
essentially requires this too, a characteristic of both procedures
is that the denominator of the Laplace transform of e{t) or f(t)
be factored.

The object of this letter is to indicate that no factoring
need be done, unless desired. We present an algebraic
approach to the evaluation of

= tkex(t)e2{t)dt
o

A: = 0 , 1 , 2 . (3)

where ex and e2 are functions with known rational Laplace
transforms. Of course, by taking ex = e2, one recovers the
earlier results.

The procedure constitutes an extension of a technique due
to Macfarlane3 for the evaluation of the matrix

r00

tkQF'Q eF'dt (4)
o

where F and Q are square matrices of the same order, and F
has eigenvalues in the left-hand halfplane.

Denoting by Ex(s) and E2(s) the Laplace transforms of
ex(t) and e2(t), we begin by finding matrices F, and F2, and
vectors g\, g2, hx and h2, such that

and

(5)

(6)

It is important to realise that the desired matrices and vectors
can be found by well known procedures (see, e.g., Reference 4)
whether the denominators of Ex(s) and E2(s) are factored or
not. For simplicity, Fx and F2 should be taken to be of
minimal dimension.

To guarantee that eqn. 3 is finite, we suppose that Ex(s)
and E2(s) have poles in the halfplane Re (J) < 0. Then the
eigenvalues of the matrices Fx and F2 all possess negative real
parts.

Now, in eqn. 3, we have

(7)

(where we are not assuming the availability of an explicit
expression for eF|'). Define the matrix

so that

4 = KLk8i

(8)

(9)

We can give a recursion formula for Lk as follows. From
eqn. 8, we have, for &> 1,

FxLk + LkF2 =
Jo

(10)

Note that we have used the fact that the eigenvalues of F, and
F2 have negative real parts in the above sequence of equalities.
For k = 0, it follows in a similar manner that

FXLO + L0F2 = —gxh2 (11)

Eqn. 11, and then eqn. 10 for k = 1, 2, . . . give successively
Lo, Lx, L2 .. . Note that the fact that all eigenvalues of F, and
F2 possess negative real part guarantees the solvability of these
equations by standard procedures,5 even when the dimensions
of F, and F2 differ.

B. D. o. ANDERSON 3rd April 1968

Department of Electrical Engineering
University of Newcastle
New South Wales 2308, Australia
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p-n JUNCTION AS AN ULTRALINEAR
CALCULABLE THERMOMETER

A mode of operation of a p-njunction is described which
jeads to an output voltage linearly related to temperature,
independent of device geometry or semiconductor material,
and determined only by fundamental physical constants and
current.

The temperature dependence of the voltage across a forward-
biased /7-njunction offers the possibility of an electrical
thermometer with relatively simple circuitry,1 and seems to
find wide application. At the cost of some circuit com-
plexity,* its characteristics can be substantially improved, as
will be shown. The collector current of an ideal junction
transistor (there are sound reasons, also given later, why a
transistor should be used rather than a diode) for instance,
can be expressed as follows2:

^ ( V g 0 - Vbe) (1)

where K, r, VgQ, q and k are independent of temperature. VgO
is the extrapolated energy gap at T= 0°K (Vg0 = 1 -205V
for Si). The constant K depends on geometrical factors and
fixed physical constants, and r is determined by the tem-
perature dependence of the diffusion constant of minority
carriers in the base. In a silicon transistor, r = 1 • 5 (ji-p-ri) or
r = 1 • 3 (p-n-p). q is the electron charge and k is Boltzmann's
constant.

In terms of Vbe, eqn. 1 can be rewritten

kT
Vbe= Vg0 + —(\nIc-\nK-r\nT) . . (2)

The temperature coefficient is obtained by differentiation:

• • • 0)

Inspection of eqns. 2 and 3 leads to the following observations:
Vbe is not a perfectly linear function of temperature

(although very nearly so), and both Vbe and its temperature
coefficient depend on r as well as the geometry-sensitive
factor K. In an accurately calibrated transistor thermometer
circuit, the transistor transducer can thus only be inter-
changed with a carefully selected replacement; in general,
readjustment of the circuit will be necessary.

If, instead of a constant collector current, the current is
varied between a fairly high value, IcX, and a fairly low value,
Ic2, with corresponding base voltages VbeX and Vbe2, it will
be found that the base-voltage excursion is a linear function
of temperature. With the aid of eqn. 2, this is found to be

be! = (4)
lc2

Differentiation of this voltage excursion &Vbe gives its
temperature coefficient:

oT
= - In £l = constant

q Ic2
(5)

* For some of the features described in this letter, the necessary patent protection
has been sought, and inquiries can be directed to the address at the end of the
letter

175



Comparison of eqns. 4 and 5 with their steady-state counter-
parts, eqns. 2 and 3, shows a number of important advantages
of this mode of operation:

(a) &Vbe is exactly linear, and proportional to absolute
temperature, without any offset.

(b) Both A Vbe and its temperature coefficient are independent
of any material or transistor parameter, resulting in
complete interchangeability of transistor transducers,
regardless of type number (this has been found to be
largely true in practice).

(c) Within certain practical limits, the actual current levels
/cl and Ic2 are immaterial, and they need not even be
accurately stabilised, provided that their ratio is stable. In a
practical circuit, a stable ratio can be more easily achieved,
because the temperature coefficients of the two current-
generating resistors could be matched, and even fairly
large reference voltage fluctuations will have negligible
effect on the current ratio.

id) t±Vbe and — ( A K J are exactly calculable (and within
oT

limits designable) without any previous transistor para-
meter measurements.

Part of the price to be paid for all these advantages will, of
course, be greater circuit complexity. The most straight-
forward way would be to apply a square-wave collector
current and amplify the resulting square-wave base voltage
(amplitude A Vbe) sufficiently in order to rectify it. If a digital
voltmeter is used as an indicator, continuous presentation of
the temperature range —100 to +100°C, resolved to within
0 01°C, without scale change, is a possibility.

The sensitivity is also reduced, although it is not so low as
to present serious problems. If, for instance, /c l = 100/uA
and Ic2 = 0-lfxA, eqn. 5 yields

= 0-6mV/°C.

which is about four times less than HVbe/'dT in the steady-
state mode.

The most obvious p-njunction device to use as temperature
sensor is the diode, but a simple expression like eqn. 1 does
not represent its total current/voltage characteristic, owing to
the presence of surface leakage across the junction and
electron-hole recombination in the barrier layer. Silicon
diodes (planar or other) seem to be particularly prone to
these effects and were not further considered for this purpose.
Silicon planar transistors, with collector-base short-circuited
and operated as diodes, were found to exhibit an Ie\Vbe
characteristic very close to a single exponential (like eqn. 1),
but the slight deviation was just about enough to spoil the
attraction of this proposed new mode of operation.

On connecting the transistor across an operational ampli-
fier as a 3-terminal feedback network, as proposed by Gibbons
and Horn3 for the purpose of extending the range of log-
arithmic transfer response of a circuit, the present difficulty
can also be overcome. The unwanted components of the
emitter current are simply drained away as base current, and,
if the current generator across the input supplies a step
change in collector-current level (Fig. 1), eqns. 4 and 5 will

operational
amplifier

(V/uronsistor
vLx temperature sensor

Fig. 1 Basic circuit for making collector current the independent
variable in practical operation, with the base-emitter voltage the
dependent variable

be satisfied nearly exactly. The only small residual error will
be that due to voltage drops across the extrinsic resistances of
the transistor (mostly rbb>). For extreme accuracy, even these
176

errors can be eliminated at the expense of further complica-
tion, with, for example, the introduction of additional current
level(s).

The temperature range over which eqns. 4 and 5 are valid
is illustrated in Fig. 2 for a representative silicon transistor.

Vbe method^

-100

Vbe

^ _ _ 5 d : , ^ u - > ioo
temperature,°C

AVbemet

150

-1

-2

-3

Fig. 2 Calibration curves for current-step and constant-current
operation of a transistor temperature sensor

Positive and negative errors mean high and low readings, respectively
Transistor sensor, 2N1893
Vbe method: /„ = 57-3 txA
A Vbe method: h\ = 57-3|xA, hi = 5-0|xA

With increasing temperature, a point is gradually approached
where the emitter reverse leakage current Ieo is no longer
insignificant relative to the lower current level IC2- This
imposes an upper temperature limit. At the low end of the
scale, the deviation is much more gradual, being due to the
increasing Ibrbb' voltage drop as the current gain h/e falls.

Errors in temperature indication caused by random inter-
change of sensor transistors (without readjustment of circuit)
have also experimentally been found to be reduced by at
least an order of magnitude in the current-step mode, as
compared with the conventional constant-current mode.
More details will be published in a future paper.

T. c. VERSTER 11th April 1968

Solid State Electronics Division
National Research Institute for Mathematical Sciences
PO Box 395, Pretoria, South Africa
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OPTIMALLY SENSITIVE NETWORKS
The constraints on LC transfer-function coefficients are
investigated for networks to be optimally sensitive according
to Schoeffler's criterion considered by Leeds and Ugron.

In a paper by Leeds and Ugron,1 consideration has been given
to the minimisation of Schoeffler's performance criterion,
namely the sum of the squared magnitudes of sensitivities.
The absolute minimum of this sum of the magnitude-squared
criterion would result when all parts of the sum are equal, and
Leeds and Ugron suggest that a class of networks exists which
exhibit this property. The purpose of this letter is to investigate
the requirements for a network to be potentially optimally
sensitive to Schoeffler's criterion.

For optimum sensitivity, all the magnitude-squared
sensitivities must be the same:

i.e. to(p)|2
where p is the complex frequency variable.
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