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Abstract— Ukraine's big problem is the disappearance 
of forest cover. According to the international forest 

monitoring project Global Forest Watch, Ukraine lost 

1.08Mha of forests from 2000 to 2020. Such sad statistics are 

possible only due to the lack of monitoring tools for the 

forest industry in Ukraine. Such a tool can be created by 

combining Remote Sensing and Deep Learning approaches. 

To implement such approach for the automatic use, we 

combine Optical and Synthetic Aperture Radar images of 

the Sentinel-2 and Sentinel-1 satellite missions on which 

object-detection is performed using a U-Net-based neural 

network trained with use of the semi-supervised learning 

technique. This approach is being tested and shows its 

effectiveness in Kyiv region and going to be implemented in 

the same way for the Lviv, Odessa and Zakarpatya oblasts. 

Keywords—Deep Learning; U-Net; Remote Sensing; 

deforestation, object detection 

I. INTRODUCTION

The planet's forest cover makes up about 30% of the 
total area, but unfortunately, every year the trend has 
more and more negative dynamics. The planet's forest 
cover is very important to people because plants consume 
carbon and participate in climate and water resources 
regulation. One of the most global problems of modern 
society is rapid climate change, one of the reasons for 
which is the deforestation of territories. Also, forest fires 
are a big problem for deforestation too. The main 
problem that will be considered in our work is illegal 
logging, which leads, among other things, to soil erosion 
and loss of biodiversity. The damage from illegal logging 
is difficult to assess accurately due to the specific nature 
of the activity, but rough estimates show that nearly half 
of logging is illegal [1], especially in open and vulnerable 
areas (for example, central Africa or the Amazon basin). 
According to Global Forest Watch [13], Indonesia lost 
27,7 million hectares of tree cover between 2001 and 
2020, where 40% of logging was illegal, some of which 
was also related to corruption schemes. The World Bank 
estimates that an area of forest the size of a football field 
is destroyed every 2 seconds around the world, and illegal 
logging brings criminals about $ 15 billion per year [2]. 

The damage from deforestation as well as the increase 
in forest area can be estimated using satellite data 
analysis. At the moment, there are many ways associated 
with the machine and deep learning, which allows you to 
quickly and more accurately assess the current state of the 
forest area. In the study [3] researchers mapped global 
tree cover extent, loss, and gain for the period from 2000 
to 2012 at a spatial resolution of 30 m, with loss allocated 
annually. In this research, the global analysis of Landsat 
was performed using the cloud-based Earth observation 
data analysis platform Google Earth Engine. GEE uses a 
lazy computation model, in which a sequence of 
operations can be performed in two modes: interactively 
on the fly and in bulk on a complete dataset. The study 
used the first mode during development and debugging, 
and the second mode during the calculation of the final 
data products. 

Let's consider how satellite data is used in different 
countries. Authors of [4] checked in Southern Africa if 
the spatial resolution of satellite data affects the detection 
of logs using NDVI and CVNDVI obtained from Landsat 
8 and Worldview-2. The study shows that remote sensing 
data can provide an effective prediction tool for the 
detection of logging. Also was shown that in wet miombo 
woodlands the predictive power of remotely sensed data 
is weak compared with the dry miombo woodlands of 
Zimbabwe in Kutsaga and Shurugwi. 

In Europe [5]-[7], a methodology for detecting 
changes in land cover within the framework of the 
IMAGE and CORINE Land Cover 2000 (I&CLC2000) 
project was presented. This project aims to create a 
mosaic of satellite images of Europe, an up-to-date LC 
database named CLC2000 (from 2000th), and 
information about general LC changes in Europe between 
1990 and 2000. Images obtained in two or more time 
horizons are used to identify LC changes. 

In Northeastern United States [8] analyzed satellite 
data reveals continuous deforestation from the 1980s 
using time series. In New England, land cover and land 
changes were continuously monitored at 30 m resolution 
between 1985 and 2011. Land change has been mapped 
using Continuous Change Detection and Classification 
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(CCDC) algorithm to Landsat pixel time series. The study
results underscore the importance of continuous
monitoring and targeted sampling of land cover changes,
as a bias in the land change map would obscure the true
extent and nature of deforestation in New England.

Near-real-time operational deforestation detection by 
combining three satellites: Sentinel-1, Sentinel-2 and 
Landsat-8 was improved in Malaysia and Indonesia [9]. 
In this study used Change Vector Analysis to detect 
changes between non-affected forest and images under 
analysis. The study showed that in the cloudy season, 
optical sensors took about twice the time to detect 
deforestation compared to Sentinel-1, which was 
unaffected by cloud cover. The results of this study show 
that near-real-time deforestation detection can detect 
most events, but false positives can be reduced through a 
multiple event detection process. 

The use of synthetic aperture radar (SAR) data and 
optical data has a significant difference in the techniques 
used for the data processing as well as for data 
interpretation. In the work [10] was shown a new 
indicator of deforestation, derived from synthetic aperture 
radar (SAR) images, which is based on a geometric 
artifact that appears when deforestation occurs, in the 
form of shadows at the border of a felled area. In a study 
analyzed the conditions for the occurrence of these 
shadows and the methods that can be used to detect 
deforestation. The method was tested on the test site area 
of 600,000 hectares in the Peruvian Amazon, to get the 
best detection rates than the set of UMD-GLAD Forest 
Alert Remote Sens data, NRT deforestation detection 
system based on Landsat, and the best time of 
deforestation characteristic. In the study [11] was shown 
that combining observations from multiple optical radars 
and synthetic aperture satellites (SAR) can provide dense 
and temporarily regular information at medium-scale 
resolution, regardless of weather conditions, season, and 
location. The results of this study show that deforestation 
was detected with higher spatial and temporal accuracy 
when combining observations from multiple sensors than 
when using observations from a single sensor. 

The difference in the use of such data sources can be 
seen in the neural network-based applications [12]. In the 
study [13] was provided a basic U-Net model for 
detecting forest changes in Ukraine and improved it by 
adding the ability to use multiple sequential images as 
input to the segmentation model. Training and evaluation 
are carried out on their own dataset created on Sentinel-2 
imagery. It has also been found that using pairs of images 
with close dates can improve the score. In the work[14], 
authors explores the potential of HLS to monitor forests 
by applying two methods for detecting deforestation. 
High temporal and spatial resolution data like ARD was 
tested to detect deforestation using two different methods, 
BFAST monitoring and a random forest algorithm with 
four vegetation indices NDVI, EVI, GEMI and SAVI. 

The study showed that when calculating the proportions 
of correctly calculated deforestation pixels, the SAVI 
index leads to the best results in this research area with an 
HLS dataset with both methods. The research [15] 
compares the performance of Landsat 8 and Sentinel-2 
data in detecting selective deforestation in the Brazilian 
Amazon region. A robust reference dataset was also 
created using both high and very high resolution imagery. 
The study shows that the data obtained with the Sentinel-
2 have higher accuracy, but Landsat 8 displays larger 
areas containing forest disturbances in both pixel and grid 
approaches due to lower spatial resolution. 

In this paper we describe the automatic approach 
developed with use of deep learning deforestation 
detection methodology based on the Unet with 
efficientnet B3 neural network trained with used of semi-
supervised learning approach1.  

II. STUDY AREA AND MATERIALS

A. Kyiv oblast

Kyiv oblast is located in the north of Ukraine on both
banks of the Dnieper in its middle course. The area of the 
region is 28,131 ��². The surface of the region is a hilly 
plain with a general slope to the Dnieper valley. By 
nature of the terrain is divided into three parts. The 
northern part is occupied by the Polissya lowland 
(altitude up to 198 m). The left bank is occupied by the 
Dnieper lowland with developed river valleys. The south-
western part is occupied by the Dnieper Upland - the 
most dismembered and elevated part of the region with 
absolute heights up to 273 m. The climate is moderately 
continental, mild, with sufficient humidity.  

The total area of the forest fund of the region is 675.6 
thousand hectares. The northern part of the region is 
characterized by arrays of coniferous and mixed forests, 
large areas of grasses and wetlands. The south is 
dominated by deciduous forests (oak, hornbeam, ash, 
alder, linden), shrubs and meadows. The region is located 
within two natural zones: mixed forests (Kyiv Polissya) 
and forest-steppe. In the north of the region, non-drained 
wetlands and swamps, Polissya alluvial-zander and 
terrace, in the south - meadow-steppe upland dissected 
and terraced, as well as forest-steppe upland dissected 
natural-territorial complexes predominate. In the region - 
77 territories and objects of the nature reserve fund (total 
area - 80.3 thousand hectares). 

1 Deep Green Ukraine project is developed by Space Research Institute 
NASUSSAU, NGO “Government Monitoring Center” and NGO 
“ForestCom”. This project is the winner of the Open Data Challenge, 
organized with the support of USAID, UKAID TAPAS project. The 
authors acknowledge the funding received by the National Research 
Foundation of Ukraine from the state budget 2020/01.0273 “Intelligent 
models and methods for determining land degradation indicators based 
on satellite data” (NRFU Competition “Science for human security and 
society”). 
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From 2001 to 2020 Kyiv lost 103kha of tree cover, 
equivalent to a 14% decrease in tree cover since 2000 by 
the data from Global Forest Watch analysis [16]. 

B. Sentinel missions data

The Sentinel-1 and Sentinel-2 satellites have a 10-
meter spatial resolution. Such satellites belong to the 
moderate resolutions satellite class, however such spatial 
resolution is sufficient for accurate detection of both 
standard fellings (2-3 ha) and rather small fellings (0.2-
0.5 ha) for Ukraine. Among the free and open satellite 
data, the sensors of these satellites have very good 
characteristics. 

Sentinel-2 is an optical satellite that captures the 
earth's surface in the visible and invisible spectrum and 
has 12 channels. This satellite is often used for the land 
cover classification [17,18], crop monitoring [19]-[22] as 
well as in forestry and other environmental studies. We 
use red, green, blue and nor-infrared channels to create a 
felling detection automatic approach for Ukraine. The 
data of this satellite is updated every 5 days for Ukraine, 
but the quality of this data, as well as all optical satellite 
images, depends on weather conditions. On cloudy days 
or in winter, this satellite is poorly applicable to the task 
of fellings  detecting. 

Sentinel-1 is a synthetic aperture radar satellite that 
uses the principle of an active sensor to sense the land 
surface characteristics. This satellite is widely used for 
the analysis of the consequences of natural disasters 
related to the weather [23],[24] as well as for the 
agriculture monitoring [25] and land surface change 
detection. To detect cuttings, we use VV and VH 
polarization in the form of two-channel image, which is 
obtained after processing data with filtering with a small 
window and Terrain Correction. The data of this satellite 
is updated every 6 days and does not depend on the 
atmosphere conditions. Signature of signal reflection 
from tree cover and bare land differ in summer and 
winter, but the change of season does not significantly 
affect the possibility of separating these classes of ground 
cover. Thus, this satellite allows us to qualitatively detect 
felling regardless of the seasons and weather. 

In modern practice, Sentinel-2 gives a very good 
result in the classification of land cover and the detection 
of such land cover changes as felling. Paper [26] 
demonstrates that Sentinel-2 has the highest accuracy for 
summer and spring compared to Sentinel-1. However, in 
winter and autumn, due to the lack of vegetation, weather 
conditions and snow cover, the use of this satellite is 
impossible. Despite the fact that the data of Sentinel-1 are 
more noisy and give less accuracy in detecting fellings, 
the combination of the two satellites gives the best result. 
Therefore, if the territory is covered by optical images 
with a cloud cover of less than 40%, we use the data of 
both satellites, and if this condition is not met, we work 
with data of only Sentinel-1. 

III. THE LOGGING DETECTION SYSTEM

We are developing a logging detection approach that 
can automatically operate in the Amazon cloud 
environment and detect current deforestation using 
satellite data and neural networks. For the convenience of 
the approach use, it is developed in a modular form and 
contains: data downloading and processing module, 
training data preparing module, neural network use 
modul and results post-processing module. 

A. Data Downloading and Processing Module

The first stage of our system is the download and
processing of satellite data. The module responsible for 
this should contain configuration files that contain the 
geographical coordinates of the points that describe the 
geospatial polygon of the area of interest and the 
frequency of information updates. This polygon is used to 
search for the required Sentinel-1 and Sentinel-2 satellite 
data using the Sentinelhab python library. The frequency 
of information updates forms the time period used to 
search for data. When the data covering is formed for the 
territory of interest, the Sentinel-2 satellite data with a 
cloud cover of less than 40% is searched. If it is 
impossible to form a complete optical coverage of the 
territory, only the output formed on the basis of radar data 
is formed. If part or all of the area of interest is covered 
by satellite data several times, composites are formed by 
counting the medians for each pixel. The output generates 
6-channel images or 2-channel images (in the absence of
optics), which completely cover the area of interest and
are automatically stored in the AWS S3 cloud storage.

Optical image processing workflow created with use 
of sen-2-core software and processing include 
atmospheric correction, radiometric correction and cloud 
masking. SAR data processing workflow created with use 
of SNAP software and processing graph that include 
refined lee filtering, calibration and radiometric 
correction. 

B. Training data preparing module

This module is responsible for generating training and
validation data to teach the neural network image 
segmentation model. This module loads the stored images 
covering the area of interest generated by the first module 
and cuts the image into a large number of images of size 
224 by 224 in steps of 112 pixels. As the in-situ data we 
have manually labeled 2446 polygons in Kyiv oblast that 
cover 35UQR Sentinel-2 tile. Based on this ground truth 
data set, we generated 81335 squares for training and 
8144 for validation. This module uses a mask with 
training data, which is also cut in parallel. The condition 
for using the image for training is the presence of at least 
1 percent of the deforestation area in the image. The mask 
itself is either formed by rasterizing of a vector file with 
felling polygons or is an output from past model runs. 
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C. Neural Network Use Modul

This module is responsible for initializing the neural

network model, training it, and constructing a felling map 

based on it. The first stage is the initialization of the 

model. We work with U-Net similar models for image 

segmentation. Figure 1 shows our basic U-Net model 

[26]-[28]. This model has 2 parts – encoder and decoder. 

The encoder part has 5 3x3 convolutions layers with ReLu 

activation function that connected with the maxpooling 

2x2 layers. Decoder part contain 4 3x3 convolution layers 

that are symmetrical to the encoder part, connected to each 

other with the 2x2 up-conv layers and has skip 

connections with the corresponding encoder convolution 

layers.  

Figure 1. U-Net model for the image segmentation

Since the outputs of past models are expected to be 

used to teach the new one, we use label smoothing method 

for further regularization and overcoming the problem of 

confirmation. This architecture is one of the most common 

and effective in image segmentation. The difference 

between our problem is more complex multispectral 

features and more measurements, which requires the use 

of additional means for regularization. We also use 

Jaccard coffieent as a loss function.  

Implementation of this module allows us to easily 

change models. Our main model is  U-Net with 

Efficientnet B3 [29]-[31] shown in Figure 2. This is a 

modification of U-Net, which involves the use of 

Efficientnet B3 as a encoder part of network. The decoder 

part remains the standard U-Net, while encoder uses the 

inverted bottleneck 3x3 and 5x5 convolutions instead of 

common 3x3 convolutions. 

This modification allows to improve the quality of 

obtaining features for image segmentation and, 

accordingly, to increase the accuracy of segmentation 

Also this module allows to use several models in an 

ensemble that also increases segmentation accuracy. After 

the model learning, a geospatial raster is created that 

covers the area of interest and the results of segmentation 

of the division of the initial image into squares of size 224 

and step 112 are wrote in it. 

Figure 2. U-Net with Efficientnet B3 model for the image 

segmentation 

D. Results accuracy assessment module

The important step of segmentation models usage in

the applied tasks of felling detection is results accuracy 

assessment. To evaluate performance scores of our models 

and get the produced maps accuracies we are using two 

metrics that evaluate it from different sides. 

For the semantic segmentation quality assessment we 

calculated Intersection over Union (IoU) score. For our 

task it is important to estimate how goodly the resulting 

map is overlapping with the test ground truth map. For 

this purpose we calculate Y – binary target imagery, P – 

output probability for certain class. The resulting metrics 

can be estimated as the proportion between overlapping of 

Y and P and union of Y and P. 

���(�, �) =
� ∩ �

� ∪ �
, 

To analyze the balance between User Accuracy and 

Producer Accuracy we use also F1 score, which can be 

calculated as proportion between UA and PA. This score 

is more informative for the task of tree cutting detection 

mapping due to uneven class distribution. 

!1 =
�#

�#
As the reference data set for the accuracy accessment 

we are using the manually labeled dataset that wa made in 

the same way was training data set and contain 3000 

felling polygons. 

E. Results Post-Processing Module

The post-processing module is responsible for

obtaining the final output of the approach. For the 

convenience of geospatial analysis, the raster is converted 

into a vector form using vectorization, implemented in the 

python library, named ogr. Often vector maps obtained 

from raster images with moderate spatial resolution have 

the problem of the presence of points of intersection of 

lines that describe the formed polygon. Such points are 

problematic and cannot be used in some GIS systems. We 

340



use the ogr geometry correction method to fix this 

problem. After that, the actual fellings are determined by 

comparing the obtained polygons with the polygons 

detected for previous dates. The comparison is performed 

by calculating the difference between two vector layers. If 

the difference is insignificant in relation to the total area of 

the polygons, it is considered a false extension of the 

geometry due to the mixed pixels effect. If the change is 

significant, it is considered an extension of felling. If the 

polygons do not intersect with the layer of past fellings, 

then it is a completely new felling. As the result, two files 

are generated at the output - one contains all new fellings, 

the second contains all recorded fellings in the history of 

the all approach uses. 

IV. RESULTS

Using this approach, we detect new fellings with high 

accuracy. At the same time, it has a very low level of Falls 

Alert errors, which allows it to be reliable for its users. 

Table 1 shows the accuracy of detection of fellings on 

satellite images (F-1 score and IoU), for the implemented 

standard U-Net model, modification of U-Net and the 

ensemble of these two models. Accuracy was calculated 

on independently prepared 4 thousand test sites that were 

not used in training. 

TABLE I. THE ACCURACY METRICS FOR THE U-NET MODEL, U-
NET WITH EFFICIENTNET B3 MODEL AND ENSEMBLE OF MODELS 

Metric U-Net

U-Net
with

Efficient

net B3 

Ensemble

of 
networks 

IoU 0.679 0.714 0.760 

F1 0.601 0.63 0.673 

Given that training and testing polygons were created 

manually on very high spatial resolution data, the data set 

contains errors related to incompletely labeled teritories, 

as well as the fact that deforestation itself is not 

homogeneous objects and their boundaries change very 

quickly due to reforestation. or increase in felling, such 

accuracy is quite high. In addition the IoU is never going 

to be 1, because the manual labeling conducted based on 

the high resolution data (30 cm.), while segmentation is 

done with use of moderate resolution data. The only way 

significantly increase the accuracy require the use of high 

resolution data. 

Figure 3 shows the obtained felling map. As can be 

seen, the approach works on different types of forests ( 

deciduous and coniferous or mixed), on surfaces with 

different terrain and in ecosystems with different access to 

water resources. 

Thus the visual analysis shows that neural networks 

are capable to carry out qualitatively segmentation of 

wood on fellings and not fellings both in cases of big 

accumulations of fellings, and single. It is also worth 

noting that the separation of forest and non-forest on 

satellite data is very high quality and historical 

deforestation with young forest growing on them is not 

confused with deforestation without wood cover. This is 

correct, because such areas are restored forest areas after 

continuous felling. 

Figure 3. Kyiv oblast deforestation map based on the deep learning 

Figure 4. An area of forest with a large accumulation of fellings 

detected by the neural network. 

V. CONCLUSION

In this papper we described the new automatic 

approach to identify current and historical deforestation, 

which was implemented in the Amazon cloud 

environment and tested in the Kyiv region. The modular 

structure makes it easy to program, use and upgrade the 

implementation of the approach. Modifications of U-Net 

architectures demonstrated their effectiveness in this task. 

The U-Net with Efficientnet B3 architecture has higher 

accuracy for the logging detection than basic U-Net 

model. Also, to overestimate accuracy for such 

approaches it is possible to combine several architectures 

in the ensemble of neural networks. The implemented 

approach has shown its effectiveness in practice. Also, 
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due to the combination of optical and radar, it is possible 

both to increase the accuracy of felling recognition and to 

ensure continuous operation in any season of the year for 

temperate and cold climates, regardless of weather 

conditions. 
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