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EXPONENTIAL DICHOTOMY ON THE REAL LINE:

SVD AND QR METHODS

LUCA DIECI, CINZIA ELIA, AND ERIK VAN VLECK

Abstract. In this work we show when and how techniques based on the Singular Value
Decomposition (SVD) and the QR decomposition of a fundamental matrix solution can
be used to infer if a system enjoys –or not– exponential dichotomy on the whole real line.

1. Introduction

Exponential dichotomy is at the heart of the fundamental perturbation results for linear
systems of Coppel and Palmer ([?, ?] and [?, ?, ?, ?]), of the spectral theory of Sacker
and Sell ([?, ?]), of the geometric theory of Fenichel ([?]), of shadowing results ([?, ?]), of
perturbation results for invariant manifolds ([?]), of the fundamental perturbation results
for connecting orbits of Beyn and Sandsteade ([?, ?, ?] and [?]), and it has proven also
a formidable ally to justify and gain insight into the behavior of various algorithmic ap-
proaches for solving boundary value problems, for approximating invariant surfaces and
for computing traveling waves, among other uses (see [?, ?, ?, ?]). Indeed, the property of
exponential dichotomy is so ubiquituous and relevant that one would expect that there are
several practical techniques to ascertain whether or not a given system enjoys exponential
dichotomy on the real line. However, as far as we know, there are no reliable techniques
allowing us to do that in general. The cases in which one is able to ascertain exponential
dichotomy for a given system are perturbative in nature: slow varying systems (close to
constant or periodic systems), roughness results (that is, systems close to systems having
exponential dichotomy), L1 perturbation results; e.g., see [?], [?], [?] and [?].

Analysis and implementation of methods for approximating Lyapunov exponents of dif-
ferential equations, and more generally also Exponential Dichotomy spectrum, henceforth
ΣL and ΣED respectively, on the half line t ≥ 0 (or t ≤ 0), are rather well established.
Our goal in this work is to lay down the theoretical ground work for the development
of methods to ascertain if a system has exponential dichotomy (henceforth ED) on the
entire real line. Our techniques will rest on the same methodologies which have proven
valuable to approximate spectra on the half-line. As a matter of fact, we will use the same
assumptions needed in that context, ultimately some measure of integral separation in the
system. As a result, our criteria to ascertain ED will not be of perturbation nature (for a
system close to one which has or not have ED, such a constant coefficient problem), but
will be resting on structural (and generic) properties of the underlying system.

We begin by reviewing the concepts of spectra on R
+ (or R

−) and lay down notation
for later use.

1991 Mathematics Subject Classification. 34D08, 34D09, 65L.
Key words and phrases. Exponential Dichotomy, Sacker-Sell spectrum, Lyapunov exponents.
The work of the first two authors was supported in part under INDAM GNCS, and the work of the

third author under NSF Grants DMS-0513438 and DMS-0812800.

1



2 Dieci, Elia, Van Vleck

1.1. Spectra of dynamical systems. Consider the n-dimensional dynamical system

(1) ẏ = f(y) , y(0) = y0 ,

with solution y(t, y0). Consider the linearized problem

(2) ẋ = Df(y(t, y0))x , or simply

(3) ẋ = A(t)x .

With X(·), we will indicate a fundamental matrix solution of the system. The principal

matrix solution will be written as Φ(·), so that Φ̇ = A(t)Φ , Φ(0) = I.

Spectra are defined for the linear problem (3), and in general they will depend on
the solution trajectory of (1), that is on the initial condition y0. [There are important
situations when this dependency on y0 can be removed, in a measure theoretical sense:
[?, ?, ?, ?, ?].]

Two spectra associated to (3) are of interest to us: The Lyapunov spectrum, ΣL, and
the Exponential Dichotomy (or Sacker-Sell) spectrum, ΣED.

The Lyapunov spectrum: ΣL. This is defined in terms of upper and lower Lyapunov
exponents (LEs for short). Given a fundamental matrix X for (3), define µj , j = 1, . . . , n,
as

(4) µj = lim sup
t→∞

1

t
log ‖X(t)ej‖ ,

where the ej ’s are the standard unit vectors. When the sum of the numbers µj is minimized
as we vary over all possible ICs (initial conditions) X(0), the numbers are called (upper)
Lyapunov exponents of the system, and the ICs are said to form a normal basis. We will
write λs

j , j = 1, . . . , n, for the ordered upper LEs of (3). By working with the adjoint

system, ż = −AT (t)z, one analogously defines its upper LEs which are called lower LEs
of the original system (3), call them λi

j , j = 1, . . . , n, which again are considered ordered.
The Lyapunov spectral intervals can now be defined:

(5) ΣL :=
n
⋃

j=1

[λi
j , λ

s
j ] .

In case in which λi
j = λs

j = λj , for all j = 1, . . . , n, the system is called regular.

The Exponential Dichotomy, or Sacker-Sell, spectrum: ΣED. This is defined in
terms of exponential dichotomy (see [?]). Recall that (3) has Exponential Dichotomy on
the half-line (i.e., t, s ≥ 0 below) if there exist constants K ≥ 1, α > 0, and a projection
P such that

(6)
‖X(t)PX−1(s)‖ ≤ Ke−α(t−s), t ≥ s,

‖X(t)(I − P )X−1(s)‖ ≤ Keα(t−s), t ≤ s,

where X is a fundamental matrix solution. ΣED is defined to be the set of values λ ∈ R

for which the shifted systems ẏ = [A(t) − λI]y do not have exponential dichotomy. For
some k ≤ n, ΣED is given by (see [?]) a collection of disjoint subintervals

(7) ΣED := [a1, b1] ∪ · · · ∪ [ak, bk] .

We make the simple, but fundamental, observation that (3) has ED on the half-line t ≥ 0,
iff 0 /∈ ΣED.
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Remark 1. By virtue of the roughness theorem for exponential dichotomies (see [?]),
ΣED is stable, that is it is continuous with respect to perturbation in the coefficients A(·)
of (3). Stability theory for ΣL is more complicated (and restrictive), and one needs that
the system enjoys the property of integral separation in some form (see [?, ?]).

Directions: Growth Subspaces. Associated to the spectral intervals, both ΣL and
ΣED, there is very important geometric information on the subspaces of solutions (i.e.,
of initial conditions) which achieve a certain asymptotic exponential growth; e.g., whose
asymptotic growth is in the intervals of ΣED. As it turns out, this geometric information
will be key for establishing ED on the real line, but it is typically neglected in algorithmic
studies on approximation of spectra of dynamical systems.

Let us define the forward stable subspace S+ to be the set of initial conditions leading
to decreasing solutions in forward time:

(8) S+ = {x ∈ R
n : ‖Φ(t)x‖ → 0 as t → +∞} .

Let us also define the backward stable subspace S− (this is called unstable subspace by
Sacker and Sell, [?]) be the set of initial conditions leading to decreasing solutions in
backward time:

(9) S− = {x ∈ R
n : ‖Φ(t)x‖ → 0 as t → −∞}.

ED on the real line. The problem (3) enjoys ED on the entire real line, when (6)
holds with t, s ∈ R. The following characterization of ED on the entire real line (see [?, ?])
is the one which we will adopt in order to device techniques to verify ED:

System (3) has ED in R if and only if it has ED in R
+ and R

−, and R
n = S+ ⊕ S−.

As a consequence, to check if system (3) has ED in R, we will check that:

(ED-1) It has ED in R
+ and R

−;
(ED-2) The stable and the unstable subspaces of (8) and (9) are complementary. [That

is, they form a basis for R
n.]

[Notice that if there is ED in R
+ and R

−, then convergence to 0 as t → ±∞ in (8) and
(9) is exponentially fast].

We are now ready to look at the two techniques which we propose to use to detect
ED on the real line. As it turns out, these are the same techniques which have been
used to approximate ΣL and ΣED on the half-line. The first technique is based on the
SVD of a fundamental matrix X: X = UΣV T . The second technique, which rests on the
most popular approach to approximate ΣL and ΣED on the half-line, is based on the QR
factorization of a (normal) fundamental matrix solution X, that is X = QR.

Notation. For a positive, non-vanishing function f , we will use the shorthand nota-
tion χs(f) and χi(f) to mean lim supt→+∞

1
t log(f) and lim inft→+∞

1
t log(f), respectively.

Similar notation will be used for the limit as t → −∞.

2. SVD method

In order to approximate ΣL and ΣED on the half-line, SVD techniques use the informa-
tion emerging from the smooth SVD (if this is possible) of a fundamental solution X. That
is, for t ≥ 0, one seeks the decomposition X(t) = U(t)Σ(t)V T (t), with all factors being as
smooth as X, Σ = diag(σ1, . . . , σn), and U and V orthogonal. To find this SVD, one can
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integrate the differential equations governing the evolution of the U, V , and Σ factors in
the SVD of X. In [?], see also [?], we have shown that if the system (3) has stable and
distinct Lyapunov exponents (a generic situation), then the decomposition X = UΣV T

with smooth factors is valid, differential equations for U and V can be given, and the
evolution of the singular values is given by

(10) σ̇j = Cjj(t)σj , j = 1, . . . , n, C(t) := UT (t)A(t)U(t) .

Moreover, we have shown how, given any fundamental matrix solution X (i.e., any initial
condition X(0) for it), both ΣL and ΣED can be recovered from knowledge of the diagonal
of C. Finally, we have also shown, and this will be important soon, that –for systems
with stable and distinct exponents– the orthogonal function V in the SVD converges
exponentially fast to a constant matrix V and that the columns of X(0)V span the growth
subspaces associated to (ΣL and) ΣED. It must be stressed that, with SVD techniques,
we are able to obtain ΣL and ΣED without the need to require the fundamental matrix
solution X to be normal, any initial condition X(0) will do (as long as the system has
stable and distinct Lyapunov exponents). It comes natural then, to use the principal
matrix solution Φ to characterize the desired quantities. Clearly in this case the growth
subspaces (which are those in (8) and (9)) are given by the columns of V . We refer to [?]
for computational details on SVD techniques.

Perhaps surprisingly, we already have all the necessary ingredients in order to ascertain
ED on R by using the SVD method. In fact, it is sufficient to proceed as follows (see
(ED-1)-(ED-2)).

(a) Relatively to (3) in forward and backward time, apply SVD techniques to the
principal matrix solution Φ, to verify ED on the two half lines R

+ and R
−. This

requires verifying that 0 /∈ ΣED for both forward and backward problems. If
0 ∈ ΣED for either forward or backward problem, then there is no ED. Otherwise,
there is ED on the two half lines. Also, recall that we expect (for systems with
stable and distinct Lyapunov exponents) that the factors V of the SVDs to converge
(exponentially fast) to constant orthogonal matrices, in forward and backward
time, call these V̄ + and V̄ − respectively.

(b) Take the columns of V̄ + and V̄ − relative to the stable modes (those leading to
intervals of ΣED to the left, respectively right, of 0): V̄ +

s , V̄ −
s . The key observation

here (see [?]) is that V̄ +
s spans S+ and V̄ −

s spans S−.
(c) Verify if

[

V̄ −
s V̄ +

s

]

is a basis for R
n. If it is, then the system has ED on R, otherwise

it does not.

To sum up, SVD techniques based on (a), (b) and (c) above can be used to verify
ED on R. But, our analytical results justifying this approach require the assumption of
distinct and stable Lyapunov exponents. Although the assumption of stable Lyapunov
exponents is natural, the need to have distinct Lyapunov exponents is violated in cases
of practical interest (such as when the coefficient matrix A assumes a constant limiting
value Ā, and Ā has complex conjugate eigenvalues). In our practical experience, the SVD
method seems to work reliably also in these cases, but the lack of theoretical justification
in the case of stable and not distinct LEs is bothersome, and we cannot guarantee that this
technique will not encounter difficulties in the case of stable, but not distinct, Lyapunov
exponents (either forward or backward in time). To avoid these difficulties, we then turn
our attention to the next technique.
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3. QR method

QR techniques are based on the (unique) decomposition of a normal fundamental matrix
solution X = QR, where Q is orthogonal and R is upper triangular with positive diagonal.
In practice, one only finds Q and (the logarithm of the) diagonal of R. For example, in a
continuous realization of the QR method, we integrate differential equations for Q, so that
R = QT X would satisfy the triangular system Ṙ = B(t)R with B(t) := QT AQ − QT Q̇.
As it is well understood, see [?, ?, ?] for details on R

+, one can approximate ΣL and ΣED

by using only the diagonal of B; in other words, only Q is needed and R is really never
formed, since diag(B) = diag(QT AQ).

So, to check (ED-1), one can use QR techniques to find ΣED for both forward and
backward problems and verify that there is ED on the two half-lines. The issue is how
to verify (ED-2), that is how to obtain information on the growth subspaces by the QR
technique. It is our goal in this chapter to show that –under certain assumptions– one can
obtain the needed directional information from the rescaled function Y = R−1diag(R).
We will prove that Y “converges” to a matrix Ȳ for both forward and backward problems,
and that these limiting values can be used to verify (ED-2).

Remark 2. As we previously observed, when using the QR technique we need to require
that the fundamental matrix solution X be normal. But, we actually will need more: We
will need that the initial condition X(0) be chosen in such a way that conditions (12) and
(13) below be verified in forward time, with the similar conditions (14)-(15) to be verified
in backward time. In general, this request will imply that the initial conditions for the
forward and backward integration will not be the same. An easy example of this is the
diagonal system ẋ = Ax, with A = diag(1,−2). Obviously, this system enjoys Exponential
Dichotomy, and the principal matrix solution Φ is a normal fundamental matrix solution
for this problem. However, by using Φ, condition (12) is verified, but (14) is not. If for
the backward time integration we choose X(0) = [e2, e1], then we will get Q = [e2, e1],
and then for t ≤ 0 B = diag(−2, 1) and (14) is verified. In other words, with respect to
the notation of (8) and (9), we have S+ = e2 and S− = e1.

With the above remark in mind, our results can be summarized as follows: Given
suitable initial conditions, X+(0) and X−(0), for the forward and backward problems
respectively, the corresponding Y + and Y − will “converge” (for t → +∞ and t → −∞,
respectively) and the required growth subspaces can be extracted from these limiting Y ’s,
for problems with stable Lyapunov exponents, though not necessarily distinct. [To be
precise, for the case of non distinct Lyapunov exponents, we show convergence of Y to
subspaces associated to the equal exponents, though we will not have that each column
of Y converges.] We will also show that convergence is taking place exponentially fast.
Once these theoretical results will be at hand, the basic technique to verify (ED-2) will be
similar to what we did for the SVD:

Use the columns of X+(0)Ȳ + and X−(0)Ȳ − relative to the forward and backward stable
modes, X+(0)Ȳ +

s and X−(0)Ȳ −
s , and verify if

[

X−(0)Ȳ −
s X+(0)Ȳ +

s

]

is a basis for R
n.

Remark 3. In our analysis below, we will focus only on the case t ≥ 0, since, after
rewriting assumptions (12) and (13) in backward time, see (14) and (15), the results for
t ≤ 0 are identical.

Assume now that a normal fundamental matrix solution X(t) has been chosen (that
is, the initial conditions X(0) have been chosen) so that for its unique QR factorization
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X(t) = Q(t)R(t), with Q orthogonal and R with positive diagonal entries, we have

Ṙ = B(t)R ,

and the Lyapunov exponents can be computed from the diagonal of B (that is, of R) and
are stable. Our purpose in this chapter is to show that –under these mild conditions– cer-
tain subspaces associated to R converge and can be used to detect exponential dichotomy
on the real line. The result is important, since we will only need to have stable Lyapunov
exponents, though not necessarily stable and distinct, as it was the case for the SVD.

So, we will consider the system

(11) ẋ = B(t)x,

with B continuous, bounded and upper triangular. In what follows, we will assume that
the diagonal elements of B satisfy one of the following assumptions:

(i) Bii and Bjj are integrally separated, i.e. there exist a, d > 0 such that

(12)

∫ t

s

(

Bii(τ) − Bjj(τ)
)

dτ ≥ a(t − s) − d, t ≥ s ≥ 0 , i < j ,

(ii) Bii and Bjj are not integrally separated, but ∀ǫ > 0 there exists Mij(ǫ) > 0 such
that

(13)

∣

∣

∣

∣

∫ t

s

(

Bii(τ) − Bjj(τ)
)

dτ

∣

∣

∣

∣

≤ Mij(ǫ) + ǫ(t − s), t ≥ s ≥ 0 , i < j .

Remark 4. For the sake of completeness, we remark that for the backward problem t ≤ 0,
one should assume to have taken an initial condition X(0) so that for the QR factorization

X(t) = Q(t)R(t), t ≤ 0, one obtains a triangular system Ṙ = B(t)R satisfying the following
analogs of (12) and (13):

(i) Bii and Bjj are integrally separated, i.e.

(14)

∫ t

s

(

Bii(τ) − Bjj(τ)
)

dτ ≥ −a(t − s) − d, t ≤ s ≤ 0 , i < j ,

(ii) Bii and Bjj are not integrally separated, but ∀ǫ > 0 there exists Mij(ǫ) > 0 such
that

(15)

∣

∣

∣

∣

∫ t

s

(

Bii(τ) − Bjj(τ)
)

dτ

∣

∣

∣

∣

≤ Mij(ǫ) − ǫ(t − s), t ≤ s ≤ 0 , i < j .

Considering again only the case of t ≥ 0, assume moreover that the Bii’s are arranged in
p, p ≤ n, subsets as follows. Let n1, . . . , np be such that

∑n
i=1 ni = n, mi =

∑i
k=1 nk and

denote with B
(i)
jj the (mi−1 + j)-th diagonal element of B. The set {B

(i)
jj , j = 1, . . . , ni}

will be the i-th subset. Elements belonging to the same subset satisfy assumption (13)
while elements belonging to different subsets satisfy (12) as follows

∫ t

s

(

B
(i)
jj (τ) − B

(i+1)
kk (τ)

)

dτ ≥ a(t − s) − d, j = 1, . . . , ni, k = 1, . . . , ni+1.

In what follows we will use the notation Bjj where there is no ambiguity, otherwise we

will use the subset-notation B
(i)
jj . Same criteria will apply also to other quantities.

In [?], it was shown that the assumptions (12) and (13) guarantee that the Lyapunov
spectrum can be computed from the diagonal of B and that it is stable. In fact, in both
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cases (12) and (13), for all j = 1, . . . , n, the LEs are given by:

lim sup
t→+∞

1

t
log

∫ t

0
Bjj(τ)dτ = χs(Rjj) = λs

j , lim inf
t→+∞

1

t
log

∫ t

0
Bjj(τ)dτ = χi(Rjj) = λi

j .

Remark 5. Denote with R the principal matrix solution of (11) and let

Wj = {w ∈ R
n | lim sup

t→+∞

1

t
log ‖R(t)w‖ ≤ λs

j} ,

i.e. Wj is the subspace of initial conditions leading to upper LEs lesser or equal to λs
j .

(The Wj ’s are called lineals in the classical theory of LEs.) Then conditions (12) and
(13) guarantee that Wj is also the space of initial conditions leading to lower LEs lesser
or equal to λi

j . Indeed, by [?, Theorem 4.2] there exists a Lyapunov transformation T

which reduces system (11) into block diagonal form. The lineals for the new block system
are the subspaces {emj−1+1, . . . , emj

, . . . en} so that the lineals for system (11) are the
spaces Wj = span{Tmj−1+1(0), . . . Tmj

(0), . . . Tn(0)}, where with ej and Tj we denoted
respectively the j-th canonical vector of R

n and the j-th column of T . By [?, Theorem
5.1], Wj is also the set of initial conditions leading to lower LEs lesser than λi

j .

Now, let Y = R−1diag(R), so that Y satisfies the following ODE

(16) Ẏ = −Y C(t),

where C is strictly upper triangular with entries

(17) Cij(t) = Bij(t)
Rjj(t)

Rii(t)
= Bij(t)e

∫ t

0 Bjj(τ)−Bii(τ)dτ , j > i.

Observe that Y is upper triangular with 1’s on the diagonal.

Notation. We found it useful to adopt two different notations for the columns of Y .

The standard Yj for the j-th column, or the one inherited from the Bjj ’s: Y
(i)
j (t) for the

(mi−1 + j)-th column of Y (t).

Lemma 6. The elements of C satisfy the following

(i) χs(Cij) < −a, if Bii and Bjj are integrally separated;

(ii) For all ǫ > 0, χs,i(Bij) − ǫ ≤ χs,i(Cij) ≤ ǫ if Bii and Bjj satisfy (13).

Proof. Let M = supt≥0 ‖B(t)‖. If Bii and Bjj belong to different subsets, say the k-th and

the l-th respectively, k < l, then |Cij(t)| ≤
(

supt≥0 ‖B(t)‖
)

e−a(l−k)t+d = Me−a(l−k)t+d. It
follows easily that χs(Cij) < −(l − k)a < −a.

If instead Bii and Bjj belong to the same subset then |Cij(t)| ≤ MeMij(ǫ)+ǫt and |Cij(t)| ≥

|Bij(t)|e
−Mij(ǫ)−ǫt for arbitrary ǫ. It follows that

χs,i(Bij) − ǫ ≤ χs,i(Cij) ≤ ǫ.

�

Corollary 7. Let Y be the matrix in (16). If the system is integrally separated i.e. if the

Bii’s are integrally separated for all i = 1, . . . , n, then Y → Ȳ , with Ȳ constant, upper

triangular matrix with 1’s on the diagonal.

Proof. By Lemma 6 and integral separation of the Bii’s it follows that χs(Cij) < 0 for
i 6= j, while Cii(t) = 0, for all t and for all i = 1, . . . , n. Then C →t→∞ 0 exponentially
fast so that Y →t→∞ Ȳ . �
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Lemma 8. Let Y be the matrix in (16). Then for all ǫ > 0 sufficiently small, and any

j = 1 . . . , ni, i = 1 . . . , p, we have

χs(Y
(i)
j ) ≤ (j − 1)ǫ ≤ (ni − 1)ǫ.

Proof. Equation (16) can be solved explicitly and the elements of Y are given by the
following expression

Yij(t) = Yij(0) −

∫ t

0

j−1
∑

k=i

Yik(τ)Ckj(τ)dτ, j > i,(18)

Yii(t) = 1, ∀t ≥ 0.

The Y
(i)
j column of Y satisfies the following

(19)

Y
(i)
j (t) = Y

(i)
j (0) −

mi−1
∑

k=1

∫ t

0
Ck,mi−1+j(t1)Yk(t1)dt1 −

mi−1+j−1
∑

k=mi−1+1

∫ t

0
Ck,mi−1+j(t1)Yk(t1)dt1.

Then
(20)

‖Y
(i)
j (t)‖ ≤ ‖Y

(i)
j (0)‖+

mi−1
∑

k=1

∫ t

0
‖Ck,mi−1+j(t1)Yk(t1)‖dt1+

mi−1+j−1
∑

k=mi−1+1

∫ t

0
‖Ck,mi−1(t1)+jYk(t1)‖dt1.

Take first i = 1. We show through inductive reasoning that χs(Y
(1)
j ) ≤ (j − 1)ǫ. Clearly

χi(Y
(1)
1 ) = χs(Y

(1)
1 ) = 0. Notice that for i = 1, the first sum in (19) and in (20) is

zero. As far as the second sum is concerned, we have χs(CkjYk) ≤ χs(Ckj) + χs(Yk) ≤

ǫ + (k − 1)ǫ for k = 1, . . . , j − 1. Then χs(
∫

CkjYk) ≤ kǫ. It follows that χs(Y
(1)
j ) ≤

maxk=1,...,j−1(χ
s(
∫

CkjYk)) ≤ (j − 1)ǫ. The proof for i > 1 is analogous and it follows
upon noticing that the first sum goes to zero exponentially fast since for k = 1, . . .mi−1

we have χs(Ck,mi−1+jYk) ≤ χs(Ck,mi−1+j) + χs(Yk) ≤ −a + maxl=1,...,i−1(nl − 1)ǫ < 0,
where in the last inequality we picked ǫ < maxl=1,...,i−1

a
(nl−1) . �

Remark 9. Lemma 8 implies χs(Y
(i)
1 ) = χ(Y

(i)
1 ) = 0 for all i = 1, . . . , p.

In the two limiting cases of Lemma 8 we have:

• p = n so that ni = 1 for all i = 1, . . . , n and χi(Yj) = χs(Yj) = 0, j = 1, . . . , n,
(this follows from Corollary 7 as well);

• p = 1 so that n1 = n and 0 ≤ χi(Yj) ≤ χs(Yj) ≤ (j − 1)ǫ, j = 1, . . . , n.

Next, let Si(t) = span(Y
(i)
1 (t), . . . , Y

(i)
ni (t)), i = 1, . . . , p.

Theorem 10. The spaces Si converge for t → +∞: limt→+∞ Si(t) = S̄i, i = 1, . . . , p.

Proof. Clearly the first n1 columns of Y always span the same space so that S1(t) = S̄1 =

span{e1, . . . , en1} for all t. Consider now, for all t, S2(t) = span{Y
(2)
1 (t), . . . , Y

(2)
n2 (t)}. Let

T > 0 and fix 0 < τ ≤ 1. We will prove the statement for S2, the proof for the other
subspaces being analogous. Using (19) we have

(21) Y
(2)
1 (T + τ) − Y

(2)
1 (T ) = −

n1
∑

k=1

∫ T+τ

T
Ck,n1+1(t1)Y

(1)
k (t1)dt1.
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Lemma 6 and Lemma 8 imply χs(Ck,n1+1Y
(1)
k ) ≤ χs(Ck,n1+1)+χs(Y

(1)
k ) < −a+(n1−1)ǫ <

0, if we choose ǫ < a
(n1−1) . It follows that the integrals in (21) tend to zero for T → +∞.

Hence

lim
T→∞

(Y
(2)
1 (T + τ) − Y

(2)
1 (T )) = 0,

and Y
(2)
1 (t) tends to a constant vector: Ȳ

(2)
1 . We do two more steps. First we show that

for T → ∞, span(Ȳ
(2)
1 , Y

(2)
2 (T ), Y

(2)
2 (T + τ)) is a two dimensional subspace of R

n. We
have

Y
(2)
2 (T + τ) − Y

(2)
2 (T ) = −

n1
∑

k=1

∫ T+τ

T
Ck,n1+2(t1)Y

(1)
k (t1)dt1 −(22)

∫ T+τ

T
Cn1+1,n1+2(t1)Y

(2)
1 (t1)dt1.

When T → +∞ the first sum in the right hand side goes to zero. Moreover, Y
(2)
1 → Ȳ

(2)
1 ,

i.e. for all δ > 0, there exists Tδ > 0 such that for all t > Tδ, and for j = 1, . . . , n1 + 1.

Ȳ
(2)
1j − δ ≤ Y

(2)
1j (t) ≤ Ȳ

(2)
1j + δ.

It follows that for j = 1, . . . , n1 + 1,

lim
T→∞

∫ T+τ

T
Cn1+1,n1+2(t1)Y

(2)
1j (t1)dt1 = lim

T→∞

∫ T+τ

T
Cn1+1,n1+2(t1)dt1 Ȳ

(2)
1j ,

and therefore limT→∞(Y
(2)
2 (T +τ)−Y

(2)
2 (T )) ∈ span(Ȳ

(2)
1 ), since Y

(2)
1 (t) converges to Ȳ

(2)
1

exponentially fast.

Given the triangular structure of Y , this implies that these vectors belong to the same

two dimensional subspace. Denote with Ȳ
(2)
1 and Ȳ

(2)
2 a basis for this subspace. For the

next step we have

Y
(2)
3 (T + τ) − Y

(2)
3 (T ) = −

n1
∑

k=1

∫ T+τ

T
Ck,n1+3(t1)Y

(1)
k (t1)dt1 −(23)

∫ T+τ

T
Cn1+1,n1+3(t1)Y

(2)
1 (t1)dt1 −

∫ T+τ

T
Cn1+2,n1+3(t1)Y

(2)
2 (t1)dt1.

As before, when T → ∞, the first integral goes to 0. Moreover, reasoning as above, we
obtain that

lim
T→∞

(Y
(2)
3 (T + τ) − Y

(2)
3 (T )) ∈ span(Ȳ

(2)
1 , Ȳ

(2)
2 ),

so that again, given the triangular structure of Y , these vectors belong to the same three

dimensional subspace. The proof for the other Y
(i)
j is analogous. �

Remark 11. ¿From the proof of Theorem 10, we notice that the (vector) functions Y
(i)
1

converge, as t → ∞, for all i = 1, . . . , p. Instead, the remaining Y
(i)
j (j ≥ 2) do not

necessarily converge, though they keep belonging to the same subspaces.

Our next goal is to show that by taking initial conditions in a direction identified by
the subspaces S̄i we converge to solutions having growth given by the i-th Lyapunov
exponents. The following Lemma will be useful.
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Lemma 12. Let w 6= 0 be a constant vector in S̄i. Write w in the basis Y1(t), . . . , Yn(t),

as w =
∑n

j=1 cj(t)Yj(t) =
∑p

k=1

∑np

j=1 c
(k)
j (t)Y

(k)
j (t). Let c(i) = [c

(i)
1 , . . . , c

(i)
ni ]

T . Then

χs(c(i)) = χi(c(i)) = 0.

Proof. By Theorem 10, c
(k)
j → 0 for k 6= i and

∑ni

j=1 c
(i)
j (t)Y

(i)
j (t) → w. Assume by

contradiction that χs(c(i)) = α > 0. Notice χs(c(i)) ≤ maxj=1,...,ni
χs(c

(i)
j ). Adopt for w

the same block notation we adopted for c. If χs(c
(i)
ni ) = α then c

(i)
ni (t)Ynini

(t) = c
(i)
ni (t) →

w
(i)
ni and this is a constant quantity. So it must be χs(c

(i)
ni ) = 0. Similarly c

(i)
ni−1(t) +

c
(i)
ni (t)Y

(i)
ni,ni−1(t) → w

(i)
ni−1 and this implies χs(c

(i)
ni−1) ≤ 0. Reasoning in this way, it must

be χs(c
(i)
j ) = 0 for all j = 1, . . . , n1 and this proves χs(c(i)) = 0. We still need to show

χi(c(i)) = 0. Clearly χi(c(i)) ≤ 0. Assume by contradiction that χi(c(i)) = −α < 0. Then
there exists an increasing sequence (tk)k∈N, converging to ∞, such that

lim
tk→+∞

c
(i)
1 (tk)

2 + . . . + c
(i)
ni (tk)

2

e(−α+ǫ)tk
= 0 ,

for all ǫ > 0. This means that limtk→∞
c
(i)
j (tk)2

e(−α+ǫ)tk
= 0, for all j = 1, . . . , ni so that

χi(c
(i)
j ) ≤ −α. Moreover, we have that lim suptk→∞

1
tk

log(|c
(i)
j (tk)|‖Y

(i)
j (tk)‖) < 0 for

all j = 1, . . . , ni, if we choose ǫ = α
n in Lemma 8. But then, along this sequence, we would

have

χ(w) = χs(w) = lim sup
tk→∞

1

tk
log(‖

ni
∑

j=1

c
(i)
j (tk)Y

(i)
j (tk)‖) < 0 ,

and this is a contradiction since w is a nonzero constant vector, and thus χ(w) = 0. �

Let Z(t) = Y (t)−1. Then Z(t) satisfies the following ODE

(24) Ż = ZC,

where C is the matrix whose elements are defined in (17). The elements of Z are given by

Zij(t) = Zij(0) +

j
∑

k=i+1

∫ t

0
Cik(s)Zkj(s)ds , i < j ,

Zii(t) = 1 , ∀t ≥ 0 .

Denote with zi(t)
T the i-th row of Z so that Z =







z1(t)
T

...
zn(t)T






. Lemma 8 applies to the

elements of Z as well so that

(25) χs(z
(i)
j ) ≤ (j − 1)ǫ ≤ (ni − 1)ǫ.

Remark 13. If the system is integrally separated then χs(zi) = χ(zi) = 0, for all i =
1, . . . , n.

Remark 14. Equation (25) implies χs(z
(i)
1 ) = χ(z

(i)
1 ) = 0, for i = 1, . . . , p.

Denote with z
(i)
j (t) the (mi + j)-th row vector of Z(t). Then, being Z the inverse of Y ,

we have that zT
i Yi = 1 so zi is aligned with Yi and perpendicular to all other Yj ’s. Then

span(z
(i)
1 (t), . . . z

(i)
ni (t)) = span(Y

(i)
1 (t), . . . Y

(i)
ni (t)) → S̄i.
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Theorem 15. For all w 6= 0, w ∈ S̄j, and all j = 1, . . . , p:

lim sup
t→+∞

1

t
log ‖R(t)w‖ = λs

j , lim inf
t→+∞

1

t
log ‖R(t)w‖ = λi

j ,

with R(t) fundamental matrix solution of (11).

Proof. We will first prove that χs(R(t)w) ≥ λs
j (similarly, χi(R(t)w) ≥ λi

j). Then the
statement will follow from some geometrical considerations.

Rewrite w in the basis {Y1(t), . . . , Yn(t)} as

w =
n
∑

i=1

ci(t)Yi(t) =

p
∑

k=1

np
∑

i=1

c
(k)
i (t)Y

(k)
i (t) = w1 + · · · + wp , wk =

nk
∑

i=1

c
(k)
i Y

(k)
i (t) .

Notice that, by Lemma 12, we have χ(c
(j)
i ) = 0, and also c

(k)
i (t) →t→∞ 0, k 6= j.

We now look at the characteristic exponent of R(t)w. We have

‖R(t)w‖ = ‖diag(R(t))Z(t)w‖ =

∥

∥

∥

∥

∥

∥

∥

R11(t)z1(t)
T w

...
Rnn(t)zn(t)T w

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

R11(t)c1(t)
...

Rnn(t)cn(t)

∥

∥

∥

∥

∥

∥

∥

(26)

≥

∥

∥

∥

∥

∥

∥

∥

R
(j)
11 (t)c

(j)
1 (t)

...

R
(j)
nini(t)c

(j)
nj (t)

∥

∥

∥

∥

∥

∥

∥

≥ R
(j)
njnj (t)

∥

∥

∥

∥

∥

∥

∥

c
(j)
1 (t)

...

c
(j)
nj (t)

∥

∥

∥

∥

∥

∥

∥

.

This implies χs(R(t)w) ≥ λs
j , and χi(R(t)w) ≥ λi

j .

For w ∈ S̄1 we clearly have

lim sup
t→+∞

1

t
log ‖R(t)w‖ = λs

1 and lim inf
t→+∞

1

t
log ‖R(t)w‖ = λi

1 .

Next, denote with W2 the space of initial conditions leading to exponential growth less
than or equal to λs

2, i.e. W2 = {v ∈ R
n s.t. lim supt→+∞

1
t log ‖R(t)v‖ ≤ λs

2}. Then

dim(W2) = n − n1 while dim(S̄1 ⊕ S̄2) = n1 + n2 so that dim
(

(S̄1 ⊕ S̄2) ∩ W2

)

= n2. Let

w ∈ S̄1 ⊕ S̄2. If w1 6= 0 then by simply following the same reasoning as before we obtain
χ(c(1)) = 0 and lim supt→+∞

1
t log ‖R(t)w‖ = λs

1. But then this leaves the only possibility

that S̄2 ⊂ W2 and lim supt→+∞
1
t log ‖R(t)w‖ = λs

2 for w ∈ S̄2. The proof for the lower
exponent is analogous. Notice that the results for the lower LEs follows from Remark 5
as well. �

3.1. QR convergence speed. Our next goal is to show that there is exponential con-
vergence to the subspaces S̄i, i = 1 . . . , p. We will do this following the approach used in
[?] for the SVD, with appropriate modifications to account for non-orthogonal factors and
of dimension greater than 1.

Consider the unique smooth QL decomposition of Y : Y (t) = U(t)L(t) for all t, with
U ∈ R

n×n orthogonal and L ∈ R
n×n lower triangular with Lii > 0.

Notice that span{yi, . . . , yn} = span{ui, . . . , un} for all i = 1, . . . , n.

Let M(t) = L(t)−1 and notice that Z(t) = Y (t)−1 = M(t)UT (t), so that M(t) =
Z(t)U(t) and UMT is the unique QR decompostion of ZT with positive diagonal elements.
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Lemma 16. Use for the diagonal elements of M same block notation as for B. Then

0 ≤ χi(M
(i)
jj ) ≤ χs(M

(i)
jj ) < (j − 1)ǫ ≤ (ni − 1)ǫ, χs(Mij) ≤ max

k=1,...,p
(nk − 1)ǫ.

Proof. Obviously M
(i)
jj (t) 6= 0. Moreover |M

(i)
jj (t)| = |z

(i)
j (t)T uj(t)| ≤ ‖z

(i)
j (t)‖, where with

uj we denote the j-th column of U . By (25) it follows χs(M
(i)
jj ) ≤ (j − 1)ǫ ≤ (ni − 1)ǫ.

Similarly for Mij(t) = zi(t)
T uj(t). �

Remark 17. If system (11) is integrally separated, then Lemma 16 can be restated as
follows: χs(Mij) = χ(Mij) = 0, for all i, j = 1, . . . , n.

Remark 18. Lemma 16 implies in particular that χs(Mni+1,j) = χ(Mni+1,j) = 0, for all
i = 1, . . . , p, and j = 1, . . . , ni + 1.

Remark 19. Assumption (13) implies that there exists T > 0 so that R
(i)
jj (t) > R

(i+1)
kk (t),

for t > T , i = 1, . . . , p − 1, j = 1, . . . , ni, and k = 1, . . . , ni−1.

Define Ui(t) = span(u
(i)
1 (t), . . . , u

(i)
ni (t)) for i = 1, . . . , p. Theorem 10 insures Si(t) =

span(y
(i)
1 (t), . . . , y

(i)
ni (t)) → S̄i. Then clearly Up(t) = Sp(t) → S̄p = Ūp. Moreover Up−1(t)⊕

Up(t) = Sp−1(t)⊕Sp(t) → S̄p−1⊕S̄p and from the uniqueness of the orthogonal complement
it follows Up−1(t) → Ūp−1. Reasoning in the same way, we can prove that Ui → Ūi for i =
p−2, . . . , 1. To determine speed of convergence of Ui to Ūi, define Wi(t) = Ui(t)⊕. . .⊕Up(t),
W̄i = Ūi ⊕ . . . ⊕ Ūp. Let e = (n1, . . . , np) and Fe(n) be the space of flags in R

n of type e,
i.e., the set of all filtrations V = (Vi)

p
i=1 such that R

n = V1 ⊃ . . . ⊃ Vp. Given a filtration

V(j) = (V
(j)
i )p

i=1, define the sets K
(j)
i such that K

(j)
p = V

(j)
p , V

(j)
i = K

(j)
i ⊕ V

(j)
i+1, and

K
(j)
i ⊥ V

(j)
i+1, for i = p− 1, . . . , 1. The following quantity defines a metric in Fe(n) (see [?])

(27) d(V(1),V(2)) = max
i 6= j

‖x‖ = ‖y‖ = 1

x ∈ K
(1)
i , y ∈ K

(2)
j

|(x, y)|∆/|λs
i−λs

j |,

with ∆ = mini6=j |λ
s
j − λs

i |/(n− 1). Let P
(j)
i be the orthogonal projection into K

(j)
i . Then

as in [?]

(28) d(V(1),V(2)) = max
i6=j

‖P
(1)
i P

(2)
j ‖∆/|λs

j−λs
i |.

Notice that, for all t, W(t) = (Wi(t))
p
i=1 ∈ Fe(n), and that for this filtration, Ui(t) = Ki,

i = 1, . . . , p, where the Ki’s are the subspaces defined above. In the same way W̄ =
(W̄i)

p
i=1 ∈ Fe(n) and Ūi = Ki. Let Pi(t) be the orthogonal projection into Ui(t). Then

Pi(t) → P̄i, with P̄i orthogonal projection into Ūi. Our aim is to prove that the convergence
of Pi(t) to P̄i is exponential. To do so, we will first prove Theorem 20, and the sought
result will follow from (30) together with (28).

Theorem 20. Assume the diagonal elements of B satisfy either (12) or (13). Let 0 ≤
τ < 1 fixed and define βij(t) = ‖Pi(t + τ)Pj(t)‖, i, j = 1, . . . , p, where

(29) Pi(t) = [u
(i)
1 (t), . . . , u(i)

ni
(t)][u

(i)
1 (t), . . . , u(i)

ni
(t)]T ,
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is the orthogonal projection onto Ui(t). Then, for arbitrary ǫ ≥ ǫ0 > 0 sufficiently small

we have

χs(βij) ≤ min(λs
j − λi

i,−a(j − i)) + ǫ0, j > i

(30)

χs(βij) ≤ min(λs
i − λi

j ,−a(i − j)) + ǫ0, i > j.

Proof. To prove (30) it suffices to show that for all x ∈ Uj(t),

χs(‖Pi(t + τ)Pj(t)x‖) ≤ min(λs
j − λs

i ,−a(j − i)) + ǫ0.

Let us consider the case of j > i.

Take x ∈ Uj(t), x =
∑nj

k=1 c
(j)
k (t)u

(j)
k (t). Let c(j)(t) = [0, . . . , 0, c

(j)
1 (t), . . . , c

(j)
nj (t), 0, . . . , 0]T

and D(t) = diag(R(t)). Notice that the vector D(t)M(t)c(j)(t) has first mj−1 components
equal to zero. Then by Remark 19, for t > T we have

(31)

‖R(t)x‖ = ‖D(t)M(t)UT (t)

nj
∑

k=1

c
(j)
k (t)u

(j)
k (t)‖ = ‖D(t)M(t)c(j)(t)‖ ≤ R̃jj(t)‖M(t)‖‖x‖,

with R̃jj(t) = maxk=1,...,nj
R

(j)
kk .

Rewrite x in the basis u1(t + τ), . . . , un(t + τ), as x =
∑p

k=1

∑nk

l=1 b
(k)
l (t)u

(k)
l (t + τ). In

particular let y =
∑ni

l=1 b
(i)
l (t)u

(i)
l (t + τ) be the orthogonal projection of x onto Ui(t + τ)

so that ‖y‖ = ‖Pi(t + τ)Pj(t)x‖. Let N−1 = supt≥0 ‖R(t + τ, t)‖, with R(t + τ, t) being

the solution at time t + τ of Ṙ = B(t)R, R(t, t) = I. Then R(t) = R(t + τ, t)−1R(t + τ)
and

(32) ‖R(t)x‖ ≥ N‖R(t + τ)x‖ = N

∥

∥

∥

∥

∥

∥

∥

D(t + τ)M(t + τ)







b1(t + τ)
...

bn(t + τ)







∥

∥

∥

∥

∥

∥

∥

.

Take first i = 1, l = 1. We want to estimate the exponential behavior of b
(i)
l = b

(1)
1 .

Then (31) and (32) together with M being lower triangular imply

|M11(t)b
(1)
1 (t)| ≤

R̃jj(t)

R11(t)
‖M(t)‖‖x‖,

and this together with (13) and Remark 18 imply

χs(b
(1)
1 ) = χs(M11b

(1)
1 ) ≤ min(λs

j − λi
1,−a(j − 1)).

Consider now i = 1, l = 2. Then as above

|M21(t)b
(1)
1 (t) + M22(t)b

(1)
2 (t)| ≤

R̃jj(t)

R22(t)
‖M(t)‖‖x‖.

χs
(

|M21b
(1)
1 + M22b

(1)
2 |
)

≤ max(χs(M21b
(1)
1 ), χs(M22b

(1)
2 )) and it is equal to the maximum

if it is unique. So we have the following possibilities

(i) χs(M22b
(1)
2 ) > χs(M21b

(1)
1 ),
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(ii) χs(M22b
(1)
2 ) < χs(M21b

(1)
1 ),

(iii) χs(M22b
(1)
2 ) = χs(M21b

(1)
1 ).

Case (i) and (ii) both imply

χs(b
(1)
2 ) ≤ min(λs

j − λi
1,−a(j − 1)).

For case (iii) we get

χs(b
(1)
2 ) ≤ χi(M22)+χs(b

(1)
2 ) ≤ χs(M22b

(1)
2 ) ≤ χs(M21)+χs(b

(1)
1 ) < ǫ+min(λs

j−λi
1,−a(j−1)),

where the last inequality follows from Lemma 16. The proof for i = 1 and l = 3 is
analogous. In this case we have again three different possibilities.

(i) χs(M33b
(1)
3 ) > χs(M31b

(1)
1 ), χs(M32b

(1)
2 ),

(ii) χs(M33b
(1)
3 ) < χs(M31b

(1)
1 ), or χs(M33b

(1)
3 ) < χs(M32b

(1)
2 ),

(iii) χs(M33b
(1)
3 ) = χs(M3jb

(1)
j ) > χs(M3kb

(1)
k ), with j = 1, 2, k = 2, 1.

Again cases (i) and (ii) are easy. For case (iii) (when χs(M33b
(1)
3 ) is not the only maximum),

we examine the equality with j = 2, k = 1, which gives rise to the bound χs(M33b
(1)
3 ) =

χs(M32b
(1)
2 ) ≤ χs(M32) + χs(b

(1)
2 ) < 2ǫ + min(λs

j − λi
1,−a(j − 1)), where the 2ǫ term

comes from the estimate in Lemma 16 together with the bound for χs(b
(1)
2 ). The proof

for i = 1 and l = 4, . . . , n1 is analogous, and we will get the following estimate: χs(b
(1)
l ) <

(l − 1)ǫ + min(λs
j − λi

1,−a(j − 1)).

Finally, we have χs(‖y‖) = 1
2χs(

∑n1
k=1(b

(1)
k )2) ≤ maxk=1,...,n1 χs(b

(1)
k ) ≤ min(λs

j −

λi
1,−a(j−1))+(n1−1)ǫ and (30) is proved for i = 1 and j > 1. Here ǫ0 = (n1−1)ǫ. Notice

that if we choose ǫ < a
(n1−1) , then min(λs

j−λi
1,−a(j−1))+(n1−1)ǫ ≤ min(λs

j−λi
2,−a(j−

2)). This follows upon noticing that min(λs
j −λi

1,−a(j−1))+a ≤ min(λs
j −λi

2,−a(j−2)).

Take now i = 2, l = 1. Then (32) and (31) imply

R̃jj(t)‖M(t)‖‖x‖ ≥ ‖R(t)x‖ ≥ R
(2)
11 (t)

∣

∣

∣

∣

∣

n1
∑

k=1

Mn1+1,k(t)b
(1)
k (t) + Mn1+1,n1+1(t)b

(2)
1 (t)

∣

∣

∣

∣

∣

,

so that

χs

(

n1
∑

k=1

Mn1+1,kb
(1)
k + Mn1+1,n1+1b

(2)
1

)

≤ min(λs
j − λi

2,−a(j − 2)).

And again we have three possibilities

(i) χs(Mn1+1,n1+1b
(2)
1 ) > χs(

∑n1
k=1 Mn1+1,kb

(1)
k );

(ii) χs(Mn1+1,n1+1b
(2)
1 ) < χs(

∑n1
k=1 Mn1+1,kb

(1)
k );

(iii) χs(Mn1+1,n1+1b
(2)
1 ) = χs(

∑n1
k=1 Mn1+1,kb

(1)
k ).
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Case (i) and (ii) imply χs(b
(2)
1 ) ≤ min(λs

j − λi
2,−a(j − 2)). Case (iii) implies χs(b

(2)
1 ) ≤

maxk=1,...,n1 χs(Mn1+1,kb
(1)
k ) ≤ min(−a(j−1), λs

j−λi
1)+(n1−1)ǫ ≤ min(λs

j−λi
2,−a(j−2)).

For i = 2, l = 2, . . . , n2 the proof is analogous to the one for i = 1. Reasoning in the

same way we will obtain χs(b
(2)
l ) ≤ (n2 − 1)ǫ + min(λs

j − λi
2,−a(j − 2)).

The statement of the theorem follows by choosing ǫ0 = (ni−1)ǫ < a, for i = 1, . . . , j−1.

The proof for i > j is analogous.

�

Corollary 21. Assume system (11) to be integrally separated and let βij(t) = ‖Pi(t +
τ)Pj(t)‖, where Pi(t) is the orthogonal projection onto Ui(t) defined in (29). Then

χs(βij) ≤ min(λs
j − λi

i,−a(j − i)), j > i,

χs(βij) ≤ min(λs
i − λi

j ,−a(i − j)), i > j.

Finally, we are ready to estimate the rate of convergence of the orthogonal projections
Pi(t) to P̄i, i = 1, . . . , p. Let αij(t) = ‖Pi(t)P̄j‖, i, j = 1, . . . , p.

Theorem 22. Let the diagonal elements of B satisfy assumption (13) or (12). Then for

all i, j = 1, . . . , p, i 6= j,

(33) χs(αij) ≤ A|λs
i − λs

j |, χs(1 − αii) ≤ max
j 6=i

χs(αij).

where A = maxk 6=l(χ
s(βkl)/|λ

s
k − λs

l |).

Proof. The proof for i 6= j is much the same as that of [?, Theorem 5.4]. We omit the
details here, and we just point out that the result follows from (30) together with (28).

In what follows, we prove the result for i = j. Since P1(t) + P2(t) + . . . Pp(t) = I,
with I the identity matrix in R

n×n, we can rewrite P̄i =
∑p

j=1 Pj(t)P̄i. Then 1 = ‖P̄i‖ ≤
∑p

j=1 ‖Pj(t)P̄i‖ so that (1−‖P̄iPi(t)‖) ≤
∑

j 6=i ‖Pj(t)P̄i‖ and this rewrites as (1−αii(t)) ≤
∑

j 6=i αij(t). It follows that χs(1 − αii) ≤ χs(
∑

j 6=i αij) ≤ maxj 6=i χ
s(αij).

�

Remark 23. The importance of exponential convergence to the relevant subspaces cannot
be stressed enough. For example, in a numerical implementation of methods to ascertain
ED, it implies that one can truncate the real line to a finite (large) interval, ascertain ED
on this finite interval, and then invoke perturbation results to conclude that the original
problem had ED on the infinite interval. It is also important to stress that the assumptions
we have needed in order to infer exponential convergence of the subspaces are structural

assumptions on the system, namely some form of integral separation on the two half
lines (a generic assumption, see [?]), or more precisely we assumed that the system has
stable Lyapunov exponents in forward and backward time. This is in contrast to existing
results to infer ED, which require strong assumptions on the type of system at hand, e.g.
slow varying systems, or systems for which roughness and L1 perturbation results can be
applied; again, see [?, ?, ?, ?, ?, ?, ?].

4. Exponential Dichotomy from QR on R

In sections 2 and 3, we have used the equivalence to having ED given by the conditions
(ED-1) and (ED-2), to see how the forward and backward stable subspaces can be obtained
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from the SVD or QR of appropriate fundamental matrix solutions. In this section we
consider an alternative strategy, namely we give sufficient conditions that guarantee that
the Sacker-Sell spectrum (on the whole line) is bounded away from the origin.

Consider the linear inhomogeneous problem

(34) ẏ = A(t)y + g(t)

where A and g are uniformly bounded and A is piecewise continuous. Recall (see [?, p.67])
that the homogeneous system (that is (3)) has exponential dichotomy on R, that (6) holds
with t, s ∈ R, if and only if (34) has a unique bounded solution for any bounded and
continuous function g.

First of all, we envision performing a global time dependent orthogonal change of vari-
ables (x(t) = QT (t)y(t) and f(t) = QT (t)g(t)) which brings the system in upper triangular
form B. We write this system in block form

(35) ẋ = B(t)x + f(t), B(t) =

(

B11(t) B12(t)
0 B22(t)

)

.

Below, let ‖x‖ = supt ‖x(t)‖2, ‖f‖ = supt ‖f(t)‖2, and ‖A‖ = supt ‖A(t)‖F .

Next, we make the following assumptions on a fundamental matrix solution R associated
to B: Ṙ = B(t)R (these are effectively assumptions on the existence of a transformation
Q leading to a triangular problem for which these assumptions are satisfied). There exist
constants α1 > 0, α2 > 0, α > 0, and K1 ≥ 1, K2 ≥ 1, K ≥ 1, such that

(36) ‖R11(t)R
−1
11 (s)‖ ≤ K1e

−α1(s−t), s ≥ t,

(37) ‖R22(t)R
−1
22 (s)‖ ≤ K2e

−α2(t−s), t ≥ s,

and

(38) ‖R22(t)R
−1
22 (s)‖ · ‖R11(s)R

−1
11 (t)‖ ≤ Ke−α(t−s), t ≥ s,

where R11(t0) = I and R22(t0) = I for some t0. [Notice that the exponential separation
condition (38) implies having integral separation between arbitrary diagonal elements of
R11 and R22.]

Theorem 24. If

(i) (36) and (37) hold, or

(ii) (36) and (38) hold with α > α1, or

(iii) (37) and (38) hold with α > α2,

then (3) has ED on R; that is, (6) holds with t, s ∈ R, X(t) = R(t) =

(

R11(t) R12(t)
0 R22(t)

)

,

with

(39) R12(t) = −R11(t)

∫ ∞

t
R−1

11 (τ)B12(τ)R22(τ)dτ

and P =

(

0 0
0 I

)

. Indeed, with this R, there exists a bounded solution x of (35) such that

(40) ‖x‖ ≤ ‖f‖ ·

{

K2

α2

√

1 + κ2
K2

1

(α1 + α2)2
+

K1

α1

√

1 + κ2
K2

2

(α1 + α2)2

}

where κ = ‖B12‖.



Exponential Dichotomy On The Real Line 17

Proof. First note that all three possible assumptions (i), (ii), or (iii), imply that (36) and
(37) hold which is what we will assume. We write by the variation of parameters formula

(41) x(t) =

∫ t

−∞
R(t)PR−1(s)f(s)ds −

∫ ∞

t
R(t)(I − P )R−1(s)f(s)ds .

We employ the upper triangular fundamental matrix solution R(t) (see [?], Lemma 7.4)
where R12(t) is given by (39). Then

R(t)PR−1(s) =

(

0 R12(t)R
−1
22 (s)

0 R22(t)R
−1
22 (s)

)

, R(t)(I−P )R−1(s) =

(

R11(t)R
−1
11 (s) R11(t)(R

−1(s))12
0 0

)

where

(R−1(s))12 =
[

∫ ∞

s
R−1

11 (τ)B12(τ)R22(τ)dτ
]

R−1
22 (s) .

Because of (36) and (37), to verify (6) we need to get (exponentially decreasing) bounds
for ‖R12(t)R

−1
22 (s)‖ when t ≥ s and for ‖R11(t)(R

−1(s))12‖ when t ≤ s. We have
∫ t

−∞
‖R22(t)R

−1
22 (s)‖ds ≤

∫ t

−∞
K2e

−α2(t−s)ds ≤
K2

α2

and
∫ ∞

t
‖R11(t)R

−1
11 (s)‖ds ≤

∫ ∞

t
K1e

−α1(s−t)ds ≤
K1

α1
.

Next
∫ t

−∞
R12(t)R

−1
22 (s)ds = −

∫ t

−∞
R11(t)

∫ ∞

t
R−1

11 (τ)B12(τ)R22(τ)dτR−1
22 (s)ds

and for t ≥ s,

(42) ‖R12(t)R
−1
22 (s)‖ ≤ κ

∫ ∞

t
K1e

−α1(τ−t)K2e
−α2(τ−s)dτ ≤ κ

K1K2

(α1 + α2)
e−α2(t−s) .

Moreover,

(43)

∫ t

−∞
‖R12(t)R

−1
22 (s)‖ds ≤ κ

K1K2

(α1 + α2)

∫ t

−∞
e−α2(t−s)ds

≤ κ
K1K2

α2(α1 + α2)
.

Similarly,
∫ ∞

t
R11(t)(R

−1(s))12ds =

∫ ∞

t

[

∫ ∞

s
R−1

11 (τ)B12(τ)R22(τ)dτ
]

R−1
22 (s)ds

and for s ≥ t,

(44) ‖R11(t)R
−1
12 (s)‖ ≤ κ

∫ ∞

s
K1e

−α1(τ−t)K2e
−α2(τ−s)dτ ≤ κ

K1K2

(α1 + α2)
e−α1(s−t) .

Moreover,
∫ ∞

t
‖R11(t)(R

−1(s))12‖ds ≤ κ
K1K2

(α1 + α2)

∫ ∞

t
e−α1(s−t)ds

≤ κ
K1K2

α1(α1 + α2)
.

Thus,
∫ t

−∞
‖R(t)PR−1(s)‖ds ≤

K2

α2

√

1 + κ2
K2

1

(α1 + α2)2
,
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and

(45)

∫ ∞

t
‖R(t)(I − P )R−1(s)‖ds ≤

K1

α1

√

1 + κ2
K2

2

(α1 + α2)2
.

Now, from (42) and (44), we obtain (6) on R. Moreover, using (43) and (45) in (41), we
obtain (40). �

Remark 25. Note that (38) implies

(46) ‖R12(t)‖ ≤ κ

∫ ∞

t
Ke−α(τ−t)dτ ·‖R22(t)‖ ≤ κ

K

α
·‖R22(t)R

−1
22 (t0)‖ → 0, as t → +∞

using (37). This means that we are employing a fundamental matrix solution R(t) such
that R11(t0) = I, R22(t0) = I, and limt→∞ R12(t) = 0.

Remark 26. For the triangular problem of which in Theorem 24, we can explicitly give
the forward and backward stable subspaces. In fact, from the proof of Theorem 24, we
have that

S+ = span

(

R12(0)
I2

)

, S− = span

(

I1

0

)

,

where I1 and I2 are identity matrices of the same size as the blocks R11 and R22, respec-
tively, and R12(0) is defined from (39).

5. Examples

In this section we elucidate the previous theoretical results with examples of two di-
mensional upper triangular systems.

1.) First, consider the following problem

(47) Ṙ = B(t)R =

(

arctan(t) + t
1+t2

ǫf(t)

0 −1
2(arctan(t) + t

1+t2
)

)

R,

with ǫ ≥ 0 and f bounded and continuous in R. Notice that the diagonal elements B11

and B22 of the coefficient matrix in (47) satisfy conditions (12) and (14) so that the scalar

problems Ṙii = Bii(t)Rii, for i = 1, 2, do not admit ED on R. This implies that, for ǫ = 0,
the system (47) does not admit ED on R either. Then, we consider the case of ǫ > 0 and
try to establish if (47) has or not ED on R. Observe that (36)-(37) do not hold (regardless
of ǫ) and Theorem 24 cannot be used to establish ED on R.

The principal matrix solution Φ of (47) is given by

Φ11(t) = et arctan(t);

Φ12(t) = ǫet arctan(t)
∫ t
0

(

e−3/2s arctan(s)f(s)
)

ds;

Φ21 = 0, Φ22(t) = e−
t arctan(t)

2 .

Hence, (ED-1) is satisfied, and in order to verify whether or not there is ED on the whole
line we need to check whether or not (ED-2) is satisfied. The forward and backward stable
subspaces are one-dimensional and can be computed explicitly. We are looking for two
vectors v = (v1, v2)

T and w = (w1, w2)
T such that

(48) lim
t→+∞

‖Φ(t)v‖ = 0 , lim
t→−∞

‖Φ(t)w‖ = 0 .

The first of (48) rewrites as

Φ11(t)v1 + Φ12(t)v2 → 0 , Φ22(t)v2 → 0 ,
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and clearly the second requirement is verified for any v2. For v1, we need to take it so that

(49) Φ11(t)v1 + Φ12(t)v2 = et arctan(t)

(

v1 + ǫ

∫ t

0

(

e−
3
2
s arctan(s)f(s)

)

ds v2

)

→ 0 .

So, we must choose (except for normalization of v2):

v1 = − lim
t→+∞

ǫ

∫ t

0

(

e−
3
2
s arctan(s)f(s)

)

ds, v2 = 1 .

With this choice of v1, the expression in (49) goes to zero and S+ = Span(v).

If we repeat the same reasoning for the second limit in (48), we obtain

w1 = − lim
t→−∞

ǫ

∫ t

0

(

e−
3
2
s arctan(s)f(s)

)

ds, w2 = 1 .

Observe that e−
3
2
s arctan(s) is an even function. We distinguish two cases.

(a) If f is odd, w1 = v1 and S+ = S− so that (47) does not admit ED on R.
(b) If f is even, w1 = −v1, S

+ ∩ S− = {0} and (47) admits ED on R.

Remark 27. Example (47) can be easily extended to the case of B11 = −cB22, c > 0,
and B11 such that

∫ t

s
B11(τ)dτ ≥ a(t − s) , t ≥ s ≥ 0 ,

∫ t

s
B11(τ)dτ ≥ −a(t − s) , t ≤ s ≤ 0 ,

where a > 0. In this class of problems, B11 is always leading to the unstable Lyapunov
exponent (positive in forward time, negative in backward time), so that the principal
matrix solution is a suitable initial condition both in forward and backward time (see
Remark 2). Again, if f is even and ǫ 6= 0, there is ED on R, while if f is odd there is no
ED for any ǫ.

2.) This is generalization of the Example in Remark 2. Consider B11(t) = −cB22(t),
c > 0, and assume that there is integral separation on the whole line so that

∫ t

s
(B11(τ) − B22(τ)) dτ = (1 + c)

∫ t

s
B11(τ)dτ ≥ a(t − s) − d

for a > 0, d ≥ 0, and t ≥ s. Then, the scalar problems Ṙii = Bii(t)Rii, i = 1, 2, have ED
on the whole line, (36) and (37) hold and the problem has ED on R for any ǫ and f(t). If
we want to compute the stable subspaces (forward and backward), then to obtain S+ we
may use the principal matrix solution. To obtain S−, we cannot use the principal matrix
solution and a different fundamental matrix must be employed, though in this example
we actually have S− = Span(e1), see Remark 26.

6. Conclusion

In this paper we have shown how techniques based on the SVD or QR decomposition
of a fundamental matrix solution can be used to determine whether or not a system has
exponential dichotomy on the real line. An important consequence of our results is that
for a large class of problems, namely those with integral separation on both lines or more
generally with stable Lyapunov exponents on both half lines, the existence of exponential
dichotomy may be determined from information on finite intervals up to exponentially
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small perturbations. This enlarges the class of problems for which finite interval computa-
tions are sufficient to determine exponential dichotomy from those that are asymptotically
constant, asymptotically periodic, or almost periodic [?]. Another important benefit of
our theoretical results is that they lend themselves to practical algorithmic procedures to
verify whether or not a system has exponential dichotomy, as it will be reported elsewhere.
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