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Abstract—In this paper, a fuzzy impulsive control strategy is 

proposed. The state vectors that the impulsive controller resets to 
are determined so that the state vectors of interpolative lowpass 
sigma delta modulators (SDMs) are bounded within any 
arbitrary nonempty region no matter what the input step size, 
the initial condition and the filter parameters are, the occurrence 
of limit cycle behaviors and the effect of audio clicks are 
minimized, as well as the state vectors are close to the invariant 
set if it exists. To work on this problem, first, the local stability 
criterion and the condition for the occurrence of limit cycle 
behaviors are derived. Second, based on the derived conditions, 
as well as a practical consideration based on the boundedness of 
the state variables and a heuristic measure on the strength of 
audio clicks, fuzzy membership functions and a fuzzy impulsive 
control law are formulated. The controlled state vectors are then 
determined by solving the fuzzy impulsive control law. One of the 
advantages of the fuzzy impulsive control strategy over the 
existing linear control strategies is the robustness to the input 
signal, the initial condition and the filter parameters, and that 
over the existing nonlinear control strategy are the efficiency and 
the effectiveness in terms of lower frequency of applying the 
control force and higher signal-to-noise ratio (SNR) 
performance. 
 

Index Terms—High order, interpolative sigma delta 
modulators, fuzzy impulsive control. 

I. INTRODUCTION 
IGMA delta modulation technique has been proposed and 
applied in analog-to-digital (A/D) and digital-to-analog 

(D/A) conversion for many years [1]. It is particularly popular 
in the past few years because of the advance in electronic 
technology that makes the devices practical with low 
implementation cost [2]. Since SDMs can achieve very high 
SNRs, it is widely applied in many systems required A/D and 
D/A conversions, such as in the consumer and professional 
audio processing systems [2], communication systems [3], and 
precision measurement devices [4]. 
 In order to improve the SNR, high order SDMs are 
preferred. However, high order SDMs suffer from instability 
problems. Although there are many existing linear control 
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strategies for stabilizing interpolative SDMs, such as variable 
structure compensation (sliding mode control strategy) [5] and 
time delay feedback control strategy [6], etc, these linear 
control strategies stabilize the loop filter by changing the 
effective poles of the loop filter. Since the loop filter is usually 
designed to have a very high SNR, it is not guaranteed that the 
SNR of the controlled SDMs is still maintained or even 
improved if the effective poles of the loop filter are changed. 
Moreover, the parameters in the controller depend on the loop 
filter parameters, so it is not guaranteed that a particular class 
of controllers can stabilize all types of interpolative SDMs. 
Furthermore, the controlled SDMs may still be unstable when 
the magnitude of the input signal is increased. In addition, it 
cannot be guaranteed that the controlled SDMs are stable for 
all initial conditions in the state space. 

In order to control the SDMs without changing the effective 
poles of the loop filter, nonlinear control strategy, such as the 
clipping control strategy, was employed [2]. For the clipping 
control strategy, as the state variables are always reset to the 
same values, periodic output sequences may result and this 
periodic behavior is known as limit cycle behavior. This 
situation is found very frequently when the input signal is very 
slow time varying or the clipped level is set at very low value. 
For audio applications [2], the occurrence of limit cycle 
behaviors results to the annoying audio tones, which should 
be avoided. Besides, there may be a large jump between the 
unclipped and clipped state levels. As a result, audio clicks 
may be observed, which should also be avoided. Furthermore, 
as the set of the state vectors under the clipping control 
strategy is usually not the same as the invariant set, the 
clipping force may be applied very frequently. 

In order to solve these problems, an impulsive control 
strategy is proposed in this paper, in which it is to reset the 
state vectors to different positions in the state space whenever 
the control force is applied. Hence, the occurrence of limit 
cycle behaviors and the effect of audio clicks can be 
minimized with the guarantee of the bounded state variables. 
Moreover, if the invariant set exists, then we only need to 
reset the state variables of the loop filter once and the state 
vectors of the SDMs are guaranteed to be within the invariant 
set forever if the effects of limit cycle behaviors and audio 
clicks do not consider. However, there are usually an infinite 
number of state vectors in the invariant set, this paper is to 
determine the state vectors that the impulsive controller resets 
to. Since the SDMs consist of a quantizer, nonlinear 
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behaviors, such as fractal and chaotic behaviors, combined 
with the practical consideration on the boundedness of the 
state variables and a heuristic measure on the strength of audio 
clicks, cause a difficulty to solve the state vectors analytically. 
To solve this problem, a fuzzy approach is employed because 
employing fuzzy approach can simplify the complicated 
problems and capture heuristic knowledge in the system. 

The outline of this paper is as follows. In Section II, we 
introduce the notations which appear throughout this paper. In 
Section III, the conditions for the occurrence of limit cycle 
behaviors and the local stability criterion of the SDMs are 
derived, which are used for the formulation of fuzzy 
membership functions and fuzzy impulsive control law. In 
Section IV, a fuzzy impulsive control strategy is proposed. In 
Section V, some simulation results are presented to illustrate 
the effectiveness of the fuzzy impulsive control strategy. 
Finally, a conclusion is summarized in Section VI. 

II. NOTATIONS 
The block diagram of an interpolative SDM is shown in 

Figure 1. The input to the SDM and the output of the loop 
filter are denoted as, respectively, ( )ku  and ( )ky . We assume 
that the loop filter is a single input single output real system 
and the input is also real, that is, ( ) ℜ∈ku , so ( ) ℜ∈ky . The 
transfer function of the loop filter is denoted as ( )zF . ( )zF  is 
assumed to be causal, rational and proper with the order of the 
polynomial of 1−z  in the numerator being equal to that in the 
denominator and there is a delay in the numerator. We make 
those assumptions because this type of SDMs is commonly 
used in the industry [2]. Denote the coefficients in the 
denominator and numerator of ( )zF  as, respectively, ia  for 

Ni ,,1,0 L=  and 
jb  for Nj ,,1L= , where N  is the order of 

the loop filter. Then 

( )
∑

∑

=

−

=

−

= N

i

i
i

N

j

j
j

za

zb
zF

0

1 . (1) 

Since this paper is based on the feedforward structure of the 
SDMs, without loss of generality, we assume that the loop 
filter is realized via the direct form because the expressions 
will be much simplified. For other minimal realizations, they 
can be converted to the direct form realization using simple 
transformations. Hence, the SDMs can be described by the 
following state space equation: 

( ) ( ) ( ) ( )( )kkkk suBAxx −+=+1  (2) 
for 0≥k , where 

( ) ( ) ( )[ ] ( ) ( )[ ]TT
N kyNkykxkxk 1,,,,1 −−≡≡ LLx  (3) 

is the state vector of the SDMs, 
( ) ( ) ( )[ ]TkuNkuk 1,, −−≡ Lu , (4) 

( ) ( ) ( )[ ] ( )( ) ( )( )[ ]TT
N kyQNkyQksksk 1,,,,1 −−≡≡ LLs ,(5) 
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in which Q  is a one bit quantizer defined as follows: 

( )
⎩
⎨
⎧
−

≥
≡

otherwise
y

yQ
1

01 . (7) 

Since the oversampling ratio of the SDM is usually very 
high, the input can be approximated as a step signal. Hence, 
we further assume that ( ) uu =k  for 0≥k . 

In many practical situations, the magnitude of the state 
variables of the SDM should not be larger than certain values. 
For the direct form realization, since all the state variables are 
the delay versions of the output of the loop filter, we denote 
the desired bound on the state variables as ccV . That is, 

( ) ccVkxi <  for Ni ,,2,1 L=  and 0≥k . Otherwise, the SDM is 

guaranteed to yield an unwanted behavior. Denote oB  as the 
set of the desired state vectors. That is, 

{ }NiVxB io ,,2,1for: cc L=<≡ x . 

III. CONDITIONS FOR OCCURRENCE OF LIMIT CYCLE 
BEHAVIORS AND LOCAL STABILITY CRITERION 

As discussed in Section I, limit cycle behaviors should be 
avoided. Hence, before we propose the fuzzy impulsive 
control strategy, the conditions for exhibiting limit cycle 
behavior are discussed below. This is essential for formulating 
a fuzzy membership function for avoiding the occurrence of 
limit cycle behavior. 

Suppose the eigen decomposition of matrix A  exists. That 
is, there exists a full rank matrix T  and a diagonal matrix D  
which consist of the eigenvectors and eigenvalues of matrix 
A , respectively, such that 1−= TDTA . We make this 
assumption because it is satisfied for most of SDMs employed 
in the industry [2]. Denote iλ  and iξ  for Ni ,,2,1 L=  be the 
eigenvalues and the corresponding eigenvectors of the matrix 
A . Let dn  be the number of eigenvalues of matrix A  on the 

unit circle with their phases are integer multiples of 
P
π2 , that 

is, P
kj

nNi

i

d
e

π

λ
2

=−+
 for Zki ∈  and dni ,,2,1 L= . Denote iL  for 

Ni ,,2,1 L=  be the iP

th
P row of 

( ) ( )( )∑
−

=

−− +−+
1

0
00

1
P

j

jP jkjk suBA , (8) 

where +∈ZP  and 00 ≥k . Let 
jr  for Nj ,,2,1 L=  be the jP

th
P 

row of PAI − , where I  is an NN ×  identity matrix. Denote 
( ) ( ){ }diiP nNiLk −==≡Ψ ,,2,1 for :0 0 Lxrx . (9) 

Lemma 1 
The number of linearly independent rows in the matrix 
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PAI −  is dnN − , that is, ℜ∈∃ nic ,
 for dnNi −= ,,2,1 L  and 

dnn ,,2,1 L=  such that 
nnN

nN

i
ini d

d

c +−

−

=

=∑ rr
1

,
. If ≠ΨP Ø, where Ø 

denotes the empty set, and 
nnN

nN

i
ini d

d

LLc +−

−

=

=∑
1

,
 for 

dnn ,,2,1 L= , then the SDMs exhibit limit cycle behavior with 
period P , and PΨ  is the corresponding nonempty set of initial 
condition. If =ΨP Ø or { }dnn ,,2,1 L∈∃  such that 

nnN

nN

i
ini d

d

LLc +−

−

=

≠∑
1

,
, then there will not exist any fixed point or 

periodic state sequence. 
Proof: 

Denote PAIQ −≡ . Since 1−= TDTA  and P
kj

nNi

i

d
e

π

λ
2

=−+
 for 

Zki ∈  and dni ,,2,1 L= , we have: 

( ) ( )[ ]00ξξQT ,,,1,,1 11 LL
dd nN

P
nN

P
−−−−= λλ  (10) 

and 
( ) ( ) ( )[ ]( )00ξξQT ,,,1,,1 11 LL

dd nN
P

nN
Prankrank −−−−= λλ .(11) 

Since T  is a full rank matrix, { }
dnN−ξξ ,,1 L  are linearly 

independent. As 01 ≠− P
iλ  for dnNi −= ,,2,1 L , 

( ) dnNrank −=QT . However, ( ) ( )QQT rankrank ≤ . Hence, 

( ) dnNrank −≥Q . Since 

( ) ( )[ ] 1
11 ,,,1,,1 −

−−−−= T00ξξQ LL
dd nN

P
nN

P λλ , (12) 

( ) dnNrank −≤Q . Hence, ( ) dnNrank −=Q . As a result, the 

number of linearly independent rows in the matrix PAI −  is 
dnN − . 

Since ≠ΨP Ø, ( ) Nℜ∈∃ 0x  such that ( ) ii Lk =0xr  for 

dnNi −= ,,2,1 L . As 
nnN

nN

i
ini d

d

LLc +−

−

=

=∑
1

,
 for dnn ,,2,1 L= , 

( ) nnN

nN

i
ini d

d

Lkc +−

−

=

=∑
1

0, xr  for dnn ,,2,1 L= . Since 

nnN

nN

i
ini d

d

c +−

−

=

=∑ rr
1

,
 for dnn ,,2,1 L= , ( ) nnNnnN dd

Lk +−+− =0xr  for 

dnn ,,2,1 L= . Hence, ( ) ii Lk =0xr  for Nn ,,2,1 L= . This 
implies that 

( ) ( ) ( ) ( )( )∑
−

=

−− +−+=−
1

0
00

1
0

P

j

jPP jkjkk suBAxAI . (13) 

As a result, we have ( ) ( )Pkk += 00 xx . Hence, the SDMs exist 
limit cycle behaviors with period P  for 0kk ≥ . Obviously, 

PΨ  is the corresponding nonempty set of initial condition. 
When =ΨP Ø or { }dnn ,,2,1 L∈∃  such that 

nnN

nN

i
ini d

d

LLc +−

−

=

≠∑
1

,
, then there does not exist ( )0x  such that 

( ) ( )00 kPk xx =+ . Hence, there will not exist any fixed point or 
periodic state sequence, and this completes the proof.  

The importance of this Lemma is to characterize the set of 

initial condition that corresponds to the limit cycle behaviors 
with period P  for 0kk ≥ . This set of initial condition will be 
used for the formulation of fuzzy rules shown in Section IV. 

This result is a generalization of [2]. In [2], it mainly 
considers the DC pole cases, that is 0=ik  for dni ,,2,1 L= . 
However, we reveal that even though there is not DC pole, but 
if there exist some poles on the unit circle with their phases 
are nonzero integer multiple of 

P
π2 , then the matrix Q  will 

also drop rank. Besides, when there are more than one DC 
poles in the loop filter transfer function, if the degeneracy is 
equal to the multiplicity of the eigenvalues of matrix A , then 
the eigen decomposition of matrix A  exists and Lemma 1 is 
still applied. 

As discussed in Section I and II, stability is an important 
issue. Hence, the stability analysis is performed before the 
fuzzy impulsive control strategy is proposed. Although the 
global stability of the SDMs is usually preferred because 
global stability implies local stability, sometimes global 
stability cannot be achieved. Only local stability can be 
achieved and local stability may be enough for some 
applications, such as for audio applications [2]. 

The local stability is discussed as follows. Define the 
forward and backward dynamics of the system as 

NN ℜ→ℜℵ :f  and NN ℜ→ℜℵ :b , respectively. That is: 

( ) ( )( )kk xx f1 ℵ≡+  in which ( ) ( ) ( )( )( )kQkk xuBAxx −+=+1 (14) 
and 
( ) ( )( )kk xx b1 ℵ≡−  in which ( ) ( ) ( )( )( )11 −−+−= kQkk xuBAxx ,(15) 

respectively. Denote 

( ) ( )( )( ) ( )∑∑
=

−

−

=
− −−+≡′

N

i
iiN

N

i
iiNN kxakxQububkx

1

1

1

 (16) 

and 

( ) ( ) ( )( ) ( ) ( )
T

N
N

NN kxkx
a

bakxQkxk ⎥
⎦

⎤
⎢
⎣

⎡ ′−′
≡ −11 ,,,ˆ Lx . (17) 

Then 
( ) ( )( )( )

( ) ( ) ( ) ( )( ) ( ) ( )( )
T

N

NN
N

N
NN a

bakxQkxQakxQ
a
bkxkxkx

kQk

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′−′
−′+

=−+

−
0

11 ,,,

ˆˆ

L

xuBxA .(18) 

If ( ) Nbkx >′ , then 

( ) ( )( )( ) ( )( )kxQbakxQkxQ NN ′=′−′ . (19) 
Hence, 

( )( ) ( ) ( )( ) ( )( ) ( )( ) 0=′−′=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′−′
−′ NN

N

NN
N akxQakxQ

a
bakxQkxQakxQ (20) 

and 
( ) ( )( )( ) ( ) ( )[ ] ( )kkxkxkQk T

N xxuBxA ==−+ ,,ˆˆ 1 L . (21) 
If ( ) Nbkx <′ , then 

( ) ( )( )( ) ( )( ) ( )NNNN bQakxQbakxQkxQ ′−=′−′  (22) 
and 
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( )( ) ( ) ( )( )

( )( ) ( )( ) ( )NNNN

N

NN
N

baQakxQakxQ
a

bakxQkxQakxQ

′+′=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′−′
−′ . (23) 

If ( ) 1−=NNbaQ , then 

( )( ) ( ) ( )( ) 0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′−′
−′

N

NN
N a

bakxQkxQakxQ  (24) 

and 
( ) ( )( )( ) ( )kkQk xxuBxA =−+ ˆˆ . (25) 

Hence, if ( ) Nbkx >′  or ( ) Nbkx <′  and ( ) 1−=NNbaQ , then 

the backward dynamics of the SDMs can be defined as 

( )( ) ( ) ( )( ) ( ) ( )
T

N
N

NN kxkx
a

bakxQkxk ⎥
⎦

⎤
⎢
⎣

⎡ ′−′
=ℵ −11b ,,, Lx . (26) 

Suppose the above conditions are satisfied Zk∈∀ . Denote 
( ) ( )( ) ( )( ){ }0for and,0for :0 bf ≤℘∈ℵ≥℘∈ℵ≡℘ kkkk xxx (27) 

and a map ℘→℘ℑ :  such that 
( ) ( )( )xuBAxx Q−+≡ℑ . (28) 

Lemma 2 
If ( ) Nbkx >′  or ( ) Nbkx <′  and ( ) 1−=NNbaQ , then ℘ is 

an invariant set under ℑ . That is, ( ) ℘=℘ℑ . Hence, if Zk ∈∃ 0  
such that ( ) ℘∈0kx , then ( ) ℘∈kx  Zk∈∀ . 
Proof: 

The result follows directly from the definition.  
Although it was reported in [7] that if the invariant set 

exists and there exists an initial condition in the invariant set, 
then the local stability is guaranteed. However, the conditions 
on the existence of the invariant map are not explored and this 
relationship is explored in Lemma 2. 

It is worth noting that if Zk ∈∃ 0  such that ( ) ℘ℜ∈ \0
Nkx , 

then ( ) ℘ℜ∈ \Nkx  Zk∈∀ , and ( )kx  may diverge. Hence, it is 
not sufficient to conclude the global stability of the SDMs. 

The importance of Lemma 2 is that it provides information 
for formulating a fuzzy membership function to achieve local 
stability. 

IV. FUZZY IMPULSIVE CONTROL STRATEGY 
A. Fuzzy impulsive control strategy 

Figure 2 shows the block diagram of how the fuzzy 
impulsive controller influenced the SDMs. As discussed in 
Section I, the fuzzy impulsive controller determines the 
controlled state vectors and reset the state variables of the loop 
filter to the controlled state variables via a reset circuit. To 
determine the controlled state vectors, two step procedures are 
employed. The first step of the procedure is the training phase 
in which the invariant set and the set of state vectors that 
exhibits limit cycle behaviors are learnt through training. By 
generating a set of DC signals inputted to the system with 
different initial condition, the state vectors are tested if they 
form an invariant set and exhibit limit cycle behaviors or not. 
The second step of the procedure is the control phase in which 
the controlled state vectors are determined and the state 

variables are reset to the corresponding values. The details are 
discussed in below. 

As discussed in Section I, we want to minimize the effect of 
audio clicks. To achieve this goal, we want to minimize the 
distance between the original state vectors ( )10 +kx  and the 
controlled state vectors ( )10 +kcx . However, ( )10 +kx  may be 
outside the desired bounded region 

0B , so we define a vector 

0Br ∈x  such that ( )
20 1 rk xx −+  is minimum and our goal is 

to minimize the distance between ( )10 +kcx  and rx  via a 
triangular fuzzy membership function as follows: 

( )( ) ( )( ) NN

i

rc
i

c kfk

1

1
00continuous ,11 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+≡+ ∏

=

xxxμ , (29) 

where 

( )( )

( ) ( )

( ) ( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤+≤−
+

++

≤+≤
−

−+

≡+

otherwise0

11

11

,1 0cc
0

cc0
0

0
r
i

c
i

cc
r
i

cc
c
i

c
i

r
i

cc
r
i

cc
c
i

rc
i xkxV

Vx
Vkx

Vkxx
Vx

Vkx

kf xx
. (30) 

Since a triangular fuzzy membership function is employed and 
0Br ∈x , ( )( ) 110continuous =+kcxμ  when ( ) rc k xx =+10 , 

( )( ) 010continuous =+kcxμ  when ( ) 00 \1 Bk Nc ℜ∈+x , and 

( )( ) 110 0continuous ≤+≤ kcxμ  ( ) Nc k ℜ∈+∀ 10x . Hence, 

( )( )10continuous +kcxμ  force the new state vectors ( )10 +kcx  to be 
within 0B . Note that if ( ) 00 1 Bk ∈+x , then ( )10 += kr xx  and 
there will be no audio click effect by setting ( ) rc k xx =+10 . 
Since ( )( )10continuous +kcxμ  captures the knowledge on the 

closeness between ( )10 +kcx  and rx , and the effect of audio 

clicks is minimized if ( )10 +kcx  is closed to rx , this fuzzy 
membership function can minimize the effect of audio clicks. 

As discussed in Section I and II, the local stability criterion 
is an important issue. According to Lemma 2, if ( ) Nbkx >′  or 

( ) Nbkx <′  and ( ) 1−=NNbaQ , then ( ) ℘∈kx  Zk∈∀  if 

Zk ∈∃ 0  such that ( ) ℘∈0kx . However, the trajectory may not 
be inside 0B  because ℘ is usually not equal to 0B . In order to 
guarantee that the trajectory is bounded within 0B , we want 
the controlled state vectors to be inside 0BI℘ , that is, 

( ) 00 1 Bkc I℘∈+x . Supposing that ≠℘ 0BI Ø. This implies 
that there exist state vectors that achieve local stability within 
the set of the desired bounded state variables. Denote 

0Bp I℘∈x  such that ( )
20 1 pk xx −+  is minimum. If 

≠℘ 0BI Ø, ( ) Nbkx >′  or ( ) Nbkx <′  and ( ) 1−=NNbaQ , then 

we define the following triangular fuzzy membership 
function: 

( )( ) ( )( ) NN

i

pc
i

c kfk

1

1
00stable ,11 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+≡+ ∏

=

xxxμ . (31) 
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Since a triangular fuzzy membership function is employed and 
0Bp ∈x , ( )( ) 010stable =+kcxμ  when ( ) 00 \1 Bk Nc ℜ∈+x , 

( )( ) 110stable =+kcxμ  when ( ) pc k xx =+10  and 

( )( ) 110 0stable ≤+≤ kcxμ  ( ) Nc k ℜ∈+∀ 10x . Hence, 

( )( )10stable +kcxμ  force the new state vectors ( )10 +kcx  to be 
within 0B . If ( ) 00 1 Bk I℘∈+x , then ( )10 += kp xx . By setting 

( ) pc k xx =+10 , the local stability criterion is satisfied. Since 

( )( )10stable +kcxμ  captures the knowledge on the closeness 

between ( )10 +kcx  and px , which also reflects the closeness 
between ( )10 +kcx  and the set of state vectors that achieved 
local stability within the desired bounded region, this fuzzy 
membership function can capture the local stability criterion 
into the system. 

However, if =℘ 0BI Ø, then px  does not exist. Or if 

Zk ∈′∃  such that ( ) Nbkx <′  and ( ) 1=NNbaQ , then the local 

stability criterion is not guaranteed. In this case, the SDM may 
suffer from an instability problem. In order to avoid this case 
to be happened, if =℘ 0BI Ø, or if Zk ∈′∃  such that 

( ) Nbkx <′  and ( ) 1=NNbaQ , then we define 

( )( ) ( )
( )⎩

⎨
⎧

ℜ∈+
∈+

≡+
00

00stable
0stable \10

1
1

Bk
Bk

k Nc

c
c

x
x

x
δ

μ , (32) 

where 01 stable >≥ δ  and stableδ  is very closed to zero. The 
reasons why small value of stableδ  can avoid the instability 
problem are discussed in Section IVB. Since the fuzzy 
membership value of the state vectors outside 0B  is exactly 
equal to zero, this fuzzy membership function will force the 
new state vectors ( )10 +kcx  to be within 0B . 

As discussing in Section I, the occurrence of limit cycle 
behaviors should be avoided. Since U

0>∀

Ψ
P

P
 is the set of state 

vectors that exhibiting limit cycle behavior, we do not want to 
move the new state vectors ( )10 +kcx  into U

0>∀

Ψ
P

P
. Moreover, 

we do not want to move ( )10 +kcx  into ( ){ }U
0kk

k
≤∀

x  too. This is 

because after a certain number of iterations, the state vectors 
may go to the same points in the state space and cause limit 
cycle behaviors to occur. Define 

( ) ( ){ }⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ψ≡

≤∀>∀
UU U

00
0

kkP
P kkPER x . (33) 

If ( ) 000 BBkPER =I , then all the state vectors in 0B  may 
result limit cycle behaviors and this situation should be 
avoided. On the other hand, if ( ) =00 BkPER I Ø, then we 
cannot find a state vector ( )00 kPERBq I∈x  such that 

( )
20 1 qk xx −+  is minimum. Hence, if ( ) 000 BBkPER =I  or 

( ) =00 BkPER I Ø, we define the fuzzy membership function as 

( )( ) ( )
( )⎩

⎨
⎧

ℜ∈+
∈+

≡+
00

00aperiodic
0aperiodic \10

1
1

Bk
Bk

k Nc

c
c

x
x

x
δ

μ , (34) 

where 01 aperiodic >≥ δ  and 
aperiodicδ  is also very closed to zero. 

Similarly, the reason why small value of 
aperiodicδ  can avoid the 

occurrence of limit cycle behaviors is discussed in Section 
IVB. Otherwise, we define the fuzzy membership function as 

( )( ) ( )( ) ( )

( )⎪
⎩

⎪
⎨

⎧

ℜ∈+

∈+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−≡+ ∏

=

00

00

1

1
00aperiodic

\10

1,111

Bk

Bkkfk
Nc

c
NN

i

qc
ic

x

xxxxμ
.(35) 

Since if  is a triangular fuzzy membership function and 

0Bq ∈x , ( )( ) 010aperiodic =+kcxμ  when ( ) ( )000 1 kPERBk I∈+x  

because ( )10 += kq xx  when ( ) ( )000 1 kPERBk I∈+x , 

( )( ) 010aperiodic =+kcxμ  when ( ) 00 \1 Bk Nc ℜ∈+x  and 

( )( ) 110 0aperiodic ≤+≤ kcxμ  ( ) Nc k ℜ∈+∀ 10x . Hence, 

( )( )10aperiodic +kcxμ  force the new state vectors ( )10 +kcx  to be 

within 0B . Since ( )( )10aperiodic +kcxμ  captures the knowledge on 

the separation between ( )10 +kcx  and ( )00 kPERB I , which 
also reflects the separation between ( )10 +kcx  and the set of 
state vectors within the desired bounded region that exhibits 
limit cycle behaviors, ( )( )10aperiodic +kcxμ  can be used to avoid 

the occurrence of limit cycle behaviors. 
Once the fuzzy membership functions are defined, we can 

define the fuzzy impulsive control law as follows: 
If ( ) ( )( )( ) 000 \ BkQk Nℜ∈−+ xuBAx , then the fuzzy 

impulsive controller will reset the state variables of the loop 
filter to ( )10 +kcx  where ( )10 +kcx  is the state vector such that 
the following function is maximized, 

( ) ( )( )

( )
( )( ) ( )( ) ( )( )( ) 3

1

0continuous0aperiodic0stable
1

01

111max

1

0

0

+++

≡+

ℜ∈+

+

kkk

k

ccc

k

c
k

Nc

c

xxx

x

x

x

μμμ

μ
.(36) 

Otherwise, no control force is applied to the SDMs. 
Lemma 3 

ℜ∈∀u , ( ) Nℜ∈∀ 0x , ℜ∈∀ ia  for Ni ,,1,0 L=  and 

ℜ∈∀ jb  for Nj ,,1L= , ( ) 0Bkc ∈x  for 0>k . 

Proof: 
It can be seen that ℜ∈∀u , ( ) Nℜ∈∀ 0x , ℜ∈∀ ia  for 

Ni ,,1,0 L= , ℜ∈∀ jb  for Nj ,,1L= , 00 ≥∀k  and 

( ) 00 1 Bkc ∈+∀x , ( )( ) 010continuous >+kcxμ  and 

( )( ) 010stable >+kcxμ . If ( ) 000 BBkPER =I  or ( ) =00 BkPER I Ø, 
then ( )( ) 010aperiodic >+kcxμ . Although ( )( ) 010aperiodic =+kcxμ  if 

( ) 000 BBkPER ≠I , ( ) ≠00 BkPER I Ø and 

( ) ( )000 1 kPERBk I∈+x , since ( ) 000 BBkPER ≠I , 

( ) ( )000 \1 kPERBkc ∈+∃x  such that ( )( ) 010aperiodic >+kcxμ . 

Hence, ( ) ( )000 \1 kPERBkc ∈+∃x  such that 

( ) ( )( ) 01010
>+

+
kc

kc x
x

μ . As a result, if 
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( ) ( )( )( ) 000 \ BkQk Nℜ∈−+ xuBAx , then the fuzzy impulsive 
controller will reset the state vector of the loop filter to 
( )10 +kcx  where ( ) ( )000 \1 kPERBkc ∈+x . If 

( ) ( )( )( ) 000 BkQk ∈−+ xuBAx , since no control force is applied 
to the SDM, ( ) ( ) 000 11 Bkkc ∈+=+ xx . Hence, ( ) 0Bkc ∈x  for 

0kk > . Thus, 00 ≥∀k , ( ) 0Bkc ∈x  for 0>k . And this 
completes the proof.  

It is worth noting that different values of u , ( )0x , ia  for 

Ni ,,1,0 L=  and 
jb  for Nj ,,1L= , will affect the existence 

of ℘ and U
0>∀

Ψ
P

P
. However, Lemma 3 is still applied even 

though =℘ Ø or 0B=℘ , and =Ψ
>∀
U

0P
P

Ø or 
0

0

B
P

P =Ψ
>∀
U . 

Hence, Lemma 3 guarantees that the controlled trajectory is 
bounded within 0B  no matter what the input step size, the 
initial condition and the filter parameters are. This is very 
important because we do not want the trajectory of the SDM 
to be unbounded if the input step size is increased, or the 
initial condition or the loop filter of the SDMs are changed. 
Another advantage of this fuzzy impulsive control strategy is 
that we can alter the maximum bound of the state variables 
easily by setting the value of ccV  appropriately, which is 
independent of the input step size, the initial condition and the 
filter parameters. 
Lemma 4 

ℜ∈∀u , ( ) Nℜ∈∀ 0x , ℜ∈∀ ia  for Ni ,,1,0 L=  and 

ℜ∈∀ jb  for Nj ,,1L= , ( ) NVk rc
cc2

21 ≤−+ xx  for 0>k . 

Proof: 
Since ℜ∈∀u , ( ) Nℜ∈∀ 0x , ℜ∈∀ ia  for Ni ,,1,0 L=  and 

ℜ∈∀ jb  for Nj ,,1L= , ( ) 0Bkc ∈x  for 0>k , the result 

follows directly.  
The importance of this Lemma is that it guarantees the 

norm of the difference between rx  and ( )1+kcx  being 
bounded by NVcc2 , no matter what the input step size, the 
initial condition and the filter parameters are. As discussed in 
above, we do not want the norm of the difference between rx  
and ( )1+kcx  to be too large because the effect of audio clicks 
may be too large for these situations. 
Lemma 5 

If Zk ∈∃ 0  such that ( ) 00 BBkPER ≠I  for 0kk ≥ , and 

( ) ( )( )( ) 000 \ BkQk Nℜ∈−+ xuBAx , then 0>∃/M  such that 

( ) ( )Mkk cc += xx  for 0kk > . 
Proof: 

The proof follows directly from Lemma 3.  
The importance of this Lemma is that it states the condition 

that limit cycle behaviors do not occur when the fuzzy 
impulsive control strategy is applied at once. We will show 
the contrast in Section V that the clipping control strategy 
usually results in the limit cycle behaviors, while our approach 
will minimize the occurrence of limit cycle behaviors. 

B. Parameters in the fuzzy impulsive controller 
There are only three parameters in the fuzzy impulsive 

control strategy. They are ccV , 
aperiodicδ  and stableδ . ccV  is the 

maximum allowable bound on each state variable and this 
value is determined based on the real situations, such as the 
hardware constraints and the safety specifications, etc. For 
example, if the hardware operates normally in a safe condition 
only when the state variables are bounded by V20 , then ccV  
may be set accordingly. For the parameters 

aperiodicδ  and stableδ , 

the fuzzy impulsive controller works properly ( ]1,0aperiodic ∈∀δ  

and ( ]1,0stable ∈∀δ . However, since 
aperiodicδ  represents the 

fuzzy membership value of how to avoid the occurrence of 
limit cycle at ( )10 +kcx  when ( ) 000 BBkPER =I  or 

( ) =00 BkPER I Ø, and all the state vectors in 0B  may cause the 
trajectory to exhibit limit cycle behaviors if ( ) 000 BBkPER =I , 
we suggest the SDM control designers to set this value as a 
small number closed to zero, such as 310− . For stableδ , since it 
represents the fuzzy membership value of the local stability of 
the SDM at ( )10 +kcx  when =℘ 0BI Ø, or if Zk ∈′∃  such that 

( ) Nbkx <′  and ( ) 1=NNbaQ , and in this case, the SDM may 

exhibit divergent behavior if the fuzzy impulsive control 
strategy is not applied, we recommend the SDM control 
designers to set this value as a small number closed to zero 
too, for example, 310− . 
C. Complexity issue 

Although more fuzzy rules and sophisticated fuzzy engine 
will improve the performance of the SDMs, this will increase 
the complexity of the system and may cause real time 
processing problems, particular for audio applications [2]. The 
Nyquist rate for audio signal is 44.1kHz [2], since the input 
signals are typically oversampled at 64 or 128 [2], the number 
of samples inputted to the SDM per second is 2.8224M or 
5.6448M. Because several megasamples are needed to process 
per second, only three basic fuzzy rules are captured and only 
a simple fuzzy engine is used to reduce the complexity for 
processing. According to the simulation results shown in 
Section V, these three basic rules and a simple fuzzy engine is 
enough for achieving the objectives. 
D. Implementation of the fuzzy impulsive controller 

As discussed in the above, the fuzzy impulsive controller 
resets the state variables of the loop filter to the controlled 
state variables of ( )10 +kcx  if 

( ) ( )( )( ) 000 \ BkQk Nℜ∈−+ xuBAx , and ( )10 +kcx  is calculated 
based on equation (36). Numerical solvers, such as MATLAB 
or MATCAD, can be employed for solving equation (36). To 
reset the state variables of the loop filter, many existing reset 
circuits can be employed [8]. 

V. SIMULATION RESULTS 
To illustrate our results, a fifth order SDM with loop filter 

transfer function 
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54321

54321

0025.10075.50075.100025.1051
9584.140015.640497.1037420

−−−−−

−−−−−

−+−+−
+−+−

zzzzz
zzzzz  (37) 

is illustrated. This fifth order SDM is commonly employed in 
the industry [2]. The SDM can be implemented via the Jordan 
form [2] and can be realized as the following state space 
equation 

( ) ( ) ( ) ( )( )kykukk −+=+ BxAx ~~~1~  (38) 
for 0≥k , where 

( ) ( )( )kQky xC~~
= , (39) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
≡

11000
000685.01100

00110
000018.011
00001

~A
, 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

≡

0
0
0
0
1

~B
 and 

T

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

≡

00589.0
09375.0

1
6
20

~C
.(40) 

Assume that the initial condition of this SDM is zero, that is, 
( ) [ ]T0,0,0,0,00~ =x . By using a simple transformation, 

this SDM can be realized by the direct form and the 
corresponding initial condition is 
( ) [ ]T9793.35,25.32,5.28,5,00 −=x  when 75.0=u . We 

can check that the trajectory of this SDM is bounded for this 
initial condition ( ( ) [ ]T0,0,0,0,00~ =x ) if the input step 
size is approximately between 71.0−  and 75.0 , and may 
diverge if the input step size is outside this range. The 
relationship between the maximum absolute value of the state 
variables (realized in the direct form) and the input step size is 
plotted in Figure 3. From the simulation result, we can see that 
even though the trajectory is bounded for this range of input 
step size, the maximum absolute value of the state variables is 
between 0523.20  and 4633.59 , which may be too large for 
some practical applications [2]. Figure 3 also shows the plot 
of the maximum absolute value of the state variables (also 
realized in the direct form) for 0>k  versus the input step size 
when the fuzzy impulsive control strategy is applied at 

20=ccV . According to Lemma 3, the maximum absolute 
value of the state variables of the controlled SDM is bounded 
by ccV  for 0>k  and ℜ∈∀u , even though 

ccVu ≥ . Hence, we 

can guarantee that the state variables are bounded by 20. 
This SDM is not globally stable. That means, ( ) Nℜ∈∃ 0~x  

such that the trajectory is unbounded. For example, when 
75.0=u , Figure 4a and Figure 4b show the responses of ( )kx1  

with ( ) [ ]T0,0,0,0,00~ =x  and 

( ) [ ]T0,0,0,0,001.00~ =x , respectively. It can be seen 
from Figure 4a and Figure 4b that even though the SDM 
exhibits acceptable behavior when ( ) [ ]T0,0,0,0,00~ =x  
and the difference between these two initial conditions is very 
small, the SDM exhibits divergent behavior when 
( ) [ ]T0,0,0,0,001.00~ =x  and the behaviors of the SDM 

for these two different initial conditions are very different. On 
the other hand, according to Lemma 3, the maximum absolute 
value of the state variables is always bounded by ccV  for 0>k  

and ( ) Nℜ∈∀ 0x  if the fuzzy impulsive control strategy is 
applied. Figure 4c and 4d show the corresponding state 
responses when the fuzzy impulsive control strategy is applied 
at 40=ccV . From the simulation result, we see that the SDM 
exhibits acceptable behavior with the state variables bounded 
by ccV  for both of these two initial conditions. 

For comparison with other control strategies, consider the 
time delay feedback control strategy proposed in [6], in which 
the controller is in the form of ( )1

c 1 −−− zK . Denote iλ  for 

6,,2,1 L=i  be the poles of the effective loop filter. Since iλ  
for 6,,2,1 L=i  depends on the value of cK , it can be shown 
that 1max

6,,2,1
>

= ii
λ

L

 ℜ∈∀ cK  and the minimum value of 

ii
λ

6,,2,1
max

L=
 occurs at 0c =K . When 0c =K , it reduces to the 

uncontrolled case. By selecting a value of cK  which is very 
closed to zero, for example 5

c 102 −×=K , and setting the initial 
condition and the input step size as the previous values, that 
is, ( ) [ ]T5612.39,9793.35,25.32,5.28,5,00 −=x  and 

75.0=u  (the initial condition is determined based on zero 
initial condition of the Jordan form), it is found that the 
trajectory diverges as shown in Figure 5. Hence, the time 
delay feedback control strategy fails to stabilize this SDM. 

To compare the fuzzy impulsive control strategy to the 
clipping control strategy, that is, set ( ) ( )( )kxQVkx ii cc=  if 

( ) ccVkxi ≥  for Ni ,,2,1 L= , it is found that limit cycle 

behaviors may occur if the clipping control strategy is applied. 
Figure 6 shows the magnitude response of ( )ks  when 

75.0=u , ( ) [ ]T0,0,0,0,00~ =x  and the clipped level is 
set at 40. It can be seen from Figure 6 that there is an impulse 

located at 
2
π  if the clipping control strategy is applied, which 

demonstrates that the SDM exhibits a limit cycle with period 
2. On the other hand, the spectrum is quite flat for the SDM 
when the fuzzy impulsive control strategy is applied with 

40=ccV , which demonstrates that the SDM exhibits 
acceptable behavior and the limit cycle behavior is avoided. 

Figure 7 shows the SNR of SDMs under the clipping 
control strategy with the clipped level set at 28. SNR is 
calculated using [9], where the frequency of the input 
sinusoidal signals is 

3
2  of the passband bandwidth. The 

oversampling ratio is 64, and initial conditions are given by 
( ) [ ]T0,0,0,0,00~ =x . It can be seen from Figure 7 that 

the SNR of both the clipping and fuzzy impulsive control 
strategies with the state variables bounded by 28 are the same 
when the input magnitude is less than 52.0 . This is because 
both the maximum absolute value of the state variables 
(realized in the direct form) do not exceed 28 in this input 
magnitude range. However, if the input magnitude exceeds 
this range, the SNR corresponding to the clipping control 
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strategy may drop to less than 1.2562dB because of the 
occurrence of limit cycle behaviors. On the other hand, the 
SDM performs normally under the fuzzy impulsive control 
strategy. Hence, the SNR of the SDM under the fuzzy 
impulsive control strategy has an average of 41.8281dB 
improvement compared to the clipping control strategy for 
outside this input magnitude range. 

It can be seen from Figure 8 that the probability of the 
control force to be applied by the fuzzy impulsive control 
strategy is 0.0135 for the input magnitude range greater than 
or equal to 0.52, as opposed to a probability of 0.6926 for the 
clipping control strategy. Hence, the number of reset action on 
the state variables of the loop filter is much reduced when 
applying fuzzy impulsive control strategy. This is because the 
fuzzy impulsive control strategy tends to reset the state vectors 
inside the invariant set if it exists and the state vectors will 
tend to stay inside the invariant set without applying control 
force again soon afterwards. This demonstrates that the fuzzy 
impulsive control strategy is more efficient than the clipping 
control strategy. 

To verify the independence of the filter parameters on the 
fuzzy impulsive control strategy, consider another fifth order 
SDM with the following transfer function [2] 

54321

54321

0023.10069.50069.100023.1051
5498.03873.29094.38630.27919.0

−−−−−

−−−−−

−+−+−
+−+−

zzzzz
zzzzz .(41) 

This SDM is also widely used in the industry [2]. The 
trajectory of this SDM with 59.0=u  and 
( ) [ ]T0,0,0,0,00~ =x  is shown in Figure 9a, and it can be 

seen from Figure 9a that the trajectory diverges. On the other 
hand, when the fuzzy impulsive control strategy is applied 
with 2=ccV , according to Lemma 3, the maximum absolute 
value of the state variables (realized in the direct form) is 
always bounded by ccV  for 0>k , ℜ∈∀ ia  for Ni ,,1,0 L=  
and ℜ∈∀ jb  for Nj ,,1L= , as shown in Figure 9b. 

VI. CONCLUSION 
In this paper, we have proposed the fuzzy impulsive control 

strategy for the stabilization of high order interpolative SDMs 
in which the occurrence of limit cycle behaviors and the effect 
of audio clicks are minimized. Since the effective poles of the 
loop filter are not affected by the control strategy, the SNR 
performance of the SDMs is maintained or improved after 
control. Moreover, the controlled trajectory is guaranteed to 
be bounded no matter what the input step size, the initial 
condition and the filter parameters are. Comparisons between 
the fuzzy impulsive control strategy and some existing control 
strategies show that the fuzzy impulsive control strategy is 
much effective in terms of producing much higher SNR and 
efficient in terms of requiring less control force applied to the 
system. 
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Figure 1. The block diagram of an interpolative 
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Figure 2. The block diagram of the interpolative SDM under the 
fuzzy impulsive control strategy. 
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Figure 3: Plot of the maximum absolute value of the state 

variables (realized in direct form) against the input step size 
when ( ) [ ]T0,0,0,0,00~ =x . 

 
Figure 4: The response of ( )kx1  when 75.0=u  and (a) initial 
condition ( ) [ ]T0,0,0,0,00~ =x  when no control strategy 
is applied. (b) initial condition ( ) [ ]T0,0,0,0,001.00~ =x  

when no control strategy is applied. (c) initial condition 
( ) [ ]T0,0,0,0,00~ =x  when the fuzzy impulsive control 

strategy with 40=ccV  is applied. (d) initial condition 

( ) [ ]T0,0,0,0,001.00~ =x  when the fuzzy impulsive 
control strategy with 40=ccV  is applied. 

 
 
 
 
 
 
 
 
 
 

 
Figure 5: The response of ( )kx1  with input step size 75.0=u  

and initial condition 
( ) [ ]T5612.39,9793.35,25.32,5.28,5,00 −=x  when the 
time delay feedback control strategy with 5

c 102 −×=K  is 
applied. 

 
Figure 6: Magnitude response of the output sequence when 

75.0=u  and initial condition ( ) [ ]T0,0,0,0,00~ =x  for 
both the clipping and fuzzy impulsive control strategies are 

applied with the state variables bounded by 40. 
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Figure 7: SNR of SDMs when input sinusoidal frequency is 

3
2  of the passband bandwidth, initial condition 

( ) [ ]T0,0,0,0,00~ =x  and the state variables are bounded 
by 28. 

 
Figure 8: Probability of control force applied to the SDM 
when the input sinusoidal frequency is 

3
2  of the passband 

bandwidth, initial condition ( ) [ ]T0,0,0,0,00~ =x  and 
the state variables are bounded by 28. 

 
Figure 9: The response of ( )kx1  with initial condition 
( ) [ ]T0,0,0,0,00~ =x  and input step size 59.0=u  (a) 
when no control strategy is applied. (b) when the fuzzy 

impulsive control strategy with 2=ccV  is applied. 


