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ABSTRACT

A lot of Machine Learning (ML) and Deep Learning (DL) research is of an
empirical nature. Nevertheless, statistical significance testing (SST) is still not
widely used. This endangers true progress, as seeming improvements over a
baseline might be statistical flukes, leading follow-up research astray while wasting
human and computational resources. Here, we provide an easy-to-use package
containing different significance tests and utility functions specifically tailored
towards research needs and usability.

1 INTRODUCTION

Deep Learning is a rapidly moving research field. Since its Cambrian explosion a decade ago, model
architectures such as the transformer (Vaswani et al., 2017) have caused a paradigm shift in the field
of Natural Language Processing (NLP), and most recently also in Computer Vision (CV; Dosovitskiy
et al., 2021). Unsurprisingly, a flurry of improvements has been proposed to enhance the original
design even further. Narang et al. (2021) try to replicate many of these results at a large scale, finding
that many of them do not improve consistently over the original model. Another very active area
of DL research lies in optimizers, where Adam (Kingma & Ba, 2015) is often seen as the de-facto
standard choice. Nonetheless, countless additions and alternatives have been put forth in this context,
with equally disappointing results when benchmarked on a large scale (Schmidt et al., 2020).

These two examples should not be considered outliers, but emblematic of a larger trend. Statistical
significance testing is one tool that can help to identify noteworthy contributions among the noise,
but remains underutilized in ML research, as exemplified by a recent meta-study in Neural Machine
Translation (Marie et al., 2021). We give two potential reasons for these phenomena: On the one hand,
significance testing still is not a standard part of the experimental workflow as in other empirical
disciplines, with little external incentive given to researchers to use it. Secondly, practitioners often
seem to shy away from statistical significance tests due to their (seeming) complexity, being afraid
to misuse them and thereby potentially weakening the cogency of their work. This paper tries to
mitigate the latter problem in order to tackle the former.

This work makes the following contributions:

• We describe an assumption-less and statistically powerful significance test recently proposed
in the NLP literature called Almost Stochastic Order (ASO; del Barrio et al., 2018b; Dror
et al., 2019) and re-implement it alongside other, general-purpose tests in an easy-to-use
open-source software package.1

• We include a comprehensive guide for the usage and underlying methods of the package,
explaining potential limits and pitfalls of the implemented methods.

• We evaluate the methods against other significance test and demonstrate themin a case study.

1https://github.com/Kaleidophon/deep-significance
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2 RELATED WORK

Studies of Current Trends in ML Besides the aforementioned examples of Narang et al. (2021);
Schmidt et al. (2020); Marie et al. (2021), other authors have noted problems with experimental
standards. Henderson et al. (2018); Agarwal et al. (2021) analyse problems with Reinforcement
Learning (RL) results. Gundersen & Kjensmo (2018) highlight problems with reproducibility and
replicability in AI research. Gehrmann et al. (2022) comprehensively discuss issues with Natural
Language Generation research, including statistical significance – something that Marie et al. (2021)
investigate for neural machine translation, specifically. Berg-Kirkpatrick et al. (2012) and Card et al.
(2020) investigate the limitations of p-values and statistical power in NLP.

Problems with comparing Neural Networks Several authors have characterized problems with
the direct comparisons of performance in neural network algorithms, mostly rooted in their stochastic
properties. Reimers & Gurevych (2018) postulate that single performance scores are insufficient to
draw conclusions about performance, due to the existence of local minima with different degrees
of generalization. A similar point is raised by Dehghani et al. (2021), who analyze the current state
of benchmarking and criticize that comparisons of single scores necessarily yield positive results
when experiments are repeated often enough. Bouthillier et al. (2021) identify the different sources
of randomness for an algorithm and show that varying as many sources as possible between runs
actually decreases the variance of the true performance estimate. Cooper et al. (2021) provide a
formal proof that random hyperparameter optimzation can shield against contradictory conclusions
about performance compared to grid search. Dodge et al. (2019) argue that performance scores
should not only be seen in isolation, but also be reported in relation to the used computational budget.

Proposing new methodologies for Experimental Analyses Dror et al. (2019) propose a new
statistical test to compare Deep Neural Networks, which is explained in detail in Section 4.1. Dror
et al. (2018) and Azer et al. (2020) enumerate several frequentist and Bayesian hypothesis tests,
with the latter providing implementations in a software package. Agarwal et al. (2021) provide
open-source code specifically tailored towards Reinforcement Learning. Wang & Li (2019) derive
Bayesian hypothesis tests for precision, recall and F1-score. Benavoli et al. (2017) provide a tutorial
for Bayesian analyses for ML as an alternative to statistical hypothesis testing, entirely.

3 NOMENCLATURE AND NOTATION

We first lay out some necessary notation and definitions to avoid confusion in the subsequent sections.
In experiments, we are often interested in determining whether a new algorithm A performs better
than some baseline algorithm B on some dataset D. We hereby utilize the following definitions:

Definition 1 (Learning Algorithm). We define an algorithm A to be the set of predictors {fθ}θ∈Θ

with a) the same parameterization θ ∈ Θ and b) the same optimization procedure.

Definition 2 (Observation). Let us define m : {fθ}θ∈Θ × D → R to be a function measuring the
performance of a predictor fθ on some dataset D ∈ D in form of a real number s ∈ R, called
observation or score. We will assume in the following that a higher number indicates a more desirable
behavior. Furthermore, let SA denote a set of observations obtained from different instances of the
algorithm A.

Ideally for Deep Neural Networks, obtaining a set of observations SA would ideally involve training
multiple instances of a network with the same architecture using different sets of hyperparameters and
random initializations. Since the former part often becomes computationally infeasible in practice,
we follow the advice of Bouthillier et al. (2021) and assume that it is obtained by fixing one set of
hyperparameters after a prior search and varying as many other random elements as possible.

4 STATISTICAL SIGNIFICANCE TESTING

Here, we only give a very brief introduction into statistical significance testing using p-values, and
refer the reader to resources such as Japkowicz & Shah (2011); Dror et al. (2018); Raschka (2018);
Azer et al. (2020); Dror et al. (2020); Riezler & Hagmann (2021) for a more comprehensive overview.

2



ML Evaluation Standards Workshop at ICLR 2022

Using the notation introduced in the previous section, we can define a one-sided test statistic δ(SA,SB)
based on the gathered observations. An example of such test statistics is for instance the difference in
observation means. We then formulate the following null-hypothesis:

H0 : δ(SA,SB) ≤ 0

That means that we actually assume the opposite of our desired case, namely that A is not better
than B, but equally as good or worse, as indicated by the value of the test statistic. Usually, the goal
becomes to reject this null hypothesis using the SST. p-value testing is a frequentist method in the
realm of SST. It introduces the notion of data that could have been observed if we were to repeat
our experiment again using the same conditions, which we will write with superscript rep in order to
distinguish them from our actually observed scores (Gelman et al., 2021). We then define the p-value
as the probability that, under the null hypothesis, the test statistic using replicated observation is
larger than or equal to the observed test statistic:

p(δ(Srep
A ,Srep

B ) ≥ δ(SA,SB)|H0)

We can interpret this expression as follows: Assuming that A is not better than B, the test assumes a
corresponding distribution of statistics that δ is drawn from. So how does the observed test statistic
δ(SA,SB) fit in here? This is what the p-value expresses: When the probability is high, δ(SA,SB) is
in line with what we expected under the null hypothesis, so we can not reject the null hypothesis, or
in other words, we cannot conclude A to be better than B. If the probability is low, that means that
the observed δ(S,SB) is quite unlikely under the null hypothesis and that the reverse case is more
likely – i.e. that it is likely larger than – and we conclude that A is indeed better than B. Note that the
p-value does not express whether the null hypothesis is true. To make our decision about whether
or not to reject the null hypothesis, we typically determine a threshold – the significance level α,
often set to 0.05 – that the p-value has to fall below. However, it has been argued that a better practice
involves reporting the p-value alongside the results without a pidgeonholing of results into significant
and non-significant (Wasserstein et al., 2019). The intuition of a p-value is summarized below:

Summary 1 (p-values). Assuming the null-hypothesis to be true, how likely is a test statistic
at least as extreme as observed?

4.1 ALMOST STOCHASTIC ORDER

Deep neural networks are known to be highly non-linear models (Li et al., 2018), having their
performance depend to a large extent on the choice of hyperparameters, random seeds and other
(stochastic) factors (Bouthillier et al., 2021). This makes comparisons between algorithms more
difficult, as illustrated by the motivating example below by Dror et al. (2019):

Example 1 (Part-of-Speech tagging). Consider the re-
sults for a PoS-tagging task (assigning categories like
verb or noun to words) given in the table on the right,
taken over 3898 and 1822 observations using different
hyperparameter configurations and random seeds, re-
spectively. Using the Adam optimizer (Kingma & Ba,
2015) for a model gives a higher average word-level ac-
curacy than using RMSprop (Tieleman & Hinton, 2012),
however the median score favors the latter. Furthermore,
the minimum result across a few runs favor Adam, but
the maximum score is higher for RMSprop. So, which
algorithm do we consider to be better?

Adam RMSprop

Mean 0.9224 0.9190

Std. dev. 0.0604 0.0920

Median 0.9319 0.9349

Min. 0.1746 0.1420

Max. 0.9556 0.9573

Therefore, Dror et al. (2019) propose Almost Stochastic Order for Deep Learning models based on
the work by del Barrio et al. (2018b). It is based on a relaxation of the concept of stochastic order by
Lehmann (1955): A random variable XA is defined to be stochastically larger than XB (denoted

3
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(a) Stochastic order with red � green. (b) Almost stochastic order, with blue % green.

Figure 1: Examples for stochastic order (a) and almost stochastic order (b), illustrated using the
CDFs of two normal random variables. Because stochastic order is too strict to be practical, almost
stochastic order allows for some degree of violation of the order (red area in (b)).

XA � XB) if ∀x : F (x) ≤ G(x), where F and G denote the cumulative distribution functions
(CMF) of the two random variables. The CDF is defined as F (t) = p(X ≤ t), while the empirical
CDF given a sample {x1, . . . , xn} is defined as

Fn(t) =
1

n

n∑
i=1

1(xi ≤ t)

with 1(·) being the indicator function. In practice, since we do not know the real score distributions
p(XA) and p(XB), we cannot use the precise CDFs in subsequent calculations, and we rely on the
empirical CDFs Fn and Gm. A case of stochastic order is illustrated in Figure 1a, using the CDFs of
two normal distributions. However, in cases such Figure 1b we would still like to declare one of the
algorithms superior, even though the stochastic order of the underlying CDFs is partially violated.
Several ways to quantify the violation of stochastic dominance exist (Álvarez-Esteban et al., 2017;
del Barrio et al., 2018a), but here we elaborate on the optimal transport approach by del Barrio et al.
(2018b). They propose a the following expression quantifying the distance of each random variables
from being stochastically larger than the other:

εW2
(F,G) =

∫
VX

(F−1(t)−G−1(t))2dt

(W2(F,G))2
(1)

with the violation ratio εW2
(F,G) ∈ [0, 1] and a violation set VX =

{
t ∈ (0, 1) : F−1(t) <

G−1(t)
}

, i.e. where the stochastic order is being violated. Equation (1) contains the following
components: Firstly, the quantile functions F−1(t) and G−1(t) associated with the correspondng
CDFs:

F−1(t) = inf
{
x : t ≤ F (x)

}
, t ∈ (0, 1)

The quantile functions allow us to define stochastic order via X � Y ⇐⇒ ∀t ∈ (0, 1) : F−1(t) ≥
G−1(t). Secondly, the univariate l2-Wasserstein distance:

W2(F,G) =

√∫ 1

0

(
F−1(t)−G−1(t)

)2
dt (2)

Finally, del Barrio et al. (2018b); Dror et al. (2019) define a hypothesis test based on this quantity by
formulating the following hypotheses:

H0 : εW2(F,G) ≥ τ
H1 : εW2

(F,G) < τ

4
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for a pre-defined threshold τ > 0, for instance 0.5 or lower (see discussion in Appendix B.1 about the
choice of threshold). Further, Álvarez-Esteban et al. (2017); Dror et al. (2019) produce a frequentist
upper bound to this quantity, defining the minimal εW2 for which we can reject the null hypothesis
with a confidence of 1− α as

εmin(Fn, Gm, α) = εW2
(Fn, Gm)−

√
n+m

nm
σ̂n,mΦ−1(α) (3)

The variance term σ̂n,m is estimated using bootstrapping, with F ∗n and G∗m denoting empirical CDFs
based on sets of scores resampled from original sets of model scores, similar to re-sampling procedure
in other tests like the bootstrap (Efron & Tibshirani, 1994) or permutation-randomization test (Noreen,
1989):

σ̂2
n,m = Var

[√
mn

n+m

(
εW2

(F ∗n , G
∗
m)− εW2

(Fn, Gm)
)]

(4)

Thus, if εmin(Fn, Gm, α) < τ , we can reject the null hypothesis and claim that algorithm A is better
than B, with a growing discrepancy in performance the smaller the value becomes. This enables us to
pose the following kind of hypotheses:

Summary 2 (Almost Stochastic Order). Given the observed scores and a confidence of 1−α,
what is the expected upper bound to the violation ratio of algorithm’s A empirical CDF over
B’s?

5 EXPERIMENTAL COMPARISON WITH OTHER TESTS

Figure 2: Plot of distributions used for
Type I and Type II error tests.

We compare ASO to established significance tests such as
the Student’s t, the bootstrap (Efron & Tibshirani, 1994),
permutation-randomization test (Noreen, 1989) along with
the Wilcoxon signed-rank (Wilcoxon, 1992) and Mann-
Whitney U test (Mann & Whitney, 1947) on different
types of distributions, which are plotted in Figure 2. We
plot the Type I error rate per 500 simulations for ASO
and 1000 simulations for the other tests as a function of
sample size in Figure 3, where we sample both sets of
observation from the same distribution. For Figure 3a, we
sample fromN (0, 1.52) and try a bimodal normal mixture
in Figure 3b (using the same parameter for the second
component, and N (−0.5, 0.252) with mixture weights
π1 = 0.75 and π2 = 0.25). To also test the behavior of
tests on non-normal distributions, we also sample from a
Laplace(0, 1.52) distribution in Figure 3c, which posseses
a different behavior around the main, as well as the Rayleigh distribution with Rayleigh(1) in
Figure 3d, which has a heavy tail.

We can see that ASO performs either en par or better than other tests in all scenarios, achieving lower
error rates the more samples are available, while other tests score around the expected type I error
of 5%. In Appendix B, Type II error experiments reveal that the test produces comparatively higher
error rates for ASO, though. This can be explained by the fact that we use the upper bound εmin
instead of εW2

to evaluate the null hypothesis, which makes the test act more conservatively. We
also find in Appendix B that a decision threshold of τ = 0.2 strikes an acceptable balance between
Type I and II error rates across different scenarios. Overall, we argue that a lower Type I error is
more advantageous in the context of empirical research, and that a decreasing error rate w.r.t. higher
sample sizes constitutes an appealing property when used on arbitrary distributions.

5
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(a) Rates for normal samples. (b) Rates for normal mixture samples.

(c) Rates for Laplace samples. (d) Rates for Rayleigh samples.

Figure 3: Comparing type I error rates for different tests and distributions as a function of sample
size. Decisions are made using a confidence threshold of α = 0.05 and τ = 0.2 for εmin.

In these experiments, the score distributions were determined a priori in order to create rigid
experimental conditions. Naturally, a practitioner would not know these distribution in a usual setting,
which is why we illustrate the usage of the package the next section.

6 PACKAGE CONTENTS & EXAMPLES

deep-significance

Almost Stochastic Order (ASO)

ASO Significance test: aso()

ASO for > 3 sets of scores: multi_aso()

Determining Sample Size

For ASO: aso_uncertainty_reduction()

Bootstrap Power Analysis: bootstrap_power_analysis()

Classical Significance tests

Bootstrap Test: bootstrap_test()

Permutation Test: permutation_test()

Bonferroni Correction: bonferroni_correction()

Figure 4: Overview over package contents of
deep-significance v1.2.5.

Figure 4 lists the three main groups contents
in the package. For one, the package imple-
ments some common significance tests, such
as the permutation-randomization test (Noreen,
1989) and the bootstrap test (Efron & Tibshirani,
1994), as well as function to perform the Bonfer-
roni correction (Bonferroni, 1936) for multiple
comparisons. These tests where chosen because
they do not come with any assumptions about
the distribution on samples – which also implies
low statistical power.

Another part of the package is dedicated
to determining the right sample size –
aso_uncertainty_reduction() deter-
mine the factor by which the uncertainty about
the estimate of εW2

(F,G) is reduced by increas-
ing the size of either sample of scores. Another, more general approach is Bootstrap Power Analysis

6
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(Yuan & Hayashi, 2003; Henderson et al., 2018): Each score in the sample is given an equal lift by
a constant factor, creating a second, artificial sample. Then, a significance test is run repeatedly on
bootstrapped versions of both samples, the percentage of resulting p-values under a given threshold is
recorded. Ideally, this should result in large number of significant differences induced by the lift –
if not, this can be indicate a too high of a variance in the original set of scores. Lastly, the package
implements the ASO test from Section 4.1, with more details described in Appendix A.

Quality-of-Life features To increase ease of use, the package comes with the following features:
Scores can be supplied in the most common data types, including Python lists, NumPy (Harris et al.,
2020) and JAX arrays (Bradbury et al., 2018), as well as PyTorch (Paszke et al., 2017) and Tensorflow
tensors (Abadi et al., 2015). To decrease the waiting time for results, the number of processes can be
increases using the num_jobs argument. Furthermore, for comparing more than two samples at
once, multi_aso() can be used, which outputs the results in a tabular structure2 and automatically
applies the Bonferroni correction by default. All stochastic functions support seeding for replicability.

Choice of Test All packaged tests come with weak or no assumption about the score distribution.
If the distribution is known, an appropriate parametric test should always be preferred. The bootstrap
and permutation test can be used if p-values are desired, with the former possessing a higher statistical
power. In cases with unusual or unknown score distributions, we recommend ASO, since the only
assumptions it makes are that the true CDFs F and G have bounded convex support and their
underlying PDFs to have finite second order moments.

6.1 CASE STUDY – DEEP Q-LEARNING

In order to demonstrate the intended use of the package, we showcase its use in a case study, based
on the simple Reinforcement Learning described below. Here, reward distributions are usually not
normal, and therefore provide an ideal testbed. All used code is available in the repository.3

Example 2 (Cart Pole Problem; Barto et al., 1983). In
the cart pole problem, a reinforcement learning agent’s
goal is to balance the eponymous pole on a cart that is
only allowed to move in a horizontal direction. When
the pole falls over, the episode ends. A reward of +1
is awarded for every time step during which the pole
remains upright. Cart Pole environment by

Brockman et al. (2016).

We tackle the problem above with a classic Deep Reinforcement Learning approach, namely Deep
Q-Learning (Mnih et al., 2015). Deep Q-Learning tries to approximate the optimal action-value
function defined as

Q∗(s, a) = max
π

E
[
rt + γrt+1 + γ2rt+2 + . . .

∣∣st = s, at = a, π
]

The definition above reads as follow: The optimal action-value function is the policy π that maxi-
mizes the future reward rt at a state st by performing an action at, with subsequent rewards being
increasingly discounted by a factor γ. The model weights are updated using the following l2 loss:

L(θ) = E(s,a,r,s′)∼U(Buffer)

[(
r + max

a′
Q(s′, a′; θtarget)−Q(s, a; θ)

)2
]

2Including the option of returning the results in a pandas DataFrame (Wes McKinney, 2010; Pandas
Development Team, 2020), which itself can easily be converted into a LATEX table.

3https://github.com/Kaleidophon/deep-significance/blob/paper/paper/
deep-significance
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Two aspects of this loss function are especially noteworthy: First of all, since we do not know the true
value of the Q-function in most cases, the predicted value Q(s, a; θ) is compared against the reward
plus outcome of the greedy action chosen by a target network: To avoid having to “hit a moving
target” (Van Hasselt et al., 2018), the target network is only updated every couple of training steps by
copying the main networks parameters. Secondly, the state, action and reward used to compute the
loss are not the ones just observed by the model, but instead are uniformly sampled from a replay
buffer, a sort of memory that past experiences gets added to during training.

In our example, we investigate how the update frequency of the target network affects the mean of
the rewards obtained during training. First, we train five models with an update frequency of 10 and
20 steps each, and store the results. But how do we know that we collected enough scores to make a
meaningful comparison? The package supplies two functions for this purpose, the first of which is an
implementation of bootstrap power analysis (Yuan & Hayashi, 2003) shown below:

from deepsig import bootstrap_power_analysis

bootstrap_power_analysis(reward_dist_freq_10, num_jobs=4) # Results for
10 steps, gives 0.6594↪→

bootstrap_power_analysis(reward_dist_freq_20, num_jobs=4) # Results for
20 steps, gives 0.5616↪→

These scores have a direct statistical interpretation, since they signify the statistical power. The
higher the statistical power, the lower the probability of a Type II error or false negative. A common
rule of thumb is to thrive for a power of around 0.8, and we might therefore want to collect more
samples here. For instance, we could decide to collect 10 or 15 samples in total. In case we are using
the ASO test, the second function can help with this decision:

from deepsig import aso_uncertainty_reduction

aso_uncertainty_reduction(m_old=5, n_old=5, m_new=10, n_new=10) # 1.414
aso_uncertainty_reduction(m_old=5, n_old=5, m_new=15, n_new=15) # 1.732

Since ASO only computes the “true” εmin value in the limit of infinitely large samples, the estimate
obtained using bootstrapping has some inherent variance, which can be reduced by adding more
scores to the sample. The function above computes the factor by which the uncertainty in the test
result is being reduced. We can thus read the above as adding five more samples reducing the
uncertainty by a factor of 1.41, while adding ten more sample only reduces it by 1.73. To strike a
compromise with our computational budget, we decide to only add five more samples each and run
two of the implemented tests:

from deepsig import aso, bootstrap_test

aso(rewards_freq_10, rewards_freq_20, num_jobs=4) # 0.02
bootstrap_test(rewards_freq_10, rewards_freq_20, num_jobs=4) # 0.005

Figure 5: Results of demo.

These results suggest that an update frequency of 10 works
is superior. Lastly, we can easily facilitate comparisons be-
tween multiple models using the multi_aso() function
below. By supplying scores in dictionary form and specify-
ing return_df=True, the results will be returned in an
easily readable pandas DataFrame. Furthermore, the
Bonferroni correction (Bonferroni, 1936) is being applied
automatically to avoid the multiple comparisons problem.

res_df = multi_aso(
{

"update freq = 10": reward_dist_freq_10,
"update freq = 20": reward_dist_freq_20,
"discount factor = 0.6": reward_dist_discount_06

},
num_jobs=4, return_df=True

)

8
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Overall, the results in the demonstration shown in Figure 5 that an update frequency of ten steps
performed best, and that using a lower discount factor produced worse results.

7 DISCUSSION

The previous sections have demonstrated the advantages of the implemented tests in an neural network
setting. Furthermore, the package implements other useful functions that can be used to evaluate
experimental settings. Nevertheless, using these techniques in practice comes with limitations as
well, which the end user should be aware of.

The first line of limits comes with ASO itself. Multiple steps of the procedure require different kinds
of approximations or properties that are only guaranteed to hold in the infinite-sample limit , e.g.
Equation (4). Furthermore, significance tests in general are known to sometimes provide unreliable
results with small (Reimers & Gurevych, 2018) or very large sample sizes (Lin et al., 2013), are prone
to misinterpretation (Gibson, 2021; Greenland et al., 2016), and encourages binary significant / non-
significant thinking (Wasserstein et al., 2019; Azer et al., 2020). An attractive alternative to statistical
hypothesis testing therefore comes in the form of Bayesian analysis (Kruschke, 2013; Benavoli
et al., 2017; Gelman et al., 2021), where the user draws conclusions from posterior distributions over
quantities of interest. A potential drawback of this methodology is that it often comes at the cost
of having to use Markov Chain Monte Carlo methods, and requiring experience from the user with
checking convergence and defining appropriate models and model priors.

8 CONCLUSION

This work has presented an open-source software package implementing several useful tools to
evaluate experimental results for Deep Neural Networks, including the ASO test by del Barrio et al.
(2018b); Dror et al. (2019). We demonstrated their usefulness in a case study and discussed potential
shortcomings and pitfalls. We see this package as a valuable contribution to improve experimental
rigour in Machine Learning, while maintaining accessibility and ease of use. Future work could for
instance derive more robust estimations of the violation ratio for small sample sizes, or come up with
reliable and general Bayesian tests to evaluate experiments.
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A IMPLEMENTATION DETAILS

The full algorithm to compute the εmin score is given in Algorithm 1, and will now be explained in
full detail. We show how the violation ratio in Equation (1) can be compute in Python:

def compute_violation_ratio(scores_a: np.array, scores_b: np.array, dt:
float) -> float:↪→
quantile_func_a = get_quantile_function(scores_a)
quantile_func_b = get_quantile_function(scores_b)

t = np.arange(dt, 1, dt) # Points we integrate over
f = quantile_func_a(t) # F-1(t)
g = quantile_func_b(t) # G-1(t)
diff = g - f
squared_wasserstein_dist = np.sum(diff ** 2 * dt)
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Algorithm 1: Almost Stochastic Order (ASO) Significance Test
Data: Sets of observations SA and SB, integration interval ∆t, number of bootstrap iterations B,

desired confidence level 1− α.
Result: Upper bound to violation ration εmin.

εW2
(Fn, Gm) = compute_violation_ratio(SA, SA, ∆t)

// Bootstrapping
for i ∈ 0, . . . , B do

S∗A = bootstrap_sample(SA)
S∗B = bootstrap_sample(SB)

// Store value below in list
ε∗W2

(Fn, Gm) = compute_violation_ratio(S∗A, S∗A, ∆t)
end

// Compute value below based on variance of all the ε∗W2
in list

σ̂2
n,m = Var

[√
mn
n+m

(
εW2

(F ∗n , G
∗
m)− εW2

(Fn, Gm)
)]

εmin(Fn, Gm, α) = εW2(Fn, Gm)−
√

n+m
nm σ̂n,mΦ−1(α)

# Now only consider points where stochastic order is being violated
and set the rest to 0↪→

diff[f >= g] = 0
int_violation_set = np.sum(diff[1:] ** 2 * dt) # Ignore t = 0 since

t in (0, 1)↪→

violation_ratio = int_violation_set / squared_wasserstein_dist

return violation_ratio

We can see that the integration over the violation set VX in Equation (1) is being performed by
masking out values for which the stochastic order is honored (i.e. where F−1

n (t) ≥ G−1
n (t). Com-

puting the violation ratio involves building the empirical inverse cumulative distribution function or
empircial quantile function, the same method as in Dror et al. (2019) is used, with the corresponding
Python code given below:

def get_quantile_function(scores: np.array) -> Callable:
def _quantile_function(p: float) -> float:

cdf = np.sort(scores)
num = len(scores)
index = int(np.ceil(num * p))

return cdf[np.clip(index - 1, 0, num - 1))]

return np.vectorize(_quantile_function)

This function is also used inside the bootstrap sampling procedure, the last missing part of the
implementation. We again follow the implementation by Dror et al. (2019) and employ the inverse
transform sampling procedure, in which we draw p ∼ U [0, 1] and run it through a quantile function
to create a sample.
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(a) Dists. for normal samples. (b) Dists. for normal mixture samples.

(c) Dists. for Laplace samples. (d) Dists. for Rayleigh samples.

Figure 6: Comparing test score distributions for different tests and distributions as a function of
sample size.

B EXPERIMENTAL APPENDIX

B.1 ADDITIONAL ERROR RATE EXPERIMENTS

We use this section to further shed light on the results in Figure 3.

Test score distributions Instead of showing the Type I error rates based on thresholded test results,
we instead plot the distributions over test scores in Figure 6. We can observe that the lower ends of
the interquartile range of εmin distributions are either the same or higher than the ones for p-values
(they do not need to be centered around 0.5 since εmin is an upper bound to εW2

), explaining the
lower Type I error rate.

Type II error rate experiments We furthermore test the Type II error rates on samples from
different distributions in Figure 7, sampling the score samples 500 times for ASO and 1000 times
for the other tests from N (0.5, 1.52) and N (0, 1.52),4 respectively, for a p-value threshold of 0.05
and εmin threshold of 0.2. We see that the Type II error rate decreases with increasing sample size
(Figures 7a and 7c), but is less sensitive for increasing mean difference than other tests (Figures 7b
and 7d). Generally, we can observe the behavior to be very similar to Student’s t and Mann-Whitney
U test.

Error rates by rejection threshold Lastly, we report the Type I and II error rates on the tested
distributions using different Type I / II error rates. In Tables 1, 4, 7 and 8, we see that ASO achieves
lower error rates than other tests in almost all scenarios when faced with the fame threshold. Naturally,

4For the normal mixture, only the second mixture component is varied.
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(a) Type II error as a function of sample size. (b) Type II error rate as a function of mean difference.

(c) Type II error as a function of sample size. (d) Type II error rate as a function of mean difference.

Figure 7: Measuring the Type II error rate of the considered tests on normal and normal mixture
distributions as a function of sample size Figures 7a and 7c and mean differences Figures 7b and 7d.

these thresholds cannot be interpreted the same for ASO and the other significance tests. Nevertheless,
we can see that a threshold of τ = 0.2 seems to roughly correspond to a p-value threshold of 0.05 in
terms of Type I error rate. Type II error rates are given in Tables 2, 3, 5 and 6. Here the difference
between ASO and the other tests is not quite as pronounced, however, it always incurs higher error
rates.
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Table 1: Type I error rates for samples drawn from a normal distribution as a function of sample size
and different rejection thresholds.

Sample Size Threshold ASO Student’s t Bootstrap Permutation Wilcoxon Mann-Whitney U

5 0.05 0.02 0.048 0.085 0.029 0.029 0.056
0.10 0.034 0.093 0.149 0.079 0.088 0.085
0.20 0.06 0.212 0.241 0.197 0.16 0.159
0.30 0.094 0.299 0.322 0.286 0.236 0.284
0.40 0.146 0.396 0.403 0.37 0.315 0.348
0.50 0.216 0.483 0.483 0.468 0.49 0.498

10 0.05 0.004 0.055 0.077 0.058 0.051 0.048
0.10 0.014 0.103 0.13 0.11 0.113 0.1
0.20 0.038 0.196 0.215 0.201 0.192 0.194
0.30 0.084 0.282 0.3 0.285 0.261 0.272
0.40 0.138 0.394 0.398 0.395 0.387 0.378
0.50 0.204 0.49 0.486 0.491 0.499 0.479

15 0.05 0.002 0.059 0.072 0.057 0.051 0.052
0.10 0.014 0.106 0.123 0.104 0.095 0.113
0.20 0.042 0.198 0.215 0.199 0.186 0.196
0.30 0.08 0.303 0.309 0.303 0.295 0.304
0.40 0.136 0.395 0.4 0.392 0.371 0.368
0.50 0.19 0.482 0.485 0.479 0.47 0.468

20 0.05 0.004 0.046 0.058 0.047 0.043 0.047
0.10 0.006 0.095 0.105 0.093 0.085 0.092
0.20 0.028 0.181 0.196 0.177 0.171 0.183
0.30 0.074 0.28 0.29 0.289 0.284 0.273
0.40 0.12 0.384 0.389 0.381 0.372 0.394
0.50 0.17 0.479 0.478 0.473 0.477 0.481

Table 2: Type II error rates for samples drawn from two different normal distributions as a function
of sample size and different rejection thresholds.

Sample Size Threshold ASO Student’s t Bootstrap Permutation Wilcoxon Mann-Whitney U

5 0.05 0.942 0.883 0.796 0.918 0.925 0.875
0.10 0.916 0.786 0.714 0.802 0.792 0.819
0.20 0.87 0.623 0.585 0.649 0.691 0.694
0.30 0.792 0.512 0.48 0.521 0.597 0.539
0.40 0.714 0.399 0.39 0.421 0.498 0.47
0.50 0.65 0.302 0.315 0.318 0.387 0.391

10 0.05 0.978 0.836 0.791 0.853 0.864 0.84
0.10 0.95 0.73 0.695 0.737 0.743 0.741
0.20 0.868 0.58 0.551 0.58 0.595 0.576
0.30 0.802 0.428 0.41 0.429 0.462 0.453
0.40 0.708 0.33 0.328 0.327 0.347 0.329
0.50 0.604 0.223 0.223 0.229 0.272 0.251

15 0.05 0.984 0.769 0.734 0.781 0.788 0.787
0.10 0.95 0.643 0.615 0.646 0.672 0.639
0.20 0.84 0.47 0.455 0.48 0.493 0.481
0.30 0.716 0.348 0.34 0.35 0.355 0.365
0.40 0.61 0.244 0.245 0.246 0.276 0.261
0.50 0.486 0.177 0.176 0.175 0.185 0.192

20 0.05 0.976 0.732 0.709 0.736 0.75 0.747
0.10 0.946 0.601 0.586 0.601 0.614 0.61
0.20 0.848 0.406 0.396 0.41 0.421 0.41
0.30 0.704 0.277 0.268 0.272 0.299 0.289
0.40 0.58 0.2 0.201 0.198 0.221 0.206
0.50 0.444 0.144 0.144 0.147 0.156 0.152
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Table 3: Type II error rates for samples drawn from a normal distribution as a function of mean
difference and different rejection thresholds.

Difference Treshold ASO Student’s t Bootstrap Permutation Wilcoxon Mann-Whitney U

0.25 0.05 0.984 0.925 0.857 0.941 0.945 0.93
0.10 0.954 0.846 0.781 0.859 0.844 0.881
0.20 0.914 0.705 0.659 0.721 0.761 0.768
0.30 0.872 0.585 0.554 0.606 0.68 0.622
0.40 0.8 0.482 0.462 0.489 0.594 0.548
0.50 0.714 0.381 0.387 0.394 0.48 0.465

0.50 0.05 0.966 0.888 0.805 0.918 0.92 0.883
0.10 0.932 0.784 0.7 0.811 0.794 0.83
0.20 0.87 0.616 0.57 0.652 0.696 0.698
0.30 0.812 0.5 0.477 0.523 0.602 0.535
0.40 0.722 0.406 0.397 0.426 0.505 0.466
0.50 0.606 0.313 0.315 0.326 0.411 0.401

0.75 0.05 0.934 0.822 0.707 0.883 0.885 0.822
0.10 0.896 0.699 0.61 0.725 0.71 0.764
0.20 0.798 0.514 0.469 0.561 0.599 0.607
0.30 0.702 0.407 0.37 0.421 0.515 0.455
0.40 0.59 0.308 0.3 0.325 0.406 0.375
0.50 0.482 0.223 0.222 0.237 0.303 0.295

1.00 0.05 0.87 0.739 0.609 0.85 0.85 0.743
0.10 0.796 0.585 0.488 0.678 0.655 0.659
0.20 0.712 0.386 0.327 0.449 0.497 0.487
0.30 0.58 0.257 0.232 0.289 0.388 0.307
0.40 0.504 0.178 0.17 0.194 0.278 0.229
0.50 0.384 0.115 0.115 0.128 0.189 0.176

Table 4: Type I error rates for samples drawn from a normal mixture distribution as a function of
sample size and different rejection thresholds.

Sample Size Threshold ASO Student’s t Bootstrap Permutation Wilcoxon Mann-Whitney U

5 0.05 0.0 0.0 0.012 0.028 0.026 0.003
0.10 0.0 0.013 0.035 0.079 0.085 0.004
0.20 0.0 0.069 0.104 0.179 0.153 0.049
0.30 0.008 0.169 0.213 0.281 0.208 0.16
0.40 0.024 0.338 0.358 0.363 0.305 0.244
0.50 0.058 0.494 0.493 0.483 0.484 0.478

10 0.05 0.0 0.007 0.018 0.059 0.049 0.011
0.10 0.0 0.031 0.05 0.11 0.109 0.03
0.20 0.004 0.102 0.121 0.205 0.188 0.109
0.30 0.008 0.221 0.229 0.302 0.273 0.211
0.40 0.034 0.347 0.349 0.398 0.379 0.351
0.50 0.07 0.511 0.515 0.506 0.491 0.495

15 0.05 0.0 0.006 0.007 0.055 0.048 0.004
0.10 0.0 0.022 0.033 0.106 0.097 0.017
0.20 0.002 0.103 0.118 0.194 0.202 0.095
0.30 0.006 0.215 0.22 0.301 0.308 0.208
0.40 0.028 0.356 0.366 0.415 0.404 0.328
0.50 0.082 0.501 0.499 0.496 0.502 0.501

20 0.05 0.0 0.006 0.007 0.048 0.045 0.005
0.10 0.0 0.019 0.027 0.088 0.085 0.021
0.20 0.0 0.104 0.109 0.2 0.187 0.097
0.30 0.006 0.214 0.218 0.307 0.289 0.221
0.40 0.032 0.363 0.369 0.412 0.39 0.349
0.50 0.082 0.494 0.495 0.492 0.496 0.485
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Table 5: Type II error rates for samples drawn from two normal mixture distribution as a function of
sample size and different rejection thresholds.

Sample Size Threshold ASO Student’s t Bootstrap Permutation Wilcoxon Mann-Whitney U

5 0.05 1.0 0.999 0.964 0.892 0.897 0.995
0.10 1.0 0.962 0.874 0.728 0.697 0.985
0.20 0.994 0.747 0.64 0.474 0.525 0.87
0.30 0.976 0.476 0.422 0.299 0.426 0.579
0.40 0.896 0.252 0.234 0.206 0.326 0.414
0.50 0.748 0.117 0.118 0.122 0.222 0.28

10 0.05 1.0 0.908 0.831 0.552 0.635 0.926
0.10 0.996 0.721 0.641 0.354 0.419 0.73
0.20 0.954 0.39 0.354 0.186 0.247 0.407
0.30 0.828 0.191 0.18 0.108 0.156 0.219
0.40 0.642 0.089 0.087 0.068 0.089 0.107
0.50 0.452 0.034 0.031 0.037 0.056 0.052

15 0.05 0.996 0.829 0.757 0.352 0.441 0.864
0.10 0.99 0.568 0.517 0.213 0.272 0.628
0.20 0.928 0.251 0.234 0.087 0.129 0.298
0.30 0.774 0.099 0.091 0.033 0.058 0.116
0.40 0.498 0.027 0.026 0.019 0.034 0.044
0.50 0.276 0.009 0.01 0.01 0.013 0.014

20 0.05 1.0 0.653 0.58 0.204 0.279 0.666
0.10 0.98 0.359 0.333 0.105 0.162 0.392
0.20 0.848 0.107 0.101 0.035 0.064 0.147
0.30 0.586 0.038 0.035 0.013 0.022 0.047
0.40 0.344 0.01 0.01 0.008 0.013 0.017
0.50 0.13 0.003 0.003 0.004 0.006 0.006

Table 6: Type II error rates for samples drawn from two normal mixture distribution as a function of
mean difference between two of the mixture components and different rejection thresholds.

ASO Student’s t Bootstrap Permutation Wilcoxon Mann-Whitney U
diff threshold

0.25 0.05 1.0 0.997 0.988 0.958 0.962 0.998
0.10 0.998 0.988 0.96 0.894 0.882 0.994
0.20 0.996 0.903 0.856 0.754 0.792 0.945
0.30 0.978 0.762 0.727 0.643 0.724 0.814
0.40 0.94 0.594 0.576 0.53 0.621 0.704
0.50 0.886 0.424 0.424 0.444 0.532 0.563

0.50 0.05 0.998 0.999 0.98 0.931 0.932 0.996
0.10 0.998 0.978 0.931 0.82 0.802 0.99
0.20 0.996 0.849 0.775 0.647 0.695 0.905
0.30 0.976 0.659 0.603 0.511 0.611 0.724
0.40 0.928 0.458 0.438 0.407 0.504 0.577
0.50 0.84 0.284 0.287 0.31 0.395 0.449

0.75 0.05 1.0 0.997 0.966 0.912 0.915 0.993
0.10 0.998 0.966 0.901 0.769 0.746 0.985
0.20 0.994 0.802 0.707 0.553 0.623 0.886
0.30 0.974 0.547 0.497 0.397 0.516 0.651
0.40 0.922 0.355 0.337 0.286 0.407 0.485
0.50 0.824 0.191 0.191 0.198 0.305 0.363

1.00 0.05 1.0 1.0 0.961 0.89 0.894 0.995
0.10 1.0 0.958 0.868 0.714 0.682 0.989
0.20 0.996 0.715 0.617 0.445 0.505 0.872
0.30 0.962 0.432 0.38 0.291 0.419 0.545
0.40 0.87 0.253 0.235 0.204 0.308 0.408
0.50 0.702 0.12 0.12 0.132 0.208 0.263
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Table 7: Type I error rates for samples drawn from a Laplace distribution as a function of sample size
and different rejection thresholds.

Sample Size Threshold ASO Student’s t Bootstrap Permutation Wilcoxon Mann-Whitney U

5 0.05 0.022 0.053 0.11 0.048 0.046 0.066
0.10 0.038 0.117 0.164 0.106 0.116 0.097
0.20 0.088 0.223 0.261 0.208 0.187 0.169
0.30 0.124 0.319 0.343 0.295 0.234 0.286
0.40 0.154 0.427 0.445 0.398 0.322 0.379
0.50 0.218 0.509 0.51 0.491 0.506 0.508

10 0.05 0.004 0.059 0.077 0.06 0.046 0.051
0.10 0.012 0.114 0.142 0.111 0.106 0.098
0.20 0.056 0.218 0.236 0.216 0.202 0.199
0.30 0.104 0.314 0.33 0.318 0.29 0.291
0.40 0.164 0.404 0.407 0.398 0.378 0.4
0.50 0.238 0.475 0.475 0.473 0.481 0.486

15 0.05 0.0 0.052 0.066 0.048 0.048 0.048
0.10 0.012 0.1 0.117 0.103 0.1 0.101
0.20 0.028 0.204 0.22 0.199 0.199 0.187
0.30 0.07 0.311 0.319 0.303 0.296 0.294
0.40 0.12 0.404 0.409 0.402 0.378 0.394
0.50 0.194 0.51 0.514 0.511 0.504 0.519

20 0.05 0.004 0.044 0.047 0.048 0.057 0.052
0.10 0.01 0.099 0.113 0.104 0.103 0.101
0.20 0.03 0.214 0.232 0.215 0.199 0.202
0.30 0.064 0.312 0.325 0.308 0.297 0.307
0.40 0.138 0.414 0.413 0.415 0.381 0.405
0.50 0.22 0.507 0.505 0.501 0.485 0.496

Table 8: Type I error rates for samples drawn from a Rayleigh distribution as a function of sample
size and different rejection thresholds.

Sample Size Threshold ASO Student’s t Bootstrap Permutation Wilcoxon Mann-Whitney U

5 0.05 0.012 0.054 0.107 0.028 0.028 0.054
0.10 0.034 0.108 0.147 0.089 0.096 0.088
0.20 0.076 0.203 0.235 0.187 0.162 0.165
0.30 0.11 0.319 0.342 0.302 0.229 0.291
0.40 0.146 0.423 0.435 0.415 0.331 0.36
0.50 0.198 0.532 0.539 0.523 0.53 0.524

10 0.05 0.012 0.046 0.062 0.043 0.039 0.041
0.10 0.018 0.087 0.107 0.093 0.094 0.084
0.20 0.044 0.187 0.206 0.18 0.172 0.187
0.30 0.064 0.295 0.314 0.297 0.265 0.284
0.40 0.114 0.401 0.405 0.399 0.373 0.412
0.50 0.18 0.507 0.514 0.505 0.5 0.508

15 0.05 0.004 0.05 0.064 0.049 0.05 0.054
0.10 0.01 0.1 0.115 0.1 0.103 0.104
0.20 0.036 0.194 0.201 0.182 0.187 0.187
0.30 0.07 0.295 0.302 0.287 0.294 0.291
0.40 0.114 0.386 0.394 0.379 0.371 0.373
0.50 0.198 0.481 0.484 0.487 0.472 0.497

20 0.05 0.002 0.054 0.064 0.059 0.055 0.052
0.10 0.004 0.115 0.121 0.113 0.103 0.113
0.20 0.03 0.195 0.205 0.202 0.187 0.204
0.30 0.058 0.281 0.287 0.277 0.283 0.291
0.40 0.13 0.377 0.386 0.375 0.368 0.384
0.50 0.19 0.489 0.493 0.493 0.468 0.469

20


	1 Introduction
	2 Related Work
	3 Nomenclature and Notation
	4 Statistical Significance Testing
	4.1 Almost Stochastic Order

	5 Experimental Comparison with other Tests
	6 Package Contents & Examples
	6.1 Case study – Deep Q-Learning

	7 Discussion
	8 Conclusion
	A Implementation Details
	B Experimental Appendix
	B.1 Additional Error Rate Experiments


