia) are defined by Equation 2.16 and 

evaluated at normalized wavenumbers kia (i = 1, 2, ..., Nk). 

2.3. Neural Networks Fundamentals 

In this thesis, we combine DL with generative modeling and reinforcement learning. 

Therefore, it is imperative to provide the basics of neural networks architecture. The FCNN, 

as illustrated Fig. 3 are comprised of neurons, an input layers, an output layers, and one or 

multiple hidden layers in between [103]. Neurons are interconnected in the adjacent hidden  
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Fig. 3: Simple neural networks, FCNN, showing 

the input layer, output later, and hidden layers. 

layers. The layer between the output and input layer is called the hidden layer [104]. The 

hidden layer helps determine the importance of the inputs with respect to the outputs. 

The weights scalar wi and biases scalar b are the most essential part of the FCNN. 

Referring to Fig. 4, using weights wi, the FCNN can make connections between neurons 

stronger or weaker. By adjusting the weight wi of inputs, the networks can adjust the strength 

of the connections between neurons in the next layer. Adjustments can be made within 

neurons using bias b. Biases b can increase or decrease a neuron’s output, depending on the 

signs of a bias b. The sum of the inputs multiplied by the corresponding weights plus the bias 

b is passed to the activation function. An activation function determines whether a neuron 

should be activated, deciding whether the neuron’s input to the networks is important. There 

are some popular activation functions, such as rectified linear activation (ReLU) [105], 

hyperbolic tangent (Tanh) [105], and others [103]. 
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Fig. 4: FCNN weights xi and biases b: A simple mathematical 

operation for sum of weighted input from the node. 

During the training, weights wi in FCNN are initially random numbers. Next, the FCNN 

takes one input, predicts, and assesses the prediction’s accuracy. Backpropagation is a 

commonly used technique to calculate derivatives efficiently. The FCNN propagates errors 

from the output layer to the input layer by calculating the loss function with respect to 

weights wi. By adjusting the weights wi, the FCNN predicts more accurately given the same 

input data point at a later time. Making a prediction renders the FCNN more accurate every 

time [104]. Currently, we can utilize various useful tools, including Keras, TensorFlow, 

PyTorch, Julia, Matlab, etc., to implement neural networks architectures. 

2.4. Predicative Model Using DL 

We utilized Matlab code employing MST to compute the total scattering cross section 

(TSCS) given various random planar configuration of cylinders. We generate 60, 000 random 

planar configuration of cylinders. The number of the cylinders M considered varied from 2 to 

20 with an increment of 2. We evaluate TSCS for each configuration at various rages of 

normalized wavenumbers ka ∈ [0.35, 0.45] and ka ∈ [1.35,1.45]. Next, we generate 200 by 
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200 pixel size binary images of planar configurations of cylinders indicated as input in Fig. 5. 

The input consists of image matrices with 200 by 200 in dimension. The output is the TSCS 

evaluated at 11 values of wavenumber ka for each configuration. The data were split into 

training and test data in a 7:3 ratio. 

 

Fig. 5: An example of image of configuration of M = 10 scatterers (left). The 

TSCS predictions at the wavenumber ka = 0.35 for M = 10 for 100 randomly 

chosen data (right). 

It has been shown that the acoustic TSCS can be approximated at 11 discrete values of 

frequency using FCNN and CNN [106]. Specifically, the TSCS by a plane configuration of 

cylinders is approximated over a range of wavenumbers using trained FCNN. The forward 

design only allowed for approximating the TSCS. The input of neural networks is the 

positions of the cylinders, and the output is the TSCS evaluated at discrete values of 

wavenumber. Neural networks are trained to approximate the TSCS function using the 

backpropagation algorithm [106], [107]. The TSCS is approximated over a range of 

wavenumbers to develop the efficient design of broadband acoustic cloaks. Combining these 

FCNN and CNN models with generalized models, the inverse design was solved by using 

cWGAN [4] and cVAE [77]. 
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Fig. 6 illustrates a CNN architecture used for TSCS prediction. The CNN consists of an 

input picture, convolutional layer, polling layer, and an FCNN. The input of CNN is a binary 

image matrix showing the configuration of scatterers. The output is the TSCS prediction. 

Essentially, the TSCS by a plane configuration of cylinders was approximated over a range 

of wavenumbers using trained FCNN and CNN. Fig. 5 shows the TSCS prediction results 

with 10 cylinders using CNN at the wavenumber ka = 0.35. The prediction by CNN shows 

high accuracy. In general, the prediction at the low frequencies, i.e., ka ∈ [0.35, 0.45], 

performs better than the prediction at the high frequencies, i.e., ka ∈ [1.35, 1.45] due to the 

non-linearity of the physics at high frequencies. 

 

Fig. 6: CNN structure used for TSCS prediction 

2.5. Machine Leaning Framework for Acoustic Lens Design 

Amirkulova et al. [3], [46] used metamaterial design using gradient-based optimization 

algorithms. In this project, we combine funding of [3] and [46] and integrate the inverse 

design with reinforcement learning [6] and generative modeling [9]. A novel method [108]–

[110] will be provided to simulate multiple acoustic scattering by configuring cylinders and 

solving inverse design problems using DL. This research aims to examine and evaluate the 

performance of generative networks and RL searching for optimized configuration of 
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scatterers over a range of parameters to produce desired functionality such as focusing and 

localization effects. We will train the agents in RL models to discover the optimal policy that 

locates the optimized configurations. In this thesis, we adopt the idea presented by Shah et al. 

[6] for acoustic cloak design to design broadband acoustic lenses. The position and radius of 

the scatterers are the design parameters. RL algorithms, such as DDPG, will be utilized to 

maximize absolute pressure amplitude at the focal point for acoustic lens design. The agent 

receives a positive reward proportional to the root mean square pressure amplitude across a 

range of frequencies at the focal point. Ultimately, the designs with the maximum absolute 

pressure amplitude at the focal point will be ascertained. The DDPG architecture developed 

by Shah et al. [6] is adapted to our acoustic lens design. 

In addition, the 2D-GLOnets have been proven [9] to give good results for acoustic cloak 

design. The model maximizes the probability of generating globally optimized devices within 

the design space. We adapted the 2D-GLOnets model developed by Zhuo et al. [9] and 

modified and tune it for the inverse design of broadband acoustic lenses by combining the 

generative networks with gradient-based optimization. 

2.5.1. Geometric Constraints 

The geometric constraints are imposed to control the positions of the rigid cylinders at 

each iteration as shown in Fig. 7. It is essential that the following constraints are satisfied: 

1. Bound Constraints: The center of the rigid cylinders x j, y j needs to be located inside 

the x ∈ [−10, 10]m and y ∈ [−10, 10]m. 
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Fig. 7: The illustration of 2D geometric constraints with δ = 0.1m 

and r = a = 1m.  

2. Nonlinear Constraints: Overlapping of rigid cylinders is not allowed. The distance 

between the position vector of two different rigid cylinders rm and rn must be greater 

than the diameter 2r of the rigid cylinders with a minimum allowed distance δ [3] 

given by: 

 |rm − rn| > 2r + δ (2.20) 

where the minimal distance δ is chosen as 0.1 and r = a = 1m in simulations. 
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3. 2D-GLONETS GENERATIVE MODEL FOR ACOUSTIC LENS DESIGN 

3.1. Architecture 

The 2D-GLOnets generative model has previously shown to be effective in acoustic 

cloak design [7], [9]. This method can find globally optimized solutions while imposing 

geometric constraints to control the scatterers. Therefore, the 2D-GLOnets are used to design 

acoustic lenses. 

Fig. 8 shows a machine learning framework, the 2D-GLOnets, that can be utilized for the 

inverse design of the acoustic lens. In this framework, the Gaussian noise of size of 1 by 128 

is an input passed into the generator. The generator serves as a device to generate 

unconstrained configurations of the scatterers. The generator is comprised of the architecture 

of the FCNN of 8 layers. The input is concatenated in the generator with a size of 1 by U × M 

= 128, where U is the batch size, and M is the number of the scatterers. An activation 

function of LeakyReLU is employed from the first layer to the seventh layer, and an 

activation function of tanh is used in the last layer. All 2D-GLOnets hyperparameters are 

tabulated in Table 1. The batch size specified for each M at the 2 frequency ranges is 

tabulated in Table 2. 

Amirkulova et al. [47] utilized the principle of reciprocity and gradient-based 

optimization to design broadband acoustic lenses; this method uses an analytical form of 

gradients. An analytical form of the pressure gradient at the focal point with respect to 

positions of a set of cylindrical scatterers was evaluated [3] to model the acoustic lenses for 

underwater applications [3], [47]. Since the gradients are evaluated analytically, they can be 

provided to GBO algorithms to enhance modeling, to improve the accuracy of results, and to  
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Fig. 8: 2D-GLOnets architecture including Gaussian noise vector, generator, 

reparametrization, pressure amplitude, loss function, and multiple scattering solver 

that evaluates RMS of pressure amplitude at the focal point, i.e., |𝑝𝑓|RMS and its 

gradients. Details about each component will be elaborated in Section 2.3 and Section 

2.4. 

reduce computation time [3], [46], [47]. In this work, we will utilize the analytical form of 

pressure gradient at the focal point to compute and update weights of the generator. 

3.2. Reparametrization 

In the original 1D-GLOnets model [71], the problem is formulated as a design of 1D 

metagratings where the position of metagrating is fixed which does not require any 

geometrical constraints, allowing the model to change other parameters, i.e., outgoing angle 

and wavelength. In this model [71], the input of the generative architecture is the wavelength, 

outgoing angle, and noise vector, and the output of the generator is a binary image of a 1D 

metagrating structure generated for a variety of parameter settings. 
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Table 1: 2D-GLOnets Hyperparameter Table 

Hyperparameters Values or descriptions 

Batch size U M-dependent 

Tunable hyperparameter σ M-dependent 

Constrained device x* Variable 

Gradients of unconstrained device with respect to constrained 

device n(γ) 
Variable 

Gradient q for a batch of Γ devices  Variable 

Optimizer ADAM 

Radius of the scatterers r 1.0 

Learning rate Ir 0.001 

Noise dimension vector size (1, 128) 

Noise scale 1.0 

Number of generator hidden layers 8 

Generator hidden layers’ sizes 64, 128, 256, 256, 128, 64 

Number of generator’s input layer 32 

Number of generator’s output layer 32 

Activation function for generator’s hidden layers LeakyReLU 

Activation function for generator’s last layer tanh 

 

Table 2: Batch Size with Varying M at 2 Wavenumber Ranges Table 

M 4 5 6 7 8 9 10 11 12 

ka ∈ [0.35, 0.45] 100 100 100 3 10 10 15 2 2 

ka ∈ [1.35, 1.45] 80 80 80 6 10 15 2 2 2 

 

Zhuo and Amirkulova [7], [9] developed 2D-GLOnets for broadband acoustic cloak 

design by generalizing the 1D-GLOnets [71] and by introducing the reparametrization step to 

this model. The implementation of these reparametrization techniques allowed the solution of 
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a constrained optimization problem that generated images of configurations should avoid 

overlapping of scatterers. In this work, we adopt 2D-GLOnets [7], [9] and use this 

reparameterization scheme for acoustic lens design. The reparameterization converts the 

unconstrained device X into the constrained device 𝑋∗. The purpose of the reparametrization 

is to avoid overlapping the cylinders and to confine the cylinders to a constrained region as 

described in Section 1.5.1. The methodology is adapted from the idea of training multiple 

agents to perform a collaborative task in MATLAB [111]. Newton’s second law is applied to 

the cylinders with a pre-assigned mass. A force pulls the cylinders apart when they overlap or 

when a cylinder touches the wall. The loop updates itself unless the geometric constraints are 

fully satisfied. After the reparameterization, a constrained device x* is passed to the 

MATLAB solver that computes the RMS absolute pressure amplitude at the focal point 

|𝑝𝑓({rm})|RMS and the gradients with respect to position vectors, which are further passed into 

a loss function that generates a partial derivative of absolute pressure with respect to the 

weights, which are updated during each iteration. 

3.3. Loss Function 

To formulate the loss function for the 2D-GLOnets, we follow Zhuo and Amirkulova [9] 

and adapt the idea from Chen et al. [73] who defined the loss function in the form:  

  (3.1) 

where E f f (k) are the efficiencies, ge
(k) are the efficiency gradient vectors, σ is a 

hyperparameter, ϵ(k) are globally optimized devices, and K is the batch size. The loss function 

defined by Equation 3.1 minimizes the probability that the neural networks will provide the 
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optimal latent vector that correlates to the globally optimized device. It is previously shown 

that the loss function of the GLOnets can be applied to inverse design of nanophotonic 

devices [73]. 

Similar to the structure of the loss function proposed by Chen et al. [73], Zhuo and 

Amirkulova [9] proposed a loss function for 2D-GLOnets that minimizes the TSCS function: 

  (3.2) 

where 𝛽 is a hyperparameter, 𝐾 is the batch size, 
∂𝑥(𝑘)∗

∂𝑥(𝑘)  are the gradients of the unconstrained 

devices with respect to the constrained device, 
∂𝜎𝑅𝑀𝑆

∂𝑥(𝑘)∗  is a gradient 𝐪 for a batch of 𝐾 devices, 

and 𝜎𝑅𝑀𝑆min is the minimum RMS TSCS at the given iteration. For the acoustic lens design, 

our goal is to maximize the RMS of absolute pressure amplitude at the focal point. The ideas 

from Zhuo and Amirkulova [9] and Chen et al. [73] were considered to construct the loss 

function of the training of the acoustic lens model defined as: 

  (3.3) 

where 𝛾 is the number of unconstrained devices in a batch, 𝜎 is tunable hyperparameter, 

|𝑝𝑓({rm})| the total absolute pressure field at the focal point is given in vector form by 

Equation 2.14, 𝒏(𝛾) are the gradients of the unconstrained devices with respect to the  

constrained device and the gradients 𝒒𝑗
𝑅𝑀𝑆 are computed analytically given by the Equation 

2.19 in the vector form. 
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Following how the loss function is written, it is essential to tune the hyperparameters 

until the loss function converges to a range of numbers with minor fluctuations due to the 

non-linearity of the optimization problem considered. The trend of the loss function may 

follow the pressure amplitude throughout the training. The loss function calculates the 

gradients 
∂|𝑝𝑓|𝑅𝑀𝑆

∂w
 and further back-propagates to update the weights 𝑤. 

3.4. 2D-GLOnets Results 

3.4.1. Numerical Results for Acoustic Lens Design using 2D-GLOnets 

In this section, we adopt ideas from [3], [9] and develop a machine learning framework to 

automate the acoustic lens design process by leveraging the capabilities of the 2D-GLOnets, 

DL, generative modeling, and gradient information. We consider rigid cylinders submerged 

in water with physical properties: density ρ0 = 1000kg/m3 and the speed of sound c0 = 

1480m/s. Based on the 2D-GLOnets model [7], [9] for acoustic cloak design, we have 

modified 2D-GLOnets for acoustic lens design. In the generative model, the objective 

function to maximize is the RMS of the absolute pressure amplitude at the focal point, i.e., 

|𝑝𝑓|RMS. In addition, the gradients of the RMS of the absolute pressure amplitude at the focal 

point with respect to positions evaluated in [3] and defined here by Equation 2.19, will be 

provided in these models to improve the training of generative models. The 2D-GLOnets 

generative model is implemented using PyTorch Python libraries calling the MATLAB 

engine from Python libraries and computing the objective function and its gradients with 

respect to positions in MATLAB [3]. 

3.4.2. Numerical Results for 2D-GLOnets at Lower Frequencies 
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In this section, we present numerical results for designing an acoustic lens using the 2D-

GLOnets model for Nk = 11 discrete values of normalized wavenumbers ka ∈ [0.35, 0.45] 

with an increment of 0.1 where a = 1m. The random noise vector is generated and passed to 

the 2D-GLOnets algorithms. The optimal results predicted by 2D-GLOnets are compared to 

ones produced by Global Optimization Toolbox using MultiStart solver combined with the 

fmincon nonlinear optimization solver initialized using the random positions of cylinders. 

Fig. 9 illustrates 2D contour plots of total pressure fields at normal plane wave incidence 

on configurations M = 7 rigid cylinders at ka = 0.40. The lower figures show the real part of 

the total acoustic pressure field Re(p), and the bottom figures show the absolute value of the 

total acoustic pressure field |p| for the random configuration (right figures), and 

configurations optimized by 2D-GLOnets (middle figures) and fmincon (left figures), 

correspondingly. The upper three plots are the real part of the total pressure Re(p) show how 

the plane waves interact with the configuration propagate through fluid media. The lower 

three plots are absolute pressure amplitude |p| showing the magnitude of pressure amplitude. 

On the bottom figures, blue indicates low absolute pressure values, and yellow indicates high 

absolute pressure values. As the waves propagate horizontally from left to right at normal 

incidence, they interact with the acoustic lens and focus the wave energy on one point, which 

is called the focal point, denoted by an asterisk in the figures. 

An example of the 2D-GLOnets outperforming fmincon, compares the 2D-GLOnets to 

fmincon, and non-optimized random configurations at ka = 0.40. The random configuration 

and configurations optimized by 2D-GLOnets and fmincon for M = 7 are depicted. The  
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Fig. 9: Comparison of pressure fields between arbitrary random configuration (left 

column), 2D-GLOnets (middle column), and fmincon (right column). The variation 

of real part of total pressure, Re(p), (top figures) and absolute pressure amplitude, 

|p|, (bottom figures) at normal plane wave incidence on configurations of M = 7 

rigid cylinders at ka = 0.40 

asterisk denotes the location of the focal point (12, 0) on the plots. The 2D-GLOnets and 

fmincon show similar optimized patterns where the scatterers are symmetrical to the x-axis. 

The pressure fields are plotted for visualization of focusing effect. The total absolute pressure 

amplitude |p| and real part of the total pressure Re(p) are plotted. 

The corresponding loss function and absolute pressure amplitude v.s. number of epochs 

are depicted in Fig. 10 at ka ∈ [0.35,  0.45] for M = 7. As illustrated in Fig. 10(a), the 

optimized absolute pressure amplitude of the 2D-GLOnets converges to |𝑝𝑓| ≈ 1.36, which 

surpasses the optimized absolute pressure amplitude |𝑝𝑓| = 1.32 by fmincon. From Fig. 10(b), 

one can notice the loss function has fluctuations. Due to the way the loss function is written,  
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Fig. 10: The variation of absolute pressure amplitude |p| (left) and 

loss function (right) v.s. number of epochs using the 2D-GLOnets 

for M = 7 at ka ∈ [0.35,  0.45] 

as long as the loss function converges to a range of numbers, it is considered acceptable. The 

absolute pressure amplitude plot Fig. 10(a) shows a converging trend with a decreasing 

variance as the number of epochs increases. 

Fig. 11 shows the absolute pressure amplitude with a varying number of cylinders. The 

absolute pressure amplitudes at the focal point for M = 8, 9,  11, and 12 scatterers were 

plotted. These four examples are ones where the performance of the 2D-GLOnets is better 

than that of fmincon. The focusing effects are shown. A pattern of symmetry about the x-axis 

is observed with a varying number of cylinders at lower frequencies for both 2D-GLOnets 

and fmincon results. 

3.4.3. Results at Higher Frequencies for 2D-GLOnets 

Fig. 12 depicts comparison between random configuration (left) and optimized 

configurations: 2D-GLOnets (middle), fmincon (right) with M = 9 at high frequencies ka ∈ 

[1.35,  1.45]. Re(p) is the real part of total pressure, and |p| is the absolute pressure 

amplitude. The optimized configuration of the cylinders becomes more scattered. This 

example shows that the 2D-GLOnets produces |p|max = 2.28, and it outperforms the fmincon  
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Fig. 11: 2D-GLOnets optimized results for the absolute pressure 

field |p| with M = 8,  9, 11,  and 12 at ka = 0.40. 

solver that produces |p|max = 2.07. Contrary to the random configuration, the 2D-GLOnets 

model produces distinct focusing effects at the focal point, as denoted with an asterisk in Fig. 

12. 

Fig. 13 shows the training curve in (a) and loss function in (b) as a function of epochs 

whose optimized configuration is previously shown to be in the middle column of Fig. 12. 

The batch size U used is 15. It is noticed that the absolute pressure amplitude at the focal 

point fluctuates towards the beginning of the training. One can notice that the absolute 

pressure suddenly goes down and back up to a converged value because the 2D-GLOnets can 

get out of local minima to find the global maxima. The loss function successfully converges  
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Fig. 12: Comparison of pressure fields between arbitrary random configuration (left 

column), 2D-GLOnets (middle column), and fmincon (right column) at ka = 1.40. Real 

part of total pressure, Re(p), (top figures) and absolute pressure amplitude, |p|, 
(bottom figures) at normal plane wave incidence on configurations of M = 9 rigid 

cylinders ka = 1.40. 

 

Fig. 13: The variation of absolute pressure amplitude |p| (left) and 

loss function (right) v.s. number of epochs using 2D-GLOnets for 

M = 9 at ka ∈ [1.35,  1.45] 
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after oscillating. Towards the end of the training, the noise in the absolute pressure and the 

loss function reduce significantly after approximately the 9500th epoch. 

Fig. 14 presents the 2D-GLOnets results of absolute total pressure amplitude |p| for M = 

7,  8,  10,  and 11 at a selected wavenumber ka = 1.40. Note that the absolute pressure of the 

normal incident wave is |𝑝𝑖𝑛𝑐| = 1.0. These four examples illustrate the performance of 

optimized configurations which outperform fmincon. The focusing effects are observed at the 

focal point denoted as an asterisk. The absolute pressure field at the high-frequencies range is 

the clear sound localization and focusing effects. 

 

Fig. 14: The absolute value of the total acoustic pressure field |p| 
for the optimized configurations of M = 7,  8,  10, and 11 optimized 

by 2D-GLOnets at ka = 1.40 
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All the four optimized configurations outperform fmincon results producing the following 

|𝑝𝑓| tabulated in Table 3. 

Table 3: Numerical Results of Performance Comparison Between 2D-GLOnets and fmincon 

 2D-GLOnets fmincon  2D-GLOnets fmincon 

M = 7 2.08 1.95 M = 8 1.98 1.89 

M = 10 2.12 1.91 M = 11 2.14 2.09 

 

Fig. 15 depicts examples of the absolute value of the total acoustic pressure fields |p| that 

are outside the optimized wavenumber range, i.e., ka ∈ [1.35, 1.45]. The numbers of 

scatterers of M = 8 (left column) and M = 10 (right column) are considered for ka = 1.45,  

1.5, and 1.6, which are outside the optimized wavenumber range. The middle row figures 

show that that lens devices still produces focusing effect at wavenumber at ka = 1.5 which is 

outside the range at which the device was optimized. As the wavenumber ka increases 

further, the focusing effects are diminishing as expected. 

3.4.4. Numerical Results for Broadband Acoustic Lens Design 

For broadband acoustic lens design, the objective is to maximize the absolute pressure 

amplitude at the focal point. To validate 2D-GLOnets results and analyze its performance, 

MATLAB fmincon solver was used to find the maximum of the nonlinear non-convex 

objective function, i.e., absolute total pressure at the focal point |𝑝𝑓|. 

We performed simulations running fmincon on MATLAB and validated numerical results 

obtained by the 2D-GLOnets [3]. The initial configuration and final acoustic lens 

configuration for ka ∈ [0.35,  0.45] and ka ∈ [1.35, 1.45] are shown in Fig. 16 and Fig. 17,  
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Fig. 15: The absolute value of the total acoustic pressure fields 

|p| for M = 8 (left column) and M = 10 (right column) with ka = 

1.45 (upper row), ka = 1.5 (middle row), and ka = 1.6 (bottom 

row) are shown. The wavenumbers ka considered are outside 

the optimized wavenumber range, i.e., ka ∈ [1.35, 1.45]. The 

configurations used to plot the 6 figures are the 2D-GLOnets 

optimized configurations at ka ∈ [1.35,  1.45]. 
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Fig. 16: A random configuration (left figure) using pressure 

amplitude function. Fmincon optimized acoustic lens configuration of 

M = 8 scatterers (right figure) for ka ∈ [0.35, 0.45]. 

 

Fig. 17: A random configuration (left figure) using pressure 

amplitude function. Fmincon optimized acoustic lens configuration of 

M = 8 scatterers (right figure) for ka ∈ [1.35,  1.45]. 

respectively. The acoustic lens design enables the pressure amplitude to be maximized at the 

focal point. The maximized absolute pressure amplitudes for ka ∈ [0.35, 0.45] and ka ∈ 

[1.35, 1.45] are |𝑝𝑓| = 1.40 and |𝑝𝑓| = 2.10, respectively. The total pressure field and absolute 

pressure field are plotted to show the focusing effect with a focal point of (12,  0), which is 
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pre-designed. The plane waves with an incident angle of 0 degrees propagate from left to 

right, in positive x-direction. 

3.4.5. Dependency of Absolute Pressure Amplitude on wavenumber ka at a Range of 

Wavenumbers 

3.4.5.1. 2D-GLOnets Low Frequency Analysis 

In this section, we will show broadband performance of acoustic lenses which produce 

sound localization and focusing effects at range of wavenumbers within and outside the 

ranges at which the objective function was optimized. We will consider two ranges of 

wavenumbers ka ∈ [0.35,  0.45] and ka ∈ [1.35,  1.45]. The RMS absolute pressure amplitude 

at the focal point is optimized at ka ∈ [0.35,  0.45] for the configurations of M = 6,  8, 10, and 

12 cylinders at plane wave incidence. Fig. 18 shows the variation of absolute pressure at the 

focal point |𝑝𝑓| with wavenumber ka at low values of ka ∈ [0.35, 0.45]. We compare the 2D-

GLOnets results to fmincon results. As expected, the absolute pressure amplitude of the non-

optimized configurations depicted by green color appears to be much lower than the 2D-

GLOnets shown by blue curve lines and fmincon indicated by the green curves at ka ∈ [0.35,  

0.45]. The 2D-GLOnets results are comparable with fmincon results at the optimized 

wavenumber region, i.e., ka ∈ [0.35,  0.45]. It is noticed that for M = 6 and M = 10 at ka ∈ 

[0.35, 0.45], 2D-GLOnets performed similarly to fmincon. whereas for M = 8 and M = 12, 

2D-GLOnets underperformed slightly compared to fmincon. 

Fig. 19 shows the variation of absolute pressure amplitude at focal point |𝑝𝑓| with 

wavenumber ka at low values of ka ∈ (0.00, 1.00]. The absolute pressure amplitudes at focal 

point |𝑝𝑓| of fmincon results drawn by the red curve, 2D-GLOnets results drawn by the blue  
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Fig. 18: The dependency of absolute pressure amplitude with ka ∈ [0.35, 0.45] at 

lower wavenumbers for various fixed numbers of scatterers M = 6, 8, 10, and M = 12. 

Here, the red curve corresponds to fmincon results, the blue curve is 2D-GLOnets 

results, and the green curve represents results for non-optimized random configuration 

of scatterers and is given a reference for comparison. 

curve, and non-optimized results drawn by the green curve are shown. The behavior of 

pressure amplitude becomes more complex outside the optimized frequency regions. At ka ∈ 

(0.00, 0.20], all the three configurations’ pressure amplitudes overlap in general. At around 

ka = 0.20, the pressure amplitude jumps up. At ka ∈ [0.45, 1.00], the pressure amplitude of 

2D-GLOnets and fmincon will go lower compared to the non-optimized configuration. 
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Fig. 19: The dependency of absolute pressure amplitude with ka ∈ (0.00, 
1.00] at lower wavenumbers for various fixed numbers of scatterers M = 6, 8, 

10, and M = 12. The optimized region, i.e., ka ∈ [0.35, 0.45] is colored in 

pink. Here, the red curve corresponds to fmincon results, the blue curve is 

2D-GLOnets results, and the green curve represents results for non-optimized 

random configuration of scatterers and is given a reference for comparison. 

3.4.5.2. 2D-GLOnets High Frequency Analysis 

Fig. 20 shows the behavior of absolute pressure amplitude at the focal point |𝑝𝑓| for 2D-

GLOnets (blue curve), fmincon (red curve), and the non-optimized (green curve) 

configurations at the optimized region, i.e., ka ∈ [1.35, 1.45]. For M = 8 and M = 10, the 2D-

GLOnets outperform fmincon. Whereas, for M = 6 and M = 12, the 2D-GLOnets 

underperform fmincon. The 2D-GLOnets and fmincon’s pressure amplitudes |𝑝𝑓| go higher 

substantially compared to the non-optimized design, as the 2D-GLOnets and fmincon 

optimize the design. 
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Fig. 20: The dependency of absolute pressure amplitude with ka ∈ [1.35, 1.45] at 

higher wavenumbers. Here, the red curve indicates fmincon results, the blue 

curve depicts 2D-GLOnets results, and the green curve indicates results for non-

optimized random configuration of scatterers. 

To investigate the behavior of absolute pressure amplitude at the focal point |𝑝𝑓| outside 

the optimized region, Fig. 21 is plotted for ka ∈ (0,  2]. When ka is close to zero, i.e., ka ∈ 

(0.00,  0.10], the behavior of all the three configurations is almost identical. Nevertheless, the 

pressure amplitude function gets more complex approximately at ka ∈ (0.10, 1.25]. At M = 6 

and M = 8, the pressure amplitude for the non-optimized design is low in contrast with the 

2D-GLOnets and fmincon. 
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Fig. 21: The dependency of absolute pressure amplitude with ka ∈ (0.00, 
2.00] at higher wavenumbers varying the numbers of scatterers M = 6, 8, 10, 

and M = 12. The optimized region, i.e., ka ∈ [1.35, 1.45] is colored in pink. 

Here, the red curve indicates fmincon results, the blue curve shows 2D-

GLOnets results, and the green curve denotes results for non-optimized 

random configuration of scatterers and is given a reference for comparison. 

3.5. Discussion for 2D-GLOnets Model 

We proposed the 2D-GLOnets implementation of broadband acoustic lens design. 

Importantly, the 2D-GLOnets were capable of outperforming fmincon solver, which uses 

state-of-the-art optimization algorithms, such as sequential quadratic programming (SQP) 

algorithms. Analytical gradients in the loss function assist devices in moving toward an 

optimal region. The significant results of the 2D-GLOnets are listed as follows: 

– The 2D-GLOnets results show focusing effects using up to 12 cylinders. 
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– We observed that when properly tuned, the 2D-GLOnets achieve convergence and 

can identify global maxima. 

– We have shown some cases where the 2D-GLOnets optimized pressure amplitude is 

comparable to or higher than fmincon. 

– The 2D-GLOnets results have a pattern of symmetry along the x-axis in the low-

frequency range. 

– The 2D-GLOnets results have no distinct patterns in the high-frequency range.  

With the current development, the 2D-GLOnets and fmincon start from different 

configuration because the 2D-GLOnets has a Gaussian noise vector as an input to the 

generator. Similarly, the fmincon and MultiStart solvers consider multiple devices choosing 

the same number of scatterers. The MultiStart solver with fmincon considers the number of 

scenarios, e.g., 100, which was used in the 2D-GLOnets model. Due to reparameterization 

step, the current implementation of the 2D-GLOnets requires large memory in GPUs, which 

reduces the batch size with an increase of number of scatterers M. Therefore, to perform a 

proper comparison between 2D-GLOnets and MultiStart, we modified batch size and number 

of scatterers accordingly. 

Each scenario has been run by using the 2D-GLOnets a few times until the pressure 

amplitude approaches a value to ensure hyperparameter tuning stability. Therefore, even 

though the comparison is not directly due to randomness in the initial configuration, we have 

seen the promising results of applying the 2D-GLOnets to our acoustic lens design problem. 

One of the most significant benefits of using the 2D-GLOnets model is to design acoustic 

lenses with large amounts of scatterers. However, we have not had sufficient computational 
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resources to accommodate more cylinders due to reparametrization procedure. We discuss 

how to overcome this issue in Chapter 6: Future Work. 
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4. REINFORCEMENT LEARNING ASSISTED BROADBAND ACOUSTIC LENS 

DESIGN 

4.1. Reinforcement Learning 

RL is one of the critical areas of machine learning technology that allows agents to learn 

by trial and error in an interactive environment utilizing feedback from behaviors and 

experiences. RL includes Q-learning [112] and policy gradient [96]. In RL, an agent chooses 

actions and learns from rewards while interacting with the environment. The environment is 

where the agent operates, and the state is the current situation of the agent. Data are produced 

simultaneously as the interaction between the agent and the environment progresses. The 

policy will be improved as the agent learns. 

4.1.1. The Markov Decision Process (MDP) 

The Markov Decision Process (MDP) is a discrete-time stochastic control process. The 

states are partially randomized and partially controlled by an agent. Fig. 22 shows the 

interaction between an agent and an environment in an MDP. The future action is dependent 

on the current action. The agent interacts with the environment over time. At time t, the agent 

receives a state St and selects an action At. Consequently, the agent receives a reward Rt+1 and 

transitions to the next state S t+1. The aforementioned process allows the episode to proceed 

until it reaches a terminal state. The representation of an episode trajectory is given by S 0, 

A0, R1, S 1, A1, R2, S 2, A2, R3, ... [5]. 

In most cases, the objective of RL is to maximize the cumulative reward in an epoch 

[113]. The reward equation is given by 
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Fig. 22: Agent-environment interaction in an MDP 

  (4.1) 

where T is the terminal time, and Rk is the reward. 

It is typical for RL algorithms to train an action-value function Q* to obtain an estimation 

of Gt. The Bellman Equation is given below [5]: 

  (4.2) 

which decomposes the value function into immediate reward and the discounted future 

values, helps find the maximum policy and solves the Markov Decision Process. Starting 

with a state-action pair (s, a) at time t with the optimal policy, the expected reward Rt+1 at 

time t + 1 will be obtained. Furthermore, maximizing the expected discounted return is 

attainable for any upcoming state-action pair (s′, a′). Consequently, the RL algorithm can find 

the action that maximizes Q*(s, a) to search for the optimal Q-value through a recursive 

process. 

4.1.2. Deep Deterministic Policy Gradient (DDPG) 
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The DDPG [96], [97], [114], whose architecture is shown in Fig. 23 is a model-free 

algorithm that employs off-policy actor-critic techniques. It integrates Q-learning and policy 

gradients. An agent explores continuous action space as it interacts with an environment. RL 

uses experience replay to store the experiences of an agent at each time step. Our current 

DDPG model shown in Fig. 23 utilizes the deep neural networks that randomly samples a 

mini-batch of experiences to learn off-policy. Compared with uniform sampling, the DDPG 

with prioritized experience replay achieves better results regarding training time and stability 

[97]. The source code of the DDPG model is located at [115]. 

 

Fig. 23: DDPG structure: A basic framework for DDPG illustrating how an agent 

interacts with the environment. It shows actor, target networks, critic, critic networks, 

and the reward function. Most importantly, prioritized replay memory is used in the 

DDPG networks. 

Positional adjustments are made to move each scatterer by ±a unit in the x-direction and 

by ±a unit in the y-direction. Therefore, if there are M cylinders, 4M actions are selected. The 
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actor, critic, target actor, and target critic are networks used by DDPG. Target networks help 

with the stability of the training. The actor’s input is the state, and its output is the continuous 

action without utilizing a probability distribution over actions. The critic’s input is the state 

and action pair (s, a), and its output is the Q-value prediction Q (s, a). The actor and critic 

networks’ approximators are 𝜃𝜇 and 𝜃𝑄, respectively [116]. The target networks are updated 

using the soft updates strategy. Since implementing Q learning renders the training unstable, 

a soft update can solve this issue. The actor and critic target networks are copies of the actor 

and critic networks, respectively. The actor target networks is updated by 𝜃𝜇′ 
← τ𝜃 +(1 − 

τ)𝜃𝜇′
.
 
The critic target networks is updated by 𝜃𝑄′ 

← τ𝜃 +(1 − τ)𝜃𝑄′ 
[117]. The soft target 

update parameter τ is set to 0.001 following Lillicrap et al. [96]’s suggestion. Therefore, the 

target values are limited to slow change, ensuing the training stability [96]. 

The reward function for the RL model of acoustic lens design problems is formulated by 

the piece-wise function below: 

  (4.3) 

The reward function is given by the RMS absolute total pressure amplitude at the focal point 

|p f |RMS to raise the pressure amplitude at the focal point |p f |RMS. The legal state requires that 

the non-overlapping constraint be satisfied. If violated, a penalty will be assigned to the 

reward function at the previous state. 

The DDPG model for acoustic cloak was implemented by Shah et al. [6] and Zhuo [7] 

initially using Python PyTorch libraries calling the MATLAB engine from Python libraries. 
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Nevertheless, It was computationally expensive because the MATLAB engine had to be 

called each time the RMS of the pressure amplitude was computed. Therefore, Julia was used 

to implement RL model to maximize the pressure amplitude function. As a result, the Julia-

based RL model framework reduces computation time by at least 20 times compared to the 

Python-MATLAB implementation. The current Julia implementation of the DDPG model 

does not use the gradient information but can be included to improve convergence speed [6]. 

The DDPG hyperparameters are tabulated in Table 4. 

Table 4: DDPG Hyperparameter Table 

Hyperparameters Values or functions 

Batch size U 
1024 (low frequencies); 128 

(high frequencies) 

Discount factor γ 0.9 

How aggressive prioritized sampling probability gets 

corrected β 
0.5 

Activation function between layers ReLU 

Optimizer Adam 

Target update factor τ 0.001 

Target update rate (number of episodes per epoch) 30, 000 

Learning rate for the actor 0.0001 

Learning rate for the critic 0.001 

Number of hidden neurons for the actor 128 

Number of hidden neurons for the critic 128 

Number of layers for the actor 2 

Number of layers for the critic 2 

Critic weight decay 0.01 

Memory size 1, 000, 000 
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4.2. Numerical Results for Acoustic Lens Design Using Reinforcement Learning 

4.2.1. Lower Frequency Results for RL Model 

Fig. 24 shows non-optimized random (left column), RL (middle column), and fmincon 

(right column) results at low frequencies. The focal point is denoted by an asterisk. Both real 

part of pressure amplitude Re(p) and absolute pressure amplitude |p| are shown in the upper 

and lower part, respectively. Both fmincon and RL start from the same random configuration. 

MultiStart solver is not utilized. The RL model was trained for M = 2,3, 4,5, and 6 for lower 

wavenumbers ka ∈ [0.35, 0.45]. As illustrated in Fig. 24, the optimized configuration 

predicted by the RL model shows a sub-optimal solution for acoustic lens design with 6 

scatterers whose optimized pressure amplitude is still lower than fmincon. 

 

Fig. 24: The variation of real part of total pressure Re(p) (top figures) and 

absolute pressure amplitude |p| (buttom figures) at normal plane wave incidence 

on configurations M = 6 rigid cylinders at ka = 0.40, for arbitrary random 

configuration (left column), RL (middle column), and fmincon (right column). 
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The training curve for M = 6 is shown in Fig. 25 to illustrate the absolute pressure 

amplitude at the focal point at ka ∈ [0.35, 0.45]. The DDPG model explores different 

maxima until the convergence of the absolute pressure is achieved. The number of episodes 

in an epoch is increased to 30, 000 in one epoch to obtain better performance using the grid 

search method, which results in a substantial time increase. The optimized absolute pressure 

amplitude of the RL converges to |𝑝𝑓| ≈ 1.18. The cumulative reward of DDPG plotted at 

each epoch in Fig. 26 converges as well. The magnitude of the reward is due to a great 

number of episodes per epoch during the training. 

 

Fig. 25: DDPG training curve v.s. epochs for M = 6 at ka ∈ 

[0.35, 0.45] 

The results of the absolute pressure amplitude with a varying number of cylinders at low 

values of wavenumbers ka ∈ [0.35, 0.45] are shown in Fig. 27. Results for configurations of 

M = 2, 3,4, and 5 were plotted at ka = 0.4. After hyperparameters tuning, a large batch size of 

1024 is utilized for training the model to perform better. The absolute pressure amplitudes for 

M = 2, 3, 4, and 5 are 1.06, 1.10, 1.15, and 1.18, respectively. As the number of cylinders M  
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Fig. 26: Cumulative reward for M = 6 at ka ∈ [0.35, 0.45] 

 

Fig. 27: DDPG results for the absolute total pressure field with M = 2, 4,5,6 at 

ka = 0.40 
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increases, the DDPG produces sub-optimal solutions compared to fmincon, and the focusing 

effects become better. 

4.2.2. Higher Frequency Results for RL Model 

At higher frequencies, the DDPG model was trained for M = 2, 3, 4, 5, 6, 8, 10, 12, 14, 

and 16. It is easier for DDPG to optimize the design at higher frequencies. The number of 

scatterers used by RL is greater than that used by 2D-GLOnets at normalized wavenumbers 

ka ∈ [1.35, 1.45]. Fig. 28 shows the absolute pressure amplitude |p| and real part of the total 

pressure Re(p) for random (left), RL (middle), and fmincon (right) configuration for M = 14. 

The absolute total pressure amplitude |p| for RL, fmincon, and random at the focal point is 

|p| = 1.79, 1.85, and 0.26, respectively. It is observed that RL’s scatterers are located around 

the square geometric boundaries, i.e., x ∈ [−10, 10] and y ∈ [−10,10], whereas fmincon’s 

scatterers are more scattered within the boundaries. 

Fig. 29 depicts the training curve that consists of the absolute pressure absolute |p| v.s. 

number of epochs. |p| converges around 1.8. Fig. 30 shows the cumulative reward for M = 14 

at higher frequencies range. At the beginning of the training, adverse actions are taken, 

resulting in negative cumulative rewards. Afterwards, the cumulative reward per epoch gets 

positive and eventually oscillates around 5,000. 

Fig. 31 represents the RL optimized configurations for M = 6, 8, 12, and 14 at higher 

frequencies at ka ∈ [1.35, 1.45]. The absolute total pressure amplitude |p| at ka = 1.40 for M 

= 6, 8, 12, and 14 is |p| = 1.92, 1.93, 1.81, and 1.82, respectively. The focusing effects are  
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Fig. 28: Comparison of pressure fields between arbitrary random configuration 

(left column), RL (middle column), and fmincon (right column) at ka = 1.40. Real 

part of total pressure, Re(p), (top figures) and absolute pressure amplitude, |p|, 
(bottom figures) at normal plane wave incidence on configurations of M = 14 

rigid cylinders ka = 1.40. 

 

Fig. 29: DDPG training curve v.s. epochs for M = 14 at ka ∈ 

[1.35, 1.45] 
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Fig. 30: Cumulative reward v.s. epochs for M = 14 at ka ∈ 

[1.35, 1.45] 

 

Fig. 31: DDPG results for the total absolute pressure field for 

M = 6, 8, 12, 14 at ka = 1.40. 
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clearly noticed at the focal points. Intriguingly, with an increasing number of cylinders, it is 

ascertained that the cylinders are populated closer and closer to the geometric boundaries. 

4.2.3. Dependency of Absolute Pressure Amplitude on ka at a Range of Wavenumbers 

4.2.3.1 RL Low Frequency Analysis 

RL results are presented and compared to fmincon and non-optimized, i.e., random 

configuration. Fig. 32 shows the pressure amplitude at the focal point at the optimized region 

for low value of wavenumbers ka ∈ [0.35, 0.45]. The RL model has similar performance 

compared to fmincon. 

 

Fig. 32: The dependency of absolute pressure amplitude with normalized 

wavenumber ka at ka ∈ [0.35, 0.45]. Three configurations are considered: fmincon 

(red curve), RL (blue curve), and non-optimized (green curve). 
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Even though we are focused on the optimized region, i.e., ka ∈ [0.35, 0.45], Fig. 33 is 

shown to inspect the performance of the optimized design outside the optimized region. 

Using the optimized configurations taken from the optimized region, the RL (blue curve), 

fmincon (red curve), and non-optimized (green curve) results have similar performance at ka 

∈ (0,  0.2]. For M=2 and M=5 at roughly ka ∈ [0.6, 1.0], the non-optimized configurations 

perform better than RL and fmincon. Whereas, for M = 3 and M = 4, RL performs better 

than fmincon and non-optimized results at approximately ka ∈ [0.6, 1.0]. 

 

Fig. 33: The dependency of absolute pressure amplitude with normalized 

wavenumber ka at ka ∈ (0, 1.0], varying the numbers of scatterers M = 2, 3, 4, and 

M = 5. Three configurations are considered: fmincon (red curve), RL (blue curve), 

and non-optimized (green curve). The optimized region, i.e., ka ∈ [0.35, 0.45] is 

colored in pink. 
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4.2.3.2. RL High Frequency Analysis 

Fig. 34 presents the variation of absolute pressure amplitude at focal point |𝑝𝑓| with 

wavenumber ka at ka ∈ [1.35, 1.45]. In comparison to fmincon, RL model has better 

performance for M = 6 and M = 8, but underperforms for M = 12. For M = 14, RL 

underperforms fmincon solver at ka ∈ [1.37, 1.45], but outperforms fmincon at ka ∈ [1.35, 

1.37]. Based on the analysis, the DDPG model has the potential to surpass the performance 

of fmincon. 

 

Fig. 34: The dependency of absolute pressure amplitude with normalized 

wavenumber ka ∈ [1.35, 1.45] varying the numbers of scatterers M = 6, 8, 12, 

and M = 14. 

Fig. 35 shows the absolute pressure amplitude at the focal point |𝑝𝑓| with wavenumber ka 

at ka ∈ (0, 2] using the three configurations, i.e., fmincon (red curve), RL (blue curve), and  
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Fig. 35: The optimized region, i.e., ka ∈ [1.35, 1.45] is colored in pink. The 

dependency of absolute pressure amplitude with normalized wavenumber at ka 

∈ (0, 2.0] varying the numbers of scatterers M = 6, 8, 12, and M = 14. 

non-optimized (green curve) at the optimized region. For M = 6 and M = 8 at ka ∈ (0, 0.25], 

RL, fmincon, and non-optimized have similar performance. The behavior of the three results 

is a bit complicated roughly at ka ∈ [0.5, 1.35]. As M increases, the complexity of the 

behavior of RL, fmincon, and non-optimized cases increases. Notably, the RL model 

outperforms fmincon even outside the optimized region, especially at a higher value of 

wavenumbers ka ∈ [1.5, 2.0] for which the RL model has not been trained. 

4.3. Discussion for Reinforcement Learning (RL) Model 

We implemented RL model for inverse design of acoustic lens by means if MST. To 

perform proper comparison, the DDPG model and fmincon start from the same initial random 

configuration. Consequently, the comparison between the DDPG model and fmincon is 
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direct. The RL solution begins to converge when the number of episodes per epoch becomes 

large. The Julia-based DDPG model makes it possible to run much more episodes per epoch 

than the Python-Matlab model. The DDPG model may require up to weeks to train, 

especially when the number of scatterers becomes large. Therefore, it is more difficult for 

DDPG to achieve convergence rapidly. The important RL results are itemized as follows: 

– Due to the complexity of the problem, the reward function plays a critical role. Our 

current reward function is one of the simplest forms. It might be intriguing to see if a 

more sophisticated reward function would make the model more effective and require 

less number of episodes per epoch to obtain converged results. 

– At lower frequencies, it is observed that it is difficult to optimize the pressure 

amplitude because the variation of configurations is low due to having fewer maxima 

to explore compared to higher frequencies. Unlike the 2D-GLOnets results with a 

pattern of symmetry at ka ∈ [0.35, 0.45], as the number of scatterers increases, the 

optimized configuration becomes more and more asymmetrical, which signifies that it 

may begin to explore different optima. 

– The DDPG model can have more cylinders inside the geometric constraints at higher 

frequencies. Nevertheless, it is more computationally expensive compared to lower 

frequencies. With gradient information, the time it takes to converge would reduce 

[6]. 
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5. CONCLUSION 

It has been successfully demonstrated that the 2D-GLOnets and DDPG models can be 

used to design acoustic lenses. Results show that the 2D-GLOnets generate focusing effects 

with up to 12 cylinders at ka ∈ [0.35, 0.45] and ka ∈ [1.35, 1.45]. The optimized absolute 

pressure amplitude of the 2D-GLOnets converges successfully. Both models’ performances 

are validated by state-of-the-art GBO algorithms of the fmincon solver. Increasing the 

number of scatterers makes it challenging because the reparametrization consumes a great 

amount of memory for the acoustic lens design problem. With greater computational 

capabilities, the 2D-GLOnets may produce better the 2D-GLOnets may produce better results 

than state-of-the-art optimization algorithms. 

It is challenging to optimize the design with a lower number of scatterers. In terms of 

performance, the 2D-GLOnets provide robust optimization results. The lowest values of M 

for which 2D-GLOnets perform well at ka ∈ [0.35, 0.45] and ka ∈ [1.35, 1.45] are 2 and 4, 

respectively. The lowest value of M for which DDPG performs well at both frequency ranges 

is 2. 

It is computationally expensive to train the DDPG model, but it outperforms the most 

recent GBO algorithms and provides the means for optimal control of acoustic waves. In 

addition, DDPG allows more cylinders to be included within the geometric boundaries. 

Generally, focusing effects become more noticeable at higher wavenumbers, i.e., ka ∈ [1.35, 

1.45]. With the current computational resources, DDPG presents good results for M = 2 ∼ 6 

at ka ∈ [0.35, 0.45]. As for ka ∈ [1.35, 1.45], focusing effects are accomplished. That is to 
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say; the DDPG model has the potential to account for a much greater number of scatterers 

with more powerful computing capabilities. 
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6. FUTURE WORK 

– It will be intriguing to look into non-uniform configurations with different design 

parameters, such as material properties, scatterers’ radii, shell structures, etc. Non-

uniform configurations of scattering can enhance both DDPG and 2D-GLOnets by 

varying both radii and positions of the scatterers. 

– To speed up the computing time, we can consider using paid high-performance 

computing, such as AWS, Google Cloud, etc. This will allow more scatterers in 

the optimized configurations. 

– As a result of considering radii variance, the reparametrization scheme would not 

be necessary, allowing realistic designs with more scatterers in the low-frequency 

and high-frequency range. 

– Furthermore, we will adapt the idea of formulating a generative neural networks-

based optimization method utilizing a policy gradient update from Hooten et al. 

[118]. 

– Future work will focus on combining the DDPG model with the 2D-GLOnets to 

improve the performance. There will be additional studies on model-based RL 

models for the inverse design of acoustic metamaterials, which will be conducted 

elsewhere. 
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